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Simulation of Railway Drainage Asset Service
Condition Degradation in the UK Using a

Markov Chain–Based Approach

Yiqi Wu1; Simon Tait, Ph.D.2; Andrew Nichols, Ph.D.3; and Jamil Raja, Dr.Eng.4

Abstract: UK railway drainage systems are facing increasing challenges due to poor completeness of the asset inventory, long asset life

cycles, more intense use of the UK railway system, and a changing climate. It is therefore important for drainage managers to acquire a better

understanding of the current and future condition of the drainage assets for which they are responsible. This study presents a Markov model

for simulating the potential future service condition of various classes of UK railway drainage assets based on observed historical changes in

asset condition. Linear regression analysis was performed on distinct asset groups and the influence of the characteristics of asset construction

material, size, shape, and location on the rate of the degradation process was quantified. These results were incorporated with the continuous

timeMarkov chain model to improve the accuracy of the degradation rate prediction for several drainage asset classes. The model is illustrated

on a case study of the Network Rail drainage assets showing the minimum number of samples required to make a reliable estimation of the

service condition degradation process. DOI: 10.1061/(ASCE)IS.1943-555X.0000630. This work is made available under the terms of the

Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Network Rail (NR) is the owner of the vast majority of railway

infrastructure, including associated drainage systems, in England,

Scotland, and Wales. The rail network is divided into nine strategic

geographical routes (pre-2020), each responsible for its own day-

to-day asset management decisions, with standards, assurance, and

support systems provided by a technical authority from a central

strategic department. Each consecutive 5-year period is referred to

as a control period (CP) for NR; a strategic business plan is agreed

at the beginning of a control period stating goals and objectives for

the period. For drainage, asset management plans are created with

the aim of developing strategies to prevent increase in risks to pas-

sengers, workers, and members of the public due to drainage asset

failure, while minimizing whole life, whole system costs.

There is an ever-increasing recognition that effective and reli-

able drainage systems can significantly enhance the operational

performance of the entire railway system (Drainage Asset Policy,

unpublished report, 2017). Inadequate hydraulic capacity in rail-

way drainage systems can cause unexpected trackside flooding,

which can lead to temporary speed restrictions or temporary clo-

sures of railway lines. In the past 5 years, there were on average

450 flooding events per year, which caused 0.3 million hours of

delay each year, leading to a compensation costs to Network Rail

at an average of £17 million per year. Such cost is made up solely of

payments to impacted train operation companies and does not in-

clude the cost of replacing damaged assets.

Adequate control of water is also crucial to the management and

maintenance of other railway infrastructure, such as tracks, track

beds, earthworks, and signaling (known as parent assets). This

is because water can play a role in many failure mechanisms that

affect parent assets, such as the long-term degradation of the stiff-

ness of the materials that form the track support system and earth-

works (Drainage Asset Policy, unpublished report, 2017). An

impaired drainage system can thus result in damage to parent as-

sets, and hence further disruption to train operation as well as

higher maintenance costs and risk to human safety. It is NR’s major

concern to eliminate the safety consequences of drainage failure,

such as derailments and injuries of passengers and NR workers.

Flooding would occur when there is a lack of local hydraulic

capacity in the system, which could be caused by inadequately de-

signed capacity, asset degradation, change in land use/land cover,

or increased load due to climate change. All drainage assets are

expected to be designed and built in accordance with NR’s design

standard with the hydraulic capacity to operate for a rainfall event

of a specified return period and duration. A 1 in 10-year return

period is the lowest standard; therefore, all the drainage systems

are expected to withstand a 1 in 10-year rainfall event. However,

results from flooding events analysis of the 2,250 cases of flooding

incidents recorded during the last 5 years show that around 95%

of flooding happened with precipitation less than the expected

rainfall volume of a 1-day-duration, 10-year return period rainfall

event. Since design standards can be expected to be followed in a

regulated industry, this preliminary analysis provides evidence

that this flooding could be either due to poor design or due to

the degradation of installed drainage assets from their original

condition.
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Degradation is reflected by changes in asset condition. At NR,

the asset condition is split into two parts: the structural condition

and the service condition:

• Structural condition: the fabric of the asset and the severity of

structural defects that affect its integrity. Structural defects can

be addressed by repairing or replacing the asset.

• Service condition: defects that affect the performance of the

asset and the severity of the defects that reduce its hydraulic

capacity below the original design level. These defects may be

independent of the structural condition or may be linked. Ser-

vice defects can be addressed by maintenance of the asset such

as cleansing or vegetation clearance.

As stated in CIRIA C714 (CIRIA 2014), the effective manage-

ment and maintenance of the drainage network requires knowledge

of the asset inventory, its previous and current condition, hydraulic

capacity, historical performance, and current status. NR is in the

process of improving its drainage asset knowledge by scheduling

surveys and inspections to verify the existing data record and iden-

tify unrecorded assets, achieving a 25,000 asset inventory increase

in the last control period (April 1, 2014–March 31, 2019). The deg-

radation process controls how hydraulic performance has changed

since the last inspection, or will change in the future. It is therefore

important to study the degradation process of the assets and de-

velop appropriate modeling tools to enable a better understanding

and estimation of the status of drainage assets.

Literature Review

There are many factors thought to influence the rate of infrastruc-

ture asset deterioration such as asset type, age, size, material, and

local soil characteristics. Railway drainage systems are composed

of buried drainage pipes linked at catchpits (chambers that provide

inspection access and allow sediment to settle), which drain via out-

lets to adjacent surface water bodies; they operate by gravity and so

are analogous to stormwater sewers. There is little information on

the deterioration of railway drainage systems. In Ana et al. (2009),

an investigation into the important factors affecting pipe deterioration

in the sewer network of Leuven (Belgium) was carried out using

logistic regression. It revealed that out of the 10 variables considered,

age, material, and length are the only three that significantly affected

the pipe service condition. However, by comparing results with sim-

ilar studies in UK (Ariaratnam et al. 2001) and Canadian networks

(Davies et al. 2001), they found that each of the studied networks has

a slightly different set of significant variables, and thus concluded

that there is no single set of variables that can explain sewer deterio-

ration; it seemed to vary from one network to another.

Due to the many uncertainties in the deterioration process such

as unobservable explanatory variables and measurement errors,

deterioration is often predicted using a probabilistic model to cap-

ture its stochastic nature. Although deterioration models for railway

drainage systems have not been developed, studies of other piped

systems such as sewer systems and stormwater pipes have been

published.

Some of the models only describe two states, deficient or non-

deficient, such as the cohort survival model proposed by Herz

(1998), which is based on the Herz distribution, determining the

lifetime probability distribution derived from the current stock

of pipes. It has been applied to drinking water distribution networks

to predict the future rehabilitation need. However, these methods

only provide information on when assets are expected to fail; they

lack the condition information in between functioning and failure,

which is critical for asset managers in formulating a planned main-

tenance regime.

The Markov approach is a probabilistic model widely used for

simulating infrastructure deterioration that can describe systems

with multiple condition states. Micevski et al. (2002) developed

a Markov model for the structural deterioration of stormwater pipe

infrastructure, where the Markov transition probabilities were esti-

mated using the Metropolis-Hastings algorithm. Both Baik et al.

(2006) and Wirahadikusumah et al. (2001) presented the use of

a Markov chain–based deterioration model in sewer pipes. While

Baik et al. (2006) used the ordered probit model to estimate the

probability of deterioration, Wirahadikusumah et al. (2001) used

nonlinear optimization focused only on structural deterioration.

Kleiner et al. (2010) introduced the nonhomogeneous Poisson

process (NHPP) for future prediction of the structural failure

for an individual water main, considering both static factors

(i.e., pipe intrinsic) and dynamic factors (e.g., climate, cathodic

protection, breakage history). Markov models have also been ap-

plied to many infrastructures other than piped systems such as

bridges and pavements. Mizutani et al. (2017) used a Markov

model to predict reinforced concrete bridge elements deteriora-

tion due to chloride-induced corrosion of the reinforcement,

using Bayesian statistics as an estimate for transition probabil-

ities when there is little to no available time series inspection

information. Wellalage et al. (2015) presented a Metropolis-Hasting

algorithm–based Markov chain Monte Carlo simulation approach to

calibrating Markovian bridge deterioration models using inspection

data for 15 years on Australian railway bridges. Surendrakumar et al.

(2013) provided a Markovian probability process to predict the

future condition of the pavement, which can be used to design a

decision support system for pavement maintenance management.

Neural networks are thought to be of relevance because they are

particularly effective in dealing with data that have high volatility

and nonconstant variance. Tran et al. (2006) used neural networks

to predict the condition of stormwater pipes and Najafi and

Kulandaivel (2005) used them on sewer networks. The probabilis-

tic neural network (PNN) model developed by Tran et al. (2006)

was tested with snapshot-based sample data and compared with a

traditional parametric model using discriminant analysis. The data

set is consistent of 650 data points taken by closed-circuit television

(CCTV) inspections, obtained from 27 km of the total 800 km of

stormwater pipes in the City of Greater Dandenong, Australia. The

structural and hydraulic conditions are graded into three levels:

(1) good, (2) fair, and (3) poor. Results show it slightly outperforms

others in terms of prediction performance; however, the accuracy of

the model is still not high because the percentage of correct pre-

diction of PNN is only 66.9%, and also the key factors for predic-

tion are difficult to interpret.

Markov models and neural networks are both widely used for

modeling infrastructure degradation. However, neural network mod-

els essentially classify the assets into different condition groups

based on some input factors mostly consisting of asset characteristics

and surrounding geographical conditions; they do not actually sim-

ulate the degradation process, and hence would not be able to capture

the stochasticity in the degradation process. Also, because they rely

heavily on the quality and quantity of the input factors, they are not

suitable for systems that have a limited amount of such information.

There currently does not exist any serviceability deterioration

model for railway drainage pipe systems. Hence, this paper will

be focused on predicting the service condition of drainage assets

using the Markov model, so as to eventually be able to predict

the impact of condition deterioration on the long-term loss of ser-

vice performance. Although Network Rail records both structural

condition and service condition, only service condition is used in

this paper since it relates more directly to hydraulic performance

and thus flood risk. However, the same approach used here could

© ASCE 04021023-2 J. Infrastruct. Syst.
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be applied to the structural condition scores to model structural

degradation.

Methodology

Input Data

As stated in the Drainage Asset Policy (unpublished report, 2017),

the service condition is measured on a 1–5 grading system as illus-

trated in Table 1. The system adopted is compatible with guidance

from CIRIA (2014). NR has service conditions recorded for 88% of

their drainage assets. These condition scores will be used to build a

model for predicting future states of drainage assets. In the “Case

Study” section, this will be applied to an exemplar group of railway

drainage assets.

Markov Model Framework

In this study, a Markov chain approach is used to model the deg-

radation rate, which gives an estimation of transition probability

from one state to a lower state. This decision is made under the

assumption that the probability of degradation depends only on

the current condition of the asset. Such an assumption is made

based on expert opinion and will be verified subsequently. Since

drainage assets could degrade to a worse state any time during the

year, in order to correctly estimate the adverse effect of degrada-

tion on the drainage capacity throughout the year, a Markov

model with continuous time steps is chosen because it is believed

to better reflect the degradation process of railway drainage

assets.

Because the change of condition is expected to happen at any

time during the useful working life, a continuous time Markov

chain (CTMC) is used, which is described by a stochastic process

X ¼ fXðtÞj0 ≤ tg with discrete state space S ¼ fs1; s2; : : : ; sng
that satisfies the following for any time s; t ≥ 0, and i; j ∈ S:

PðXðsþ tÞ ¼ jjXðsÞ ¼ i; fXðuÞ∶0 ≤ u < sgÞ

¼ PðXðsþ tÞ ¼ jjXðsÞ ¼ iÞ ð1Þ

In other words, CTMC is a stochastic process having the

Markovian property: the conditional distribution of the future

Xðsþ tÞ given the present state XðsÞ and the past states XðuÞ,
0 ≤ u < s, depends only on the present and is independent of

the past (Ross 1993).

In the case of modeling railway drainage asset service con-

dition degradation, XðtÞ is the condition score of the modeled

asset at time t, and the state space S ¼ f1; 2; 3; 4; 5g represents

the 1–5 grading system mentioned previously. The matrix Q is

the transition rate matrix, or infinitesimal generator, of the

Markov chain

Q ¼

0

B

B

B

B

B

B

B

@

−q1 q12 q13 q14 q15

0 −q2 q23 q24 q25

0 0 −q3 q34 q35

0 0 0 −q4 q45

0 0 0 0 −q5

1

C

C

C

C

C

C

C

A

where qij ¼ limΔt→0½PðXðΔtÞ ¼ jjXð0Þ ¼ iÞ�=Δt, representing

the transition rate from condition i to condition j given that the

asset is currently in condition i. The diagonal of the matrix is

defined as −qi, where qi ¼
P

n
j¼iþ1

qij. The holding time of an

asset in rating i is exponentially distributed with parameter qi.

It is assumed that the assets’ condition cannot improve without

human intervention, since qij ¼ 0 for i < j. Although degrada-

tion is a gradual process, it is not always possible to monitor the

status of an asset continuously, so the condition of an asset may

has degraded by more than one state before the next inspection;

thus, transition from state i to state j where j > iþ 1 is also in-

cluded in the model. With the transition rate matrix Q, the prob-

ability matrix P for any arbitrary time interval s to t can be

obtained by Pðs; tÞ ¼ expððs − tÞQÞ.

Verification of the Markov Property

For the Markov property to stand, it is necessary to prove that the

probability of an asset degrading into score j with a given current

score i is not related to its previous conditions.

This can be done by analyzing the three state transition sequence

ðXtjXt−1;Xt−2Þ of the historical data set, where ðXt ¼ ijXt−1 ¼
j;Xt−2 ¼ kÞ ¼ ðijj; kÞ represents an asset condition jump from j

to i, given that the previous condition before j is k, i.e., the con-

dition transfer from state k to state j and then state i. If the Markov

property holds, for any given i and j, there would be no difference

in the probability of the sequence ðijj;Xt−2Þ to exist, for all

Xt−2 < j.

The χ2 test is one of the most widely used statistical hypothesis

tests for independence and goodness of fit, testing whether two or

more categorical variables are related in some population. Hence it

is adopted here to test whether the precondition of an asset is related

to its current condition. A similar method has also been used in

water distribution networks (Sempewo and Kyokaali 2016) and

other infrastructure such as pavements (Surendrakumar et al. 2013).

For a given current condition i and previous condition j, the null

hypothesis is that the past condition Xt−2 has no effect on the prob-

ability of the asset jump from condition j to i. The contingency

table for the given current condition i and previous condition j

is constructed by listing all possible sequences ðijj;Xt−2Þ as rows,
then calculating under the given past condition j and Xt−2 the num-

ber of occurrences that the current condition is i and the number of

occurrences that the current condition is not i. The contingency

table is given as Table 2.

Table 1. Description of service condition score

Service condition Description

1 Clear

2 Superficial deposits with no loss of capacity

3 Capacity slightly reduced

4 Capacity severely reduced

5 Blocked or unsafe condition

Source: Adapted from Drainage Asset Policy, unpublished data, 2017.

Table 2. Contingency table for sequence ðXt ¼ ijXt−1 ¼ j;Xt−2Þ

Sequence

Number of sequence

occurrence Xt ¼ i

Number of occurrence

of all other sequences with

same past condition Xt ≠ i

ðijj; 1Þ Nðijj; 1Þ
P

s¼5

s¼j;s≠i
Nðsjj; 1Þ

ðijj; 2Þ Nðijj; 2Þ
P

s¼5

s¼j;s≠i Nðsjj; 2Þ
.
.
.

.

.

.
.
.
.

ðijj; j − 1Þ Nðjj; j − 1Þ
P

s¼5

s¼j;s≠i
Nðsjj; j − 1Þ

Note: Nði; jjkÞ is the number of occurrences of the sequence ðijj; kÞ.

© ASCE 04021023-3 J. Infrastruct. Syst.
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The test statistic for this table is

χ2 ¼
X ðO − EÞ2

E2
ð2Þ

where O = observed value; and E = expected value for each sce-

nario. For example, for the sequence ðijj; 1Þ, the observed value

O ¼ Nðijj; 1Þ, and the expected value

E ¼
X

x¼j−1

x¼1

Nðijj; xÞ ×
Nðijj; 1Þ

P

s¼5
s¼jþ1

Nðsjj; 1Þ
ð3Þ

The null hypothesis is normally rejected at a 5% significance

level, meaning that if the χ2 statistic with j − 2 degrees of freedom

is less than 0.05, the Markov property holds because the current

condition is independent of past conditions.

Development of Transition Rate Matrices

The transition rate matrix is computed using the maximum likeli-

hood method, and for each element of the matrix

q̂ij ¼
NijðTÞ

RiðTÞ
ð4Þ

where RiðTÞ ¼ ∫ T
0
1xðsÞ¼ids, which is the total value of the holding

time at condition score i by the time t; and NijðTÞ = number of

times for ij transition by the time T (Inamura 2006).

After obtaining the transition rate matrix, the potential future

condition score of the drainage system can be simulated using

the stochastic simulation algorithm (SSA), also known as the

Gillespie algorithm. The detailed procedure is described as follows:

1. Initialize the state of the system x0 at time t ¼ 0, which is the

current condition score of the asset;

2. For the given state x0 ¼ i, find the transition rate λij from

state i to all other states, i.e., generator matrix elements

λij ¼ q̂ij ∀ j ∈ s; j ≠ i;

3. Calculate the sum of all transition rates, λi ¼
P

j≠iλij;

4. Simulate the time, τ , until the next transition by drawing from

an exponential distribution with mean 1=λi. Generate a pseudo

random uniform variable u1 from the interval [0,1], τ ¼
−lnðu1Þ=λi;

5. Simulate the transition type by drawing from the discrete dis-

tribution with probability Prob ðtransition to statejÞ ¼ λij=λi.
Generate a pseudo random uniform variable u2 from the interval

[0,1], and choose the transition as follows: if 0 < u2 < λi1=λi,

choose Transition 1; if λi1=λi < u2 < ðλi1 þ λi2Þ=λi, choose

Transition 2; and so on;

6. Update the new time t ¼ tþ τ and the new system state xt; and

7. Iterate Steps 2–6 until t is larger than the designed simulation

period (Banks et al. 2011).

Determine the Minimum Sample Size Required

Because drainage assets are often buried underground, they are

more costly to inspect than other assets in the railway system,

so it is often in the interest of asset managers to minimize such

costs while obtaining sufficient data to build a robust deterioration

model. Hence, a study is performed to determine the number of

samples required to obtain a stable transition rate matrix that would

not alter more than 5% by including more training data. The pro-

cedure is as follows:

1. Randomly select n samples from the whole asset database, and

calculate transition rate matrix Qn;1 using service condition

score of these n samples;

2. Repeat the previous step m times, giving a sample of m tran-

sition rate matrices fQn;1;Qn;2; : : : ;Qn;mg;
3. Calculate sample mean Qn and standard deviation σn, where

Qn =
P

s¼m
s¼1

Qn;s=n and σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

s¼n
s¼1

ðQn;m −QnÞ
2=n

q

;

4. Increase the number of samples in steps of n, repeating Steps 2–3

to obtain matrices fQn;Q2n; : : : g and fσn; σ2n; : : : g; and

5. Find the critical sample number r where Qr is within 5% of the

actual transition rate calculated using all assets.

Model Validation

To examine the performance of the model, the data set will be split

into two groups: a training group and a validation group. The tran-

sition matrix Q will be calculated using the training data set then

applied to the validation data set to predict the number of transitions

in each condition category. Observed and expected percentages of

transitions will then be compared to test the accuracy of the Markov

model proposed.

Case Study

Data Analysis

To obtain a comprehensive analysis of how drainage assets may

degrade, a historical condition record of 13 years was extracted

from the Network Rail drainage asset database. Out of 349,678

drainage asset records, 308,465 have a service condition score.

Assets with only one condition score recorded were removed

because there is no possibility of a transition from one state to an-

other being observed; hence, these asset data are deemed as not

carrying meaningful information. The number of assets in each as-

set group was then examined to see whether there were enough data

to produce a reliable transition rate matrix. The results are given in

Table 3. Because granular drain, siphon, and pond have less than

1,000 assets recorded with condition scores, it is assumed that there

are not enough historical data points to produce a reliable proba-

bility prediction, so they were not considered in the following

analysis.

Because the inspection guidance is usually reviewed every con-

trol period, to ensure the consistency of the condition assessment

standard, analysis of this case study was performed for the duration

of CP5, which is from April 1, 2014 to March 31, 2019.

After an initial check of the data, it was noted that the recorded

condition scores can go both higher and lower over time. As the

condition score of an asset improves (goes lower), it would be as-

sumed that either an unknown intervention has taken place or there

Table 3. Number of assets in each asset group

Asset type Count Percentage (%)

Chamber 63,553 44.85

Pipe 32,410 22.87

Channel 16,532 11.67

Structure 9,851 6.95

Culvert 7,960 5.62

Outfall 4,960 3.50

Inflow 4,154 2.93

Covered channel 1,482 1.05

Granular drain 584 0.41

Pond 189 0.13

Siphon 29 0.02

Sum 141,704 —

© ASCE 04021023-4 J. Infrastruct. Syst.
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is an inspection error. Since this study is focused on the degradation

of drainage asset condition, only the transitions where score is de-

graded were considered to calculate the transition matrix. However,

in order to eliminate the effect of score improvement on the assets

without affecting the total holding time RiðTÞ used to calculate the

transition matrix [as stated in Eq. (4)], for all the transitions where

the score is upgraded, the asset is assumed to have stayed in the

starting condition score until the moment the asset’s service con-

dition is improved.

Verification of the Markov Property

As explained in the “Methodology” section, the Markov property

can be tested with the χ2 test to verify that the net transition from

the current condition is independent of past conditions. Examples

of this for chambers and pipes are given in Table 4.

As shown in Table 4, the test statistic χ2 for each contingency

table is above the significance level of 5%, meaning that there is no

evidence to reject the null hypothesis of independence between

each category. Hence, all the assets are proven to possess the

Markov properties, so the Markov methods described in the

“Methodology” section may therefore be applied.

Cohort Analysis

Each asset group is further divided into subclasses based on their

function or characteristic; for example, pipes are divided into three

subclasses based on the type of water they carry: surface water, foul

water, or combined. For all assets, other characteristics such as size

and material are also recorded in the database. To decide whether

the transition rate matrix should be produced based on these groups

and characteristics, a correlation between each of these parameters

and the service condition was explored with linear regression using

a least-squares approximation. Because the characteristics of in-

flow, outflow, and structure are difficult to quantify, they were not

further divided into subgroups. Tests were therefore performed for

channel, chamber, culvert, and pipe, and the resulting significance

level of each characteristic is listed in Table 5, of which below the

5% (0.05) critical level would be deemed as influential.

As seen in Table 5, channel service condition is correlated with

its material, shape, route, and subclass (natural ditch, artificial

ditch, flume, aqueduct, cascade); chamber service condition is cor-

related with its material, route, and asset subclass (catchpit, man-

hole, interceptor, pumping); culvert service condition is correlated

with its material, shape, and location; and pipe service condition is

correlated with its size, material, and location.

The construction material of the assets may affect the rate of

deterioration, which can lead to higher surface roughness and hence

an increase in the chance of lower hydraulic capacity, lower flow

velocities, and higher likelihood of sediment-derived blockage.

With different sizes, assets are expected to enable different flow

rates to pass through. Higher flow rates without an adequate slope

gradient could bring more debris and cause sedimentation, which

can then lead to loss of hydraulic capacity. Also, smaller pipes may

more easily become blocked by large debris at lower flow veloc-

ities. The dependence of service score on location may be due to

different local hydrological characteristics, because all drainage as-

sets are designed to withstand rainfall events with a certain return

period depending on route classification following the company

design standards (as seen in Table 5). It may also be due to the

way each route inspects and records the score, which could warrant

a future study on uncertainty in condition scoring.

Estimate Future Condition State

An example of pipes with 300-mm diameter was chosen because

this is the highest population among all pipe sizes: 78% of pipes

that have a diameter record are 300mm. After the data cleanse process

proposed in the “Data Analysis” section, the total number of assets

analyzed is 15,295. The transition rate matrix for pipes with 300-mm

diameter is given by the Markov chain degradation model as

Q ¼

0

B

B

B

B

B

B

B

@

−0.2030 0.1800 0.0156 0.0039 0.0035

0 −0.0541 0.0444 0.0069 0.0028

0 0 −0.0559 0.0439 0.0120

0 0 0 −0.0851 0.0851

0 0 0 0 0

1

C

C

C

C

C

C

C

A

The 1-year transition probability can be then calculated by taking

the exponential of the transition rate matrix Q

P1 ¼ e1xQ ¼

0

B

B

B

B

B

B

B

@

81.6% 15.8% 1.7% 0.4% 0.4%

0 94.7% 4.2% 0.7% 0.3%

0 0 94.6% 4.1% 1.3%

0 0 0 91.8% 8.2%

0 0 0 0 100%

1

C

C

C

C

C

C

C

A

Table 4. Chi-squared test contingency table for chamber and pipe

Sequence

Chamber Pipe

Xt ¼ i Xt ≠ i χ2 Xt ¼ i Xt ≠ i χ2

(4; 3j1) 11 67 0.19 4 18 0.77

(4; 3j2) 76 294 22 83

(5; 3j1) 4 74 0.65 1 21 0.68

(5; 3j2) 24 346 3 102

(5; 4j1) 6 24 0.38 0 5 0.49

(5; 4j2) 27 54 1 6

(5; 4j3) 27 68 4 14

Table 5. Linear regression results of the significance coefficient of

different characteristics for channel, chamber, culvert, and pipe

Characteristic Significance

Channel

Material 3.7 × 10−14

Shape 1.9 × 10−49

Route 6.1 × 10−40

Subclass 2.8 × 10−5

Culvert

Material 1.7 × 10−4

Shape 1.1 × 10−11

Route 6.2 × 10−28

Chamber

Material 3.3 × 10−5

Shape 0.06

Route 7.3 × 10−24

Subclass 3.3 × 10−35

Pipe

Size 3.8 × 10−64

Material 0.04

Shape 0.72

Route 2.2 × 10−29

Subclass 0.45
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As seen in the matrix, for pipes in all condition states except

condition one, less than 10% of the assets degrade to a worse state.

Although the number does not seem large, this small number of

degraded pipes can still have a large effect on individual drainage

systems. Railway drainage systems consist of groups of subdrain-

age systems, where each subdrainage system consists of a series

of drainage nodes and links that are interconnected to form several

pipelines alongside tracks to bring water from an inflow to an out-

flow. Hence, if one of the assets fails, for example, one of the

pipes is blocked or one of the catchpits is blocked or obstructed,

it will not only affect its own water-carrying ability, but also di-

minish the upstream hydraulic capacity and cause the whole sub-

system to fail.

The large percentage transitioning from Condition 1 to Condi-

tion 2 is anticipated because Condition 1 is described as no defect/

clear, which is only expected to be seen in new-build assets; any

new build will soon show superficial defects and have very small

amounts of deposits, which has negligible effect on its capacity but

warrants escalation to Condition 2.

The likelihood of transition from Conditions 2 to 3 and 3 to 4 is

very similar. This may be because of how different conditions are

classified. It is easy to see the transition from Condition 1, new

build, to Condition 2; and it is easy to spot when a defective asset

turns into completely failed. However, it is hard to objectively dif-

ferentiate between Conditions 2, 3, and 4, because how much

capacity is reduced is purely examined by visual inspection

based on expert knowledge. A minor defect in one inspector’s

opinion may seem much more severe to another. Without a clear

quantification method, human subjectivity is inevitable. A sim-

ilar 1–5 grading system is also being used in the sewer drainage

system but with more complex inspection rules. This may be

adapted in the railway drainage system in the future for better

condition classification.

Determination of Minimum Sample Size

In order to reduce the costs of inspection for buried assets, a method

was proposed in the “Methodology” section to determine the mini-

mum samples that could provide sufficient data to obtain a stable

matrix for the deterioration model.

With the predivided cohorts from the previous linear regression

test, the transition rate matrix will be calculated with various num-

bers of randomly selected samples. Such results are then to be com-

pared with the transition rate matrix generated from the whole

cohort in order to investigate what is the critical number of assets

that can represent the whole cohort.

The cohort of pipes with 300-mm diameter was tested as an

example, following the procedure listed in the “Determine the

Minimum Sample Size Required” section with chosen value n ¼ 100

and m ¼ 100. Results are shown in Fig. 1, where the left-hand y −
axis of each subplot represents the change of one element qij in the

estimated transition rate matrix Qs with increasing number of sam-

ples. For better clarity of the comparison of elements qij in transition

rate matrix Q, all figures of qij are shown as qij=qij. The right-hand

y − axis demonstrates the change in standard deviation for each sam-

ple size.

As shown in Fig. 1, the sample mean Qs graphs for all elements

in the transition rate matrix start to flatten out after around 5,000

samples. Also, the standard deviation decreases dramatically first

and then slows down after 5,000 samples, which makes sense be-

cause as sample size gets larger, there is less error in estimating the

true transition rate matrix. Although for each element qij of Qs the

rate of convergence is different, they all converge within 5% of

the transition matrix Q after 5,400 samples.

Hence, it can be said that for this cohort a 5,400 sample will be

able to provide a stable transition rate matrix with a 5-year histori-

cal data record. Although the transition rate matrix produced with

the minimum required sample size is a sound estimation of the

Fig. 1. Mean and standard deviation of transition rate matrix Q as sample number increases.
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whole cohort, a certain degree of uncertainty will always be

present, which the asset managers should consider while interpret-

ing the results of this method.

Minimum Sample Size Required with Shorter Time
Frame

Although there exists a quite sizable historical condition data re-

cord ranging from 2007 to present nationwide, there are some areas

that have fewer years of past data and hence it is important to under-

stand how that could affect the number of samples that are required

to obtain an accurate matrix.

Hence, assuming when there are less than 5 years of track record

provided, the same analysis is performed to investigate the number

of assets required to obtain a stable matrix (Table 6). As expected,

the percentage of samples required to provide a stable matrix in-

creases as the number of years’ data decreases. This is because

in a shorter period, fewer condition transitions occur, and hence

the behavior of asset degradation would appear to be more volatile,

and hence the degradation matrix over a smaller time window may

be less easy to extrapolate into the future.

Model Validation

The proposed model was validated with 300-mm-diameter pipe as-

set data. The data were randomly split into two groups; one is the

training group, consisting of 5,400 assets, which is shown to be the

minimum amount required to generate a stable transition rate matrix;

the other contains the remaining assets and is the validation group.

The transition matrix was calculated using the training data set as-

suming no intervention is performed. This matrix was then applied to

the validation set to predict the number of transitions in each con-

dition category during the period of CP5. The observed and expected

percentage of transitions during CP5 are given in Table 7, while the

differences between observed and expected percentages are given in

Table 8. The number of expected values is on average within 1% of

the observed value, which provides a sound prediction of the pos-

sible transitions in a given period. The only transition with a high

difference in transition rate is that from Conditions 1 to 2. This is

due to the high variability of the data for transitions from Conditions

1 to 2, which is reflected in Fig. 1, where the standard deviation of

q11 and q12 is one of the highest. Hence, it is more likely that the

randomly selected sample groups have a higher difference in these

transition rate than the others. However, because the difference is

within a 5% range, it is still deemed a reliable prediction.

Case Study for Other Asset Groups

Application to other asset types is also possible using the methods

stated previously. Three additional examples are briefly summarized:

1. Pipes with 450-mm diameter.

2. Chamber with the following characteristics:

• Subclass: Catchpit, and

• Material: Precast concrete.

3. Inlet or outlet structure.

One-year Probability Matrix

1. Pipes with 450-mm diameter

P1 ¼

0

B

B

B

B

B

B

B

@

82.1% 15.2% 2.3% 0.3% 0.1%

0 93.8% 5.2% 0.8% 0.2%

0 0 97.4% 1.9% 0.6%

0 0 0 93.1% 6.9%

0 0 0 0 100%

1

C

C

C

C

C

C

C

A

2. Precast concrete catchpit

P1 ¼

0

B

B

B

B

B

B

B

@

87.36% 9.74% 1.76% 0.76% 0.38%

0 94.14% 4.07% 1.13% 0.67%

0 0 96.17% 2.61% 1.22%

0 0 0 94.94% 5.06%

0 0 0 0 100%

1

C

C

C

C

C

C

C

A

3. Inlet or outlet structure

P1 ¼

0

B

B

B

B

B

B

B

@

83.63% 12.61% 3.16% 0.43% 0.16%

0 92.13% 6.31% 1.17% 0.39%

0 0 95.92% 3.16% 0.92%

0 0 0 97.45% 2.55%

0 0 0 0 100%

1

C

C

C

C

C

C

C

A

Table 6. Number of assets required for a stable matrix with 1–5 years’

historical condition record

Number

of years

Total number

of assets

Number of

assets required for

a stable matrix

Percentage

required

5 15,295 5,400 35

4 15,302 6,000 39

3 15,127 8,200 54

2 14,437 7,900 54

1 11,166 8,200 73

Table 7. Observed and expected percentage of transition in validation data
set during CP5

Start condition

Observed/

expected

End condition

1 2 3 4 5

1 Observed 79.11% 18.45% 1.66% 0.39% 0.39%

Expected 81.42% 15.96% 1.78% 0.48% 0.36%

2 Observed 0 94.96% 4.14% 0.63% 0.26%

Expected 0 95.25% 3.72% 0.70% 0.32%

3 Observed 0 0 94.56% 4.27% 1.17%

Expected 0 0 94.01% 4.44% 1.56%

4 Observed 0 0 0 91.34% 8.66%

Expected 0 0 0 91.52% 8.48%

5 Observed 0 0 0 0 100.00%

Expected 0 0 0 0 100.00%

Table 8. Difference between observed and expected percentage

Start condition

End condition

1 2 3 4 5

1 −2.30% 2.49% −0.13% −0.09% 0.03%

2 0 −0.29% 0.42% −0.07% 0.07%

3 0 0 0.55% −0.17% −0.38%

4 0 0 0 −0.18% 0.18%

5 0 0 0 0 0.00%
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The 1-year probability matrices of the three chosen cohorts are

listed. They all present similar patterns as the probabilities of tran-

sition for pipes with 300-mm diameter shown previously. For all

three cohorts, assets in Condition 1 have the highest degradation

rate, whereas only less than 10% of asset in other states will de-

grade. They also showed very similar degradation rates for assets

in Conditions 2, 3, and 4. Out of the three cohort, pipes with

450-mm diameter have the highest rate of transition from Condi-

tions 4 to 5; this indicates that this type of asset will be more likely

to fail once it is already in a very bad condition.

Minimal Sample Size for Stable Matrix

Analysis has been performed for these three cohorts to determine

the number of samples required to obtain a stable transition rate

matrix; results are given in Table 9.

Pipes with 450 mm diameter require the highest percentage of

assets to reach a stable matrix, while precast concrete catchpit re-

quires the lowest percentage. However, looking at the actual num-

ber of assets required, pipes with 450-mm diameter require the

lowest number of assets, whereas precast concrete catchpit requires

the highest number. This is because the total number of assets in

each cohort is different, and it is expected that the number of sam-

ples required for a stable matrix is positively correlated with the

number of total assets.

Also, even though the total number of precast concrete catchpits

is much higher than the total number of inlet or outlet structures, the

minimal number of samples required for a stable matrix for them

are quite similar. This might imply that, after reaching a certain

number of samples, the size of the cohort will not affect the min-

imal sample required for a stable matrix. Hence, for a very large

cohort, it is expected that only a certain number of samples will

be required.

Model Validation

Model performance tests were carried out for three cohorts. The

differences between observed and expected percentage of transition

in the validation data set are given in Tables 10–12. All differences

are within a 5% range. Similar to pipes with 300-mm diameter, the

transition from Conditions 1 to 2 has the highest difference in tran-

sition rate.

Discussion

As shown, the continuous Markov chain model could provide a

sensible prediction of the degradation process of the 300-mm-

diameter railway drainage pipes with only a 35% randomly se-

lected sample from the whole asset group with 5 years of historical

data. This methodology may be applied to every drainage assets

group to identify the minimum number of samples needed to make

degradation simulations. To demonstrate this, three additional asset

groups—pipes with 450-mm diameter, precast concrete catchpit,

and inlet or outlet structure—were presented as examples. Results

show that they require 82%, 14%, and 47% of the total number of

samples in whole asset group to acquire a stable matrix for degra-

dation prediction. Such analysis would help asset managers to

justify the overall inspection costs while maintaining a sufficient

understanding of degradation process for different asset classes,

which would further contribute to objective budget planning of

potential maintenance and renewal schemes. Also, as shown in

Table 6, with a longer duration of historical record, fewer asset sam-

ples are required to simulate the whole cohort’s behavior. This

would provide asset managers with quantitative evidence of the

advantages of maintaining a consistent and continuous inspection

regime, and guide the extent of such a regime.

Moreover, by combining the degradation estimation with a hy-

draulic model of the drainage system, there is a possibility of es-

timating the frequency and scale of drainage failure under different

maintenance strategies. This could allow asset managers to weigh

the cost of intervention against the loss of performance quantita-

tively, hence bringing stronger arguments when producing budget

estimations for each CP.

The Markov model may also form a cornerstone of a decision

support tool that could assist route managers in prioritizing drain-

age works. For assets that have a detailed track record of service

condition scores, by comparing the degradation rate of different

asset groups and different routes, asset managers will be able to

Table 9. Number of assets required for a stable matrix for three example

cohorts

Asset type

Total

number

of assets

Number of

assets required for

a stable matrix

Percentage

required

Pipes with 450-mm diameter 2,300 2,783 82

Precast concrete catchpit 4,600 32,457 14

Structures 4,500 9,501 47

Table 10. Difference between observed and expected percentage of

transition in validation data set for pipes with 450-mm diameter

Start condition

End condition

1 2 3 4 5

1 −3.03% 3.37% −0.29% −0.06% 0.01%

2 0 −0.26% 0.28% 0.02% −0.03%

3 0 0 −0.02% 0.08% −0.06%

4 0 0 0 −0.20% 0.20%

5 0 0 0 0 0.00%

Table 11. Difference between observed and expected percentage of

transition in validation data set for precast concrete catchpit

Start condition

End condition

1 2 3 4 5

1 −2.57% 2.90% −0.17% −0.04% −0.13%

2 0 −0.26% 0.30% 0.01% −0.05%

3 0 0 −0.21% 0.32% −0.11%

4 0 0 0 −0.33% 0.33%

5 0 0 0 0 0.00%

Table 12. Difference between observed and expected percentage of

transition in validation data set for inlet and outlet structures

Start condition

End condition

1 2 3 4 5

1 −3.84% 4.35% −0.23% −0.20% −0.09%

2 0.00% −0.44% 0.53% −0.04% −0.05%

3 0.00% 0.00% −0.18% 0.23% −0.05%

4 0.00% 0.00% 0.00% −0.10% 0.10%

5 0 0 0 0 0
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identify the type of asset and the location of the system that are

more prone to degradation. Hence, they may justify decisions to

increase the inspection frequency and prioritize maintenance/

renewal works of these assets.

Impact of Intervention

In this study, the effect of apparent historical interventions is removed

by disregarding the upgrading incidents in the historical database.

Although in this way the effect of intervention is limited to be min-

imal, interference in the degradation rate cannot be fully eliminated. It

is assumed that if an asset has been upgraded due to an intervention, it

stayed in the previous condition until intervention happened. Without

intervention, the particular asset may have stayed in its current con-

dition for a further amount of time before degrading; hence, this may

cause an underestimation of the possibility of remaining in the same

condition state, and thus an overestimation of the possibility of deg-

radation. This problem cannot be rectified without establishing a

model that could simulate the intervention activities. However, over-

estimating the degradation rate may not be a shortcoming in real life,

because degradation can always be accelerated due to unforeseen

events such as extreme adverse weather conditions; hence, it can pre-

pare asset managers with a worst-case scenario.

There are various intervention options that NR carries out on

drainage assets in order to slow down, stop, or reset degradation

level, and hence remedy unsatisfactory performance. Each type of

intervention is believed to affect the degradation level as follows:

• Renew, upgrade, and new build will set the degradation to none,

• Refurbish will improve performance and reset the degradation

to a certain level,

• Maintain will offset degradation for a certain time, and

• Inspect and survey will not have direct impact on the degrada-

tion level but will affect the efficiency of other interventions

(Drainage Asset Policy, unpublished report, 2017).

Besides resetting the asset service condition score to 1, renewal

of an asset might have other effects on the degradation rate. The

degradation rate of a new-build asset might be slower than older

assets in the same condition score category. Such difference in rate

can only be examined if there is information about the age of drain-

age assets. However, almost all railway drainage assets are of un-

known age; many may date from as early as Victorian times. Until

additional age-related data are provided, this will remain as one of

the limitations of the model.

Routine maintenance will defer the rate of degradation in service

condition. If routine maintenance is applied to all assets nationwide

with the same schedule, its effect will be normalized and will not

cause bias in the degradation rate. However, in real life, the fre-

quency of maintenance for a particular asset can depend on many

terms such as the criticality of the asset failure, the budget alloca-

tion of the region, and the current condition of the asset. The effect

of routine maintenance is to be quantified in further studies and is

assumed to be negligible in this paper.

There are currently limited studies on how interventions affect

the rate of degradations. The effect of intervention is to be inves-

tigated by linking the intervention records to the improvement of

condition score. Such data are scarce and unorganized. It is uncer-

tain whether the asset owner always updates asset condition data

once an intervention is made. Also, drainage asset interventions can

be carried out as part of the work order of other parent assets such

as earthwork or track, and hence make the linkage to condition

score improvement harder to locate. Since all these questions

are to be investigated, it is decided to overlook the effect of inter-

ventions in this study.

Conclusion

This paper presented a continuous Markov chain model to quantify

the degradation process of the service condition of railway drainage

infrastructure in the UK. The model was informed by service condi-

tion data collected by the asset owner Network Rail. The character-

istics influencing the degradation process were studied so that the

drainage assets could be divided into homogeneous groups. Hence,

the transition matrix derived from each group could predict the prob-

ability of the degradation process of individual assets in the group.

Methodologies were performed on the case study with NR drainage

assets to verify the Markov property of the data set, compute the tran-

sition rate matrix, and find the minimum number of samples needed

for any cohort of assets in order to get a stable transition matrix that

can represent the whole cohort. The model was applied to predict

degradation of pipes with 300-mm diameter, pipes with 450-mm

diameter, precast concrete catchpits, and inlet or outlet structures over

the period of Control Period 5 and it was found that the results give an

estimation within 5% of the real degradation process.
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