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Abstract. This study investigates the effects of parasitic mass on the performance of inerter-

based dynamic vibration absorbers (IDVAs). IDVAs have been increasingly employed to sup-

press vibrations in applications of civil engineering structures and vehicle suspension systems.

While the masses of the components in a traditional dynamic vibration absorber can be easily

compensated for due to its simple layout, the masses of the components in an IDVA can act as

parasitic mass and might affect the performance of IDVAs. This can lead to the loss of benefits

which is provided by the IDVAs. The negative effect of a parasitic mass in an IDVA can be

observed in applications which have smaller inertance values. In such cases, it is important

to consider masses of the components while selecting optimal parameters to maximize the per-

formance improvement which can be obtained by an IDVA. In this study, a milling operation is

modelled and its machining stability is increased by utilizing an IDVA. The negative effect of a

parasitic mass on the performance is shown, and the performance improvement is regained by

considering the parasitic mass in the tuning strategy.
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1 INTRODUCTION

Tuned mass dampers (TMDs) have been successfully employed to suppress vibration since

the concept was introduced by Frahm [1] in the early 20th century. The device which was pro-

posed by Frahm, the so-called dynamic vibration absorber (DVA), consists of an auxiliary mass

and a spring. It targets the natural frequency of the system that is required to be controlled.

Although it can successfully suppress vibrations at the resonance frequency, it allows high am-

plitude vibrations near the resonance frequency. This drawback of the DVA was modified by

adding a viscous damper in the work of Den Hartog [2]. The resulting tuned mass damper

(TMD) has the capability to suppress vibration at a wider range of frequencies. The tuning

methodology was also developed by Den Hartog [2] using the fixed-points-theory.

To increase the performance of the TMD, a relative-acceleration-dependent-inertial element

in conjunction with a spring and a damper, was studied by Kuroda [3]. This concept was

analysed by many authors, for example Saito [4] investigated how it could be used to control

seismic response of the structures. Similarly, the inerter, which was first introduced by Smith [5]

by using the force-current analogy between mechanical and electrical networks, applies forces

proportional to the relative acceleration between the two terminals. There are three types of

inerter which have been mostly studied in the literature: the ball-screw inerter [6], the rack and

pinion inerter [5, 6], and the fluid inerter [7]. Recently, the frictionless mechanical inerter that

consists of a disc as flywheel and the living-hinges was presented to eliminate the friction that

is caused by gears or ball-screw interaction [8]. Inerter-based vibration absorbers have been

studied to improve the vibration performance of the system in vehicle suspensions [9, 10], civil

engineering applications [11, 12, 13], landing-gear systems [14] and machining applications

[15, 16].

Tuning parameters of the components of the inerter-based device plays an important role

in the their vibration suppression performance. Lazar et al. [11] proposed a tuning strategy

based on Den Hartog’s fixed-points-theory for a tuned inerter damper (TID). Hu and Chen [17]

used a direct search method to obtain design parameters of inerter-based dynamic vibration

absorbers (IDVAs) for H2 and H∞ optimisations. Shen et al. [18] utilized a genetic algorithm

to find the optimal parameters for the vibration suppression of the vehicle body controlled by an

IDVA. Barredo et al. [19] presented an analytical methodology to obtain close-form solutions

of three inerter-based configurations for an undamped primary system. Generally, the mass of

the inerter is neglected in the mathematical model of the system during the process of finding

the optimal parameters. This is because the inertance value of the inerter is generally very

large compared to the mass of the inerter. However, for instance, the optimal inertance value

for a small-primary-mass application can be small so that the mass of the inerter cannot be

constructed small enough to neglect. In such cases, the mass of the inerter can act as a parasitic

mass and lower the vibration suppression performance of the system being controlled.

This study investigates the effect of the parasitic mass caused by the mass of the components

of the inerter. The novelty is that this parasitic mass is considered in the mathematical model

and included in the evaluation of the performance of an IDVA. The effect of the parasitic mass

is shown with two scenarios: the vibration suppression of a structure and the chatter stability of

a milling operation. The effects of the parasitic mass are evaluated in the discussion section and

finally the conclusions are presented.
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2 PARASITIC MASS DUE TO AN INERTER

The inerter is a mechanical device which generates equal and opposite inertial forces pro-

portional to the relative acceleration applied at the two nodes [5]. An ideal inerter can be repre-

sented as shown in Figure 1(a) and the schematic view of a physical realisation of the inerter [8]

can be seen in Figure 1(b). The inerter in Figure 1(b) consists of a disc, which is the flywheel,

in the middle and two legs that are the nodes of the inerter. The connections between the legs

and the flywheel can be established by living-hinges to eliminate the friction and the backlash

or by simple pin joints. The inertance of the inerter can be calculated as [8]

b =
Idisc
l2a

(1)

where Idisc is the moment of inertia of the disc and l2a is the distance between the points where

the two legs are connected to the flywheel disc. Hence the inertial force generated by the inerter

is

Finerter = b(ẍ2 − ẍ1) (2)

Equation 1 gives the inertance of an ideal inerter using a disc as a flywheel in Figure 1(b). The

inertance values for the different types of inerters are calculated in a similar manner [5, 7, 20].

Once again, these inertance values are for an ideal inerter so the masses of the components of

the inerter (e.g. the mass of the housing in a ballscrew inerter, the mass of the rack in a rack and

pinion inerter or the mass of the legs in an inerter as shown in Figure 1(b)) are neglected. This

is because the inertia of these parts is typically small compared with the inertance of the inerter

device. Intrinsically, an inerter works as a kind of an inertia amplifier in most cases. Thus, it

has higher inertance and the inertial increment in the device allows one to neglect the inertia of

those which do not contribute this increment.

Figure 1: (a) Mathematical model of an ideal inerter, (b) schematic view of a small-scale mechanical inerter, (c)

mathematical model of the inerter including the masses of legs and disc (the inertance value of the inerter involves

only the rotational inertia of the disc.), (d) free body diagram of the inerter.

If the inertia of all components is considered, the mathematical model of an inerter becomes

as shown in Figure 1(c) rather than in Figure 1(a). Leg 2 in Figure 1(b) is connected to the

centre of the mass of the disc. The living-hinges or the pin joints, which are considered in the

realisation, allow only rotational motion so that the disc and Leg 2 can be considered as rigidly

connected in the translation motion. Hence, m2 is the sum of the mass of the disc and the mass

of Leg 2 while m1 is equal to the mass of the Leg 1. The inertia of the inerter in Figure 1(c)

3



Hakan Dogan, Neil D. Sims and David J. Wagg

involves only the rotational inertia of the disc as expressed in Equation 1. Two inertial elements

(m1 and m2) appear on the two nodes of the inerter in Figure 1(d) and induce the forces m1ẍ1

and m2ẍ2.

If the node with the inertial element is mounted on a spring or a damper, the inertial element

(mass) acts as a parasitic mass between the inerter and the spring or the damper. The parasitic

mass can be neglected in two cases where (1) the node with the inertial element has a ground

connection or is mounted to another mass, and (2) the inertance value of the inerter is too large

compared with the inertial element. Otherwise, the parasitic mass must be considered in the

calculations.

3 MATHEMATICAL MODEL WITH A PARASITIC MASS

A tuned inerter damper consists of a spring which is connected to a damper in parallel, and

an inerter which is in a series connection with the spring and the damper. Since one of the

terminals of the inerter is connected to the spring and the damper, the parasitic mass can be

observed in this configuration. The mathematical model of the TID with an ideal inerter is

represented in Figure 2.

Figure 2: Mathematical model of a tuned mass damper with an ideal inerter, where the masses of the body of the

inerter and the legs are neglected.

The TID can be employed to suppress a single-degree-of-freedom system which is under an

excitation. The TID in a series connection with a spring, which is an IDVA, can be mounted

to the primary system with a spring in series connection as shown in Figure 3(a). In reality,

depending on the location of the inerter, either of the mathematical models in Figures 3(b) and

3(c) is a better representation than the model in Figure 2 due to the parasitic mass as discussed

in the previous section. The upper nodes in Figures 3(b) and 3(c) are connected to the primary

mass in Figure 3(a), and the bottom nodes are fixed to the auxiliary mass. Therefore, the inertial

elements on these nodes can be neglected as the inertial element can be simply added to the mass

which the nodes are connected to. Both of the mathematical models in Figure 3(b) and Figure

3(c) involve the parasitic mass mp owing to the mass of the inerter as well as the masses of the

spring and damper.

The location of the inerter, whether it is located in the bottom or the upper side, is not

important if there is no parasitic mass between the inerter, and the spring and the damper. It

matters if there is a parasitic mass since the equations of motion of the whole system will differ.

The equations of motion for Figure 3(b), where the inerter is connected to the auxiliary mass

(This layout is named in this paper as icma), can be written as
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Figure 3: (a) Mathematical model of a structure controlled by an IDVA. Y(s) represents the impedance of the

configuration in series connection with a spring. (b) Mathematical model of the case where the inerter is connected

to the auxiliary mass,m (the icma). (c) Mathematical model of the case where the inerter is connected to the

primary mass,M (the icmp).

Mẍ+ (C + c)ẋ+ (K + k1)x− cẋp − k1xp = F

−cẋ− k1x+ (mp + b)ẍp + cẋp + k1xp − bẍa = 0 (3)

−bẍp + (ma + b)ẍa = 0

where x, xp and xa are the displacements of the primary, parasitic and auxiliary masses, respec-

tively. The equations of motion for Figure 3(c), where the inerter is connected to the primary

mass (this layout is named in this paper as icmp), can be written as

(M + b)ẍ+ Cẋ+Kx− bẍp = F

−bẍ+ (mp + b)ẍp + cẋp + k1xp − cẋa − k1xa = 0 (4)

−cẋp − k1xp +maẍa + cẋa + kxa = 0

The inertia of the parasitic mass is always added to the inertance of the inerter as seen Equa-

tions 3 and 4. Hence, the mass of the inerter is neglected if the inertance is too high.

4 THE EFFECT OF THE PARASITIC MASS

The system considered in this study to investigate the effect of the parasitic mass on the per-

formance of a tuned inerter damper is depicted in Figure 3(a). A TID in series with a spring

is mounted to the primary mass in a single-degree-of-freedom system to examine three math-

ematical models: No parasitic mass, the icma, and the icmp cases. The effect of the parasitic

mass on the vibration and chatter suppression performances is analysed.

4.1 Vibration Suppression Case

The study of Hu and Chen [17] has already shown that the inerter-based configuration which

is presented in this work improved the vibration suppression performance of an undamped sys-

tem. Therefore, a parasitic mass in this configuration can be considered to observe the effect
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of the parasitic mass. The system with a parasitic mass is governed by either Equations 3 or 4,

depending on the position of the inerter. The frequency response function (FRF) is given in the

form as

Hi(jω) =
X(jw)

F (jw)
=

RNi + jINi

RDi + jIDi

, i = 1, 2, 3 (5)

where i = 1, i = 2 and i = 3 represent for three mathematical models: No parasitic mass, the

icma and the icmp cases, respectively.

The primary mass and the natural frequency of the primary system were taken as M = 5 kg
and fn = 200Hz. The primary system considered an undamped system and thus, ζprimary = 0.

In order to obtain optimal design parameters (k, k1, c and b), Self-adaptive Differential Evolu-

tion (SaDE) algorithm [21] can be utilized as a numerical optimisation method. The objective

function for a constant mass ratio (µ = m/M) can be written as

mink,k1,c,b

(

maxω

(

|Hi(jω)|
)

)

, i = 1, 2, 3 (6)

since the minimisation of the maximum absolute value of the FRF is desired.

The optimal design parameters were found for mass ratio µ = 0.1 and the case with no

parasitic mass. The optimal inertance value for the case with no parasitic mass was found

b = 0.0965 kg. 5% and 10% of the inertance value, which are 4.8 g and 9.6 g, were added as the

parasitic mass to examine the two cases. For 5% parasitic mass, the optimal design parameters

was obtained. The optimal parameters are given in Table 1 and the results are demonstrated in

Figures 4 and 5.
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Figure 4: The magnitude of the FRF obtained from three

cases: No parasitic mass, the icma and the icmp for

parasitic masses of 5% and 10% of the optimal inertance

value.
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Figure 5: The magnitude of the FRF after retuning the

optimal parameters considering a parasitic mass of 5%

of the optimal inertance value.

The results show that both of the parasitic masses increased the amplitude of the vibration.

The higher parasitic mass added caused the higher amplitude as shown in Figure 4. The 4.8 g
parasitic masses increased the amplitude of the displacement by 4.84% for the icma and 5.39%
for the icmp After retuning the parameters for 4.82 g parasitic mass, Figure 5 shows that the
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Configurations mp [g] k [kN/m] k1 [kN/m] b [kg] c [Ns/m]
No parasitic mass 0 712.4 11.7 0.0965 60.3
icma 4.8 709.0 121.5 0.0999 64.5
icmp 4.8 721.5 115.2 0.0950 63.6

Table 1: Optimal design parameters obtained to suppress the vibrations in Figure 3(a) for µ = 0.1.

same level of vibration suppression was provided again. Furthermore, the amplitude of the

displacement was decreased by 0.2% compared to the case with no parasitic mass.

5 CASE STUDY ON MACHINING STABILITY

One potential application of inerters is in the suppression of vibrations during machining

[15, 16]. Here, alternative methods for passive vibration control have already been proposed

[22], and it has been shown that such approaches can improve the productivity by avoiding the

onset of unstable self-excited vibrations known as chatter.

Consequently, this section provides a brief numerical case study to demonstrate how inerter

systems can be used to suppress chatter. For simplicity, a turning configuration is chosen in

order to demonstrate the concept without recourse to detailed theoretical analysis.

The mechanism which leads to regenerative chatter for a turning operation is briefly given

here and explained comprehensively in [23, 24]. The cutting force which is applied to a flexible

cutting tool leads to the waviness on the surface of the workpiece as shown in Figure 6. The

phase difference (ε) between the waviness of the previous and the current cuts which are induced

by the previous and the current displacements of the cutting tool, y(t) and y(t − T ), causes a

change in the instantaneous chip thickness. This variation in the instantaneous chip thickness

induces a variation in the cutting force as the cutting force is proportional to the cross-sectional

area of the chip and thus, the chip thickness. The variation in the cutting force leads to the wavi-

ness on the surface of the workpiece again. This regenerative mechanism can cause instability

in the cutting operation.

The delay term T in the displacement in the previous cut y(t − T ) is introduced by the

spindle rotation. Hence, for a machinist, two parameters which define the cutting force and

accordingly a stable cut in a machining operation are the depth of cut and the spindle speed.

The chatter stability of a machining process is generally evaluated over stability lobe diagrams

(SLDs), which give the stability boundary in terms of the depth of cut for each spindle speed.

The results for this study case will be presented as SLDs.

Figure 6: Depiction of a regenerative chatter mechanism

A chatter stability condition can be defined as the limiting depth of cut blim, which can be
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simply expressed as [23]

blim = −
1

2Ksℜ{H(jω)}
(7)

where Ks is specific cutting coefficient, which can be accepted as a constant term in this case

and Re{H(jω)} is the real part of the FRF of the system. The limiting depth of cut blim gives

the stability boundary so the system becomes unstable beyond this value. The stability boundary

can be increased by maximising the negative real part of the FRF when considering the depth

of cut as a positive real number. Although Equation 6 is derived basing on a turning operation,

it is approximately valid for a milling operation [22].

A milling operation can be reduced in a single-degree-of-freedom system so that Figure 3(a)

can be used as the mathematical model of a machining operation controlled by a passive control

device. Similar to the previous analysis, a parasitic mass can be added to the structure and the

effects of the parasitic mass can be evaluated.

A similar analysis to the previous section was conducted. The primary mass, the natural

frequency of the primary system and the damping ratio were taken as M = 5 kg, fn = 200
Hz and ζprimary = 0.0035. The milling operation parameters are presented in Table 2. The

objective function for this case can be defined to maximise the negative minimum real part of

the FRF of the system. Therefore, the objective function can be written as

maxk,k1,c,b

(

minω

(

ℜ{Hi(jω)}
)

)

, i = 1, 2 (8)

subject to ℜ{Hi(jω)} > 0 and where i = 1, i = 2 and i = 3 represent for three mathematical

models of no parasitic mass, the icma, and the icmp cases, respectively.

Tool diameter 16 mm

Number of teeth 4

Radial immersion 4 mm

Tangential cutting stiffness 796.1 N/mm2

Radial cutting stiffness 168.8 N/mm2

Table 2: Milling simulation parameters

The optimal design parameters were found for mass ratio µ = 0.1 and the case with no

parasitic mass. The optimal inertance value for the case with no parasitic mass was almost the

same as the previous case. Only 10% of the inertance value was added as the parasitic mass in

the other two cases and the optimal design parameters were retuned. The optimal parameters

are presented in Table 3. The stability boundaries are presented in Figures 7 and 8. The region

under the stability boundary/curve represents a stable cutting condition. Thus, the higher curve

means higher stability and hence improved productivity from the machining operation.

The stability lobe diagrams were compared with the stability diagram of the one controlled

with a TMD whose optimal design parameters were obtained by Sims’ tuning methodology

[22]. It can be seen that the parasitic mass added into the configuration, whether the icma or

the icmp, removed the benefit of using an inerter as the stability boundary lowered to the level

of one obtained with the TMD. The parasitic mass of 9.6 g decreased the limiting depth of cut

(the stability boundary) by 34.4% for the icma and 17.6% for the icmp configuration. After

retuning the parameters considering the parasitic mass, the improvement obtained by using an

inerter was regained as shown in Figure 8.
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Configurations mp k [kN/m] k1 [kN/m] b [kg] c [Ns/m]
No parasitic mass 0 974.1 152.3 0.0956 69.2
icma 9.6 g 970.2 181.5 0.1048 82.7
icmp 9.6 g 996.6 157.6 0.0893 72.3

Table 3: Optimal design parameters obtained to increase machining chatter stability for µ = 0.1.
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Figure 7: Stability lobe diagram obtained for three cases: No parasitic mass, the icma and the icmp by

considering a parasitic mass of 10% of the optimal inertance value.
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Figure 8: Stability lobe diagram after retuning the optimal parameters considering a parasitic mass of 10%

of the inertance value.

6 Discussion

The results have shown that neglecting the mass of the inerter leads to a decrease in the

vibration suppression and machining chatter stability performances since the optimal design

parameters were obtained for the ideal condition, where the mass of the inerter is assumed as

zero. For high ratios of the mass of the inerter to the inertance, the inertial effect of the mass of

the inerter becomes insignificant as it is always coupled to the inertance (mp+b) in the equations

of motion. The structural mass of the inerter is generally designed to be small compared to the

inertance but this cannot be always the case, especially for the applications where the modal

mass of the primary system is small. It can be noted that the two cases for the location of the

inerter the icma and the icmp, had different behaviours. This should be considered in the design

of the control device if the parasitic effect is inevitable.
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Finally, it has seen that the improvement which is provided by using an inerter can be gained

again by retuning the optimal parameters considering the parasitic mass. After the retuning the

parameters, the results were slightly better than the result for an ideal inerter. The reason for

this can be commented that the overall mass of the control device is increased by the parasitic

mass. This can be seen as equal to the increase in the mass ratio. Therefore, it demonstrates

slightly better performance.

7 Conclusion

The effects of the mass of the inerter on the performance of a system controlled by a inerter-

based device was investigated for a generic vibration suppression scenario and also for the

specific case of a machining dynamics problem. The mass of the inerter was assumed to be

a lumped mass in the mathematical model and the FRFs were derived. Using the FRFs, the

vibration suppression and machining stability performances of the system were examined. The

result showed that if the ratio of the mass of the inertance to the inertance is not small enough,

the mass of the inerter reduces the vibration performance of the system. However, the vibration

performance was regained by retuning the optimal design parameters considering the parasitic

mass.
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