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ABSTRACT

Inerters are a class of vibration absorber which create a resistive force proportional to the relative acceleration
across their two terminals. It has been previously shown that it is possible to create an inerter where the size of
this force is variable, through use of a bypass channel controlled by a magnetorheological (MR) valve. However,
the requirements and restrictions of such a device mean that existing design methodologies are insufficient. For
example, as the pressure drop in the rest of the device is dependent on both the geometry of the device and the
velocity of the fluid, it is important to design the valve with this in mind, in order to maximise the control range
of the entire device, rather than just the valve itself. This work considers the effects of varying the dimensions
of a valve and presents a performance metric to be used to allow comparison of different designs. The results
are demonstrated as part of a model of a fluid inerter system.

Keywords: Magnetorheological fluid; inerter; semi-active damper; valve

1. INTRODUCTION

The inerter is a device which creates a force (known as the inertance) proportional to the relative acceleration
of its terminals1 and, as such, have uses in the field of vibration control, including as parts of vehicle suspension
systems or for protecting buildings from earthquakes and bridges from wind. Previous work by the authors has
investigated the potential of semi-active inerter designs, using magnetorheological (MR) fluid within a hydraulic
circuit to allow the inertance to be controlled using a valve.2 Such a design would greatly increase the utility of
the inerter, allowing it to operate more efficiently under a wider range of dynamic vibrations, as well as making
a whole range of semi-active control strategies possible.

The proposed design entails using an MR valve within a bypass channel, controlling the flow rate through the
helical channel of a fluid inerter. This type of valve is well understood within the context of magnetorheological
damping, with optimisation schema already existing for the case when the valve function is to provide a resistive
force within a piston. However, the use here is different, both in aim and in the constraints imposed. In order for
an appropriate design to be possible, it is vital to have some metric by which different valves can be compared.

In Section 2, the mechanism of the semi-active bypass inerter will be discussed, including the model of the
MR valve. In Section 3 a f performance metric for the valve is derived, with the design implications of these
being detailed in Section 4. Finally, the paper will be concluded in Section 5.
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2. THEORY

The device being investigated in this paper is based on the helical inerter, which was modelled, for example, by
Swift et al.3 In a helical inerter the movement of a piston relative to the cylinder body causes the working fluid
to flow through the helix. The rotation of the mass of the fluid creates an inertial effect, which is proportional
to acceleration, while the pressure drop creates a force non-linearly proportional to the velocity. Thus the total
resistive force of the device can be approximated as

F = bẍ+A1

(

A
A1

AH

ẋ+B
( A1

AH

ẋ
)2

)

, (1)

where

b =
mH

1 + H
2πr4

( A1

AH

)2

A = 8.77
µl

r23
(2)

B = 0.04845
ρl

√
r3r4

Here, A1 = π(r22 − r21) and AH = πr33 are the areas of the cylinder and helix, respectively, as defined in Figure
1, l is the length of the helix and mH = ρlAH is the mass of the fluid in the helix. µ and ρ are the viscosity and
density of the working fluid, respectively.

Figure 1: The main dimensions of a helical inerter.

By considering the conservation of energy in the ideal device, it can be seen that the linear kinetic energy
from the movement of the piston is converted into rotational kinetic energy of the fluid in the helix

1

2
bẋ2 =

1

2
Jθ̇2, (3)

where θ̇ is the fluid’s angular velocity4 and J = mHr24 is its moment of inertia. By approximating this as the
angular velocity of the fluid at the streamline θ̇ = u

r4
, Equation 3 can be rewritten as

b = mH

(u

ẋ

)2

, (4)
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which, for the standard fluid inerter is equivalent to the form in Equation 2, assuming that incompressible flow
and that H

2πr4
≪ 1.

The bypass fluid inerter, shown in Figure 2, includes the addition of a bypass channel in parallel with the helix,
which can be controlled with an MR valve, if MR fluid is used as the working fluid. Assuming incompressible,
adiabatic flow, the total volumetric flow rate will in the cylinder will be the sum of those in the helix and the
valve and there will be an equal pressure drop across both of these:

Q1 = QH +Qv (5)

∆pH = ∆pv, (6)

where subscripts 1, H and v refer to the cylinder, helix and valve, respectively. To calculate the inertance, we
require the fluid velocity in the helix, u = QH

AH
, and so we need to find the flow rate and pressure across the

valve. It should also be noted that the pressure drop across the valve is composed of two main components, the
pressure drop caused by the active section, ∆pa, where the fluid interacts with the magnetic field and that from
by the passive section, ∆pv, which is purely Newtonian.

Figure 2: A schematic of the bypass inerter for which the valve is to be designed.

A conventional MR valve, as shown in Figure 3 has an annular flow channel, which is crossed by magnetic field
lines at two areas, induced by an electric current in the wire. This magnetic field interacts with the magnetisable
particles suspended in the MR fluid, causing them to cross link, increasing the fluid’s resistance to flow. This
behaviour can be well represented as that of a Bingham fluid, a class of non-Newtonian fluid characterised by
having a shear stress of

τ = µ
du

dy
+ τb sgn

(du

dy

)

. (7)

For annular magnetorheological valves with a sufficiently large ratio of radius, rv, to gap height, h, the flow
can be further approximated as that between two flat plates with width b = 2πrv. The two-dimensional flow
profile is then as shown in Figure 3, with a central plug of non-dimensional width δ̄ = δ

h
where no shear exists.5

The size of this plug can be found by balancing the force from the Bingham stress on the plug with the wall
stress, τw = ∆pah

2la
:

δ̄ =
τb

τw
=

2laτb
∆pah

. (8)
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As no shear occurs within the plug, for flow to occur in the helix the plug must be smaller than the channel
width, δ̄ > 1 so

∆pa >
2laτb
h

. (9)

Figure 3: A magnetorheological valve, with an example of the assumed velocity profile shown.

From Equation 6, the pressure in the valve is equal to that in the helix. As the contribution from the
passive length of the valve is purely proportional to the flow velocity within it, for the limiting case of Qv = 0,
Pa = Pv = Ph. This means that, for a given Bingham yield stress in the valve, the point at which flow commences
can be found from the positive root of

B
( Q1

AH

)2

+A
Q1

AH

−
2laτb
h

= 0 (10)

The root must be positive as the valve force is purely resistive to motion i.e. the flow in the valve and helix must
always be in the same direction and so this critical value for the cylinder flow rate can be found to be

Q∗

1 =
AH

2B
(

√

A2 + 8B
laτb

h
−A) (11)

This means that the behaviour of the bypass inerter can be divided into two parts. Firstly, if Q1 ≤ Q∗

1,
QH = Q1 and so the device works as a conventional inerter, represented by Equation 1. Secondly, if Q1 > Q∗

1,

QH = Q1 −
bh3

6µla
(1− δ̄)2(1 + 0.5δ̄)

∆pa

2
(12)

As the value of ∆pa is itself dependent on ∆pH and therefore QH , a general solution for Equation 12 is not
trivial to find and, for the purposes of valve design, not particularly useful. We can instead consider another
limiting solution, that of δ̄ = 0, i.e. zero Bingham stress or no magnetic field. In this case, the flow in the helix
can be found by

QH =
6µlvA

2
H

bh3B

(

√

(

1 +
bh3A

12µlvAH

)2
+Q1

bh3B

3µlvA2
H

)

−
(

1 +
bh3A

12µlvAH

)

(13)

Thus the inertance provided by the device can generally be represented by a control range as shown in Figure
4, consisting of the velocity independent ‘on state’ inertance, the velocity dependent ‘off-state’ inertance and a

Bingham stress dependent critical velocity ẋ∗ =
Q∗

1

A1

after which the behaviour transitions non-linearly from one
to the other. Table 1 lists which device parameters impact each of these values. It can be seen that the on-state
inertance is not impacted by valve geometry and so is not of interest from a valve design perspective.
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Figure 4: A schematic example control range of a bypass inerter.

Parameter
Impacted by

Helix dimensions Fluid Properties Valve dimensions Bingham Stress
On-state Inertance X X - -
Off-state Inertance X X X -
Critical Velocity X X X X

Table 1: Dependence of key values on different device parameters

3. DESCRIBING FUNCTION

MR valves are sometimes compared by their dynamic range:6 the ratio of force at the highest achievable field
strength to that in the off-state. However, in the case of the semi-active inerter, it is the inertance of the device as
a whole that matters. As shown by the schematic diagram in Figure 4, this inertance range is velocity dependent.

As mentioned in Section 2, when in the on-state, the device acts as a traditional inerter and so the forms of
the inertance equation in Equations 2 and 4 are equivalent, giving

bon = mH

(A1

A2

)2

. (14)

To meaningfully compare this with the off-state, Equation 4 can be rewritten in terms of flow rates to reach

boff = mH

(QH

Q1

A1

A2

)2

=
(QH

Q1

)2

bon. (15)

Thus, maximising the control range for any given piston velocity, bon
boff

means minimising the ratio
(

QH

Q1

)2

.

First, we need to find the pressure equations in terms of the flow rates. For the helix this is

∆pH = A′QH +B′Q2
H , (16)

from Equation 1, where A′ = A
AH

and B′ = B
A2

H

. The pressure drop across the valve is

∆pv = C ′Qv, (17)

where C ′ = 12µlv
bh3 is the Newtonian valve pressure constant. By equating the pressure drop across the valve and

the helix, we can find the mass flow rate in the helix with respect to that in the piston to be

QH =

√

(A′ + C ′)2 + 4B′C ′Q1 − (A′ + C ′)

2B′
. (18)
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Table 2: Dimensions of the example device modelled.
Variable Value
A1 1.26x10−2m2

AH 1.27x10−4m2

r4 0.09m
l 1.76m
ρ 3600kgm−3

µ 0.45Pas

By dividing the square of this through by Q2
1 and rearranging, the function to be minimised can be shown to be

f1 =
A′ + C ′

2B′2

(

(A′ + C ′)−
√

(A′ + C ′)2 + 4B′C ′Q1

)

Q−2
1 +

C ′

B′
Q−1

1 . (19)

This function can be seen plotted as a function of Q1 in Figure 5 for an example device, designed to provide
80kg of on-state inertance with 0.8 kg of fluid in the helix. The parameters of the device are detailed in Table
2 . Across a large range of flow rates, the non-linear behaviour of this function is obvious. However, in many
cases such high flow rates are inappropriate. For the example device under consideration, a flow rate of Q1 = 1
would equate to a piston velocity of ẋ = 796ms−1, significantly higher than the expected operational maximum
of ẋ = 0.1ms−1, Q1 = 1.26x10−4m3s−1. For such a flow rate, the behaviour is more linear. For the current
values, a least-squares approximation provides accuracy to within 1% up to a flow rate of 1.2x10−4m3s−1, as
shown in Figure 6. In addition, for small flow ranges, the difference in maximum and minimum values may be
so small as to be negligible, meaning that the inertance range can be considered to be independent of Q1.

0 0.2 0.4 0.6 0.8 1

Q
1

0

0.2

0.4

0.6

f 1

Figure 5: Function f1.
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Figure 6: Function f1 and a linear approximation, rescaled to a more realistic flow range.
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4. VALVE DESIGN

As f1 is to be minimised, it follows that a lower value for C ′ is desirable. As

C ′ =
12µlv
bh3

, (20)

this can be achieved either by increasing the valve circumference, b = 2πrv, or gap height, h, or by reducing the
valve length, lv. This makes physical sense, as either shortening the valve or increasing its cross sectional area
will have the effect of reducing the Newtonian pressure drop across it for a given flow rate.

It is not possible to reduce C ′ arbitrarily to zero, as various constraints exist on the possible dimensions of
the valve. The first of these is the maximum critical flow rate, i.e. the critical flow rate when the magnetic field is
providing the largest achievable resistance to flow. For the inerter to be effective across its entire velocity range,
it is necessary that this is higher than the maximum operational flow rate, which is controlled by the maximum
expected piston velocity. By rearranging Equation 11, it can be seen that this sets a maximum ratio of the gap
height to the active length of the valve as

D0 =
h

la
≤

8B′τmax
b

(Qmax
1 +A′)2 −A′2

. (21)

In Ref.7 a valve optimisation method is proposed for valves constrained in their radius, length and gap height.
It is based on setting the areas through which the magnetic flux flows to be equal, thus avoiding bottlenecks
being created by premature saturation in one area. Using the notation in Figure 7, these areas are the valve
core, annular flux return and the flanges, Ac = πt2a, Afr = π(r2v − (ta + h+wc)2) and Af = 2πtatb. In this case,
the same criterion can be used, however the valve dimensions are not constrained in the same way. Instead, the
constraints to be used are the valve radius, as this is judged to be the most likely parameter to be fixed by the
design as a whole, and Equation 21.

Figure 7: Dimensions used in equalising the valve areas.

By setting Ac = Af , it can be shown that the active length must be equal to the radius of the core of the
valve, la = ta. As Equation 21 is dependant on the cube of h, increasing the gap height is more impactful on
performance than decreasing the valve length. This means minimising the ratio in Equation 21, setting h = D0la.
By substituting this value into the definition of flux return area and setting it equal to the valve core, Afr = Ac,
we find that the core radius, ta, must be the positive root of

(1 +D2)t2a + 2Dwcta + (w2
c − r2v) = 0, (22)

where D = 1 + D0

2 = 1 + h
ta
. This allows ta and h to be set as a function of coil width, wc.
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By considering the complete path of the magnetic field induced by the coil, we find that

NImax = Hmlm + 2Hfh, (23)

where N is the number of wire turns, Imax is the maximum allowable current in the wire, Hm and Hf are
the magnetic field in the valve material and MR fluid, respectively, and lm ≈ rv + wc − h + 2(hc + tb) is the
average path length of magnetic field in the valve metal,8 as shown in Figure 7. Hf can be found from the
permeability curve of the MR fluid used, using the value which maximises τb. Hm can be found from the valve

metal’s permeability curve, using the value at Bm =
2πtb(ta+tb+

h
2
)

πt2a
Bf (from the ratio of the area of the fluid to

the core). If the number of turns can be approximated as N ≈ wchc

d2
w

, where dw is the diameter of the wire used,

then from Equation 23,

hc =
Hm(rv + wc + 2tb − h) + 2Hfh

Imax wc

d2
w
− 2Hm

(24)

If the wire diameter is set, then both Equations 21 and 24 are dependent on wc only. From Equation 20, we

need to find the value of wc which minimises lv
h3 =

hc+
ta
2

D0ta
.

Optimisation scheme

At this point, the valve parameters are set. For clarity, these steps are repeated below:

1. Maximise rv within design constraints.

2. Find ta (and hence la) with respect to wc using from the positive root of Equation 22. Use Equation 21 to
find h with respect to wc.

3. Use equation 24 to find hc, and hence lv = ta + hc with respect to wc .

4. Use these values to minimise lv
h3 , which in turn minimises Equation 20.

4.1 Example Calculations

The optimisation scheme was used to design two valves for the inerter detailed in table 1, with a maximum
piston velocity of 0.1ms−1. One valve was limited to a radius of 32mm, the other to 64mm. The recommended
values for these two cases are listed in Table 3 and the inertance range for each is shown in Figure 8. It can be
seen that the recommended gap height is significantly larger than in the type of valve used in dampers, this is
due to the lower forces required in this context. The significant increase in performance from doubling the valve
radius should also be noticed.

Table 3: Key dimensions of the optimised valve designs.
rv (mm) ta (mm) wc (mm) h (mm) lv (mm)
32.0 19.0 5.8 1.0 31.4
64.0 39.0 9.7 2.0 53.8
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Figure 8: The inertance range of the two optimised valve designs.

5. CONCLUSION

When designing a magnetorheological valve to be used within a semi-active inerter, it is no longer sufficient to
only consider the dynamic range of the valve in isolation. This paper has presented a function to be minimised
based on the control range of the inerter as a whole. This function can be used as a performance metric to
compare the effects of changing key dimensions of the valve. An optimisation method was then proposed, and
used to find valve designs for an example device. The performance improvements offered by increasing the valve
radius were demonstrated

The optimisation scheme produced designs with larger gap heights than those in traditional designs. The
physical limits of this due to the magnetic field strength required in the magnetorheological fluid, and the effects
on power requirements remain to be explored. Verification of this design method is expected to form the basis
of further work.
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