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ABSTRACT

Model selection is a challenging problem that is of importance

in many branches of the sciences and engineering, particu-

larly in structural dynamics. By definition, it is intended to se-

lect the most plausible model among a set of competing mod-

els, that best matches the dynamic behaviour of a real struc-

ture and better predicts the measured data. The Bayesian

approach is based essentially on the evaluation of a likelihood

function and is arguably the most popular approach. However,

in some circumstances, the likelihood function is intractable or

not available even in a closed form. To overcome this issue,

likelihood-free or approximate Bayesian computation (ABC)

algorithms have been introduced in the literature, which re-

lax the need of an explicit likelihood function to measure the

degree of similarity between model prediction and measure-

ments. One major issue with the ABC algorithms in general is

the low acceptance rate which is actually a common problem

with the traditional Bayesian methods. To overcome this short-

coming and alleviate the computational burden, a new vari-

ant of the ABC algorithm based on an ellipsoidal nested sam-

pling technique is introduced in this paper. It has been called

ABC-NS. This paper will demonstrate how the new algorithm

promises drastic speedups and provides good estimates of

the unknown parameters. To demonstrate its practical applica-

bility, two illustrative examples are considered. Firstly, the ef-

ficiency of the novel algorithm to deal with parameter estima-

tion is demonstrated using a moving average process based

on synthetic measurements. Secondly, a real structure called

the VTT benchmark, which consists of a wire rope isolators

mounted between a load mass and a base mass, is used to

further assess the performance of the algorithm in solving the

model selection issue.

Keywords: Model selection, structural dynamics,

likelihood-free Bayesian computation, moving average

process, wire rope isolators

1 INTRODUCTION

Many branches of the sciences and engineering, including

structural dynamics involve a choice between a set of models.

This is quite challenging, mainly when a large set of compet-

ing models with different numbers of parameters are available.

In practice, one may assume a set of plausible models and

then estimate the evidence associated to each one using a

sophisticated statistical tool. The Bayesian approach is one of

the most popular techniques to deal with model selection and

parameter estimation issues. Arguably, the most popular al-

gorithm in this class of methods is the one proposed by Green

and called Reversible-Jump Markov chain Monte Carlo (RJ-

MCMC), readers can go for more details about the RJ-MCMC

in [1] and for an extensive review of the different methods to
[2]. The Bayesian method requires the definition of a likelihood

function; however, in some circumstances, the likelihood func-

tion is computationally intractable or not available. To over-

come this shortcoming, a class of methods called likelihood-

free or approximate Bayesian computation (ABC) algorithms

have been proposed in the literature. ABC has gained popu-

larity in recent years owing to its easy implementation, flexibil-

ity and good performance. It has been applied in a wide range

of applications and recently in structural dynamics [3][4][5][6].

The most popular variants are the ABC-MCMC [7] and ABC-

SMC [8]. Those algorithms can be applied when it is possi-

ble to generate data from the model, offering the possibility

to make Bayesian inference relying only on an appropriate

choices of summary statistics. Despite their numerous ad-

vantages and popularity, the ABC algorithms suffer from a dif-

ficulty in maintaining a reasonable acceptance rate over the

populations. In the framework of this paper, a novel ABC

algorithm based on an efficient ellipsoidal sampling method
[9][10] is proposed to enhance the capability of the ABC algo-

rithm to deal with parameter estimation and model selection

issues. To demonstrate the efficiency of the algorithm, two

illustrative examples in structural dynamics have been pro-

posed. The proposed examples will show that the parsimony

principle (i.e., simpler models are automatically preferred un-

less a more complicated model provides a significantly better

fit to the data) is naturally embedded in the ABC-NS algo-



rithm. Moreover, by employing a nested sampling technique,

the ABC algorithm can be substantially accelerated, offering

the possibility to consider a relatively large number of compet-

ing models.

The paper is organised as follows. Section 2 will shortly go

through the basics of the Bayesian paradigm for parameter

estimation and model selection and will introduce the novel

algorithm. Sections 3 and 4 are devoted to numerical and ex-

perimental examples and forms the core of the paper. Section

5 concludes the paper.

2 BAYESIAN INFERENCE

2.1 Bayesian method for parameter estimation

In this section, a brief introduction to the Bayesian and approx-

imate Bayesian methods is given. In the Bayesian method, the

posterior probability density, p(✓|u) given observed data u and

a model M, can be computed using Bayes’ Theorem:

p(✓|u) =
p(✓)L(u|✓)

R

✓
p(✓)L(u|✓)d✓

∝ p(✓)L(u|✓) (1)

where p(✓) is the prior probability of ✓ and L(u|✓) is the likeli-

hood function. The denominator is a normalising constant.

However, as mentioned earlier, explicit forms for likelihood

functions are rarely available. The ABC methods approximate

the likelihood by evaluating the discrepancy between the ob-

served data and the data generated by a simulation using a

given model, yielding an approximate form of Bayes’ Theo-

rem:

p(✓|∆(u, u∗) < ") ∝ p(✓)p (∆(u, u∗) < "|✓) (2)

where u∗

∼ f(·|✓) are the simulated data, ∆(·) is a discrep-

ancy metric, and " > 0 is a tolerance threshold (when " tends

towards 0, the approximated posterior distribution is a good

approximation of the true posterior distribution).

2.2 Bayesian method for model selection

In model selection, usually two or more competing models ex-

ist and may support the data u. Assume that k candidate

models, Mj , j = 1, . . . , k, are under consideration, each with

associated unknown parameters, ✓j . Here one would like to

quantify the relative support from the data for each candidate

model. Bayes’ Theorem can be applied to compute the pos-

terior probability associated to each candidate model:

p(Mj |u) =
p(u|Mj)p(Mj)

P

r
p(u|Mr)p(Mr)

(3)

where p(u|Mj) is the posterior probability of Mj and p(Mj)
is the prior probability of Mj , in most cases, one assigns

equal prior probabilities to each candidate model.

2.3 ABC-NS implementation

In this section, a detailed description of the novel ABC algo-

rithm is given for parameter estimation. The ABC-NS algo-

rithm broadly works following the same scheme as the ABC-

SMC algorithm in [8]. The main novelties are in (i) the way of

sampling, (ii) the weighting technique adopted from [11] and

(iii) instead of dropping one particle per iteration, a proportion

of particles is dropped based on the assigned weights, which

speeds-up the algorithm without compromising the precision

on the posterior estimates. The iterative process for parame-

ter estimation is detailed in Algorithm 1. The algorithm starts

by generating N particles from the prior satisfying the con-

straint ∆(u, u∗) < "1 (here, u for observed data, u∗ for sim-

ulated data and "1 is the first tolerance value defined by the

user). The accepted particles are then weighted (see, Step 9)

and the next tolerance threshold is defined based on the dis-

crepancy values ranked in descending order (highest on top,

see, step 11) as the (↵0N)th value where ↵0 is a proportion

of dropped particles defined by the user. Then, one assigns a

weight of zero to the dropped particles. After that, the weights

of the remaining particles are normalised. From the remain-

ing particles, one selects �0N particles based on the updated

weight values, where �0 is a proportion of particles the so-

called “alive” particles. The alive particles are then enclosed

in an ellipsoid in which the mass center µ1 and covariance ma-

trix C1 are estimated based on the values of those particles;

one denotes this ellipsoid by E1 = (µ1, C1). The generated

ellipsoid could be enlarged by a factor f0 to ensure that the

particles on the borders are inside. It should be noted that

ellipsoidal sampling was firstly proposed in [12] to improve the

efficiency of the nested sampling algorithm which has been

widely used for Bayesian inference, mainly in cosmology [13].

Finally, the population is replenished by resampling (1−�0)N
particles inside the enlarged ellipsoid and a re-weighting step

is carried out. The procedure is repeated until a stopping cri-

terion defined by the user is met. It should be noted that for

model selection, the same scheme shown in Algorithm 1 is

followed by considering the candidate models as additional

parameters. Thus, one treats the pair (Mj , ✓
(j)) with Mj as

a candidate model and ✓(j) its vector of unknown parameters.

For a given (Mj , ✓
(j)), the pair is accepted or rejected based

on a discrepancy value. At the end of the algorithm, the model

probability for Mj is approximated using Eq. (4).

p(Mj |u
∗) ≈

Accepted particles for Mj

Total number of particles N
(4)

In the considered examples, the tuning parameters used to

run the ABC-NS algorithm are selected as follows: the number

of samples is set to 1000, ↵0, �0 and f0 are set to 0.3, 0.6 and

1.1, respectively.

3 MOVING AVERAGE PROCESS

In this section, one demonstrates the efficiency of the ABC-NS

algorithm to deal with parameter estimation (or model calibra-

tion). One considers a moving average (MA) process defined



Algorithm 1 ABC-NS SAMPLER

Require: u: observed data, M(·): model, "1, N , ↵0, �0, f0
1: set t = 1
2: for i = 1, . . . , N do

3: repeat

4: Sample ✓∗ from the prior distributions p(·)
5: Simulate u∗ using the model M(·)
6: until ∆(u, u∗) < "1
7: set Θi = ✓∗, ei = ∆(u, u∗)
8: end for

9: Associate a weight to each particle: !i ∝
1
"1

⇣

1− ( ei
"1
)2
⌘

10: Sort ei in descending order and store them in et.

11: Define the next tolerance threshold "2 = et(↵0N)
12: Drop particles with ∆(u, u∗) ≥ "2, !j=1:↵0N = 0

13: Normalise the weights such that

(1−↵0)N
X

i=1

!i = 1

14: Select At = �0N particles from the remaining based on

the weights

15: Define the ellipsoid by its centre of the mass and covari-

ance matrix Et = {µt, Ct}
16: Enlarge the ellispoid by f0 . For simplicity the same

notation for the updated ellipsoid is kept

17: for t = 2, . . . , T do

18: for j = 1, . . . , (1− �0)N do

19: repeat

20: Sample one particle ✓∗ inside Et−1

21: Simulate u∗ using the model M(·)
22: until ∆(u, u∗) < "t
23: set Θj = ✓∗, ej = ∆(u, u∗)
24: end for

25: Store the new particles in St

26: Obtain the new particle set, Nnew = [At−1;St] with

their correspondent distance values et

27: Sort et and define "t+1 = et(↵0N)
28: Associate a weight to each particle as in step (9)

29: Define the new set of selected particles At as in

step (14)

30: Update the ellipsoid hyperparameters using At,

Et = {µt, Ct} . The enlargement factor is kept constant

31: end for
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Figure 1: Simulated data from moving average model MA(2)

with (✓1, ✓2) = (0.6, 0.2).

by:

y` = e` +
d

X

i=1

✓iel−i (5)

where e` is an independently and identically distributed (iid)

sequence of a standard Gaussian N (0, 1); d and ` are set to

2 and 1000, respectively.

Denote by y = [y1, . . . , yl, . . . , y`] the observed data. The ob-

jective is to illustrate the ability of the algorithm to sample from

the ABC posterior relying on available data and an appropri-

ate choice of summary statistics. Fig. 1 shows a series of data

from a moving average model of order 2 denoted by MA(2). In

this example, the quadratic distance between the d = 2 first

autocovariances is taken as a metric to measure the degree

of similarity between simulated and observed data, as in [14]:

∆(⌘(x), ⌘(y)) =
d

X

q=1

(⌧y,q − ⌧x,q)
2 (6)

where the terms ⌧y,q and ⌧x,q are the autocovariances of y and

x (x is the simulated data given a candidate (✓1, ✓2)), respec-

tively, which are used as summary statistics. They are ob-

tained as ⌧y,q =
P

`

k=q+1 ykyk−q and ⌧x,q =
P

`

k=q+1 xkxk−q,

respectively.

To avoid unnecessary difficulties, a standard identifiability con-

dition is imposed on this model (see, [14] for further details). In

this case of d = 2, this condition is fulfilled when the explored

space is delimited by imposing the following constraints on the

input parameters:

−2 < ✓1 < 2; ✓1 + ✓2 > −1; ✓1 − ✓2 < −1 (7)

One uses synthetic data for y by generating it from Eq. (5)

considering ✓true = (0.6, 0.2). The numerical simulation can

now be performed using the ABC-NS algorithm with the hy-

perparameters given in Section 2.3. From Fig. 2, one can see

the evolution of the sample distribution over some selected

populations for different tolerance threshold values (from left

to right, the tolerance values are equal to "up−l = 6.043×105,

"up−r = 6.544×104, "down−l = 1.002×103, "down−r = 0.178)

enclosed in an ellipsoid. The histograms of the particles at



the last population are shown in Fig. 3 from where one can

see that those histograms are well peaked around the true

values. Table 1 shows the statistics of the posterior estimates,

one can see that the posterior estimates are well estimated

from the last population with reduced uncertainty.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Evolution of the particles distribution over some se-

lected populations, the triangle in red delimits the input space,

the blue triangles are the true values.
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Figure 3: Histograms of the MA(2) model parameters.

4 EXAMPLE 2: CHARACTERISATION OF THE DY-

NAMICS OF A WIRE ROPE ISOLATOR USING ABC-

NS

4.1 Experimental set-up

The second example consists of characterising the dynamics

of a wire rope isolator (WRI) used for vibration isolation. WRIs

have found a vast number of application in medical equipment

and military hardware to mention just a few, due to their supe-

rior performance for the isolation of impact and vibration. How-

ever, the dynamical properties of mechanical isolators are typ-

ically nonlinear and these characteristics are seldom well de-

fined, which may cause problems for the design calculations

Parameter Mean value Std. dev.
Quantiles

2.5% 97.5%

✓1 0.6318 0.04044 0.5522 0.7115

✓2 0.1942 0.0569 0.0871 0.3108

TABLE 1: Statistics of the posterior estimates for the MA(2)

model.

and computer simulations. The system considered in this pa-

per has been proposed within the framework of the European

COST Action F3 working group in “Identification of non-linear

systems” [15]. The aim of this benchmark was to identify the

dynamic properties of resilient mounts used for vibration isola-

tion in industrial applications using different methods. Fig. 4a

shows the experimental set-up of the WRI mounted between

a load mass m2 and a base mass m1b while Fig. 4b is a

schematic illustration. The applied excitation is produced by

an electro-dynamic shaker and corresponds to a white noise

sequence, low-pass filtered at 400 Hz. The motion and forces

experienced by the isolators are measured; in particular, the

acceleration responses ẍ2 and ẍ1b of the load mass and bot-

tom plate, the applied f and the relative displacement x12 be-

tween the top and bottom plates. For more details concerning

the experimental set-up and the methods presented for the

identification of the system, the reader is referred to the fol-

lowing references [16][17][18][19].

Shaker

Wire rope 

isolators

2x

x
1bx

f t

2m

1bm

1m

(a) (b)

Figure 4: (a) Experimental set-up: configuration of the experi-

ment, (b) schematic illustration of the dynamical system under

consideration.

In this Benchmark, 5 excitation amplitude levels have been

considered, varying from 0.5 to 8 Volts. In the present work,

one is interested in the experimental data obtained for an ex-

citation amplitude equal to 4 Volts. Fig. 5a shows the relative

displacement while Fig. 5b shows the inertial force versus the

relative displacement. From Fig. 5b, one may observe a hys-

teretic behaviour of the WRI. This leads one to select the pop-

ular Bouc-Wen model as a competing model. The model has

been used previously in similar problems in [20][21].
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Figure 5: (a) Displacement, (b) inertial force versus relative

displacement under an excitation amplitude of 4 Volts.

4.2 Selection of the competing models

The general single-degree-of-freedom (SDOF) hysteretic sys-

tem described in the terms of Wen [22], is represented below:

mÿ + g(y, ẏ) + z(y, ẏ) = f(t) (8)

where g(y, ẏ) is the polynomial part of the restoring force,

z(y, ẏ) is the hysteretic part and f(t) is the excitation force,

m is the mass, and the polynomial part of the restoring force

is assumed to be linear given by the following equation:

g(y, ẏ) = cẏ + ky (9)

The hysteretic component is defined by Wen [22] via the addi-

tional equation of motion:

ż =

(

−↵|ẏ|zn − �ẏ|zn|+Aẏ, for n odd

−↵|ẏ|zn−1|z|− �ẏ|zn|+Aẏ, for n even
(10)

The parameters ↵, � and n govern the shape and the smooth-

ness of the hysteresis loop. It should be noted that the equa-

tions offer a simplification from the point of view of parameter

estimation, in that the stiffness term in Eq. (9) can be com-

bined with the Aẏ term in the state equation for z. The reader

can refer to [23] for full details.

A set of competing models have been proposed to capture the

dynamics of wire rope isolators. First, although the problem is

nonlinear, a linear model is considered at the aim to analyse

the behaviour of the algorithm. Then, four models based on

the Bouc-Wen model have been defined by varying n in the

equations of motion from 1 to 4. In total, five competing mod-

els are considered and denoted by:

M1 : mÿ + cẏ +Ay = f(t) (11)

M2:5 : Eqs. (8) - (10), n = 1 : 4 (12)

After selecting a set of competing models, one aims to de-

termine the most likely model among the competing ones by

estimating the evidence associated to each one based on the

available data. The data set contains 1000 samples repre-

senting a short recording period of the acceleration of the top

plate. The data set is split into training data (from 501 to 1000)

and testing data (from 1001 to 1500) as shown in Fig. 6. It

should be noted that the transient part (from 0 to 500) has

been ignored to reduce the effect of initial conditions.
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Figure 6: Training and testing data sets using an excitation

amplitude of 4 Volts.

For the implementation of the ABC-NS algorithm, the same

set of hyperparameters used previously is kept. Here, one

considers the case where there is no prior information prefer-

ring some models over the other, so the prior is p(Mi=1:5) =
1
5
. In this example, the tolerance threshold sequence is adap-

tively defined as mentioned in Algorithm 1. The normalised

mean square error (MSE) given by Eq. (13) is selected as

a metric to measure the discrepancy between the observed

and simulated data. Finally, the stopping criterion chosen

here is when the difference between two consecutive toler-

ance thresholds is less than 10−5.

∆(u∗

, u) =
100

n�2
u∗

n
X

i=1

(u∗

i − ui)
2

(13)

where n is the size of the training data, �2
u∗ is the variance

.. 
\ 

X 



of the observed acceleration; u∗ and u are the observed and

simulated accelerations given by the model, respectively.

4.3 Results and discussion

Fig. 7 shows the model posterior probabilities over some se-

lected populations. One can see that the algorithm converges

to M2. From the same figure, one can see that at higher tol-

erance values, the algorithm tends to select the linear model

(see, the posterior probabilities at populations 7, 13 and 22 for

example). This tendency shows that the parsimony principle

is naturally embedded in the ABC-NS algorithm. Although, the

system is nonlinear, the algorithm tries first to favour simpler

models in an automatic way, while in the classical methods

for model selection based on the estimation of an information

criterion, a penalty term is defined to enforce parsimony. The

ABC-NS algorithm switches to a more complex model only

when those models are more accurate. Fig. 8 shows the his-

tograms of the selected model parameters obtained at the last

population as the mean values shown with red triangles.

Figure 7: Model posterior probabilities over some selected

populations using an excitation amplitude of 4 Volts.

Using the selected model with the posterior estimates from the

last population, one can make predictions. Fig. 9 shows the

model predictions on the training and testing data sets. As one

can see, the predicted results match satisfactorily with the ex-

perimental results, which means that the selected model cap-

tures perfectly well the dynamics of the WRI. The normalised

MSE values on the training and testing data sets are equal to
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Figure 8: Histograms of the model parameters.

0.77 and 0.63, respectively, indicating an excellent fit.
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Figure 9: Model predictions on training and testing data sets.

To check if the choice of the best model is dependent on the

training data, a new simulation is performed using a longer

time series. The same tendency using a short time series

has been observed and the algorithm finishes by converging

to M2 (the results are not shown to simplify presentation).

Therefore, it becomes obvious that model M2 is the model

with the best predictive ability among the competing models.

5 CONCLUSIONS

A novel algorithm named ABC-NS, for parameter estimation

and model selection based on an ellipsoidal nested sampling

has been developed. The efficiency and robustness of the

novel algorithm to deal with parameter estimation and model

selection issues in structural dynamics has been demon-

strated through two examples: a moving average process and

a wire rope isolator. It has been shown that the algorithm is a

promising alternative, offering the possibility to make Bayesian

inference for complex systems based on the selection of an

appropriate summary statistics. The algorithm is able to pro-

vide a good estimation of the unknown parameters within a

reasonable computational requirement. In addition, it makes
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a comparison between a set of competing models with dif-

ferent dimensionality in an automatic way, as the parsimony

principle is naturally embedded in the ABC-NS algorithm. The

efficiency of the novel ABC algorithm to deal with more chal-

lenging scenarios using different kinds of features and metrics

from either the time domain or the frequency domain will be

investigated in an upcoming work.
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