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Abstract: Wound healing is a process regulated by a complex interaction of multiple growth factors
including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered
studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this
shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform
FGF2 retaining full biological activity even after twenty days at 37 ◦C. Crosslinked freeze-dried
3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein
named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31
fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for
wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays
indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The
angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds.
Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation
tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This
work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan
scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for
growing cells for dermis replacement, where neovascularization is a crucial parameter for successful
skin regeneration.

Keywords: collagen; chitosan; scaffold; FGF2; skin regeneration; tissue engineering

1. Introduction

The skin is the largest organ of the body and represents the outer covering of the
human body. Its main function is to provide a barrier between the internal environment
of the body and the external agents. Naturally, the skin is exposed to various injuries
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including mechanical damage, microbiological attacks, and physical and chemical effects,
e.g., burns [1]. Therefore, for the survival of the organism, it is necessary to ensure a
suitable regeneration of the skin, whether by natural healing processes or by means of
artificial medical interventions. Skin is a complex tissue consisting of the epidermis, der-
mis, subcutaneous tissue (hypodermis), and skin appendages (hair follicles, nails, sweat
glands and sebaceous glands) [2]. The keratinocytes are the major cell component of the
external layer, the epidermis, forming a keratinized stratified squamous epithelium [3].
The more heterogeneous layer, the dermis, consists of an extracellular matrix (ECM) con-
taining mainly collagen (Coll) produced by fibroblasts. Skin wound healing is a complex
process including an interaction between cells, mediators, cytokines, matrix remodeling,
and the neurovascular system. The success rate of skin healing has significantly increased
with the use of tailored skin substitutes [4]. The main idea of scaffolds is to imitate the
skin ECM and its properties (e.g., strength, elasticity, and flexibility) [5]. Scaffolds must
meet some requirements, such as biocompatibility, biodegradability, temporary mechani-
cal support, permeability, and suitable interconnecting pores appropriate to support cell
integration [6,7]. Biomaterials such as Coll [8] and its hydrolyzed form—gelatin [9], vari-
ous proteoglycans [10], hyaluronic acid [11], alginate-based substrates [12] and chitosan
(Chit) [13] are widely used in the scaffold production for tissue engineering. These natural
polymers have many excellent properties; they are biodegradable, biologically active and
promote outstanding cell adhesion and growth [14]. On the other hand, the biobased scaf-
folds generally have poor mechanical properties, which limits their potential applications
in the biomedicine [15].

Coll is the most abundant protein in the human body where it acts as a structural
building block of the ECM found in most native tissues. Coll exhibits some unique struc-
tural properties important for skin tissue engineering applications: they transmit forces,
dissipate energy, prevent premature mechanical failure, and provide biological signals
to adjacent cells that regulate functional responses [16,17]. Coll is also low inflammatory,
biodegradable, biocompatible, and bioresorbable biopolymer [18]. It has high water affinity,
good cell compatibility, low antigenicity, and ability to promote tissue regeneration [19].
However, pure Coll scaffolds lack structural stability upon hydration and mechanical
strength, which limit their applications in particular tissues [20]. Improvement of the
mechanical properties of Coll scaffolds can be achieved by intermolecular crosslinking
using physical or chemical methods [21]. Moreover, a mixing of Coll with other materials,
such as Chit, is also often used to enhance the mechanical strength of Coll scaffolds [22].

Chit exhibits various interesting biological properties such as biocompatibility, good
interaction with cells, lack of immunogenicity, and antimicrobial activity [23,24]. Moreover,
Chit also enhances the wound healing process via improving the functions of macrophages,
fibroblasts, and inflammatory cells [25]. It has been shown that Coll can be synergistically
used with Chit to achieve better biological results [22,26,27]. Such a combination also
promotes the proliferation [28] as well as angiogenesis [29]. Moreover, various organic
additives, including, e.g., proteins or growth factor, can be used to improve properties of
materials based on Coll/Chit mixtures [30,31].

Fibroblast growth factor 2 (FGF2), also known as basic fibroblast growth factor, is one
of the family of mammalian fibroblast growth factors consisting of at least 23 members
(22 identified in humans to date) [32,33]. FGF2 is a polypeptide mitogen stimulating cell
viability associated with wound healing [34]. FGF2 also plays a role in the mitogenesis
of mesenchymal cells [24]. FGF2 is a commonly used growth accelerator for tympanic
membrane perforation [35]. FGF2 expression, gene function, and in vitro activity was
revealed in brain, peripheral nerves, smooth muscle, skeletal muscle, heart, angiogenesis,
hematopoietic cells, chondrocytes, and osteoblasts [36]. Momose et al. [37] confirmed the
excellent biocompatibility of an FGF2 loaded Coll scaffold. A scaffold including FGF2
promoted rapid tissue growth in the inner spaces of the scaffold [38]. Yang et al. [39] demon-
strated that the targeted delivery of FGF2 to subchondral bone significantly improved
the repair of articular cartilage defects. FGF2 was also incorporated in gelatin hydrogel
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particles in a Coll sponge [40]. This system was used for the dentin defects in amputated
dental pulp and found that the controlled release of FGF2 from gelatin particles induced
the regeneration of dental pulp with a dentin layer. Fayazzadeh et al. [41] stated that FGF2
significantly decreased the percentage of flap necrosis and improved the percentage of
the ischemic survival area. The use of FGF2 increased skin elasticity and hydration of the
skin, decreased the depth of wrinkles and the depth of pigmentation and supported hair
growth [42,43]. On the other hand, the applications of FGF2 are limited due to its low
stability in vivo and in vitro [44].

In our previous work [23], we extensively analyzed 3D porous Coll-based scaffolds
modified with polysaccharides (calcium salt of oxidized cellulose, Chit, and chitin/chitosan-
glucan complex) and enriched with bovine platelet lysate, regarding their chemical, me-
chanical and biological properties. In this study, depending on the in vitro results, we
applied stabilized FGF2 in Coll/Chit scaffolds for a full-thickness skin replacement on
an animal model. A unique nine-point mutant of low molecular weight isoform FGF2
with in vitro functional half time at 37 ◦C more than 20 days was used. The engineering
process of this FGF2-STAB® is described in [45]. We hypothesized that a combination of
FGF2-STAB® and Coll/Chit-based scaffolds significantly improved the biological effects
for the skin tissue engineering. Accordingly, we investigated the optimal FGF2-STAB®

concentration in the scaffold, which is crucial for the best in vivo results. The scaffolds were
implanted into rabbit skin defects as a preclinical test to assess the safety and biological
effects of scaffold with FGF2-STAB®.

2. Materials and Methods

2.1. Scaffold Preparation

Coll (type I, 8% aqueous solution, Collado s.r.o., Brno, Czech Republic) was freeze-
dried to obtain 100% Coll foam. Chit from crab shells (highly viscous, 2-Amino-2-deoxy-
(1→4)-β-D-glucopyranan, Poly-(1,4-β-D-glucopyranosamin), (Sigma-Aldrich, Darmstadt,
Germany) was used as received without further purification. Coll/Chit scaffolds were pre-
pared by freeze-drying method from 0.5 wt % Coll aqueous suspension (Milli-Q®, ultrapure
water-type II according to ISO 3696 being prepared on Elix 5 UV Water Purification System,
Merck, Darmstadt, Germany) and followed by crosslinking process with the mixture of N-
(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, Sigma-Aldrich) and
N-hydroxysuccinimide (NHS, Sigma-Aldrich, Darmstadt, Germany) crosslinkers according
to our previous work [46]. Briefly, the calculated amount of Chit was slowly added to a
cold (4 ◦C) Coll aqueous suspension with a concentration of 0.5 wt %. Consequently, the
mixtures were homogenized and frieze-dried in Martin Christ Epsilon 2-10D lyophilizator
(Osterode am Harz, Germany) at 35 ◦C under 1 mBar for 15 h followed by a secondary
drying process at 25 ◦C under 0.01 mBar until decreasing ∆p (the change in pressure was
up to 10%). Post-crosslinking process with carbodiimides system (EDC/NHS with molar
ratio of 2/1) insisted 2 h followed by washing twice with 0.1 M Na2HPO4 and ultrapure
water for removal byproducts. Finally, FGF2- STAB® was implemented in the scaffolds.
Stable FGF2-STAB® (recombinant human protein, E. coli-derived, His-tagged; >95% purity)
was obtained from Enantis, s.r.o. (Brno, Czech Republic). An adequate volume of cold
(4 ◦C) FGF2-STAB® (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 and 100 µg/mL) was vigorously
stirred and left to soak into a scaffold for 10 min and consequently freeze-dried again.
Table 1 sums up the composition of the prepared scaffolds as well as their labelling. Sample
labeling of the prepared scaffolds were formed by the abbreviations of their composition
with the used concentration of FGF2-STAB® (e.g., Coll/Chit_0.01 FGF2).

2.2. Swelling Ratio

The material was cut into 1 × 2 cm strips and immersed into ultrapure water. Every
piece of sample was weighted in its dry state before immersion. The weight was also
recorded after gently removing the surface water with filter paper at several intervals up
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to 3 h. The swelling ratio (SR) was calculated according to Equation (1), where Ws is the
weight of the sample in swollen state and Wi is the initial weight of dry sample.

SR = Ws/Wi (1)

Table 1. Sample labeling, the used FGF2 concentration and pore size of prepared scaffolds.

Sample Labeling CFGF2 [µg/mL] Pore Size [µm]

Coll/Chit 0 240 ± 100
Coll/Chit_0.01 FGF2 0.01 250 ± 100
Coll/Chit_0.05 FGF2 0.05 240 ± 70
Coll/Chit_0.1 FGF2 0.1 220 ± 60
Coll/Chit_0.5 FGF2 0.5 220 ± 60
Coll/Chit_1 FGF2 1 210 ± 60
Coll/Chit_5 FGF2 5 180 ± 60
Coll/Chit_10 FGF2 10 170 ± 90
Coll/Chit_50 FGF2 50 170 ± 70

Coll/Chit_100 FGF2 100 160 ± 60

2.3. Hydrolytic Degradation

After swelling measurement, the samples were placed into the vials containing ul-
trapure water. The hydrolytic degradation was simulated in an incubator at 37 ◦C. The
samples were removed, surplus water from the surface was removed and the samples were
weighed every day for one week and then after approximately 1 month. The degradation
solution was changed for freshness after every measurement.

The degradation was calculated according to Equation (2), where the WD is the weight
of swollen scaffold in the appropriate day and the W is the stabilized weight at 60 min of
swelling at first day of the measurement.

[%] = 100 − (WD × 100/W) (2)

2.4. Enzymatic Degradation

The enzymatic degradation was examined in vitro with a solution of collagenase from
Clostridium histolyticum (≥125 CDU/mg, lyophilized powder, Sigma-Aldrich, Darmstadt,
Germany) or lysozyme (human, recombinant, expressed in rice—120,530 units/mg protein,
lyophilized powder, Sigma-Aldrich, Darmstadt, Germany) in phosphate buffered saline
(PBS) at physiological pH 7.4 at 37 ◦C. Corresponding amount of enzyme was dissolved in
PBS to obtain a solution with collagenase concentration of 2.2 mg·dm−3. The solution was
then kept at 37 ◦C for 1 h. Scaffold samples were immersed in PBS for 10 min (according
to the swelling behavior results) at 37 ◦C, deprived of excess water, and weighed in a
wet state. Afterwards, the PBS solution with collagenase was poured over the sample.
For degradation experiment, samples were put into an incubator (37 ◦C) to simulate the
physiological conditions. Each sample was removed from the solution, dried with filtration
paper, and weighed in 2, 4, 8, 24, 48, 72 and 144 h intervals from the first immersion. To
calculate the weight loss of each sample, the obtained data were put into Equation (3),
where WL indicates the mass loss, wi the initial weight of a wet scaffold after PBS swelling,
and wt mass of that scaffold after the corresponding elapsed time.

WL [%] = (wi − wt)/wi × 100 (3)

2.5. Scaffold Morphology

Scaffold morphology was investigated employing a scanning electron microscope
(SEM, Tescan MIRA3, Brno, Czech Republic). All observations were made in the secondary
electron emission mode with a high voltage of 10 kV. For better resolution, the scaffolds
were coated with the 20 nm gold layer. Pore size of the prepared scaffolds was calculated
from the SEM images using ImageJ software. Pores were evaluated from 5 different SEM
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images of each scaffold with a view field of 1.5 mm. Average pore size was calculated
using 150 measured values from SEM images.

2.6. Mechanical Testing

Samples prepared in 12 × 12 cm plastic plates were cut into strips of 4 cm length,
10 mm width (approximately 3 mm thickness) and were liable to Dynamical mechanical
analysis (DMA) with a model instrument Rheometer RSAG2 (TA Instruments Inc., New
Castle, DE, USA). The samples were separately mounted into the grip in a central position.
First biomechanical testing was carried out at room temperature (23 ◦C), while the second
testing involved constant hydrating conditions, where the samples were immersed in
PBS at 37 ◦C in a built chamber, surrounding the grips. Before every measurement,
10 min of swelling was provided for every sample. Because the stresses in both directions
perpendicular to the axial of the specimen are zero, the elastic modulus E was determined
by the ratio of stress to strain using Electro Force DMA Data Analysis program (TA
Instruments Inc., New Castle, DE, USA).

2.7. Cells and Culture Conditions

Murine 3T3-A31 fibroblasts (Sigma-Aldrich, Darmstadt, Germany) were cultured in
Dulbecco’s Modified Eagles’s Medium (Cat. No. D6429, Sigma-Aldrich, St. Louis, MI, USA)
with 10% FBS (all purchased from Sigma-Aldrich, Darmstadt, Germany) and 1% peni-
cillin/streptomycin (Sigma-Aldrich, Darmstadt, Germany). The cells were seeded on
scaffolds at the density of 60,000 cells/scaffold and further cultured for 21 days. Samples
were taken for analysis after 1, 7, 14, and 21 days of cultivation.

Data represent the mean ± SD of minimum 6 biologically independent experiments
with technical triplicate each.

2.7.1. Cell Viability, Cell Adhesion and Proliferation on 3D Scaffolds

The scaffolds used for in vitro assessment were made by freeze-drying method de-
scribed in 2.1. The scaffolds were prepared in a 48 well plate and seeded with murine 3T3-
A31 mouse fibroblasts as described above to evaluate their viability, adhesion, and prolifer-
ation. Staining of cell membranes with the fluorescent probe 3,3′-diethyloxacarbocyanine
iodide DiOC3(6) (Invitrogen, Carlsbad, CA, USA) and cell nuclei with propidium iodide
(PI, Sigma-Aldrich, Darmstadt, Germany) was used to detect the adhesion of cells on the
scaffolds. Samples were fixed with frozen methyl alcohol (−20 ◦C) for 10 min and rinsed
with PBS. Subsequently, DiOC3(6) (Cat. No. D273, Life Technologies, Eugene, OR, USA,
0.1–1 µg/mL in phosphate buffer saline (PBS), pH 7.4) was added and incubated with the
samples for 45 min at room temperature. The samples were rinsed with PBS (pH 7.4), and
propidium iodide (5 µg/mL in PBS, pH 7.4, Sigma-Aldrich, Saint Louis, CA, USA) was
added for 10 min; they were then rinsed with PBS (pH 7.4) again and visualized using a
confocal microscope (Zeiss LSM 5 DUO, Carl Zeiss Microscopy GmbH, Jena, Germany) on
the 1st day. The areas of adhered cells were counted using Ellipse software (version 2.08,
ViDiTo, Kosice, Slovak Republic).

To determine the ratio of living and dead cells 2′,7′-bis (2-carboxyethyl)-5(6)-
carboxyfluorescein acetoxymethyl ester (BCECF-AM, Cat. No. B8806, Sigma-Aldrich,
Saint Louis, MI, USA) was applied. The cells were visualized using a confocal microscope
using λex = 488 nm and λem = 505–545 nm for BCECF or DiOC6(3) and λex = 560 nm
and λem > 575nm for propidium iodide. On day 21, color-coded projections of cells in the
depth of 200 µm were made to visualize penetration of cells into scaffolds from the surface
(blue) to deep in the scaffold (red).

The extent of proliferation was evaluated from the samples embedded in a lysis buffer
(0.2% v/v Triton X-100, 10 mM Tris (pH 7.0), and 1 mM EDTA) after three freeze-drying
cycles using Quant-iT™ dsDNA Assay Reagent (Cat. No. Q33120, Invitrogen, Eugene,
OR, USA). The dsDNA content was measured semi quantitatively using DNA standards
included in the assay. Fluorescence was measured at λex = 485 nm and λem = 523 nm.
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2.7.2. Cell Metabolic Activity Analysis by the MTS Test

Cell metabolic activity was determined by CellTiter 96® AQueous One Solution
Cell Proliferation (MTS) assay (Promega, Madison, WI, USA). MTS is reduced to purple
formazan by mitochondrial dehydrogenase in cells, indicating normal metabolism. 40 µL of
MTS solution were added to the medium (200 µL), and the samples were further incubated
at 37 ◦C for 2 h. 100 µL of the suspension were removed, and the optical density of
the formazan was measured (λ of sample and reference was equal to 490 and 690 nm,
respectively). The absorbance of samples incubated without cells was deducted from that
of cell-seeded samples.

2.7.3. Relative Collagen Type I mRNA Expression

All samples were cut into small pieces and RNA was isolated from them using RNeasy
Mini Kit (74104, Qiagen, Hilden, Germany) following the manufacturer’s protocol. Nucleic
acid concentration was measured using NanoQuant Plate (Tecan, Männedorf, Switzerland)
and Infinite M200 Pro (Tecan, Männedorf, Switzerland). Subsequently, cDNA was synthe-
sized using RevertAid First Strand cDNA Synthesis Kit (K1622, ThermoFisher Scientific,
Vilnius, Lithuania). Polymerase chain reaction was performed using Light Cycler 480
(Roche, Basil, Switzerland). To each reaction, TaqMan™ Gene Expression Master Mix
(4369016, Life Technologies, Vilnius, Lithuania), PCR Grade Water (03315959001, Roche,
Mannheim, Germany), and depending on the desired gene TaqMan Gene Expression Assay
containing both primer and probe were added. List of assays used: beta 2 microglob-
ulin B2m (assay ID: Mm00437762_m1, 4331182), and collagen type I alpha 1 (assay ID:
Mm00801666_g1, 4331182), all ThermoFisher Scientific, Pleasanton, CA, USA. The parame-
ters of the reaction were set as follows: 1 cycle pre-incubation at 95 ◦C for 10 min, 45 cycles
amplification each at 95 ◦C for 10 s, at 60 ◦C for 30 s and at 72 ◦C for 1 s, as a last step cooling
for one cycle at 40 ◦C for 30 s. The data were analyzed using the relative 2-∆Cp method.

2.8. Angiogenic Properties by Ex Ovo CAM Assay

On the day of arrival (day 0), 36 fertilized chicken eggs were received from Henry
Steward & Co. (UK), and were placed in a R-Com King Suro 20 digital egg incubator at
37.5 ◦C to allow the embryos to develop. On day 3, embryos were removed from their
eggshells and transferred into 100 mL weighing boats with 2 mL PBS with 1% addition of
penicillin streptomycin (PS). The weighing boats were then placed in Petri dishes containing
12 mL of distilled water and lids were placed over the weighing boats to conserve humidity.
By removing the embryos from the shells, chick chorioallantoic membranes (CAMs) were
exposed, allowing for clearer images to be obtained. The embryos were then transferred
to trays in a humidified Binder Classic Line incubator and allowed to develop further
at 37 ◦C. On day 7, a 3D scaffold sample, wet by 0.2 mL of PBS, was placed onto the
surface of each CAM, and again allowed to develop in Binder incubator. Images were
taken of the samples and surrounding vasculature on days 7 and 10–13, using Motorola
USB microscope coupled with Microcapture imaging software. On day 13, the embryos
were sacrificed, and the scaffold samples (including a small amount of the surrounding
CAM) were explanted and fixed by placing in 3.7% formaldehyde for at least 24 h. To
quantify angiogenic properties, the blood vessels growing perpendicularly (within ±45◦)
towards the scaffold were ranked, manually counted, and recorded. Analysis of vascular
response was based on the total increase in blood vessels growing perpendicularly towards
the sample, by subtracting the number of vessels seen on day 7 for a particular sample.
All samples were blinded prior to counting to eliminate the risk of bias. The vasculogenic
index corresponds to the number of newly created vessels between days 7 and 10as well as
days 7 and 13 after fertilization.

2.9. In Vivo Evaluation in a Rabbit Model

Four specific-pathogen free three-month old white New Zealand rabbits (Oryctolagus
cuniculus f. domesticus) were supplied by a local production company approved by Ministry
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of Agriculture of the Czech Republic and housed at the Veterinary Research Institute (Brno,
Czech Republic) in experimental stables certified by Ministry of Agriculture of the Czech
Republic. The study was conducted according to the guidelines of the Declaration of
Helsinki, and approved by the Institutional Review Board of Veterinary Research Institute
(protocol code 12/2016 with approval from 21 April 2016) and by the Branch Commis-
sion for Animal Welfare of the Ministry of Agriculture of the Czech Republic (permission
number 34715/2016-MZE-17214 from 15 June 2016). On arrival at the research facility, the
rabbits were held for two weeks prior to the experimental procedure challenge and were
individually housed in stainless-steel cages placed in isolated rooms with the controlled
regime and independent ventilation. The rooms were kept at a temperature of 21 ◦C,
relative humidity of 40 to 60%, and ventilation of approximately 15 air changes per hour.
Prior surgery, the rabbits were anesthetized by intra-venous injection of Medetomidin at a
dose of 0.5 mg/kg of body weight and Propofol at a dose of 8–15 mg/kg of body weight.
Premedication and analgesia during the procedure was performed by subcutaneous in-
jection of Butomidor at a dose of 0.1 mg/kg of body weight. Animals were shaved at
the places of future wounds and antisepsis was performed by 2.5% solution of povidone
iodine. Six full-thickness incisional wounds (including the panniculus carnosus) with
dimensions of 3 × 3 cm were made symmetrically by scalpel excision on the depilated
back of each rabbit. The split thickness skin grafts (STSGs) were made from the excised
skin by removing the panniculus carnosus and the greater part of the reticular dermis with
a scalpel blade. The scaffolds (Coll, Coll/Chit and Coll/Chit_0.1 FGF2) had thicknesses
of 1.5 mm and diameters of 3 × 3 cm and were sterilized using ethylene oxide, grafted to
the wound, and then covered by STSGs. The empty defect (without scaffold) was covered
only by split thickness skin graft (STSG) and used as a control group (Figure 1). Each
site treatment was provided in quadruplicate. Thereafter, the wounds were dressed with
Vaseline gauze and sponge coverings, and an elastic bandage was then placed to secure
the dressing.

Figure 1. In vivo experiment on white New Zealand rabbits: (a) Animals were shaved at the places of wound surgery;
(b) six defects were labeled on the shaved skin; (c) scaffolds (Coll, Coll/Chit and Coll/Chit_0.1 FGF2) were randomly
implanted including empty defect-control group (b). Each group of implants was quadruplicated.

The coverings were changed on day 5 after the initial application. Post-operative
analgesia was used by subcutaneous injection of Meloxicam at a dose of 0.5 mg/kg of
body weight once a day for a following three days. Bioptical samples were harvested at
the 7th, 14th, and 21st day after grafting for histological evaluation. Relative quantification
of mRNA expression of selected genes was provided at post-operative 21st day.

2.9.1. Histological Assessment of Skin Formation

Histological staining of 5 mm thick paraffin sections was carried out by hematoxylin–
eosin staining. We evaluated the presence of Coll/Chit biomaterial, inflammatory infiltrate,
granulation tissue, newly formed fibrotic tissue, and multinucleated cells of foreign bodies
on stained sections. Tissue sections were observed and photographed on an optical micro-
scope (ZEISS Axio Scope.A1, Carl Zeiss Microscopy GmbH, Jena, Germany) at 7, 14 and
21 post-operative days.
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2.9.2. Gene Expression Analysis of Skin by RT-qPCR

To prevent potential destruction of RNA and changes in gene expression caused by
other than experimental treatments, skin samples (each approximately 10 mg) cut into
slices less than 0.5 cm thick were directly placed into a stabilization solution RNAlater
(Qiagen, Hilden, Germany) after surgery, and stored at −70 ◦C until RNA isolation.

Prior to RNA isolation, skin tissues were homogenized in 1 mL of TRI Reagent RT
(Molecular Research Center, Inc., Cincinnati, OH, USA) with 10 Zirconia/Silica beads of
2.3 mm in diameter (BioSpec Products, Inc., Bartlesville, OK, USA) using MagNA Lyser
instrument (Roche Diagnostics, Mannheim, Germany). The RNA phase was obtained after
separation using 4-bromoanisole treatment followed by 15 min centrifugation at 4 ◦C, and
further applied in a purification procedure using RNeasy Kit (Qiagen, Tübingen, Germany)
according to the manufacturer’s instructions in animal tissue protocol. In the final step,
total RNA was obtained in 15 µL of RNase free water.

The RNA was reversely transcribed by M-MLV reverse transcriptase (200 U/µL,
Invitrogen) and oligo(dT) RT primer (Generi Biotech, Hradec Kralove, Czech Republic)
at 37 ◦C for 1.5 h. cDNA was stored at −20 ◦C until used. qPCR was performed in
triplicate reactions on LightCycler 480 (Roche Applied Science, Penzberg, Germany)—one
reaction contained 0.5 µL of cDNA (5× diluted), 1 µL of specific primer set in the amount
of 10 pmol and 1.5 µL of master mix (QuantiTect SYBR Green PCR Kit, Qiagen, Tübingen,
Germany). Primers for 9 chemokine and cytokine genes of interest (GOI) and 3 house-
keeping genes as candidate reference genes (REF) (Generi Biotech, Hradec Kralove, Czech
Republic, Table 2) were applied in the qPCR assay. References [47,48] show the origin of
the primers used in this study and parameters for the primer design using NCBI software
web tool Primer-BLAST (National Center for Biotechnology Information, Pike Bethesda,
MD, USA) [49]. To detect potential contamination in each qPCR run, a non-template
control was used. Using NormFinder software, out of the three candidate reference genes,
hydroxymethylbilane synthase (HMBS) was selected as the reference gene with minimal
gene expression variability among all samples tested. HMBS also served as a positive
internal control in qPCR. The formula [1/(2Cq GOI)]/[1/(2Cq REF)] [50] was adapted in
the qPCR assay to calculate the gene expression, including adjustment to the reference
gene HMBS. The specificity of amplicons was confirmed using melting temperature test
(LightCycler 480 software 1.5.1.62, Roche Life Science, Penzberg, Germany). The relative
expression was calculated as a ratio of the gene expressions of the sample under the tested
experimental treatment and the control sample (without the tested experimental material).

Table 2. Gene specific primer sets used in qPCR mRNA detection.

Gene
Forward Primer
Reverse Primer

Function

TNF-α
CTCTGCCTCAGCCTCTTCTCTT tumor-necrosis factor—alpha
AGGTTGTTTGGGGACTGCTCT pro-inflammatory

IL-1ß
ACAACAAGTGGTGTTCTCCATGA Interleukin—1 beta
TTTCATCACGCAGACAGGTACA pro-inflammatory

IL-17
ACCACATGAACTCTGTCCCAATC Interleukin—17

CCTACAGCCACCAGCATCTTC pro-inflammatory

MMP-9
CACTGGGCTTGGATCACTCCTC matrix metalloproteinasis—9

GGGTTAGGACCATATAGATGCTGGA pro-inflammatory

IL-10
TTCTGTGCCTGACCACACTTTC Interleukin—10

CTAGGAGTCTCTGGAACACTCGG anti-inflammatory

TIMP-1
GTTTCTCATCGCTGGACAACTGC tissue inhibitor of metalloproteinasis—1

ACGAAACTGCAAGTCGTGATGTG anti-inflammatory
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Table 2. Cont.

Gene
Forward Primer
Reverse Primer

Function

TGF-ß1
TTCCCCTCCGAAAATGCCATCC transforming growth factor—beta 1
CACTCTGGCTTTTGGGTTCTGC wound healing

VEGF-C
GCTTCTTGTCTCTGGCGTGTTC vascular endothelial growth factor—C

CCTACATAAGCCTTGGCCTCCTC wound healing

FGF-7
ATCCTGCCAACTTTGCTCTACAGA fibroblast growth factor—7
CTGGAGTCATGTCATTGCAAGCT wound healing

HPRT-1
TGAAACTGGAAAAGCAAATACAAAG hypoxanthine phosphoribosyltransferase—1

CGATGTCAATGAGACTCCTGATG house-keeping gene

GAPDH
GAATCCACTGGCGTCTTCAC glyceraldehyde-3-phosphate dehydrogenase

CGTTGCTGACAATCTTGAGAGA house-keeping gene

HMBS
CAGCCATGAAGGATGGGCAGCTGTAC hydroxymethylbilane synthase

TGCTGGCCTGCATGGTCTCTTGC house-keeping gene

Orientation of primers from 5′ to 3′.

2.10. Statistical Analysis

For each parameter, mean values ± standard error of the mean (SEM, swelling ratio,
degradations, mechanical testing, vasculogenic index and RT-qPCR) were calculated. t-test
of two-samples assuming unequal variances (Excel, Microsoft Office 2021) was performed
for mechanical testing. If not specified otherwise, biological data were evaluated using
One-way ANOVA and the Student–Newman–Keuls method using SigmaStat 3.5 software
(Systat Software, Inc., San Jose, CA, USA); p-values < 0.05 were considered to indicate
statistically significant results.

3. Results

3.1. The Effect of Chitosan on Scaffold Swelling Ability

The ability of a scaffold to preserve water is an important aspect to evaluate its
potential for skin tissue engineering. The swelling behavior of Coll scaffolds was obtained
upon contact with distilled water. The rate of swelling decreased with time and reached a
constant value, as illustrated in Figure 2a. Higher swelling ability was exhibited in the pure
Coll scaffolds compared to Coll/Chit. Coll/Chit created a higher crosslinking network due
to the mutual ionic and hydrogen bond interactions.

3.2. The Effect of Chitosan on Hydrolytic Degradation

The degradation of Coll scaffolds was simulated in an incubator in ultrapure water
at 37 ◦C. Figure 2b shows the weight loss over time for Coll and Coll/Chit scaffolds,
which were washed out with clean water during the degradation evaluation. The sta-
bility test confirmed the high efficacy of the crosslinking agent (EDC/NHS). The figure
shows approximately 5 wt % of scaffold weight loss within first 3 days, while releasing
unreacted Coll or Chit. This amount is low since the scaffold is thoroughly purified after
the crosslinking procedure before the lyophilization step (see Section 2.1), thus provid-
ing a very high degree of crosslinking. Both Coll and Coll/Chit crosslinked scaffolds
showed very high resistance to water, and no evidence of disintegration after a period of
300 days. Therefore, the enzymatic degradation of those scaffolds was shown to occur in a
physiological environment.

3.3. The Effect of Chitosan on Enzymatic Degradation

Scaffolds based on Coll type I with or without Chit were evaluated during the enzy-
matic degradation treatment with collagenase. The graphical representation of weight loss
of the scaffolds in time (up to 6 days) is shown in Figure 2c. As expected, the highest weight
loss exhibited the pure Coll scaffold (77%). Even though the composite scaffold contained
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50% of Coll, which is subject to collagenase degradation, its mass loss was beyond this
content. The degradation of Coll/Chit scaffold was 60% of loss, which means that at least
10% of Chit was dissolved as well during this process.

Figure 2. (a) Swelling behavior of Coll and Coll/Chit composite scaffold; (b) the dependence of
the weight loss on the degradation time for Coll and Coll/Chit sponges; (c) mass loss of Coll and
Coll/Chit scaffolds during the process of enzymatic degradation in PBS solution of either collagenase
or lysozyme.

3.4. The Effect of Chitosan on the Scaffold Stiffness

The biomechanical behavior of the Coll/Chit scaffolds was evaluated in the dry and
hydrated state. A measurement, in which the sample is grasped at two ends and pulled,
while the axial strain and stress are simultaneously measured was provided to determine
the resistance of material to induced force. Coll and Coll/Chit scaffolds were liable to
deformation test in both dry and wet conditions. In the dry measuring condition, the
highest material resistance was attributed to the pure Coll scaffold, with a tensile strength
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of 87.8 ± 15.8 kPa, followed by the Coll/Chit, reaching only the half value of the Coll
(45.9 ± 22.9 kPa). The addition of Chit contributed to a significant decrease in stress but
resulted in more than twice higher elongation (3.1 ± 0.5 for Coll and 7.8 ± 0.2 for Coll/Chit).
The tensile curves showed the similar trend as in the dry state, only a significantly smaller
value of stress (8.2 ± 1.5 kPa for Coll/Chit) was required to cause permanent deformation
of the scaffolds after 10 min of swelling. Pure Coll in hydrated environment has shown
higher resistivity (27.1 ± 8.1 kPa) compared with Coll/Chit. There was also a significant
increase in elongation of the material showing a similar trend as in the dry conditions,
where Chit stretched the Coll fibers more in wet condition (9.4 ± 0.1% and 13.9 ± 0.1% for
Coll and Coll/Chit, respectively).

A graphical summary of the ultimate tensile strength points (stress values) and the
elongation of scaffolds at different conditions are depicted in Figure 3b,c, respectively.

Figure 3. (a) Tensile curves of Coll and Coll/Chit scaffolds at dry and wet state; (b) the overview of
stress values applied on Coll and Coll/Chit scaffolds at dry and wet state; (c) percentage elongation
influenced by chitosan addition to collagen scaffold at dry and wet state; ** p < 0.01.
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3.5. The Effect of FGF2-STAB® on the Scaffold Structure

Three-dimensional (3D) porous scaffolds based on Coll and Chit with weight ratios
of 1:1 enriched with increasing concentrations of human FGF2-STAB® were successfully
prepared. A homogenous network was formed by freeze drying, where an interconnected
3D porous structure within the samples was created. The morphologies of the obtained
scaffolds are presented in Figure 4. As it is obvious in Table 1, the increasing concentration
of FGF2-STAB® in the Coll/Chit scaffolds led to the formation of more irregular pores with
smaller size, where the smallest one exhibited the scaffold modified with 100 µg/mL of
FGF2-STAB® (100–220 µm).

Figure 4. SEM visualization of prepared Coll/Chit scaffold enriched by increasing concentration of FGF2 (left—(a) Coll/Chit;
(b) Coll/Chit_0.01 FGF2; (c) Coll/Chit_0.05 FGF2; (d) Coll/Chit_0.1 FGF2; (e) Coll/Chit_0.5 FGF2; (f) Coll/Chit_1 FGF2;
(g) Coll/Chit_5 FGF2; (h) Coll/Chit_10 FGF2; (i) Coll/Chit_50 FGF2; (j) Coll/Chit_100 FGF2) and pore size distribution in
the prepared scaffolds (right).

With the FGF2-STAB® concentration of 1 µg/mL, the Coll/Chit scaffolds started to
include pores with size around 100 µm (and the distribution was close to Gaussian).

In addition, our results show that the addition of FGF2-STAB® formed a spherical
structure (size around 0.5–1 µm) on the smooth surface of Coll/Chit scaffolds, as can be
seen in Figure 5.
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Figure 5. Representative SEM visualizations of prepared Coll/Chit scaffold enriched by increasing
concentration of FGF2 with SEM magnification of 10k×: (a) pure Coll/Chit; (b) Coll/Chit_0.1 FGF2;
(c) Coll/Chit_1 FGF2; (d) Coll/Chit_10 FGF2.

3.6. The Effect of FGF2-STAB® on Biological Properties

To find the optimal FGF2-STAB® concentration in Coll/Chit scaffolds, cytotoxicity
studies were carried out on murine 3T3-A31 dermal fibroblasts, with different concentra-
tions of FGF2-STAB® (0; 1; 5; 10; 50 and 100 µg/mL) (Figure 6). The only significant result
was observed on the day 14 in the group with 1 µg/mL FGF2-STAB where the cells reached
the highest level of metabolic activity in comparison with other experimental groups.

Figure 6. Fibroblast metabolic activity with increasing FGF2-STAB® concentration (0, 1, 5, 10, 50, and 100 µg/mL) after 1, 7
and 14 days of incubation. Statistical significance (p < 0.05) marked with asterisk. On the 14th day the highest level was
reached in the group with 1 µg/mL of FGF2-STAB.
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Staining of cell membranes with the fluorescent probe 3,3′-diethyloxacarbocyanine
iodide DiOC3(6) and cell nuclei with propidium iodide was used to detect the cell adhesion
on the scaffolds (Figure 7).

Figure 7. Confocal microscopy imaging of cell adhesion of 3T3 fibroblasts on Col/Chit scaffolds on
day 1. Staining of cell membranes with the fluorescent probe 3,3′-diethyloxacarbocyanine iodide
DiOC3(6) (green) and cell nuclei with propidium iodide (red) was used to detect the adhesion of cells
on the scaffolds with different concentrations of FGF2-STAB®, a scale bar is 100 µm. Slight green
autofluorescence of the Col/Chit scaffold is present.

As can be seen from Figure 6, cell metabolism is significantly higher at the concentra-
tion 1 µg/mL of FGF2-STAB® especially at day 14 showing enhanced cell proliferation.
Therefore, the higher concentration of growth factor does not have to be used for further
experiments. The effective low concentration of FGF2-STAB® might be dependent on the
hyper stable FGF2 structure enabling full protein activity up to 20 days at 37 ◦C. Therefore,
for further concentration optimization, cytotoxicity was evaluated for FGF2-STAB® concen-
trations 0.01; 0.05; 0.1; 0.5 and 1 µg/mL. Figure 8 shows the metabolic activity measured via
MTS assay. As can be seen, the best metabolic activity reveals Coll/Chit scaffolds enriched
up to 0.1 µg/mL of FGF2-STAB®.

Figure 8. Fibroblast metabolic activity with increasing FGF2-STAB® concentration (0.01, 0.05, 0.1, 0.5
and 1 µg/mL for A–E, respectively) after 1, 7, 14 and 21 days of incubation. Statistical significance
for p < 0.05 is shown above columns.
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As for the dsDNA assay, no statistical difference was found within all tested con-
centrations as is shown in Figure 9 proving that all samples had similar cell numbers
over time.

Figure 9. dsDNA assay with increasing FGF2-STAB® concentration (0.01, 0.05, 0.1, 0.5 and 1 µg/mL,
for A–E, respectively) after 1, 7, 14 and 21 days of incubation. No statistical significance was observed.

However, there was a statistical significance in the Coll I expression by 3T3-A31
fibroblasts as shown in Figure 10. While the concentration 0.1 µg/mL of FGF2-STAB® in
Coll/Chit samples exhibited the best Coll expression within the first 24 h, in long-term
study (21 days) the best sample seem to be scaffold involving 0.5 µg/mL of FGF2-STAB®.

Figure 10. Relative collagen I mRNA expression of samples with increasing FGF2-STAB® concentra-
tion (0.01, 0.05, 0.1, 0.5 and 1 µg/mL, for A–E, respectively) after 1, 7, 14 and 21 days of incubation.
Statistical significance for p < 0.05 or * p < 0.001.

The viability of cells at day 21 taken from the live/dead assay has not shown any
statistical difference among the samples (Figure 11).
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Figure 11. The live/dead assay in day 21 of samples with increasing FGF2-STAB® concentration
(0.01, 0.05, 0.1, 0.5 and 1 µg/mL, for A–E, respectively). No statistical significance.

The viability of cells after 3 weeks of incubation with Coll/Chit samples is about
70% in all measured concentrations of FGF2-STAB®. The live (green) and dead (red) cells
distribution within the samples in day 7 and 21 shows Figure 12. The deep projection from
confocal microscope in 200 µm depth shows overall cells distribution within the whole
sample volume.

Figure 12. The live (green)/dead (red) cell distribution on the day 7 (first row) and day 21 (second row) including deep
color-coded projection from confocal microscopy (bottom row) from the surface (blue) to the depth of 200 µm (red) on day
21. Cells were seeded on samples with increasing FGF2-STAB® concentration (0.01, 0.05, 0.1, 0.5 and 1 µg/mL), a scale bar
is 100 µm.

Based on the cytotoxicity and biocompatibility evaluation, for further ex ovo and
in vivo testing, only Coll/Chit scaffolds involving 0.1 µg/mL of FGF2-STAB® were used.
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3.7. The Effect of FGF2-STAB® on Angiogenesis Evaluation

Using CAM assay evaluation, we can measure functional blood vessel formation ex
ovo. Figure 13 depicts the increase in the number of vessels growing perpendicularly
towards each sample. As it can be seen in Figure 14, the Coll/Chit scaffolds enriched by
FGF2-STAB® revealed a slightly higher vasculogenic index, 29.3 ± 8.3 and 38.0 ± 10.6
between day 7–10 and day 7–13, respectively, compared to the scaffolds without FGF2-
STAB® (28.7 ± 12.4 and 33.8 ± 15.8, respectively). Since pure Coll/Chit scaffolds are able
to highly promote vascularization in this model, the addition of FGF2-STAB® was not able
to show a significant effect on top of the angiogenic capacity of the Coll/Chit scaffolds.

Figure 13. Coll/Chit (a–c) and Coll/Chit_0.1FGF2 (d–f) samples implanted on CAM at day 7 (a,d),
10 (b,e) and 13 (c,f). No significant differences were found.

Figure 14. Box plot of vasculogenic index: (a) between day 7 and day 10 for Coll/Chit samples
without FGF2-STAB® and with 0.1 µg/mL of FGF2-STAB®; (b) between day 7 and day 13 for
Coll/Chit samples without FGF2-STAB® and with 0.1 µg/mL of FGF2-STAB®.

3.8. The Effect of FGF2-STAB® on In Vivo Biocompatibility

In the next phase of testing the Coll/Chit based scaffolds, four New Zealand white
Rabbits (Oryctolagus cuniculus f. domesticus) were used as an animal model for full skin
thickness replacement. Consistent with in vitro studies, in vivo results demonstrated
high biocompatibility of implanted either pure Coll, Coll/Chit, or Coll/Chit_0.1FGF2
matrices with no evidence of defect healing disorders 21 days after implantation. In
Figure 15a–e histological images show the presence of nonresorbed Coll/Chit remnants.
The control group defect healed only by the application of STSG is shown in Figure 15h. The
defect is replaced by fibrous tissue of neodermis. No hypertrophic scarring or long-term
foreign body reaction induced by the implanted material was demonstrated, as shown in
histological images in Figure 16b,d,f,g with Coll/Chit_0.1FGF2.
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Figure 15. Histological overview of a hematoxylin-eosin-stained section of rabbit skin after implanta-
tion of Coll/Chit without FGF2 after 7 days (a); 14 days (c) and 21 days (e); and after implantation of
pure dermo–epidermal graft after 21 days (h). (a) Some Coll/Chit biomaterial residue with mixed
inflammatory cell infiltrate in the deeper tissue layers. No significant evidence of resorptive reaction.
(c) Evidence of Coll/Chit scaffold residues with mixed inflammatory infiltration in the environment.
Epithelial layer is present on the surface. (e) Presence of Coll/Chit biomaterial residue at the defect
site, with mixed inflammatory cell infiltrate and granulation tissue. Numerous multinucleated
foreign body giant cells are visible ∗. (h) Newly formed tissue at the site of a previous defect without
significant inflammatory infiltration. Magnification is 100× for all images. Histological overview of a
hematoxylin-eosin-stained section of rabbit skin after implantation of Coll/Chit_0.1FGF2 followed by
time intervals of 7 days (b), 14 days (d), and 21 days (f,g). (b) Coll/Chit scaffold residues with mixed
inflammatory infiltration in the environment, magnification 100×. (d) The Coll/Chit biomaterial
residue with mixed inflammatory infiltration in the area and with the formation of granulation tissue
and one type of huge multinucleated cell of foreign bodies (modified macrophages—these cells are
commonly found at the site of biomaterials and indicate of granulation tissue formation), which is
a sign of very good chitosan resorption ability, magnification 100×. (f) Implant site after complete
chitosan resorption with mixed inflammatory infiltration and formation of granulation tissue in
the area, magnification is 100×. (g) Newly formed tissue at the site of a previous defect without
significant inflammation and infiltration, superficial epithelial layer ∗, magnification is 200×.
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Figure 16. Expression of mRNA of cytokines: (a) TNFα; (b) IL1; (c) IL17; (d) MMP9; healing proteins
(e) FGF7 and (f) TGF- β1; (g) anti-inflammatory cytokine interleukin 10 (IL10); (h) tissue inhibitors
of metalloproteinases (TIMP-1); (i) vascular endothelial growth factor (VEGF) of sites treated with
scaffolds compared to non-treated control site at post-operative day 21. Results are expressed as
relative mean ± SD of HMBS (house-keeping gene) units. No statistical significance.

3.9. The Effect of FGF2-STAB® on Gene Expression by RT-qPCR

Figure 16 shows the expression of mRNA of pro-inflammatory (TNFα, IL1β, IL17
and MMP9) and anti-inflammatory (IL10 and TIMP1) cytokines were not affected by any
material used when compared to untreated control at post-operative day 21. Although a
limited number of samples was analyzed for the expression of mRNA of healing-associated
proteins (VEGF, TGF-β1, FGF7),

Expression of mRNA for anti-inflammatory cytokine interleukin 10 (IL10), tissue
inhibitors of metalloproteinases (TIMP-1) and vascular endothelial growth factor (VEGF)
are depicted in Figure 16g–i, respectively. Results expressed relative to the house-keeping
gene (HMBS) show slightly higher expression of IL10, TIMP1 and VEGF genes in sites
treated with Coll/Chit scaffolds enriched with FGF2-STAB® protein. Comparing to pure
Coll or Coll/Chit scaffold the highest increase shows value of mRNA for VEGF supporting
vascularization for scaffold modified with FGF2-STAB® protein.

4. Discussion

Composite scaffolds have shown several advantages compared to one-component
scaffolds, such as the ability to tailor their mechanical properties, physico-chemical prop-
erties, ultrastructure and surface topography, growth factors or bioactive drug binding
capacity, degradation, drug release, cell adhesion, proliferation, and differentiation [51–54].
Moreover, modification of scaffolds with growth factors significantly affects cell adhe-
sion, migration, proliferation, differentiation, and ECM synthesis. Drug delivery systems
based on degradable polymers and growth factors allow longer delivery of growth factors,
however, the applied dose is usually high and growth factors have to be applied daily
due to fast degradation of the protein [55,56]. The stability of natural growth factors is
often limited to several hours. Human or zebrafish FGF2 lose their activity after a 24 h
incubation at 37 ◦C. The instability was caused mainly by aggregation of the FGF2, which
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could be decreased by the addition of heparin or heparan sulphate [57]. Therefore, the
stabilization of growth factors is desired for their long-term effect along with their lower
dosage and lower side effects. Different attempts to stabilize FGF2 have been studied.
They include conjugation to heparin or heparin-like molecules, coacervation, chemical
modifications, genetic engineering, physical barrier strategies, entrapment in hydrogels,
microencapsulation and adsorption [58].

FGF2 plays a role in embryonic development, tissue homeostasis, wound healing, and
cancer. The role of FGF2 in the therapy of lung, neural, or vascular diseases, wound healing
and diabetes or myocardial revascularization has been already studied [59–61].

FGF2-STAB® is a human recombinant protein that is stable at 37 ◦C degrees for
20 days [45,62]. The increased stability of FGF2 decreases the dependence of FGF2 on
heparin [62] allowing lower doses to be used in a scaffold and the retention of dose de-
pendent FGF2 biological activity for few weeks in in vitro studies as well as in vivo. It has
a positive effect on pluripotency of embryonic stem cell at cells up to 100 ng/mL while
lower levels of 1–10 ng/mL are effective for other cell types [63]. Kanematsu et al. [64]
revealed that FGF2 spontaneously interacts with type I Coll solution and sponges under
in vitro and in vivo physiological conditions. FGF2 complexed with Coll by electrostatic
ionic interactions showed resistance to trypsin digestion and is, therefore, protected from
the proteolytic environment by the Coll. FGF2 incorporated in a Coll sponge sheet was
sustainably released in the mouse subcutis according to the biodegradation of the sponge
matrix and exhibited local angiogenic activity in a dose-dependent manner. Coll produced
from myofibroblasts may function as a transient reservoir of FGF2 until the remodeling pro-
cess accompanied by neovascularization of the wound scar is accomplished. The manner
of controlled FGF2 release from Coll matrices was observed in several studies. It was found
that growth factors can bind to the Coll matrix and then gradually release them during its
degradation. The rate of release can be influenced by a number of factors, not only by the
preparation of Coll matrices (crosslinking, lyophilization), but also by the modifications
using different types of additives (e.g., heparin, gelatin, Chit, cellulose) [65,66]. For exam-
ple, Wu et al. [66] determined the FGF2 release profile from the FGF2-Coll matrices using
an ELISA assay. Preabsorbed FGF2 released from the non-crosslinked Coll group with an
initial burst phase of 36.9% during the first 24 h followed by FGF2 rapid release ended by
day 14 with 100% when the Coll matrix had degraded into small debris. Contrarily, the
EDC/NHS crosslinked Coll exhibited relatively small initial burst releases of 19.5% FGF2
sustained controlled release over 37 days.

Since the collagenous material is degraded in vivo by complex reactions of proteolytic
enzymes, the in vivo release profile of FGF2 from the sponges could not be predicted only
by experiments simulating physiological environment. As we have proved, the integrity
of EDC/NHS crosslinked Coll/Chit scaffold 3D network under hydrolytic conditions
remained very stable (longer than 300 days at 37 ◦C), contrary to the enzymatic degradation
study, where the scaffold was disturbed as the Coll degraded using collagenase within
140 h and smaller pieces of Chit were separated from the scaffold. This was confirmed by
the visible small chunks presented in the solutions with composite scaffolds. No chunks
were observed in the solution when pure Coll was tested. However, where lysozyme was
applied instead of collagenase, approximately 50% of Chit degraded from the composite
scaffold. Higher Coll/Chit stability and the lower water-binding ability in comparison
to the Coll scaffold could be attributed to both the hydrophilicity and the maintenance
of their 3D structure. As the Coll is crosslinked with Chit it decreased the swelling ratio,
accompanied with reduced amount of free bind hydrophilic groups.

Therefore, the FGF2 release from Coll/Chit scaffolds was examined as the FGF2
biological activity both in vitro on murine 3T3-A31 mouse fibroblast cells and in vivo on
New Zealand white rabbits. Metabolic activity was tested on a broad range of FGF2-STAB®

concentrations from 0 to 100 µg/mL. The FGF2-STAB® concentration of 1 µg/mL showed
a significant increase in metabolic activity on day 14. Subsequently, the testing of lower
concentrations showed improved cell metabolic activity at 0.01and 0.05 µg/mL compared
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to higher concentration of FGF2-STAB®, which is likely caused by the high stability of
FGF2-STAB®. Interestingly, cell proliferation was not affected by lower concentrations of
FGF2-STAB®. In 3D scaffolds, the cell proliferation and differentiation are also affected by
nutrition supply, which is influenced by diffusion rate, and the physical-chemical properties
of the scaffolds. Coll I expression was higher in samples with 0.1 and 0.5 µg/mL of FGF2-
STAB®. This is contrary to previous studies which have shown FGF2 decreased Coll I
expression and decreased scar formation [60]. Thus, the lower dosage of FGF2-STAB®,
which has a positive effect on metabolic activity of fibroblasts but with no effect on Coll
synthesis, may be more beneficial for wound healing. This is in good agreement with [63].

The mechanical properties of the prepared scaffolds are critical for handling during
surgery [67]. Therefore, the addition of Chit into the scaffolds was chosen to improve the
overall mechanical properties of the scaffolds, which is in good agreement with published
results [68,69]. Chit of higher molecular weight significantly improved biomechanical
properties of composite Coll/Chit scaffold compared to Chit of low molecular weight [70].
Moreover, Chit can greatly support the material stretching long before the start of nonre-
versible deformation [71,72]. As shown in Figure 3a, every tensile curve is characterized
by three different regions. The first linear region represents the continually rising stress
applied to the material accompanied with rising material tension. Its stiffness increases
rapidly as the Coll and Chit fibers are straightened and begin to carry a major part of the
load. In this moment, the material acts as elastic. The linear region ends when the material
no longer puts resistance to the applied stress, called ultimate tensile strength. At this
point, the straightness of Coll and Chit fibers is maximized, the amount of stress applied
on the material is too high and ultimately shows fiber failure. In the last region, the fibers
are slowly disconnected by gradual tearing. Overall, the Chit addition as well as hydrated
conditions created a region of plastic deformation, as can be seen in Figure 3a. The Coll
only scaffold in a dry state showed that ultimate tensile strength can be equal to the yield
point, which indicates the limit of elastic behavior. After this point, no plastic deformation
occurred, but instead a tearing of the material was observed.

SEM revealed that the addition of FGF2-STAB® visually changed the microstructure
of the prepared Coll/Chit scaffolds. The scaffold microstructure is mostly formed by
interconnecting pores. Pure Coll/Chit scaffolds exhibited a honeycomb-like structure
with the pore size in the range of 140–340 µm that is in a good agreement with the results
published by Martínez et al. [73] as well as Rezaii et al. [74]. We assume that higher addition
of FGF2-STAB® resulted in the filling pores in the scaffold by FGF2-STAB® complexation
leading to the decrease of scaffold pore size.

Concerning the full-skin thickness regeneration, the formation of new blood vessels
from the existing vasculature plays a fundamental role. Since Coll/Chit_FGF2-STAB®

scaffolds contain various bioactive agents, which have the potential to modulate angiogen-
esis, a CAM assay was used to test the angiogenic potential in an ex ovo environment. In
tissue engineering research, angiogenesis is essential to promote microvascular networks
inside engineered tissue constructs, which maintain adequate tissue oxygenation, nutrient
transfer, and waste removal. According to our previous study [23], Coll and Chit showed a
positive synergistic effect performing in vitro experiments on scaffolds with fibroblasts. As
it was expected, the pure Coll/Chit scaffolds supported angiogenesis ex ovo, therefore we
were unable to observe any significant difference between the scaffolds with and without
FGF2-STAB® types as both displayed positive effects. Here, we used purified and stabilized
FGF2-STAB®, which is considered as a growth factor affecting the expression of vascular
endothelial growth factor and other pro-angiogenic cytokines [75]. Our finding that FGF2
stimulates angiogenesis follows other studies discussing the positive effects of FGF2 on
angiogenesis, and stimulation of VEGF expression [76–78]. In in vivo models of guinea pig,
Coll type I sponges covered with FGF2 or seeded with fibroblasts showed increased tensile
strength and increased reepithelization of the wound 15 days after excision. Coll type I
sponge-treated group showed increased tensile strength of the wound [79]. Interestingly,
PDGF-loaded Coll/Chit scaffold led to significantly higher Coll type I amount in newly
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formed tissue compared to PDGF-loaded Chit scaffold on day 4. Both PDGF-treated groups
showed significantly increased Coll synthesis compared to untreated defect [80]. Similarly,
we have observed higher mRNA Coll I expression in Coll/Chit_0.1 FGF2 compared to
Coll/Chit_0.5 FGF2 and Coll/Chit_1 FGF2 samples on day 1 and 14. In addition, com-
plete epithelialization was found in PDGF-loaded Coll/Chit scaffolds with no signs of
inflammation, while PDGF-loaded Chit scaffold showed stratified squamous epithelial
layer formation and loose connective stroma tissue with capillaries on day 10. This is in
accordance with our results of Coll/Chit_0.1 FGF2 group which does not contain significant
inflammation and contained formed epithelium [80].

Tissue damage can lead to inflammation by the release of so-called damage-associated
molecular patterns (DAMPs). This is associated with injuries of the skin by various exter-
nal impacts including mechanical damage, and physical or chemical effects. DAMPs are
recognized by membrane receptors, toll-like receptors or receptor RAGE for advanced gly-
cation end products. These interactions lead to cascade of signal transmission and nuclear
translocation of transcription factors such as NF-κB. This activation leads to transcription
of mRNA for many pro-inflammatory cytokines, for example IL1β, IL17, and matrix metal-
loproteinases (MMPs). The mRNA expression for these genes was influenced very little
when defects were treated with any of combination. Another pro-inflammatory protein
produced after nuclear translocation of NF-κB is TNFα. It is produced predominantly by
activated macrophages and is involved in the up regulation of inflammatory reactions. Its
mRNA expression seems to be down-regulated by all combinations of materials used for
treatment of the defects.

For healing process, it is crucial that inflammation is strictly controlled. Down-
regulation of the inflammatory reactions is mediated in several ways—from the production
of glucocorticoids by the adrenal cortex to a production of anti-inflammatory cytokines
including interleukin-10. IL10 is one of the most potent agents able to re-polarize inflam-
matory M1 macrophages to anti-inflammatory M2 macrophages with healing and building
properties [81,82]. Another important anti-inflammatory action is down-regulation of the
activity of MMPs is via binding to a family of homologous proteins referred to as the tissue
inhibitors of metalloproteinase TIMP [83]. One of the members of TIMP family—TIMP-1
was shown to also have cell growth promoting activity on human keratinocytes and several
other cell types [84,85]. Expression of mRNA for both of these proteins was up-regulated
when Coll/Chit material was supplemented with FGF2-STAB® protein. Another important
part of the healing process is also associated with the production of a family of growth
factors—fibroblast growth factors (FGF), transforming growth factors (TGF) and vascular
endothelial growth factor (VEGF)—all being measured in our study. FGF7 and TGF-β1
mRNA expression was not influenced by FGF2-STAB® supplementation. In the case of
VEGF, FGF2- STAB® supplementation led to an increase tendency. VEGF is produced
by a cell suffering from lack of oxygen via a hypoxia-inducible factor [86]. However,
macrophages and particularly M2 polarized macrophages can contribute to enhanced
neovascularization by production of VEGF [87]. The question is whether FGF2-STAB® can
polarize macrophages to M2 mode, as it was shown in the case of FGF9 [88]. Very recently,
it was shown that also FGF2 could be a major modulator in macrophage polarization,
at least in tumor development [89]. Change of expression of IL10, VEGF and TIMP by
Coll/Chit supplemented with FGF2-STAB® is in correlation with the fact, that 21 days after
surgery Coll/Chit is not present in histological sample and anti-inflammatory and healing
associated processes prevailed. On the other hand, by Coll/Chit with no FGF2-STAB®,
healing—associated processes were delayed as Coll/Chit remnants still could be detected
by histological analyses. All samples revealed very good Chit resorption and formation of
granulation tissue in the defect area was observed. Regarding wound closure, no visible
differences were found among the tested scaffolds, which may be due to the very fast skin
regeneration of rabbit animal model. Therefore, for subsequent studies, an animal model
of a Large White pig was used, where various biopolymers and the efficacy of FGF2-STAB®

in the concentration range from 0.1–10 µg/mL for the healing and neovascularization of
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full-thickness skin defects were evaluated. The results of the mentioned study will be
published soon.

5. Conclusions

In the proposed work, collagen-based scaffolds modified with antibacterial Chit fibers
and hyper-stable FGF2-STAB® protein were evaluated via in vitro, ex ovo and in vivo
tests. The main goal was to prove the safety of the applied stabilized FGF2-STAB® protein
as well as to demonstrate its efficacy in healing and neovascularization of full thickness
skin regeneration in a rabbit animal model. Regarding cell adherence, viability, and
cell proliferation, in vitro tests prove non-cytotoxicity and good biocompatibility of the
scaffolds used. Moreover, good neovascularization evaluated within the CAM assay was
confirmed on Coll/Chit scaffolds either with or without FGF2-STAB®. Finally, an in vivo
study on rabbit animal model revealed superiority of scaffold with FGF2-STAB® in terms
of scaffold bioresorption, minimal inflammation, and excellent granulation on skin tissue
reconstruction. Gene expression for mRNA of different pro-inflammatory (IL1β, IL17,
MMP9, and TNFα), anti-inflammatory (IL10, TIMP1), and pro-healing proteins (TGFβ,
FGF7, and VEGF) proved the safety and positive effect of Coll/Chit scaffolds with FGF2-
STAB® on skin regeneration, especially its dermal part. Our study provides the necessary
base for further evaluation of the scaffold for biomedical and clinical applications in the
fields of tissue engineering and regenerative medicine.
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