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a b s t r a c t 

Aging is a major risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). 

As metabolic alterations are a hallmark of aging and have previously been observed in ALS, it is important 

to examine the effect of aging in the context of ALS metabolic function. Here, using a newly established 

phenotypic metabolic approach, we examined the effect of aging on the metabolic profile of fibroblasts 

derived from ALS cases compared to controls. We found that ALS fibroblasts have an altered metabolic 

profile, which is influenced by age. In control cases, we found significant increases with age in NADH 

metabolism in the presence of several metabolites including lactic acid, trehalose, uridine and fructose, 

which was not recapitulated in ALS cases. Conversely, we found a reduction of NADH metabolism with 

age of biopsy, age of onset and age of death in the presence of glycogen in the ALS cohort. Furthermore, 

we found that NADH production correlated with disease progression rates in relation to a number of 

metabolites including inosine and α-ketoglutaric acid. Inosine or α-ketoglutaric acid supplementation in 

ALS fibroblasts was bioenergetically favourable. Overall, we found aging related defects in energy sub- 

strates that feed carbon into glycolysis at various points as well as the tricarboxylic acid (TCA) cycle in 

ALS fibroblasts, which was validated in induced neuronal progenitor cell derived iAstrocytes. Our results 

suggest that supplementing those pathways may protect against age related metabolic dysfunction in 

ALS. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

Abbreviations: AGEs, advanced glycation end products; ALS, amyotrophic lateral 

sclerosis; AMPK, AMP-activated protein kinase; ChREBP, carbohydrate response ele- 

ment binding protein; C9ORF72, chromosome 9 open reading frame 72; DHAP, dihy- 

droxyacetone phosphate; ETC, electron transport chain; FALS, familial amyotrophic 

lateral sclerosis; G3P, glyceraldehyde 3-phosphate; GP, glycogen phosphorylase; iAs- 

trocytes, induced astrocytes; iNPC, induced neuronal progenitor cell; iPSC, induced 

pluripotent stem cells; LDHA, lactate dehydrogenase A; mtDNA, mitochondrial DNA; 

NADH, nicotinamide adenine dinucleotide, reduced form; PGM, phosphoglucomu- 

tase; SALS, sporadic amyotrophic lateral sclerosis; SOD1, superoxide dismutase 1; 

TCA, tricarboxylic acid; TDP-43, TAR DNA-binding protein 43; ROS, reactive oxygen 

species. 
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1 Equal contribution 

1. Introduction 

Aging is considered one of the major risk factors for several 

neurodegenerative diseases including amyotrophic lateral sclerosis 

(ALS) and as a natural process is affected by several key mech- 

anisms including metabolic alterations ( Lopez-Otin et al., 2016 ). 

Mitochondria undergo significant damage during the aging pro- 

cess leading to progressive dysfunction and, together with alter- 

ations in intercellular communication; these factors play a cru- 

cial role in aging ( Gonzalez-Freire et al., 2015 ). Studies investigat- 

ing the relationship between mitochondrial DNA (mtDNA) and ag- 

ing have shown an increase in germline and somatic mutations of 

mtDNA in mouse models of premature aging ( Edgar et al., 2009 ; 

Trifunovic et al., 2004 ) as well as in aged humans ( Ma et al., 2018 ). 

Moreover, age-related mitochondrial damage has been linked to 

increased reactive oxygen species (ROS) production ( Ferrucci and 

Fabbri, 2018 ). Deficiencies in mitochondrial respiratory complexes 

have been found with aging causing an electron leak via an 

0197-4580/$ – see front matter © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
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increase of the electron transport chain (ETC) redox state, 

which contributes to ROS overproduction ( Golpich et al., 2017 ; 

Stefanatos and Sanz, 2018 ). 

In addition to mitochondrial dysfunction, multiple studies have 

found differences in the levels of specific metabolites between 

young and aged individuals. This is observed in several species, 

including worms ( Copes et al., 2015 ), flies ( Hoffman et al., 2014 ), 

mice ( Calvani et al., 2014 ) and humans ( Chaleckis et al., 2016 ; 

Lawton et al., 2008 ). In humans, correlation of the metabolic phe- 

notype of human red blood cells between aged and young peo- 

ple has shown reduced levels of metabolites associated with an- 

tioxidants, redox metabolism and muscle reinforcement in healthy 

elderly individuals ( Chaleckis et al., 2016 ). Many of the metabolic 

abnormalities observed in natural aging are present in cellular, an- 

imal and patient derived models of ALS ( Vandoorne, Tijs et al., 

2018 ). The disease is characterised by degeneration of upper and 

lower motor neurons leading to death, primarily by respiratory 

muscle failure ( Foster and Salajegheh, 2019 ). Although the major- 

ity of cases are classed as sporadic (SALS), around 10% of the pa- 

tients are familial (FALS), usually with autosomal dominant inher- 

itance ( Ajroud-Driss and Siddique, 2015 ). The frequency of ALS in- 

creases with age, the majority of ALS patients are diagnosed be- 

tween 50–75 years old and average disease duration post-diagnosis 

is 2–3 years ( Wang et al., 2017 ). Several studies have shown 

that metabolic dysfunction is a key pathogenic mechanism in ALS 

which may influence the rate of disease progression ( De Vos and 

Hafezparast, 2017 ; Haeusler et al., 2016 ; Tefera and Borges, 2016 ; 

Vandoorne, T. et al., 2018 ). Hypermetabolism, related to greater 

loss of motor neurons and faster disease progression has been ob- 

served in ALS patients ( Steyn et al., 2018 ). A common factor in 

sporadic neurodegenerative diseases such as ALS is the functional 

deterioration of the ETC ( Lin and Beal, 2006 ). Impairment of the 

function of the ETC and modification of gene expression related 

to the ETC has been observed in ALS models ( Ferraiuolo et al., 

2007 ). 

Increased metabolic flexibility may be crucial in counteracting 

the bioenergetic deficit observed in patient and animal models of 

disease ( Allen et al., 2019b ). With this in mind, upregulation of glu- 

cose, fatty acid and amino acid pathways identified in ALS mouse 

models, has recently been proposed as a compensatory mechanism 

for energy defects ( Szelechowski et al., 2018 ). More recently, in 

vivo experiments in a drosophila model of TDP-43 proteinopathy 

have shown increased glucose uptake and upregulation of glycol- 

ysis in patient derived induced pluripotent stem cell (iPSC) mo- 

tor neurons, supporting a potential glycolytic neuroprotective role 

( Manzo et al., 2019 ). Mechanistic understanding of the role of ALS 

in human cellular metabolic catabolism would allow for the iden- 

tification of pathways that could be nutritionally supplemented to 

support energy production with the potential to influence disease 

progression rates. 

Human fibroblasts can be used as translational model to inves- 

tigate ALS as they offer the genetic background of the patient and 

in many cases recapitulate the metabolic dysfunction observed in 

the CNS, as well as showing an altered metabolic response to aging 

( Allen et al., 2015 ; Allen et al., 2019a ; Raman et al., 2015 ). Previous 

studies from our laboratory and others in fibroblasts isolated from 

SOD1 FALS cases, found decreased mitochondrial membrane poten- 

tial, intracellular ROS elevation, decline of ATP production and up- 

regulation of glycolysis ( Allen et al., 2014 ; Liu et al., 2016 ). Further- 

more, fibroblasts isolated from SALS cases exhibited a significant 

increase in glucose levels as well as hypermetabolism, probably as 

response to high ATP expenditure ( Konrad et al., 2017 ). We have 

previously observed end-point changes in mitochondrial and gly- 

colytic energy generation pathways in SALS fibroblasts compared 

to controls, which correlated with age ( Allen et al., 2015 ). A lim- 

itation of this approach was that it did not evaluate the effect of 

age and ALS on the major catabolic pathways that feed into these 

energy-generating pathways, therefore limiting our understanding 

on the effect of ALS on aging in the context of metabolic dysfunc- 

tion. 

In two recent studies from our laboratory ( Allen et al., 2019a ; 

Allen et al., 2019b ), we adapted a phenotypic metabolic approach 

that had previously been used to uncover tryptophan metabolic 

defects in autism patients ( Boccuto et al., 2013 ). This method- 

ology enables the comparison of healthy versus ALS cell mod- 

els by simultaneously measuring energy production rates from 91 

energy substrates, enabling a non-biased metabolic screen to be 

performed. The technology measures the ability of cells to pro- 

duce NAD (P) H (nicotinamide adenine dinucleotides) in real time, 

via NADH producing catabolic pathways that utilise a range of 

metabolic substrates. The advantage of this approach is that is al- 

lows a live kinetic measurement of cellular bioenergetics. In con- 

trast, measuring a cellular NADH/NAD + ratio provides the redox 

state of the cell and is a measure of global cellular energy status 

( Cunnane et al., 2020 ), but does not necessarily pinpoint the up- 

stream cause of dysfunction. However, our mechanistic approach in 

terms of aging and neurodegeneration is valid, as NADH and NAD + 

are crucial cellular metabolic substrates/co-factors involved in mul- 

tiple physiological pathways and extensive evidence links levels of 

these bioenergetic intermediates with CNS disorders and with ag- 

ing ( Covarrubias et al., 2021 ; Lautrup et al., 2019 ). 

We used our novel approach to identify that fibroblasts from 

C9orf72 and sporadic ALS cases have a distinct catabolic metabolic 

phenotype compared to healthy controls. Moreover, reprogram- 

ming these fibroblasts into induced neuronal progenitor cells 

(iNPC,) derived iAstrocytes ( Meyer et al., 2014 ) leads to a loss 

of metabolic flexibility associated with impairment of nucleoside, 

glycogen, pyruvate and fructose metabolism. 

Aging is well established as a risk factor for ALS and metabolic 

dysfunction is an early, significant pathophysiological mechanism. 

As the natural aging process also involves metabolic dysfunction 

and because dysregulation of energy metabolism may influence 

ALS disease progression, identifying how the metabolic aging pro- 

cess affects ALS is an important area of study. How aging affects 

the metabolic profile of fibroblasts and how this is affected by 

ALS has not previously been investigated. Therefore, we employed 

our novel metabolic profiling approach in fibroblasts isolated from 

FAL S and SAL S cases, correlated the data with age and compared 

the profiles to controls. In addition, we assessed whether energy 

production in the presence of each of the 91 metabolites correlated 

with ALS clinical parameters such as age of onset, age of death 

and disease progression rates. We validated our findings in iAstro- 

cytes and fibroblasts using metabolic flux analysis and metabolic 

screening. 

2. Methods 

2.1. Human biosamples 

Fibroblast samples were obtained from 15 age, sex matched 

controls, and 21 ALS cases, including six C9orf72 cases, five SOD1 

cases, five TDP-43 cases and five sporadic cases (see Supple- 

mentary Table 1 and Table 2). The average age at the time of 

skin biopsy in controls and ALS fibroblast cases was 59 years 

(range 40–76 years) and 55 years (range 39–77 years), respec- 

tively. The average disease duration of the ALS cases was 42.9 

( + /-24.6) months. iNPC samples were obtained from three con- 

trols and eight ALS cases including three C9orf72 cases, three 

SALS cases and two SOD1 cases. The three SALS and two SOD1 

cases were additional lines not included in the original fibrob- 
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last cohort of 36 samples. The average age at the time of skin 

biopsy in controls and ALS iNPC cases was 58 years (range 40- 

67 years) and 53 years (range 29–66 years), respectively. The 

average disease duration of the ALS cases was 70 ( + /-61.5) 

months. 

2.2. Fibroblast cultures 

Skin biopsies were obtained from the forearm of subjects af- 

ter informed consent and under sterile conditions, in accordance 

with guidelines set by the local ethics committee. Fibroblast cell 

cultures were established in supplemented cell culture medium 

(Lonza) with 10% foetal calf serum (Labtech), 2 mM glutamine, 50 

mg/ml uridine, vitamins, amino acids and 1 mM sodium pyruvate 

in humid incubators at 37 °C with 5% CO 2 . 

2.3. iNPC culturing and iAstrocyte differentiation 

iNPC culturing and iAstrocyte differentiation was performed as 

previously described ( Allen et al., 2019a ). 

2.4. Ethical approval 

Informed consent was obtained from all human subjects before 

skin sample collection (Study number STH16573, Research Ethics 

Committee reference 12/YH/0330). 

2.5. Biolog phenotype microarray 

2.5.1. Preparation of fibroblast cultures 

The preparation and phenotypic metabolic array analysis of the 

fibroblasts was performed as described previously ( Allen et al., 

2019a ). Briefly, on day 1 Biolog PM-M1 plates, which contain differ- 

ent oxidisable carbon sources in each well, were coated with 30μl 

of IFM-1 (Biolog) inoculating fluid (containing 10% dialysed FBS 

and 0.3mM glutamine). The plates were then incubated overnight 

at 37 °C/5% CO 2 incubator. The next day, 96 well half-area plates 

were coated with 50μl of fibronectin (0.0025 mg/ml dilution in 

PBS). After one hour at room temperature, the plates were washed 

with 100μl PBS. Confluent fibroblasts were harvested by trypsin- 

isation (Lonza) and the cell number was measured using a try- 

pan blue dye exclusion test and a Countess automated cell counter 

(Invitrogen). PM-M1 plates incubated the previous day were used 

and the IFM-1 fluid containing the different metabolites was trans- 

ferred to the corresponding wells on the fibronectin-coated plates. 

Next, 16,0 0 0 cells per well were resuspended in IFM-1 media, 

transferred to each well of the substrate plate and then incubated 

37 °C/5% CO 2 for 40 h. After the stated incubation time, 10μl of re- 

dox dye mix MA (Biolog) was added to each well and the plates 

sealed with sterile Seal-Plate film to stop gas transfer. Dye colour 

change was measured every 20 min for 120 min and then every 

60 min up to 300 min using a BMG Omega Pherastar at both 

590 and 790nM or an OminiLog TM bioanalyser. After incubation, 

the plates were washed three times with 100μl of PBS and stored 

overnight at 80 °C prior to cell counting. All results were normal- 

ized to cell number by addition of CyQUANT (Invitrogen) to each 

well as per the manufacturer’s instructions (1/400 dilution of the 

dye in HBSS buffer, 100μl per well) and fluorescence was measured 

using a BMG Omega Fluorostar. The dye colour change of TDP- 

43 patient-derived fibroblasts, C9orf72 patient-derived fibroblasts 

and controls were measured using a BMG Pherastar plate reader. 

SOD1 patient-derived fibroblasts, SALS patient-derived fibroblasts 

and relevant control dye colour changes were measured using an 

OmniLog TM bioanalyser. Principle component analysis (PCA) plots 

at 300 minutes were generated using Qlucore Omics Explorer 3.6, 

with p < 0.05 taken as significant. Qlucore calculates eigenvectors 

(also known as principal components), which determine the direc- 

tions of a feature in space. The eigenvalues determine the magni- 

tude of separation and the variation of the data along axes. Qlucore 

orders the eigenvectors based on the amount of the total variance 

captured by each component, considering all variables or samples. 

2.5.2. Preparation of iAstrocyte cultures 

iAstrocytes were cultured and analysed as previously described 

( Allen et al., 2019a ; Allen et al., 2019b ). 

2.6. Starvation induced toxicity 

Starvation induced toxicity was assessed based on cell numbers 

in the negative wells at the end of each assay, using CyQUANT 

analysis as previously described ( Allen et al., 2019a ; Allen et al., 

2019b ). Toxicity was calculated by assessing the level of cell sur- 

vival in the negative wells compared to the glucose control at the 

end of each assay using the following equation: 

100 − (( CyQUANT value of negative well ) / 

( average CyQUANT value of glucose wells ) × 100) 

2.7. Metabolic flux analysis 

Mitochondrial and glycolytic stress test analysis in fibroblasts 

and iAstrocytes were performed on an XF24 bioanalyser as previ- 

ously described ( Allen et al., 2015 ; Allen et al., 2019a ; Allen et al., 

2014 ; Raman et al., 2015 ). Specifically for supplementation assays, 

iAstrocytes or fibroblast media was supplemented with 5mM glu- 

cose and 0.3mM glutamine in the absence or presence of either 

5mM fructose, inosine or α-ketoglutaric acid for 24 hours prior to 

metabolic flux analysis. Flux analysis was performed using XF basal 

media (Agilent) supplemented as above. Metabolic flux analyses 

under non stress and stress conditions were assessed following se- 

quential addition of the mitochondrial inhibitors oligomycin, FCCP 

and rotenone/antimycin (all from Sigma) as previously described 

( Allen et al., 2019a ; Allen et al., 2014 ). Flux data were normalised 

to cell number using CyQUANT following the manufacturer’s in- 

structions as previously described ( Allen et al., 2019a ). 

2.8. Western blot analysis 

Samples were analysed as described previously ( Allen et al., 

2019a ; Allen et al., 2019b ). Briefly, samples were lysed in RIPA 

buffer before being loaded onto a 10% SDS-PAGE Mini-PROTEAN 

Tetra Handcast systems (Bio-Rad). Proteins were resolved and 

transferred to a polyvinylidene difluoride membrane (PVDF, Mil- 

lipore) at 250 mA for 1 h. The PVDF membranes were incubated 

for 1 h with blocking solution containing 5% BSA in Tris-buffered 

saline with 0.01% Tween (TBS-T). Subsequently, membranes were 

incubated overnight at 4 °C with the following primary antibod- 

ies at 1:10 0 0 dilution in blocking solution: rabbit actin (Abcam 

ab8227), rabbit glycogen phosphorylase (Proteintech 12075–1-AP) 

and rabbit phosphoglucomutase (Proteintech 15161–1-AP). Mem- 

branes were washed in TBS-T prior to incubation with HRP-linked 

rabbit secondary antibody at 1 in 50 0 0 before detection by chemi- 

luminescence (EZ-ECL HRP kit, Biological Industries) using a G:BOX 

(Syngene). Protein quantification levels were obtained by densit- 

ometry using GeneTools software (version 4.03.05, Syngene) nor- 

malised to the loading controls. 

2.9. Statistical analysis 

To overcome any potential data collection bias, all metabolic 

data were normalised to the internal glucose control and were 
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analysed in at least triplicate and then correlated with age us- 

ing Pearson’s correlation analysis using Graphpad Prism version 

8.4.3. As each energy substrate produces a unique kinetic profile 

( Allen et al., 2019a ; Allen et al., 2019b ) controls were compared to 

FAL S and SAL S cases assessing the effect of age (age at biopsy) at 

two time points, 120 and 300 minutes to determine any signifi- 

cant aging effects. Metabolic data from ALS cases were also corre- 

lated with clinical parameters such as age of onset, age of death 

and disease progression. All metabolic flux data were assessed for 

Gaussian distribution prior to either unpaired t-test with a Welch 

correction or Mann-Whitney analysis. All graphs were generated 

showing standard deviation using Graphpad Prism version 8.4.3 

(GraphPad Software, La Jolla, CA, USA). 

3. Results 

3.1. Young and old ALS fibroblasts show the greatest alteration in 

metabolic profile compared to controls 

Aging is a naturally occurring process as well as one of the ma- 

jor ALS risk factors ( Mattson and Arumugam, 2018 ). Therefore, we 

investigated the effect of age on the metabolic profile in fibroblasts 

from control and ALS cases using a novel phenotypic metabolic 

microarray approach ( Allen et al., 2019a ; Allen et al., 2019b ). This 

methodology allows an unbiased screen of energy substrates that 

produce the reduced form of NADH. A single substrate as an en- 

ergy source is contained in each well of a 96-well plate. Subse- 

quently NADH production is monitored by addition of a proprietary 

dye that is reduced into a coloured product in the presence of 

NADH. To initially assess whether ALS alters the metabolome pro- 

ducing a distinct metabolic profile compared to controls, we per- 

formed PCA analysis on the data produced by the metabolic screen. 

Fig. 1 A shows that, when taking all cases into account (15 con- 

trols and 21 ALS cases) there was distinct overlap between the two 

groups which still occurred if the ALS cases were split into FALS 

and SALS ( Fig. 1 B, FALS yellow, SALS pink). When we eliminated 

age from the analysis, we found all cases clustered at a single point 

(data not shown) indicating that age may play a significant role in 

defining the metabolic profile of the fibroblast cohort. To investi- 

gate this further we split our cohort into three age groups, 39–49, 

50-60 and 61–77 years and performed the PCA analysis again on 

these distinct age groups ( Fig. 1 C-H). We found that if we com- 

pared SALS vs FALS vs controls ( Fig. 1 C, E, G) or if we just com- 

pared FALS vs controls ( Fig. 1 D, F, H) the greatest separation in the 

data sets occurred with the youngest and the oldest ALS cases. This 

PCA analysis indicated that in fibroblasts, ALS results in an altered 

metabolic profile, which is influenced by age. 

3.2. Control fibroblasts increase metabolism of multiple energy 

substrates with age, which is not recapitulated in ALS fibroblasts 

To assess which specific energy substrates lead to the al- 

tered metabolic profile in the fibroblasts with respect to age, 

we performed correlation analysis on all 91 substrates compar- 

ing NADH production with age. We have previously shown that 

ALS iAstrocytes (unlike ALS fibroblasts) have reduced metabolic 

flexibility and are more susceptible to starvation induced toxicity 

( Allen et al., 2019b ). However, to check whether age affected the 

ability of fibroblasts to adapt to bioenergetic stress, which may in- 

fluence our results, we measured cell numbers in the negative (ab- 

sence of metabolite) wells on the phenotypic metabolic profiling 

plate after each assay. Neither control nor ALS fibroblasts showed 

any significant correlation between starvation induced toxicity lev- 

els and age (Supplementary Fig. 1). Moreover, we correlated the 

levels of specific toxicity of every metabolite on the phenotypic 

metabolic profiling plate individually with age and found no age- 

related effects (data not shown). Therefore, we were confident that 

any changes observed were not due to significant differences in 

cell survival with age within the groups. 

Seven of the 91 metabolites showed a significant increase in 

NADH metabolism with age in control fibroblasts (Supplementary 

Table 3). Xylitol is a known sugar alcohol converted to xylose by 

a D-xylulose reductase, which is an intermediate of the pentose- 

phosphate pathway ( Borgstrom et al., 2019 ). In the presence of 

xylitol, NADH production significantly increased with age in the 

control cohort ( p = 0.00 6 6, r = 0.6 672), which was not observed in 

the ALS cohort ( Fig. 2 A). Metabolism of salicin, an alcoholic β- 

glucoside extracted from plants and broadly used as an analgesic 

and anti-inflammatory agent ( Akao et al., 2002 ), also positively 

correlated with age in control fibroblasts ( p = 0.0073, r = 0.6 60 6). 

As with xylitol, no significant correlation was observed in the 

ALS cases ( Fig. 2 B). NADH production from trehalose, which is 

metabolised by the enzyme trehalase and rapidly hydrolysed to 

glucose (Lee et al., 2018), also showed a positive correlation with 

age in control fibroblasts ( p = 0.0106, r = 0.6371). However, no signif- 

icant correlation was observed between trehalose NADH produc- 

tion and age in ALS cases ( Fig 2 C). When uridine, a pyrimidine nu- 

cleoside linked to glycogen synthesis, lipid metabolism, and amino 

acid metabolism ( Zhang et al., 2020 ) was provided as a sole en- 

ergy source in fibroblast cultures, an increase in NADH production 

was observed with age in the control cases ( p = 0.0257, r = 0.5726) 

but not in the ALS cases ALS ( Fig. 2 D). Similar results were ob- 

served in the presence of DL-lactic acid, which is converted to 

pyruvate by lactate dehydrogenase producing NADH as a biprod- 

uct ( Ngo and Steyn, 2015 ) ( Fig 2 E, p = 0.0018, r = 0.7342). To vali- 

date these findings, we assessed NADH production in iNPC iAstro- 

cytes reprogrammed from fibroblasts from ALS and control cases 

( Allen et al., 2019a ; Allen et al., 2019b ). Unlike fibroblasts, iAstro- 

cytes did not metabolise salicin, xylitol or trehalose to a sufficient 

level to warrant metabolic kinetic analysis. We have previously 

published data showing a defect in lactic acid metabolism in iAs- 

trocytes from SALS cases ( Allen et al., 2019a ). When assessing lactic 

acid metabolism in the remaining ALS cases (SOD1 and C9orf72), 

significant toxicity was observed in the ALS cases only, making 

analysis impossible and suggesting starvation induced toxicity due 

to an inability to metabolise lactic acid. Finally, we assessed uri- 

dine metabolism in our ALS iAstrocyte cases ( Fig. 2 F) and found 

a decrease in NADH production with this metabolic substrate, in- 

dicating a uridine metabolism defect in ALS cases as suggested by 

the fibroblast data. No age-related changes were observed with uri- 

dine metabolism ( Fig. 2 G) but due to low iAstrocyte numbers, our 

analysis was limited. 

Interestingly, differences in NADH production between ALS and 

control cases were also observed upon exposure to two fruc- 

tose based saccharides, fructose and D-turanose. The monosaccha- 

ride fructose, which is metabolised by fructokinase to generate 

fructose-1-phosphate ( Levi and Werman, 1998 ), showed a signifi- 

cant positive correlation of NADH production with age in controls 

( p = 0.0166 and r = 0.6061) ( Fig. 3 A). Moreover, we found a signifi- 

cant increase in NADH production with age in the presence of the 

glycosylfructose energy substrate turanose. Turanose is hydrolysed 

to glucose and fructose by α-glucosidase, indicating a link between 

turanose and fructose metabolism ( Julio-Gonzalez et al., 2021 ; 

Tewari and Goldberg, 1991 ; Zagalak and Curtius, 1975 ). Turanose 

metabolism increased in the control cohort with age ( p = 0.0072 

and r = 0.6755) ( Fig. 3 B). No significant correlation was observed 

between NADH production and age in the ALS cohort for either 

fructose or turanose. To validate these findings we assessed fruc- 

tose and turanose metabolism in the iAstrocyte cohort. As ob- 

served in previous studies with C9orf72 iAstrocytes ( Allen et al., 
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Fig. 1. Age influences the metabolic profile of fibroblasts derived from ALS cases 

(A) PCA of control fibroblasts (blue, Con) and ALS fibroblasts (both FALS and SALS yellow) at the assay end point (300 minutes). (B) PCA of control fibroblasts (blue, Con) 

and SALS fibroblasts (pink) and FALS fibroblasts (yellow) at the assay end point (300 minutes). (C) PCA of control fibroblasts (blue, Con), SALS fibroblasts (pink) and FALS 

fibroblasts (yellow) under the age of 50 (39-49 years). (D) PCA of control fibroblasts (blue, Con) and FALS fibroblasts (yellow) under the age of 50 (39-49 years). (E) PCA 

of control fibroblasts (blue, Con), SAL S fibroblasts (pink) and FAL S fibroblasts (yellow) between 50-60 years. (F) PCA of control fibroblasts (blue, Con) and FALS fibroblasts 

(yellow) between 50 and 60 years, (G) PCA of control fibroblasts (blue, Con), SALS fibroblasts (pink) and FALS fibroblasts (yellow) 61-77 years. (H) PCA of control fibroblasts 

(blue, Con) and FALS fibroblasts (yellow) 61-77 years. Data presented as the mean of at least three biological replicates using 15 control fibroblasts, and 21 ALS fibroblasts. 

Analysis performed on Qlucore with the p -value set to ≤0.05. Q-values were 0.762 for control fibroblasts versus AL S (FAL S + SAL S) fibroblasts and 0.395 for control fibroblasts 

vs FALS fibroblasts. Percentage values represent eigenvectors calculated for each analysis. The higher the percentage the greater the confidence of the separation based on 

the vector. (Color version of figure is available online) 
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Fig. 2. NADH production increases with age in control but not in ALS fibroblasts in the presence of xylitol, D-salicin, trehalose, uridine and lactic acid. 

(A) NADH production with age in the presence of xylitol. (B) NADH production with age in presence of D-salicin. (C) NADH production with age in presence of trehalose. (D) 

NADH production with age in presence of uridine. (E) NADH production with age in presence of DL-lactic acid. Data presented as mean with standard deviation of at least 

three biological repeats per cell line. Pearson’s correlation analysis was performed with the p value set to ≤ 0.05. Control fibroblasts (N = 15, black), ALS fibroblasts (SALS and 

FALS n = 21, pink). (F) NADH metabolism in the presence of uridine in iAstrocytes. Two-way annova with Sidaks’s post-test analysis was performed on three control lines and 

eight ALS lines performed in triplicate. Data presented as mean with standard error. (G) iAstrocyte NADH production with age in the presence of uridine. Data presented as 

mean with standard deviation ∗p ≤ 0.05, ∗∗p ≤ 0.01. (Color version of figure is available online) 
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Fig. 3. NADH production increases with age in control but not in ALS fibroblasts in the presence of fructose energy substrates. 

(A) NADH production in fibroblasts in the presence of fructose (B) NADH production in fibroblasts in presence of D-turanose. Controls (N = 15) shown in black and ALS 

(SAL S and FAL S n = 21) group showed in pink. Data presented as mean with standard deviation of at least three biological repeats per cell line. Pearson’s correlation analysis 

was performed with the p value set to ≤ 0.05. (C) NADH metabolism in the presence of fructose in iAstrocytes. (D) NADH metabolism in the presence of turanose in 

iAstrocytes. Two-way annova with Sidaks’s post-test analysis was performed on three control lines (black) and eight ALS lines (pink) performed in triplicate. Data presented 

as mean with standard error. (E) NADH production in fructose with age in iAstrocytes. (F) NADH production in turanose with age in iAstrocytes. Data presented as mean 

with standard deviation. (G) The effect of fructose supplementation on iAstrocyte mitochondrial function. (H) The effect of fructose supplementation on iAstrocyte glycolytic 

function. (I) The effect of pyruvate supplementation on iAstrocyte mitochondrial function. (J) The effect of pyruvate supplementation on iAstrocyte glycolytic function. (G-J) 

Data presented as mean with standard deviation of two control and two ALS cases performed in triplicate. Data was analysed using unpaired t-test analysis with a Welch 

correction. MR = mitochondrial respiration. CR = coupled respiration. SRC = spare respiratory capacity. GF = glycolytic flux. GC = glycolytic capacity. GR = glycolytic reserve. 
∗p ≤ 0.05, ∗∗p ≤ 0.01. (Color version of figure is available online) 

2019a ), we found a decrease in our iAstrocyte ALS cohort when 

we include SALS and SOD1 iAstrocytes in the analysis ( Fig. 3 C). We 

found similar results to a lesser extent when we assessed tura- 

nose metabolism in the same assay ( Fig. 3 D). We correlated our 

findings with age and found similar results to the patterns ob- 

served with fibroblasts but due to the limited numbers, no statisti- 

cal significance was observed. We then assessed whether fructose 

supplementation would be beneficial metabolically in iAstrocytes. 

Unlike pyruvate supplementation, which increased mitochondrial 

rather than glycolytic function in ALS iAstrocytes, fructose supple- 

mentation had minimal effects on mitochondrial function or gly- 

colytic function under physiological or stress conditions in controls 

and ALS cases ( Fig. 3 G-J). 

3.3. Glycogen metabolism in ALS fibroblasts negatively correlates 

with age 

The polysaccharide glycogen is used as an energy source under 

several circumstances. For instance, in the CNS, glycogen is mainly 

stored in astrocytes and plays an important role as an energy 

fuel for motor neurons ( Brown et al., 2003 ; Matsui et al., 2017 ). 

Glycogen is catabolized by glycogen phosphorylase (GP) and phos- 

phoglucomutase (PGM) enzymes to generate glucose-6-phosphate, 

which we had previously shown were reduced in C9orf72 iAstro- 

cytes ( Allen et al., 2019b ). We found, in contrast with the previ- 

ously identified alterations, that glycogen metabolism was reduced 

with age in the ALS cohort ( p = 0.0361, r = -0.4594) but not in con- 

trol fibroblasts ( Fig. 4 A). This correlation was also observed when 

considering the familial ALS cohort alone ( p = 0.0217, r = -0.5680). 

Based on the observed alterations in glycogen metabolism with 

age of biopsy in the ALS cohort ( Fig. 4 A), we hypothesised that 

glycogen metabolism may also negatively correlate with ALS clin- 

ical parameters such as age of onset, age of death or disease du- 

ration. In the ALS cases as a whole, although we observed a trend 

for decreased glycogen metabolism with age of onset and age of 

death this did not reach significance ( p = 0.055 and p = 0.105 re- 

spectively). However, in familial cases, glycogen metabolism neg- 

atively correlated with age of onset and age of death ( Fig. 4 B, 

C, p = 0.0138, r = -0.6858 and p = 0.0307, r = -0.6794 respectively). No 

correlation was observed between glycogen metabolism and dis- 

ease duration in fibroblasts ( Fig. 4 D). We have previously shown 

a reduction in glycogen metabolism in C9orf72 iAstrocytes caused 

by loss of glycogen phosphorylase (GP) and phosphoglucomutase 

(PGM) ( Allen et al., 2019a ; Allen et al., 2019b ). SALS cases showed 

increased heterogeneity in this regard, with only a subset match- 

ing the C9orf72 data. When we analysed SOD1 iAstrocytes, we 

found no glycogen metabolism defect ( Fig. 4 E), suggesting perhaps 

that the glycogen metabolism changes observed in fibroblasts are 
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Fig. 4. NADH metabolism in glycogen is reduced with age in ALS fibroblasts. 

(A) NADH production in fibroblasts in the presence of glycogen correlated with age of biopsy (B) NADH production in presence of glycogen as the sole energy source 

correlated with age of onset. (C) NADH production in presence of glycogen as the sole energy source correlated with age of death. (D) NADH production in presence of 

glycogen as the sole energy source correlated with disease duration. Data presented as mean with standard deviation of at least three biological repeats per cell line. 

Pearson’s correlation analysis was performed with the p value set to ≤ 0.05. Control fibroblasts (N = 15, black), ALS fibroblasts (SALS and FALS, maximum n = 21, pink, FALS 

only maximum n = 16 blue). (E) NADH production in the presence of glycogen in SOD1 iAstrocytes. Data presented as mean with standard error 3 controls (black) vs 2 

SOD1 cases (pink). (F) The effect of age on glycogen phosphorylase (GP) levels in iAstrocytes. (G) The effect of age on phosphoglucomutase (PGM) levels in iAstrocytes. Data 

presented as mean with standard deviation. ∗p ≤ 0.05. (Color version of figure is available online) 

driven by C9orf72 . Based on our previously published data, we at- 

tempted to correlate glycogen metabolic enzymes with age in the 

C9orf72 and SALS iAstrocytes ( Fig. 4 F-G and Supplementary Fig 2). 

Our analysis is limited by small numbers, however, we found a 

trend for decreased GP expression with age, which was exacer- 

bated in ALS iAstrocytes ( p = 0.061), and was not observed with 

PGM. 

3.4. Metabolic correlations with ALS clinical parameters 

Based on these data, we investigated whether clinical param- 

eters were associated with changes in ALS fibroblast metabolic 

signatures. Therefore, the levels of NADH production from the 91 

energy substrates, were correlated with ALS age of onset, age of 

death and disease duration. We identified four metabolites, where 

metabolism correlated with disease duration ( Fig. 5 ). Metabolism 

of the glycolytic energy substrates glucose-1-phosphate and D- 

fructose-6-phoshate negatively correlated with disease duration 

in the familial cohort only ( Fig. 5 A-B, p = 0.0357, r = -0.6087 and 

p = 0.0463, r = 0.5838 respectively). No significant correlation was 

observed when incorporating the sporadic cases into the patient 

cohort (data not shown). The nucleoside inosine can be shut- 

tled into the pentose phosphate pathway via ribose-1-phosphate 

and then into glycolysis, producing NADH, ATP and subsequently 

lactate ( Balestri et al., 2007; Jurkowitz et al., 1998 ). Inosine 

metabolism positively correlated with disease progression in FALS 

cases ( Fig. 5 C, p = 0.0146 and r = 0.6819). Similarly, metabolism of 

the tricarboxylic acid (TCA) cycle substrate α-ketoglutaric acid pos- 

itively correlated with disease duration in the ALS cohort as a 

whole (familial and sporadic) and in the FALS cohort alone ( Fig. 5 D, 

( p = 0.0064, r = 0.633 and p = 0.0146, r = 0.6819 respectively). To vali- 

date these findings, we assessed whether supplementation of in- 

osine and α-ketoglutaric acid was metabolic beneficial to ALS fi- 

broblasts. We found similar but distinct mechanisms of action 

between the two metabolic substrates ( Figure 5 E-H). Inosine as 

previously observed in ALS iAstrocytes ( Allen et al., 2019a ), in- 
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Fig. 5. Disease progression length correlates with NADH metabolism in the presence of glucose-1-phosphate, D-fructose-6-phosphate, inosine and α-ketoglutaric-acid. 

(A) NADH production in FALS fibroblasts with glucose-1-phosphate as the sole energy source correlated with disease duration. (B) NADH production in FALS fibroblasts 

with D-fructose-6-phosphate as the sole energy source correlated with disease duration. (C) NADH production in FALS fibroblasts with inosine is the sole energy source 

correlated with disease duration. (D) NADH production with α-ketoglutaric-acid as the sole energy source correlated with disease duration. All data presented as mean with 

standard deviation of at least three biological repeats per cell line. Pearson’s correlation analysis was performed with the p value set to ≤ 0.05. ALS fibroblasts ( n = 17, pink), 

FALS fibroblasts ( n = 12, blue). (E) The effect of inosine supplementation on ALS fibroblast mitochondrial function. (F) The effect of inosine supplementation on ALS fibroblast 

glycolytic function. (G) The effect of α-ketoglutaric acid supplementation on ALS fibroblast mitochondrial function. (F) The effect of α-ketoglutaric acid supplementation on 

ALS fibroblast glycolytic function. Data presented as mean with standard deviation of three ALS cases performed in triplicate. MR = mitochondrial respiration. CR = coupled 

respiration. SRC = spare respiratory capacity. GF = glycolytic flux. GC = glycolytic capacity. GR = glycolytic reserve. Unpaired-test with Welch correction (E/F/H) or Mann- 

Whitney analysis (G) was performed on three ALS fibroblast cases in triplicate. Data presented as mean with standard deviation. ∗p ≤ 0.05, ∗∗p ≤ 0.01. (Color version of 

figure is available online) 

creased mitochondrial and glycolytic capacity indicating a dual 

metabolic function ( Fig. 5 E-F). α-ketoglutaric acid increased fibrob- 

last mitochondrial respiration as well as coupled respiration, indi- 

cating that supplementation induced a switch to a more aerobic 

metabolic profile ( Fig. 5 G). α-ketoglutaric acid had no significant 

effect on glycolytic flux ( Fig. 5 H). However, a trend for decreased 

glycolytic capacity (GC) and glycolytic reserve (GR) was observed 

( p = 0.0704 and p = 0.0513), confirming the switch to a more aerobic 

profile. 

4. Discussion 

Age related changes in bioenergetics of sporadic patient de- 

rived fibroblast as a model of ALS have been previously shown 

in our laboratory ( Allen et al., 2015 ). Now using a novel pheno- 

typic metabolic screening approach, we were able to assess in a 

larger cohort, the fibroblast metabolic profile with respect to ag- 

ing and how that is affected by ALS. Our data suggest that fibrob- 

lasts from healthy controls display age related metabolic charac- 

teristics that are not recapitulated in fibroblasts from ALS cases. 

Several metabolites showed increased NADH production with age 

in fibroblasts derived from control cases, suggesting metabolic al- 

terations in the energy source in these cells. Firstly, we found that 

xylitol showed significantly increased metabolism with age in con- 

trol but not ALS cases ( Fig. 2 ). A recent extensive review article 

summarizes the beneficial effect of xylitol on health by modulat- 

ing immune function, intestine microbiota density, metabolic func- 

tion and dental health amongst other benefits (Sal li et al., 2019 ). 

Moreover, supplementation of xylitol has been shown to increase 

collagen synthesis in the skin of aged healthy mice indicating a 

potential protective effect ( Mattila et al., 2005 ). At the metabolic 

level, xylitol is metabolised to xylulose-5-phosphate and activates 

the carbohydrate response element binding protein (ChREBP) via 

protein phosphatase 2A ( Kabashima et al., 2003 ; Kawaguchi et al., 

2001 ). When rats were provided with a high fat diet supplemented 

with xylitol, an increase of ChREBP and lipogenic enzymes was ob- 

served, suggesting a potential beneficial role of xylitol intake on 

obesity ( Amo et al., 2011 ). To the best of our knowledge, xyli- 

tol has not been previously implicated in ALS. However, in vivo 

studies have shown an increase in lipid catabolism with a pre- 

symptomatic switch towards lipid oxidation in muscle being ob- 

served in SOD1 G86R mice ( Palamiuc et al., 2015 ). Therefore, an in- 

ability to upregulate xylitol metabolism with age may support this 

lipid oxidation phenotype in ALS. With these data in mind, increas- 

ing xylitol metabolism in ALS may be protective. 

An increase in trehalose metabolism was also observed with 

age in control but not in ALS fibroblasts ( Fig. 2 ). Trehalose is a dis- 

accharide broadly found in plants and bacteria as well as used as 

a nutritional supplement ( Elbein et al., 2003 ). Previous in vitro ev- 

idence has suggested that trehalose can operate as an autophagy 

activator ( Aguib et al., 2009 ; Casarejos et al., 2011 ; Sarkar et al., 

2007 ). Several studies have also associated defects of autophagic 

function with aging and downregulation of autophagic genes in 

aged human brain ( Plaza-Zabala et al., 2017 ). Although reduced au- 

tophagy has been observed in tissues with age, studies have shown 

that autophagy contributes to life extension ( Madeo et al., 2015 ; 

Rubinsztein et al., 2011 ). Moreover, it now well established that 

the age-related decline in mitophagy (clearance of damaged mi- 

tochondria) is a contributing pathogenic factor in neurodegenera- 

tive disorders ( Lou et al., 2020 ). Moreover, manipulating mitophagy 

levels decreases disease pathology and reverses cognitive decline 

( Fang et al., 2019 ). In the context of ALS, trehalose treatment de- 

layed disease onset and induced longevity in SOD1 G93A mice via 

activation of mTOR-independent autophagy leading to protection 

of spinal cord motor neurons ( Zhang et al., 2014 ). Delay of ALS dis- 

ease progression was also shown in SOD1 G86R transgenic mice after 

administration of trehalose ( Castillo et al., 2013 ). More recently, it 

was reported that trehalose was able to alleviate autophagic flux 

deficits in ALS through modifications of lysosomes ( Rusmini et al., 

2019 ). Therefore, the increase of trehalose metabolism in our con- 
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trol cohort with age may be a potential beneficial aging adaptation 

that is lost in ALS. 

We also found that uridine showed significantly increased 

metabolism with age in control but not ALS fibroblast cases 

( Fig. 2 D), with defects in uridine metabolism observed in ALS 

iAstrocytes ( Fig. 2 F). Uridine is a glycosylated uracil that plays a 

role in synthesis of glycolipids and glycoproteins, DNA and RNA 

( Deng et al., 2017 ). As a precursor of uridine triphosphate 

(UTP), uridine is able to stimulate the synthesis of glycogen 

( Mironova et al., 2018 ). Long term uridine supplementation has 

been shown to enhance lipid accumulation in the liver, and in- 

crease glucose levels in blood during fasting in mice ( Urasaki et al., 

2016 ). Moreover, uridine administration in wild-type mice under 

a high fat diet, as well as in an older cohort, improved glucose 

tolerance ( Deng et al., 2017 ). Dose-dependent protective effects of 

uridine against sodium azide toxicity were observed in fibroblasts 

derived from Alzheimer’s disease patients ( Garcia et al., 2005 ). In 

SOD1 G93A transgenic mice, uridine treatment slowed disease pro- 

gression and increased motor performance probably by enhanc- 

ing glycolytic energy production and increasing ATP ( Amante et al., 

2010 ; Ipata et al., 2010 ). In a recent metabolomic study, altered lev- 

els of nucleosides derivatives, including uridine-5 ′ -monophosphate 

were found in fibroblasts from ALS cases ( Veyrat-Durebex et al., 

2019 ). Our data indicate that increased uridine metabolism with 

age might be beneficial for fibroblasts leading to the possibility of 

a protective role for uridine in ALS. 

Another metabolite we found to have significantly increased 

metabolism with age in control but not ALS cases, was salicin 

( Fig. 2 ). Salicin is known for its analgesic and anti-inflammatory 

properties and is related chemically to salicylic acid and acetyl- 

salicylic acid ( Li et al., 2015 ; Zhai et al., 2018 ). In vivo , salicin is 

metabolised in the gastrointestinal tract to saligenin, which is con- 

verted by the liver to salicylic acid. In vivo , oral pre-treatment 

with salicin in a mouse model of rheumatoid arthritis reduced 

the inflammatory response through the NrF2-HO-1-ROS pathway 

( Zhai et al., 2018 ). Interestingly, salicin was able to modulate the 

expression of genes related to skin aging and a younger skin phe- 

notype was generated ( Gopaul et al., 2010 ). However, to the best 

of our knowledge, this is the first time that salicin metabolism has 

been linked with ALS. 

Lactic acid metabolism was significantly increased with age in 

control fibroblasts, which was not observed in ALS cases ( Fig. 2 ). 

These alterations were exacerbated in ALS iAstrocytes, which 

showed in general, starvation induced toxicity due to reduced lac- 

tate metabolism. Addition of lactate increased ATP production and 

cell survival in mice cortical neuronal cultures after glutamate in- 

jections to induce excitotoxicity, suggesting a neuroprotective role 

of lactate (Jourdain et al., 2016). Excitotoxicity is a process asso- 

ciated with aging as well as various pathologies, including ALS 

( Calvo et al., 2015 ). Evidence from aged mice suggests an in- 

crease of lactate levels in brain regions with physiological aging, 

as well as high mRNA levels of lactate dehydrogenase A (LDHA) 

( Ross et al., 2010 ). However, a decrease of LDHA protein level was 

associated with post-mitochondrial lactate elevation in the brain 

of aged mice, indicating that other mechanisms also play a role in 

lactate elevation ( Datta and Chakrabarti, 2018 ). Defects in lactate 

metabolism have been linked to ALS metabolic dysfunction in pre- 

vious studies ( Ferraiuolo et al., 2011 ; Ngo and Steyn, 2015 ). Lactate 

levels in blood were age-dependent in SOD1 G93A transgenic mice, 

while low levels of lactate observed in striatum, cortex and brain- 

stem of these mice correlated with disease progression ( Lei et al., 

2019 ). 

Fructose and the fructose metabolic substrate turanose, which 

as with fructose can be used as an alternative sweetener 

( Park et al., 2016 ) showed increased metabolism with age in 

the control group, which was not recapitulated in the ALS cases 

( Fig. 3 ). Similar results were observed in iAstrocytes, which overall 

showed a decrease in fructose and turanose metabolism ( Fig. 4 C- 

E). Fructose is phosphorylated by fructokinase to generate fructose- 

one-phosphate, which is in turn metabolized to dihydroxyacetone 

phosphate (DHAP) and glyceraldehyde three-phosphate (G3P) and 

is able to enter the glycolytic pathway ( Levi and Werman, 1998 ). 

Fructose supplementation in middle-aged rats enhanced the ad- 

verse effects of aging such ROS, inflammation and oxidative stress 

( Crescenzo et al., 2019 ; Harrell et al., 2018 ). A short-term fructose 

rich diet in adult rats has been shown to increase neuroinflam- 

mation via NF- κB in the hippocampus ( Cigliano et al., 2018 ), with 

similar results being observed in the liver of middle-aged rats sup- 

plemented with high fat/fructose ( Mazzoli et al., 2019 ). Unlike fruc- 

tose, turanose may possess anti-inflammatory properties as IL-1 β , 

IL-18, NOS and COX-2 levels were reduced in mouse macrophages 

in the presence of turanose ( Chung et al., 2017 ). A fructose rich 

diet has been shown to correlate with increased fatty acid produc- 

tion and insulin resistance ( Softic et al., 2017 ), which are both ob- 

served in older individuals ( Toth and Tchernof, 20 0 0 ). These data 

highlight the importance of controlling fructose consumption in 

healthy aging and suggest that the enhanced fructose metabolism 

with age we observed in our control fibroblast cohort may be in 

the physiological context, detrimental. It also raises the question 

of whether the lack of fructose metabolism with age observed in 

ALS cases may be a protective measure by the fibroblasts to re- 

duce disease associated pathophysiological factors such as insulin 

resistance, ROS production and inflammation. High levels of pro- 

inflammatory markers, such as IL-6 and IL-8 have been observed in 

ALS patients ( Blasco et al., 2017 ) and causative genes of ALS includ- 

ing MATR3 , and PFN1 and TDP-43 are enriched and associated with 

inflammation ( Umoh et al., 2018 ). Moreover, several studies have 

demonstrated an increase in pro-inflammatory markers including 

IL-1, IL-6, TNF- α and C-reactive protein in healthy elderly indi- 

viduals ( Bruunsgaard et al., 1999 ; Franceschi and Campisi, 2014 ; 

Wei et al., 1992 ). 

When we supplemented the iAstrocytes with fructose and mea- 

sured metabolic flux, we observed no detrimental or restorative 

changes in mitochondrial respiration or glycolytic flux in ALS iAs- 

trocytes ( Fig. 3 G-H). However, when we supplemented with pyru- 

vate, which unlike fructose enters the glycolytic pathway down- 

stream, we found significant increases in mitochondrial function 

and a move towards an aerobic phenotype in the ALS iAstrocytes 

( Fig. 3 I-J). These data align with our previous findings ( Allen et al., 

2019a ; Allen et al., 2019b ) and suggest that pyruvate supplementa- 

tion may be beneficial in ALS iAstrocytes and may circumvent the 

lack of lactic acid metabolism observed which causes starvation- 

induced toxicity in ALS cases. Fructose metabolism can lead to 

NADH production via production of three-phosphoglycerate. A re- 

duction in NADH levels in response to enhanced exposure to 

fructose suggests that this step is not occurring efficiently which 

would be predicted to lead to an accumulation of the glycolytic 

intermediates glyceraldehyde-3-phosphate (GAP) as well as dihy- 

droxyacetone phosphate (DHAP). Increased levels of both inter- 

mediates enhance the production of dicarbonyls such as methyl- 

glyoxal, which in turn lead to more stable advanced glycation 

end products (AGEs) ( Hamada et al., 1996 ). In turn, AGEs dis- 

rupt many cell functions including lipid synthesis and antioxidant 

defences, leading to inflammation and mitochondrial metabolism 

( Aragno and Mastrocola, 2017 ). AGE receptors (RAGEs) have been 

found to be upregulated in spinal cord tissues isolated from ALS 

patients ( Juranek et al., 2015 ) and SOD1 mice lacking RAGE exhib- 

ited slower disease progression ( Lee et al., 2020 ). We have pre- 

viously shown that fructose metabolism is reduced in fibroblasts 

and iAstrocytes from C9orf72 ALS cases and that the glyoxalase en- 
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zymes required for MGO removal are reduced in C9orf72 and SALS 

cases ( Allen et al., 2019a ; Allen et al., 2019b ). These published re- 

sults, combined with the data produced in this study, suggest that 

fructose metabolism defects in ALS may contribute to the AGE in- 

fluence on metabolic dysfunction, oxidative stress and inflamma- 

tion and may be enhanced with aging. 

Interestingly, we found that glycogen metabolism was nega- 

tively correlated with age in the ALS fibroblast cohort, which 

was not observed in control fibroblasts ( Fig. 4 ). Glycogen can be 

stored in human diploid fibroblasts and accumulated under glu- 

cose starvation conditions ( DiMauro and Mellman, 1973 ). In a re- 

cent paper focused on hippocampal metabolism in mice, an in- 

crease in glycogen metabolism enzymes including glycogen phos- 

phorylase was observed in aged mice compared to young mice 

( Drulis-Fajdasz et al., 2018 ). We did not see this increase in the 

ALS iAstrocytes. Previously, CNS glycogen accumulation has been 

observed in SOD1 mouse models of ALS ( Dodge et al., 2013 ) and 

evidence showed that glycogenolysis rather than glycogenesis is 

reduced in ALS ( Li et al., 2019 ). In addition, previous data from 

our laboratory has shown that key glycogenolysis enzymes, glyco- 

gen phosphorylase and phosphoglucomutase enzymes were re- 

duced in ALS patient derived astrocytes causing reduced glycogen 

metabolism ( Allen et al., 2019b ). A study in a FUS transgenic ALS 

mouse model found that glycogen synthase kinase-3 β (GSK-3 β), a 

kinase strongly associated with ALS, is activated and linked with 

deficiencies in ER-mitochondrial crosstalk ( Stoica et al., 2016 ). Fur- 

thermore, GSK-3 β is known to inhibit glycogen synthase resulting 

in reduced glycogenesis ( Patel and Woodgett, 2017 ), which may be 

associated with reduced glycogen metabolism with age due to a 

lower level of glycogen availability in the cells. With this in mind, 

our data demonstrated a significant negative correlation of glyco- 

gen metabolism with age of onset and age of death in the FALS 

cohort. A similar trend was observed in the ALS cohort overall, but 

did not reach significance. Therefore, it is possible that changes in 

the levels of glycogen metabolising enzymes may occur with age in 

ALS, which could impact on the amount of energy produced from 

glycogen, and this in turn may influence disease parameters. We 

attempted to correlate the levels of these enzymes in control and 

ALS iAstrocyte cases with age ( Fig. 4 F-H). Although we saw reduc- 

tions in GP with age, which was exacerbated in ALS iAstrocytes, we 

were limited by number of cell lines and no significant correlations 

were observed. 

As glycogen metabolism correlated with ALS clinical parame- 

ters, we performed correlation analysis between the clinical pa- 

rameters described and the other energy substrates in the phe- 

notypic metabolic screen to investigate the possibility of simi- 

lar effects. We found that two glycolytic intermediates, glucose-1- 

phosphate and D-fructose-6-phosphate were negatively correlated 

with disease progression in the FALS cohort ( Fig. 5 ). Glycogen is 

converted to glucose-1-phosphate by GP, which is then converted 

to glucose-6-phosphate by PGM. Therefore, these data give weight 

to the idea that the glycogenolysis pathway may be altered in ALS, 

which could influence parameters of disease severity. At this point, 

it is unclear how D-fructose-6-phosphate metabolism is linked to 

disease progression rate especially as no correlation was observed 

with glucose-6-phosphate, which precedes D-fructose-6-phosphate 

in the glycolysis pathway (data not shown). 

In contrast to the findings relating to glucose-1-phosphate and 

fructose-6-phosphate, we found a positive correlation of inosine 

as well as α-ketoglutaric acid metabolism with disease progres- 

sion in the FALS cohort ( Fig. 5 ). Previously, it has been shown that 

treatment with inosine significantly increased glycolytic flux and 

ATP production in both C9orf72 and SALS iAstrocytes ( Allen et al., 

2019a ). Our data add further weight to the hypothesis that in- 

creased inosine metabolism may be protective in ALS as inosine 

supplementation increased ALS fibroblast mitochondrial spare res- 

piratory capacity and both glycolytic flux and capacity ( Fig. 5 E). 

A pilot study based on inosine administration in ALS patients in- 

creased urate levels in serum, where low levels had been docu- 

mented in ALS patients ( Nicholson et al., 2018 ; Paganoni et al., 

2018 ). Increased inosine metabolism could enhance hypoxanthine 

levels via the purine degradation pathway in order to produce 

more uric acid ( Dudzinska et al., 2010 ), which may influence an- 

tioxidant capacity ( Nicholson et al., 2018 ). Oxidative stress is one 

of the hallmarks of ALS, so further evaluation of the effects of 

supplementary inosine on the disease course in ALS is warranted. 

Lastly, our data implied that patients live longer after disease on- 

set when utilization of α-ketoglutaric acid as energy fuel is en- 

hanced ( Fig. 5 ). α-ketoglutaric acid has been associated with ex- 

panded lifespan in various species, including aged mice, worms 

and flies and increased levels have been found in plasma of el- 

derly people ( Asadi Shahmirzadi et al., 2020 ; Lawton et al., 2008 ; 

Mishur et al., 2016 ; Su et al., 2019 ). Specifically, in Drosophila, it 

was found that dietary supplementation of α-ketoglutaric acid in- 

creased lifespan via activation of AMPK signalling and enhanced 

autophagy ( Su et al., 2019 ). Both were increased in the SOD1 G93A 

mouse model of ALS using an AMPK activator, causing a significant 

expansion in lifespan ( Coughlan et al., 2015 ). In addition, defects in 

autophagy are associated with ALS toxic aggregates and more re- 

cently it was found in vitro that α-ketoglutarate inhibits starvation- 

induced autophagy, which is important function to ameliorate ag- 

gregation ( Baracco et al., 2019 ). When we supplemented the ALS 

fibroblasts with α-ketoglutaric acid, we saw a significant increase 

in mitochondrial function ( Fig. 5 G-H). Taken together, these data 

suggest a possible protective role of α-ketoglutaric acid in ALS. 

Conclusions 

Distinct from ALS, it is well established that the natural aging 

process affects metabolic function, whilst metabolic dysfunction is 

an early pathophysiological event in ALS. Here, we show that fi- 

broblasts from ALS cases have a distinct metabolic profile, which is 

influenced by age. Correlation between age and catabolic metabolic 

substrates in fibroblasts, and validation in iAstrocytes, as well as 

supplementation assays showed increased metabolism of a distinct 

set of energy substrates with age in healthy individuals, which 

was not observed in ALS cases. Conversely, glycogen metabolism 

was negatively correlated with age in the ALS cohort compared 

to controls perhaps due to loss of glycogen metabolism enzymes 

with age. A key question from this study is how, or if at all, 

these metabolic changes are interconnected? Our previous work 

has shown that in C9orf72 ALS iAstrocytes, multiple metabolic 

pathways are altered with similar results found in SALS iAstrocytes, 

leading to loss of metabolic flexibility ( Allen et al., 2019b ). These 

new data feed into that hypothesis and suggest that increased 

metabolic flexibility with age helps to counteract age related stress 

and maintain energy levels. In our previous studies, we showed re- 

duction in glycogen, pyruvate, fructose and nucleoside metabolism 

in C9orf72 iAstrocytes, which all feed carbon into glycolysis via 

multiple points. The present data are in alignment with our previ- 

ously published data. Glycogen, xylitol, salicin, trehalose, fructose, 

turanose and lactic acid all feed carbon into glycolysis at specific 

points: glycogen via glucose-1-phosphate ( Allen et al., 2019b ), xyl- 

itol via the pentose phosphate pathway ( Borgstrom et al., 2019 ), 

salicin via α-glucosidase action on glycogen ( Dodge et al., 2013 ), 

fructose and turanose as previously described, trehalose by phos- 

photrehalase action to glucose ( Zhang and DeBosch, 2020 ) and 

lactic acid by the action of lactate dehydrogenase to pyruvate 

( Ngo and Steyn, 2015 ). This suggests that modulation of glycolysis 

is not only neuroprotective ( Manzo et al., 2019 ), but may protect 
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against aging. Recently, an increase of autophagy in haematopoi- 

etic stem cells from aged mice was shown to contribute to health- 

ier cell features such as long-term reconstitution, regeneration and 

higher cell numbers. The authors argued that shifting of the over- 

all metabolism towards glycolysis contributed to increased cellu- 

lar health ( Ho et al., 2017 ). Our data suggest that supplementation 

with energy substrates such as inosine and pyruvate may be bioen- 

ergetically beneficial, the latter potentially via pyruvate dehydroge- 

nase stimulation ( Cunnane et al., 2020 ). 

In addition to glycolysis convergence, we see TCA cycle conver- 

gence in our data set. Uridine and α-ketoglutaric acid both feed 

carbon into the TCA cycle, the former via acetyl co-A ( Zhang et al., 

2020 ). As α-ketoglutaric acid supplementation was also bioener- 

getically favourable, this suggests that as well as glycolytic en- 

ergetic supplementation, TCA cycle supplementation may also in- 

crease energy output. This strategy has been used before with ke- 

tone body supplementation, which can directly provide the cell 

with acetyl co-A ( Cunnane et al., 2020 ). Stimulation of both path- 

ways in combination with trehalose supplementation to boost au- 

tophagy/mitophagy levels may represent an effective nutritional 

supplementation approach in ALS patients. 

Taken together, the evidence we present in this report suggests 

potential loss of beneficial metabolic effects in ALS cases that may 

influence clinical parameters such as disease progression. Previous 

studies have shown that FALS as well as SALS patients exhibit simi- 

lar clinical characteristics despite the diversity of symptoms, age of 

onset and disease duration (Al-Chalabi et al., 2016). However, there 

is no objective cut-off to distinguish between slow or late disease 

progression and early or late age of onset. Therefore, using patient 

specific metabolic profiles via metabotyping could be an impor- 

tant tool to distinguish these clinical characteristics, and metaboli- 

cally stratify individuals with ALS. This study adds novel findings to 

existing knowledge linking metabolic alterations in healthy aging 

and in ALS. Moreover, our data add to the body of evidence that 

metabolism of specific metabolic substrates may influence clinical 

parameters in ALS patients such as disease progression. 
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