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Abstract

Sustainable urban mobility is an essential component of sustainable development but

requires careful planning in rapidly growing urban areas. This paper investigates the

value and limitations of Big Data for evaluating transport policies, plans, and projects in

Hubballi-Dharwad, India. Results show how Big Data can enable the outcomes of trans-

port interventions to be evaluated more readily than conventional transport analysis.

However, the analysis also found that this data may be less able to detect the impacts

of travel behaviours in informal settlements, and the impact of extreme weather events.

These potential shortcomings, as well as a lack of transparency around the methodology

and data sources used by sources of Big Data, could generate unintended conse-

quences and biases in transport planning. Reflecting on these challenges, and the wider

implications for urban governance, we conclude that there is an urgent need for Big

Data and other technical advances in urban modelling to be seen as compliments to,

rather than substitutes for, wider methods of knowledge generation in urban areas.
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1 | INTRODUCTION

Whether urban growth contributes to solving or aggravating, a wide-

range of global challenges will be significantly influenced by urban

transport networks. Designed well, transport networks can increase the

effective density of urban areas, allowing people to access jobs (and

employers to access employees), residents to choose public or non-

motorised mobility over their cars, and governments to cost-effectively

provide basic services and public amenities (Behbahani, Nazari, Kang, &

Litman, 2019; Litman, 2018). Designed poorly, transport networks can

choke an urban area's economy and lead to sprawl, congestion, and pol-

lution, making urban dwellers worse off than their rural counterparts.

The cost of congestion in urban areas today, a symptom of transport

networks failing to meet demand, is greater than 1% of GDP in European

and North American cities, 2–5% of GDP in cities in many Asian and Latin

American cities, and as high as 15% of GDP in Beijing, China. While con-

gestion is a global challenge, its costs are most acutely felt in the develop-

ing world, making urban transport a critical issue for sustainable

development (Cookson & Pishue, 2017; Creutzig & He, 2009; Mao, Yang,

Liu, Jianjun, & Jaccard, 2012; Sudmant, Mi, Oates, Tian, &

Gouldson, 2020; Sudmant, Verlinghieri, Khreis, & Gouldson, 2020; Too &

Earl, 2010; Torres, Ortega, Sudmant, & Gouldson, 2021).

Addressing these challenges will be dependent on the ability of

policymakers to rapidly assess the potential for transport
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interventions, particularly those that discourage private transport

options, and to draw lessons from completed projects. Such assess-

ments, however, face a range of challenges, from overly optimistic

modelling processes to problems with data access, to the complexity

of modelling urban mobility processes (Gouldson, Sudmant, Khreis, &

Papargyropoulou, 2020). Consequently, high-quality ex-post assess-

ments of transport interventions that could yield important insights

are rare even in high-income nations (Driscoll, 2014; Flyvbjerg,

Skamris Holm, & Buhl, 2003; Nicolaisen & Driscoll, 2014). In urban

areas in low-income countries, demand for mobility is rising quickly

and public resources face competing demands, addressing this chal-

lenge has particular urgency (Cabannes & Lipietz, 2018; Colenbrander

et al., 2017).

In this context, tremendous potential is thought to exist from

harnessing Big Data: The vast amounts of information coming

from mobile phones and other connected devices that are increasingly

ubiquitous to our lives. Real-time, geolocated, high frequency, and

(in many cases) low-cost applications of Big Data for transport—

including Google Maps, Waze, Apple Maps, TomTom, and a host of

other services—are already used by billions on a daily basis, ostensibly

demonstrating that they are valued by individuals and businesses.

The value of such data from a public policy context, however, does

not naturally follow from such services being widely used by individuals

and firms (Khan et al., 2020). Big Data sources generally provide a

restricted number of variables, requiring assessments to draw inferences

with explanatory characteristics (Hu & Jin, 2017). Datasets can be

biased, blinding policymakers to the impact of policies on particular

populations (Kwan, 2018). The way algorithms capture, sort, clean, and

pass on data can alter our understanding of phenomena in ways that

policymakers (and sometimes information providers) are not aware of

(Zou & Schiebinger, 2018). Modes of governance informed by such data

can incentivise city governments to prioritise a narrow set of metrics

(Hughes, Giest, & Tozer, 2020) and to discount wider means of urban

knowledge generation (Coletta & Kitchin, 2017). And what data is avail-

able, for who, and under what circumstances remains a legally and ethi-

cally contentious question, with a number of authors reminding us that

it would be naive to assume that the interests of private firms automati-

cally align with the interests of the wider public (Albino, Berardi, &

Dangelico, 2015; Docherty, Marsden, & Anable, 2018; Wang &

Ma, 2021). Questions surrounding the value of Big Data for pol-

icymaking thus extend from the specificities of data collection tech-

niques and the ways algorithms are developed to overarching logics and

rationalities and their implications for governmentalities (Bissell, 2018;

Coletta & Kitchin, 2017; Kitchin, Lauriault, & McArdle, 2015).

Nonetheless, “Smart Cities” relying heavily on Big Data have

become a national policy objective in a number of countries worldwide.

In India, the Smart Cities Mission was launched in 2015 to support sus-

tainable development through the application of information and com-

munication technologies (Dwevedi, Krishna, & Kumar, 2018). The Smart

Cities Mission is focused on cities with a population between 1 and 4 mil-

lion (“second tier” cities) and particular opportunities are thought to exist

in the transport sector and from new sources of Big Data, including Goo-

gleMaps (Jindal, Kumar, & Singh, 2020; Rakesh, Heeks, Chattapadhyay, &

Foster, 2018; Rizwan, Suresh, & Rajasekhara Babu, 2016). Hubballi-

Dharwad, the case study analysis focuses on among the 100 cities in the

“Smart Cities Mission”, and “Smart Mobility” is recognised as a key area

for intervention (Hubballi-Dharwad, 2013).

A growing body of research has considered the role of Big Data

for transport research and planning (Batty, 2013; Calabrese et al.

2013; Milne & Watling, 2019; Tzika-Kostopoulou & Nathanail, 2021)

with a branch of this research focusing specifically on Google

Maps data (Hanna, Kreindler, & Olken, 2017; Kreindler, 2016;

Dumbliauskas, Grigonis, & Barauskas, 2017; Akbar & Duranton,

2017). This article adds to this research in two ways.

First, by focusing on a smaller urban centre in the Global South,

this research considers an underexplored context. In contrast with the

larger and often wealthier urban centres that are the focus of much

existing research, smaller urban centres frequently have very high

urban growth rates and are yet to invest significantly in public trans-

port networks. Such urban centres are also more likely to face capac-

ity issues in government due to smaller budgets and less established

institutional structures, possibly leading them to be more attracted to

“smart innovations” using Big Data. Cities with these characteristics

are anticipated to be the source of the majority of urban population

growth over the coming decades (UN DESA 2019) and are, therefore,

critical to the achievement of the Sustainable Development Goals.

Sustainable urban mobility plans (SUMPs) are a focus of a growing

body of literature (Okraszewska et al., 2018); however, low-income

regions of the world continue to be underrepresented.

The potential value of Big Data for transport planning in Hubballi-

Dharwad, and “second-tier” global cities more generally, is considered

in the first and second sections of the Results. We first analyse the

extent to which big data derived from Google Maps can provide infor-

mation on key attributes of the transport system, including hourly and

weekly travel times on key routes, before assessing the impact of a

new bus-rapid transport line on travel times to key locations in the city.

The second way this analysis adds to the existing literature is by

probing some of the specific potential shortcomings of Big Data raised

by existing authorship. The third section of the Results assesses the

possibility that algorithms may capture, sort, clean, and pass on data

in ways that alter our understanding of phenomena (Zou &

Schiebinger, 2018) by focusing on a major rainstorm event that

affected Hubballi-Dharwad in June 2018. Finally, the fourth

section of the Results assesses potential biases in the data

(Kwan, 2018) by comparing the quality of the data provided from

informal settlement and wealthier parts of the city.

2 | STUDY AREA

A rapidly expanding urban population and sprawling cities are placing

increasing pressure on transport systems in India. At the same time,

partly as a result of increasing incomes, there is a growing trend

towards private transport. The transport sector contributes to about

15% of CO2 emissions in India, a share that has been increasing over

time (Gupta & Garg, 2020) and congestion, air pollution, and road
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traffic accidents are common in urban areas, at great cost to society

and the economy (Rajasekaran, Rajasekaran, & Vaishya, 2021).

The National Urban Transport Policy (NUTP) of 2006 emphasised

the need to give greater priority to public transport, and the Sustainable

Urban Transport Programme (SUTP) was designed to support and dem-

onstrate the principles of the NUTP. Following the adoption of these

policies, a Bus Rapid Transit (BRT) scheme connecting the twin cities of

Hubballi and Dharwad was chosen as a demonstration project. The

engineering study completed before construction contains many of the

“best practice” elements for BRT networks. For example, the system is

designed with a dedicated roadway, raised platforms, a limited number

of stations, and an electronic payment system. Importantly, the docu-

ment also highlights that reducing congestion along the main corridors

of the city is a key justification for the project (CEPT, 2013). Assessing

private vehicle travel times along the route is, therefore, seen as an

indirect means of assessing the success of the project and its overall

impact on the city's transport network.

Whether Google Maps travel time estimates (or other Big Data

sources) can be used in this way has relevance beyond Hubballi-

Dharwad. BRT systems are considered an important tool for climate

change mitigation due to their potential to provide an important pub-

lic service while also contributing to global emissions reduction targets

(Gouldson et al., 2020; Sudmant, Mi, et al., 2020; Sudmant, Ver-

linghieri, et al., 2020). Studies from several cities with well-established

BRT systems - such as Bogota, Johannesburg, and Mexico City

(Ingvardson & Nielsen, 2018), substantiate this. In addition, BRTs con-

tribute to the reduction of air pollutants such as carbon monoxide and

particulate matter, primarily through reducing the total number of

vehicle kilometres travelled and by encouraging the replacement

of older, smaller vehicles with newer, cleaner high-capacity buses

(Stankov et al., 2020). Research also suggests that BRT systems can

contribute to equity objectives by providing low-income groups with

greater access to public transport, travel time and cost savings, and

safety benefits (Venter, Jennings, Hidalgo, & Pineda, 2018).

With a population of 940,000, Hubballi-Dharwad municipal area is

the second largest urban agglomeration in Karnataka State after Banga-

lore (Figure 1). Hubballi is the region's commercial centre while

Dharwad is the administrative and educational hub (UNESCAP, 2014).

A BRT was proposed as a way to improve connectivity between the cit-

ies - which are around 20 km apart - and to temper vehicular growth,

while accommodating an urban population that is projected to reach

almost 1.5 million by 2030 (ibid). After delays resulting from complex

land acquisition processes, the Hubballi-Dharwad BRT began opera-

tions in October 2018.

F IGURE 1 Map of Hubballi-Dharwad and the BRT stations studied [Colour figure can be viewed at wileyonlinelibrary.com]
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Almost one-fifth of the population of Hubballi-Dharwad lives in

informal settlements (Ministry of Housing and Urban Affairs, 2019).

This is significant in the context of this research since informal settle-

ments have fewer vehicles that Google can track to determine travel

times, and residents may have fewer devices from which Google can

collect data. A recent study from Karnataka's capital, Bangalore,

shows that less than 1% of informal settlement households own a car

(Roy et al., 2018), compared with more than 70% of wealthier house-

holds in the same city (Bansal, Kockelman, Schievelbein, & Schauer-

West, 2018). Assuming this is representative of cities in India, this

could make it potentially challenging for Google to estimate travel

times from these areas, a matter we investigate at the end of the

Results section.

3 | METHODOLOGY

A set of measurements was conducted through Google Maps Applica-

tion Programming Interface (API) queries with information collected

on estimated live travel trip durations and distances. Three of the

33 new bus stations that are part of the BRT were selected as depar-

ture and arrival points: The Chennamma station located in the centre

of Hubballi; ISKCON located in the middle of the BRT pathway and

near the main hospital; and Jubilee Circle in the centre of Dharwad. In

addition, an analysis grid of 1 and 2 km resolutions covering the urban

area of the city was built around the bus stations comprising 206 grid

cells (Figure 2). Queries for both the trip time and distance from each

grid cell to each of the centres and each centre to each grid cell were

conducted every hour from 5 a.m. to 11 p.m. from April 2018 to mid-

July 2018. From mid-July 2018, queries were limited to Tuesday and

Thursday until mid-February 2019.

Although Google Maps' estimated time of arrival algorithm is not

public, it is understood that Google uses different features to assess

live travel times. These include official speed limits, recommended

speeds, information on road types, and topography and real-time traf-

fic information. A mix from these different data is processed to

enhance the algorithm.

4 | RESULTS

Results are presented in four sections. First, Google Maps travel times

estimate data are used to identify key attributes of the transport net-

work, including hourly and weekly traffic variation across the city.

F IGURE 2 Grid points used in the analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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Second, we investigate the effect of the new BRT project on vehicle

travel times. Third, we assess how Google Maps capture the impact of

monsoon flooding on June 4th, 2018. Fourth, we compare Google

travel estimate data with a simple model of travel times in the city to

assess the extent that Google travel data are providing “additional
value” beyond more basic modelling approaches, and the extent that

biases may be present in the data.

4.1 | Traffic variation in Hubballi-Dharwad

Figure 3 shows average travel speeds between grid cells and BRT sta-

tions estimated using the travel times estimates from Google and the

trip distance provided by Google. Results show a similar pattern over

time, with congestion slowing travel speeds between 9 a.m. and 2 p.

m. (approximately) and then again between 5 p.m. and 9 p.m. (approxi-

mately). However, the degree of congestion (the change in speed) and

the speed under low congestion are found to depend significantly on

factors specific to different routes.

In Figure 4, the morning and evening congestion periods are pres-

ented more clearly by assessing travel speeds across different routes.

Combining these by day of the week reveals that Saturday has the

most traffic and Sunday has the least traffic congestion. The effect of

time of day is seen to be significantly more important than the day

of the week for the level of congestion given the much larger differ-

ences in travel speeds.

4.2 | The impact of the bus-rapid transport
network

In order to understand the effect of the BRT on travel times, we

assess travel times before and after the BRT began operation and

compare routes that are parallel to and perpendicular to the BRT.

The hypothesis behind this approach is that trips parallel to

(or along) the BRT line will be affected by the new transport

option, while trips perpendicular to the BRT should not be

affected. To provide clarity, the city is divided into regions, as

shown in Figure 5.

Figures 6–8 show the change in travel times before (blue dots)

and after (red dots) the BRT. Results show a statistically significant

(at the 5% level), but small, change in travel times for most routes

parallel to the BRT. Note, those trips parallel to the BRT include

all trips represented on the top row of each figure, labelled along,

as well as some of the routes in the second row. Routes not paral-

lel to the BRT, by contrast, do not show a consistent change in

travel times. These findings suggest that in the immediate weeks

and months after the implementation of the BRT, the new bus has

had the effect of improving congestion, one of the stated goals of

the project. However, whether this effect is by moving drivers

from cars onto the bus, by discouraging drivers from taking this

route, or by another means is beyond the scope of this analysis to

determine. Further, who is taking the BRT and how the specific

trips they are taking have been affected, is information not avail-

able using this data set and approach.

F IGURE 3 Average speed by time
of day for different routes and grid
cells and the 95% confidence
interval (grey)

F IGURE 4 Average speed by time of day and day of week
[Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | “Real-time” traffic analysis

One of the key advantages of having access to Big Data is its ability

to rapidly provide information for users. To assess whether Google

Maps transport data could inform transport policy-making in acute sit-

uations, we look at data from June 4th, 2018, a day of heavy rain and

flooding in Hubballi-Dharwad that followed on several previous days

of heavy rain and flooding in the region (The Times of India, 2019).

Figure 9 shows combinations of travel times on Monday, June

4th, 2018 on different routes at different times of day, and the aver-

age speed for that route at that time of day on Mondays (excluding

June 4th, 2018), across the dataset. Despite major flooding, results

suggest that travel speeds across the city on Monday, June 4th, 2018

were very similar to travel speeds on a typical Monday and not signifi-

cantly different at the 5% level. Similarly, there is little evidence of dis-

ruption to any specific routes. Of the 25 observations that showed

F IGURE 5 Zones of the city used
to establish the impact of the BRT
[Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Travel times from grid cells to BRT station 03. Please
note, the route along the new BRT offers to most direct route from
“Centre 32” to station 3 [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 Travel times from grid cells to BRT station 17. Please
note, along the BRT route offers to most direct route from both
‘Centre 3’ and ‘Centre 32’ to BRT station 17 [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 8 Travel time from grid cells to BRT station 32. Please
note, along the BRT route offers the most direct route from Centre
3 to BRT station 32 [Colour figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 9 Speed for each hour-
route combination on an average
Monday and on Monday, June 4th
[Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Adjusted R2 for models applied to data from grid cells (regions of the city) with the highest proportion of informal settlement
dwellers and from the remainder for the city

Model

Trip distance (km)

<2
(n = 86,559)

<5
(n = 505,702)

<10
(no = 1,149,861)

<15
(n = 1,956,916)

90% of grid cells with the lowest

proportion of informal

settlement dwellers

Distance 32% 60% 68% 78%

Distance and density 43% 64% 69% 78%

Distance and density and hour

dummies

53% 71% 74% 83%

Distance and density and hour

dummies and day dummies

53% 71% 75% 83%

Distance and density and hour

dummies and day dummies and

restricted to 1 km by 1 km cells

53% 72% 75% 87%

Model
<2
(n = 2,810)

<5
(n = 35,505)

<10
(n = 95,023)

<15
(n = 170,615)

10% of grid cells with the highest

proportion of informal

settlement dwellers

Distance 26% 69% 66% 75%

Distance and density 26% 72% 66% 76%

Distance and density and hour dummies 85% 87% 74% 82%

Distance and density and hour dummies and

day dummies

87% 87% 75% 82%

Distance and density and hour dummies and

day dummies and restricted to 1 km by

1 km cells

87% 87% 79% 89%

Note: Number of observations does not apply for the model specification that includes only 1 km by 1 km cells.
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the largest impact (each observation is one data point, representing an

estimation of the travel time and distance between a cell and a centre

or a centre and a cell), 14 showed faster times on June 4th and

9 showed slower times. Of these, only five routes were 10% faster or

slower than usual.

4.4 | Comparing Google maps estimates with a
simple transport model

Following the results in the previous section, we were curious to

explore the extent to which Google data is adding on-the-ground

information to its estimates. In the absence of detailed information on

the way Google Maps estimates are calculated, we develop a model

of travel times that is based on a set of characteristics seen to have an

important role in predicting travel times: the hour of the day, the day

of the week, population density, and the distance of the trip (Table 1).

Using linear-regression, this model explains 85% of the variation

across all 3.2 million trips in our dataset, suggesting that 15% of the

variation in Google's estimated travel times is related to other factors.

We assume that a significant portion of this 15% of addition variation

comes from Google's ability to collect real-time travel information on

actual travel conditions, relating, for example, to the weather, traffic

accidents, or other events that are too rare or uncertain to be included

in the characteristics of our model.

The extent to which Google is able to capture this real-time infor-

mation may not be the same across the city, particularly in informal

settlement areas due to a lower concentration of mobile devices. To

test this hypothesis, we can compare the fit of our model for trips

starting from informal settlement areas versus the fit of our model for

a trip starting from non-informal settlement areas.

If a subset of the dataset (informal settlement or non-informal

settlement originating trips) shows a lower R2 in our model, this sug-

gests that Google might have more real-time information, allowing

Google to provide more bespoke travel time estimates that differ from

the ones in the “basic model.” If the R2 is higher, this suggests Google

travel time estimates are more likely to be based on a set of character-

istics similar to those in our model, implying that they may not have

more information to improve their estimates. This effect should be

magnified for shorter trips. Longer trips will frequently converge onto

the same routes and over the course of a longer trip, drivers will have

more opportunity to change their route to avoid traffic. We would

therefore expect the R2 to be higher for relatively long trips compared

with shorter trips.

Results find that the model of travel times we apply explains a

higher proportion of all variation in trip times from informal settlement

areas compared with the remaining grid cells. This phenomenon exists

across all grid cells and also when we restrict our analysis to the “finer”
1 km square cells. Results also show a higher R2 as the minimum trip

length is increased, in line with our assumption about longer trips.

These findings could be a result of fundamental aspects of trans-

port in Hubballi-Dharwad. Travel times from informal settlement areas

may be more predictable due to geography or the configuration of the

travel network. This would be despite the fact that informal settle-

ment areas are found across Hubballi-Dharwad, including adjacent to

formal settlement areas. However, without detailed information on

the raw data Google Maps is using, or the way that data is processed

before it is passed through Google Maps, we cannot rule out that the

data we are being provided with is more detailed outside of informal

settlement areas.

5 | DISCUSSION

From the perspective of a policymaker in Hubballi-Dharwad

(or another developed or developing urban area), the analysis pres-

ented demonstrates what appear to be some clear benefits of using

Google Maps data to inform the evaluation of transport policies,

plans, and programmes. Compared with surveys, traffic counts, and

other traditional methods of data collection, Google Maps makes it

relatively easy to collect large quantities of data in a timely fashion

across the entire timeline of a project, irrespective of weather, holi-

days, or other challenges.

Moreover, this data can be used in ways that have clear pol-

icymaking value. Information on travel times by time of day and day

of week can inform public transport scheduling, road maintenance

and public works, and long-term urban development planning. This

kind of research is foundational for urban transport policymaking and

planning, but the challenge of collecting data and building bespoke

models is a barrier in high and low-income contexts alike.

Analysis of the BRT suggests Google Maps data may also be able

support ex-post assessment, a process that is critical for learning but

often not undertaken due to the cost and challenge of accessing data

(Nicolaisen & Driscoll, 2014). Results here, which show a relatively

modest change in travel times along the BRT compared with routes

perpendicular to the BRT, also highlight the value of the large datasets

accessible with Google Maps, which allow for a level of statistical

robustness that would be challenging with other methods.

A transport department that completed these analyses could eas-

ily replicate them in the future. And since policymakers in other urban

areas also using Google Maps would have access to data of the same

types and format, knowledge sharing, and learning could be radically

increased. These realisations have enchanted academics who forecast

the beginning of a fundamental shift in our epistemological approach

to transport planning led by data analysis rather than the development

of hypotheses (Kitchin, 2014; Rabari & Storper, 2015) and suggest the

private sector could play an important role supporting sustainable low

carbon development (Colenbrander, Sudmant, Chilundika, &

Gouldson, 2019; Scheyvens, Banks, & Hughes, 2016; Sudmant, Col-

enbrander, Gouldson, & Chilundika, 2017).

The extent that such a shift in the nature of urban transport and

urban transport policymaking is on the horizon is beyond the scope of

this paper. However, the third and fourth analyses in the results

section were undertaken with the intention of exploring how Google

data might contribute to more novel analysis of the kind that has been

associated with this transition in transport planning (cf. Kitchin, 2014).
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The speed with which data can be collected and assessed is a key

feature of Big Data and has clear value for transport policymakers.

Rapid analysis can help in identifying transport hotspots and

responding to emergencies. In contrast with our personal experience

with Google Maps in other urban contexts during periods of disrup-

tion, however, we were surprised to find no clear impact of the

flooding in Hubballi-Dharwad and the surrounding region on Monday,

June 4th, 2018 in the data.1 This finding is not only suspicious but

also alarming. Google Maps is widely used by residents in the area

and could, therefore, have encouraged potentially dangerous travel

decisions. It also raises concerns about the veracity of the earlier find-

ings of this analysis: data varies by time of day, day of week, and dis-

tance, but to what extent is the data based on on-the-ground

information?

The data provided by Google comes without any information on

how it was put together. However, based on the limited information

available about Google Maps' algorithm, we can assume that travel

time estimates are derived from both “real” data collected from trav-

ellers with Android and Google devices, and from a model of urban

transport used to make estimates in the absence of information from

connected devices. The factors in this model may include trip dis-

tances, topography, and the time of day, among other factors.

In order to probe the characteristics of this underlying algorithm,

we developed a simple model of the transport network. Across the

entire dataset, results show that characteristics, including time of day,

day of the week, the distance of a trip, and the density of the urban

area travelled through describe 85% of the variation in travel times.

This suggests that either these variables, or factors correlated with

them, are constituents of the model used by Google. This also sug-

gests that 15% of the variation in estimated travel times may be

attributable to other variables or information captured by Google con-

nected devices. Wider factors might include topography, road quality,

and speed limits, while information collected from connected devices

might include traffic caused by a car breaking down, a slow driver, or

weather.

In this context, we would assume that data captured by Google

connected devices would override the estimates of the model.

Described another way, if Google has information that a road is poor

quality, on a steep hill, and that it is the busiest day of the week and

time of the day (implying that a road is likely to be relatively slow for

vehicles according to the model), but connected devices are reporting

that vehicles are travelling quickly, we would assume that Google

would eventually conclude that this is a relatively fast route for cars

and provide estimates accordingly. Similarly, for the opposite case,

data from connected devices should allow Google to correctly predict

slower travel times on roads even if an ex-ante estimate suggested

relatively fast travel speeds. Over a long period of time, during which

many data points are collected, Google estimates should improve sig-

nificantly by this means.

Importantly, the extent to which Google can account for certain

unpredictable events (e.g., a car breaking down) will likely still depend

on timely data from connected devices. All else constant, this factor

will be most prominent for shorter trips where there are fewer

opportunities for alternative routes to avoid such events. We would,

therefore, expect that the difference between a basic model of the

transport network and a more complicated (and, by assumption, more

accurate) model, such as that used by Google, would be largest for

shorter trips and smallest for longer trips.

The failure of the just mentioned hypothesis for trips starting

from informal settlement areas, with the model we have developed

providing a similar degree of accuracy for shorter and longer trips,

maybe explained in three (non-exclusive) ways. First, as with any sta-

tistical analysis, there is the potential that these results are a statistical

artefact. This is mitigated to some degree by the number of observa-

tions and by the different specifications of the model presented. Sec-

ond, the elements of the basic model may be a better fit for trips from

informal settlements over shorter distances. In other words, charac-

teristics left out of our model, including topography, weather, and car

accidents may only have a small effect on travel times from informal

settlement areas. This seems unlikely as the informal settlements are

in different parts of the city and adjacent in many cases to wealthier

areas (see Figure 2). Further, one would not expect some of these fac-

tors (a car breaking down or an unexpected rainstorm) to be signifi-

cantly correlated with the wealth of the neighbourhood car passing

through.

Finally, Google travel times from the informal settlement areas of

the city may not include the same amount and quality of on-the-

ground data as they are able to access from wealthier areas, forcing

Google to provide less accurate estimates. We would emphasise that

these results call for further research to be verified. However, there is

reason to think, the third of these explanations could be the cause of

these results. Only approximately one-third of the population has a

smartphone in India in 2019 (Statista, 2019). The vast majority of

these devices are Android, but ownership is skewed towards the

wealthier population (ibid). And among the poorer population, some

share a device or leave it at home for safety purposes, further reduc-

ing their visibility in data collected. These factors suggest that there is

a causal pathway that could lead to lower quality travel time estimates

from poorer areas.

While concerns around systematic biases in Big Data sets are well

established (Batty et al. 2012; Kwan, 2018), a number of authors have

implicitly made the assumption that these biases are not large enough

to be a concern in analyses of Google data. In addition, the exact

nature of these biases remains poorly explored. Here, we find some

evidence to suggest the existence of spatial and temporal limitations

of Google data, which may have a social consequence: reduced quality

of travel time data for informal settlement populations with implica-

tions for urban policymaking, and inclusive urban development.

It should be noted that on-the-ground assessment to confirm

these findings, or comparison with a city-based transport model, was

not possible. Nonetheless, these latter analyses raise wider concerns

about the use of Big Data for informing urban policies, plans, and

programmes. If there is no transparency around the quality of data

and the way it has been processed there may be significant limits to

the extent that surprising results can be explained, leading to concerns

about datasets as a whole. This issue is particularly evident in our
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findings around the days Hubballi-Dharwad faced flooding but apply

also to the findings on the differences between informal and non-

informal settlements, and the impact of the BRT. And since the data

available is wide but thin, that is, massive in the quantity of informa-

tion but lacking in number of variables, corroborating the results with

other datasets is challenging.

Important in this context is that the potential for errors in the

data is known, but the nature of these errors is not. This is in contrast

with conventional transport modelling methods where the exact

nature of errors is unknown, but comparisons with other datasets can

be used to determine confidence levels and indications of bias. Big

Data sources rarely come with a detailed methodology, quality assur-

ance, or user manual of any kind. On the contrary, Big Data is often

described as speaking for itself (Villanueva et al., 2016). But, if the

data is of questionable validity—and therefore, does not speak for

itself—there may be some irony in using it for ex-post analysis.

For policymakers, the key concern in this context regards

unintended consequences. An individual's travel app that does not

work during poor weather may lead to a dangerous travel decision,

but more likely leads only to a lengthy commute. A transport planner

basing a policy or project on data that only considers fair weather, by

contrast, may lead to a city gridlocked for the course of the monsoon.

For the academic community, the specific aspects of urban life

that are misrepresented or that fall between the columns of ever more

impressive datasets may be a secondary, if critical, issue. Faced with a

new age of seemingly limitless information, more fundamental ques-

tions may consider the ways algorithmic governance expands the

capacity to govern by replacing or crowd out other forms of knowl-

edge and power.

Reflecting on waves of enthusiasm for more “scientific”
approaches to urban planning over recent decades, Duminy and Par-

nell (2020) remind us that the debates between “interpretivists” and

“positivists” are old, well defined, and possibly growing more acrimo-

nious. A practical path forward may lie with efforts to emphasise the

value in different ways of generating urban knowledge. Big Data pro-

vides increasing rapid and analytically robust means of addressing spe-

cific questions. The robustness of the framing of those questions, and

whether results hold wider significance, however, may be better

informed by a wider plurality of urban methods and approaches,

including the citizen science movements (Callaghan, Poore, Major,

Rowley, & Cornwell, 2019), citizens' assemblies (Van Crombrugge,

2020), urban labs (Acuto, Dickey, Butcher, & Washbourne, 2021), par-

ticipatory games (Andreotti, Speelman, Van den Meersche, &

Allinne, 2020), and a burgeoning set of wider methods that are being

applied in a growing number of urban areas (Creasy, Lane, Owen,

Howarth, & van der Horst, 2021).

6 | CONCLUSIONS

Google Maps and other sources of Big Data present an emerging

opportunity for policymaking in transport and more widely. The

extent to which these approaches can be relied upon, however,

depends on the value they add to analysis weighed against the new

limitations and sources of uncertainty they generate. To date, quanti-

tative analysis has placed a much greater focus on the opportunities.

Here, we contribute to what we hope will be a growing field of analy-

sis assessing the quantitative shortcomings of Big Data approaches

for informing policymaking, and how these may be overcome, where

efforts are made to understand the lived realities behind the data and

the complementarities between Big Data and wider methods of

knowledge generation in urban areas.

Future analysis in this field can be targeted to three areas. First,

analysis can explore the existence and extent of disparities between

the value of Big Data for populations from different socio-economic

backgrounds. This analysis is essential to understand the extent and

possible consequences for sustainable development, especially in rap-

idly growing urban areas where the vast majority of infrastructure is

yet to be built. Second, analysis is needed to “truth” the proliferation

of Big Data sources with on-the-ground realities. This can help to

determine the key areas new data sources have shortcomings and

advantages relative to established sources of information

and methods of analysis. Finally, interdisciplinary work that explores,

both conceptually and in practical terms, the ways empirical and quali-

tative urban data sources can be integrated is needed to ensure wider

methods of knowledge generation in urban areas can complement the

growing proliferation of Big Data.
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ENDNOTE
1 During the preceding 3 days and continuing through Monday night the

wider area and Hubballi-Dharwad received several meters of rain.

Flooding during this period made it one of the most severe monsoon

seasons on record (The Times of India, 2019).
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