

This is a repository copy of *Targeting KNa1.1 channels in KCNT1-associated epilepsy*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/174791/

Version: Accepted Version

Article:

Cole, BA, Clapcote, SJ, Muench, SP et al. (1 more author) (2021) Targeting KNa1.1 channels in KCNT1-associated epilepsy. Trends in Pharmacological Sciences. ISSN 0165-6147

https://doi.org/10.1016/j.tips.2021.05.003

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Targeting K _{Na} 1.1 channels in <i>KCNT1</i> -associated epilepsy
2	
3	Bethan A. Cole, Steven J. Clapcote, Stephen P. Muench, and Jonathan D. Lippiat*
4	School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
5	
6	*Correspondence: j.d.lippiat@leeds.ac.uk
7	
8	Keywords: Epilepsy, EIMFS, (AD)SHE, KCNT1, KNa1.1, potassium channel
9	
10	Abstract
11	
12	Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known
13	potassium channel subunit, K_{Na} 1.1, are associated with developmental and epileptic
14	encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking
15	hyperexcitable K_{Na} 1.1 channels with quinidine, a class I antiarrhythmic drug, has shown
16	variable success in patients due in part to dose-limiting off-target effects, poor blood-brain-
17	barrier penetration and low potency. In recent years, high-resolution cryo-EM structures of
18	the chicken K_{Na} 1.1 channel in different activation states have been determined, and animal
19	models of the diseases have been generated. Alongside increasing information about the
20	functional effects of GOF pathogenic variants on K_{Na} 1.1 channel behaviour and how they
21	lead to hyperexcitability, these tools will facilitate development of more effective treatment
22	strategies. Here, we review the range of KCNT1 variants and their functional effects,
23	challenges posed by current treatment strategies, and recent advances in finding more
24	potent and selective therapeutic interventions for KCNT1-related epilepsies.

25 KCNT1 mutations are associated with treatment-resistant epilepsies

26

27	To date, upwards of 50 distinct missense gain-of-function (GOF) pathogenic variants of
28	KCNT1 have been associated with severe, refractory, developmental and epileptic
29	encephalopathies (DEE)[1]. KCNT1 encodes the largest known potassium channel subunit,
30	K_{Na} 1.1 (Slack, or previously Slo2.2 or K_{Ca} 4.1), which forms a tetrameric Na ⁺ -activated K ⁺
31	channel. K_{Na} 1.1 and the closely-related K_{Na} 1.2 (encoded by <i>KCNT2</i>) subunits have distinct
32	expression patterns in the central nervous system (CNS) [2,3] but also co-localise in some
33	regions, and can form heteromeric co-assemblies [4,5]. In normal physiology, K_{Na} channels
34	are responsible for generation of the slow afterhyperpolarisation (AHP, see glossary)
35	following single action potentials [6,7] or bursts of action potential firing [8]. K_{Na} channels
36	have also been implicated as an important determinant of the resting membrane potential
37	and intrinsic excitability in a number of cell types in the CNS [9,10] and in arterial smooth
38	muscle [11].
39	
40	Channelopathies of K ⁺ channels are found in a number of epilepsies, arising from both loss-
41	of-function (LOF) and GOF mutations [12]. KCNT1 pathogenic variants appear to cause
42	significantly more severe clinical phenotypes, accompanied by intellectual and psychomotor
43	disabilities. The phenotypic spectrum is becoming increasingly broad, and inhibition of
44	overactive K_{Na} 1.1 by class I antiarrhythmic quinidine as a treatment strategy has had limited

- 45 success [13-26]. However, there is accumulating information about the mechanisms
- 46 underlying the GOF effect of DEE-related *KCNT1* pathogenic variants. This, coupled with
- 47 high-resolution structures of the inactive and active states of K_{Na}1.1 generated by cryogenic

48 electron microscopy (cryo-EM) [27], has provided new opportunities for developing
49 therapeutic interventions.

50

51 Range of KCNT1 disorders

52

53 Pathogenic *KCNT1* variants were first identified in two distinct epilepsies; epilepsy of infancy 54 with migrating focal seizures (EIMFS) and autosomal-dominant or sporadic sleep-related 55 hypermotor epilepsy ((AD)SHE) [28,29]. EIMFS is characterised by recurrent migrating, 56 polymorphous seizures, with a typical age of onset before 6 months, after which frequency 57 of seizures increases. The disorder is accompanied by other severe comorbidities such as 58 developmental disorders [30,31] and delayed motor function [32]. Following onset, patients 59 may lose all psychomotor skills previously developed [30]. KCNT1 pathogenic variants have been identified as the most prevalent variants in patients with EIMFS through whole exome 60 61 sequencing (WES) studies and result in large increases in K_{Na}1.1 current amplitude when 62 mutated channels are expressed in vitro [28,32]. Most EIMFS-associated KCNT1 pathogenic 63 variants are *de novo*, though three separate cases of somatic mosaicism have been 64 identified [17,31,33]. The disorder is accompanied by other severe comorbidities such as 65 developmental and psychiatric disorders [30,31] and delayed motor function [32]. Following 66 onset, patients may lose all psychomotor skills previously developed [30]. 67 68 (AD)SHE, clinically, is a less severe disorder, characterised by motor seizures occurring 69 during sleep, and a mean age of onset of 6 years old [29]. Seizures are, like EIMFS,

70 accompanied by cognitive disabilities. This separates them from (AD)SHE associated with

other genes, such as those encoding nicotinic acetylcholine receptor subunits. Furthermore,

72 (AD)SHE arising specifically from *KCNT1* is defined by more severe seizures and an earlier
73 age of onset than other forms of (AD)SHE [29].

75	KCNT1 variants have been linked to other hyperexcitability disorders with psychomotor and
76	developmental defects, including Ohtahara syndrome [2,3], Lennox-Gastaut syndrome [26]
77	and Status Dystonicus [34]. There have also been reported cases of West syndrome,
78	leukoencephalopathies and Brugada syndrome [31]. Only one heterozygous LOF variant,
79	causing impaired K_{Na} 1.1 trafficking, has thus far been reported in a patient that exhibited
80	severe generalised seizures and delayed myelination [35,36]. Cardiac effects have been
81	more recently reported, with pathogenic KCNT1 variants linked to systemic-to-pulmonary
82	artery collateral-mediated heart disease, or 'collateralopathy' [37-39].
83	
84	Structure and function of K _{Na} 1.1
85	
85 86	K _{Na} 1.1 is a member of the SLO subfamily of K ⁺ channels [40], which exhibit unusually high
	K_{Na} 1.1 is a member of the SLO subfamily of K ⁺ channels [40], which exhibit unusually high conductance, and are encoded by four genes in mammals [41]. K_{Na} 1.1 subunits have
86	
86 87	conductance, and are encoded by four genes in mammals [41]. K_{Na} 1.1 subunits have
86 87 88	conductance, and are encoded by four genes in mammals [41]. K_{Na} 1.1 subunits have structural and functional similarities to other K ⁺ channels, such as K_{Ca} 1.1 (BK _{Ca}) and the K _v
86 87 88 89	conductance, and are encoded by four genes in mammals [41]. K_{Na} 1.1 subunits have structural and functional similarities to other K ⁺ channels, such as K_{Ca} 1.1 (B K_{Ca}) and the K_{v} family of voltage-gated K ⁺ channels. K_{Na} 1.1 subunits are, like K_{v} channels, composed of six
86 87 88 89 90	conductance, and are encoded by four genes in mammals [41]. K_{Na} 1.1 subunits have structural and functional similarities to other K ⁺ channels, such as K_{Ca} 1.1 (B K_{Ca}) and the K_{v} family of voltage-gated K ⁺ channels. K_{Na} 1.1 subunits are, like K_{v} channels, composed of six transmembrane helices and a loop between the S5 and S6 domains that forms the
86 87 88 89 90 91	conductance, and are encoded by four genes in mammals [41]. K _{Na} 1.1 subunits have structural and functional similarities to other K ⁺ channels, such as K _{Ca} 1.1 (BK _{Ca}) and the K _v family of voltage-gated K ⁺ channels. K _{Na} 1.1 subunits are, like K _v channels, composed of six transmembrane helices and a loop between the S5 and S6 domains that forms the selectivity filter [27,42]. The channel is weakly voltage-gated and mechanisms underlying its

- 95 subfamily members, however, K_{Na}1.1 has a large intracellular C-terminal domain containing
 - 4

two regulation of conductance of K⁺ (RCK) domains, and also multiple consensus sites for
PKC phosphorylation [27,42]. The C-terminal also contains a nicotinamide adenine
dinucleotide (NAD⁺) binding domain believed to be involved in potentiating channel activity
[44].

100

101 K_{Na}1.1 is primarily Na⁺-activated, despite its weak voltage-sensitivity; in the absence of 102 intracellular Na⁺, wildtype (WT) K_{Na}1.1 channels show almost no activity in whole-cell patch 103 clamp experiments [45]. Mutational studies have implicated the RCK domains in conferring 104 Na⁺ sensitivity of both K_{Na}1.1 and K_{Na}1.2 [46,47], though this is yet to be corroborated by 105 structural data. The exact mechanisms of channel gating have not been elucidated; there is 106 a narrowing of the intracellular pore vestibule by movement of the S6 helices to the 107 'closed', Na⁺-unbound state, yet there remains sufficient access to the selectivity filter by K⁺ 108 ions [27]. This, and other recent functional studies of K_{Na}1.1 and closely related K_{Na}1.2, point 109 away from a canonical **S6 helix bundle-crossing** as the mechanism of activation gating 110 [48,49]. Rather, it is possible that the channel is gated either by a hydrophobic gating 111 mechanism or selectivity filter gating mechanism. This is similar to a number of other K⁺ 112 channels that lack features of widely-accepted canonical mechanisms of voltage gating, for 113 example an S6 helix bundle-crossing and VSD [50-53].

114

Pathogenic GOF variants associated with DEEs are clustered in 'hotspots' in the channel structure thought to be involved with gating; particularly around the RCK and NAD⁺ binding domains. Pathogenic variants are also found in the pore-forming region on the S5 and S6 helices, and one pathogenic variant has been reported on the S3 helix (Figure 1), which together with those in the intracellular domains may reflect disruption of a range of protein

120 regions that are critical for channel activation. It was earlier suggested that location of 121 mutation on the channel structure could be related to clinical phenotype [54], however 122 G288S located on the S5 helix, and R398Q located on RCK1, have since been reported to 123 cause both (AD)SHE and EIMFS [32,33]. Several mechanisms have been proposed for how 124 pathogenic variants may lead to GOF, such as changes in Na⁺ sensitivity [17,55,56] or 125 increased maximum probability of opening (P_0) [56]. Other studies have shown that 126 pathogenic variants increase cooperative gating between channels in the same patch 127 excised from *Xenopus* oocytes [32], or cause K_{Na}1.1 to be in a constitutively phosphorylated-128 like state, as a result of altered interactions with binding proteins such as Phosphatase and 129 Actin Regulator 1 (Phactr1) [28,57,58]. Though pathogenic variants may alter channel 130 activity through different mechanisms, the overall effect is GOF characterised by an increase 131 in outward current amplitude, and a shift in the half-maximal activation voltage in the 132 hyperpolarising direction [14,55].

133

134 Missense KCNT1 variants are almost always heterozygous, with patients carrying only one 135 mutated allele. Only one patient with Ohtahara syndrome has been reported as 136 homozygous, as a result of uniparental disomy [59]. Due to the severity of phenotypes 137 resulting from heterozygous KCNT1 pathogenic variants, it is unlikely that homozygous 138 patients would survive. Most efforts to functionally characterise KCNT1 pathogenic variants 139 involve expression of homomeric mutant channels. Recently, the implications of 140 heterozygous KCNT1 pathogenic variants [14,55] or KCNT2 pathogenic variants in co-141 assembly with KCNT1 [5] on channel function have been studied in vitro using co-142 expression. These studies show heteromeric variant/WT channels behave with 143 characteristics 'intermediate' between WT and pathogenic variant homomeric channels. In

general, however, there is an absence of information concerning the functional and kineticeffects of heterozygous pathogenic variants.

146

147 Treatments and their rationale

148

KCNT1-related epilepsies are intractable, with conventional therapies only temporarily
alleviating symptoms. Antiarrhythmic drugs quinidine and bepridil are efficacious at
inhibiting WT and pathogenic variant K_{Na}1.1 channels expressed in *Xenopus* oocytes and
mammalian cells [14,54,55,60,61]. A third antiarrhythmic drug, clofilium, has also been
found to inhibit WT channels *in vitro* [62]. These inhibitors are non-selective and inhibit
multiple ion channels, including cardiac cation channels [55,60,62], and only quinidine has
been trialled in patients.

156

157 Quinidine is a less potent inhibitor than bepridil; the drugs inhibit WT K_{Na}1.1 expressed in 158 mammalian cells with IC₅₀ values in the order of 100 μ M and 1 μ M, respectively [55,60,61]. 159 Both have been tested against several pathogenic KCNT1 variants in whole-cell and single 160 channel patch clamp experiments [14,34,54,55,61]. When applied to two EIMFS-causing 161 variants, M516V and G288S, bepridil inhibited K_{Na}1.1 current more potently compared to 162 WT [55]. The same effect was reported when quinidine was tested against (AD)SHE-causing 163 variant Y796H [61]. This raises the possibility that the inhibitors exert an open-channel block 164 and the increase in channel activity with pathogenic K_{Na}1.1 variants may potentiate binding 165 by quinidine and bepridil [14,55].

167	Clinically, quinidine has led to variable results. One study reported only 20% of patients to
168	have more than 50% reduction in seizures, and another found 45% to have more than 25%
169	reduction [15,63]. Furthermore, in vitro efficacy does not fully translate to clinical efficacy;
170	clinical and in vitro effects of quinidine and other drugs are summarised in Table 1. For
171	example, despite promising inhibition of the variant Y796H expressed in Xenopus oocytes
172	and HEK293 cells [54,61], there was no improvement in (AD)SHE symptoms or
173	accompanying developmental symptoms [18]. On the other hand, whilst quinidine was not
174	as effective at reducing K629N K_{Na} 1.1 currents as other variants, seizure frequency in a
175	patient carrying this EIMFS-causing variant was reduced by 80% [18,54]. In another EIMFS
176	patient, significant reduction of seizure frequency and developmental defects were
177	reported following quinidine therapy [13]. Since heteromeric channels comprising WT and
178	mutated subunits have properties intermediate of channels comprising WT or mutated
179	subunits alone [14,55], efficacy of K_{Na} 1.1 inhibitors may also be influenced by this.
179 180	subunits alone [14,55], efficacy of K_{Na} 1.1 inhibitors may also be influenced by this.
	subunits alone [14,55], efficacy of K_{Na} 1.1 inhibitors may also be influenced by this. Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach
180	
180 181	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach
180 181 182	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB
180 181 182 183	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB effectively is desirable, due to the abundance of K _{Na} 1.1 in the CNS [2,3]. No studies have
180 181 182 183 184	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB effectively is desirable, due to the abundance of K _{Na} 1.1 in the CNS [2,3]. No studies have reported cerebrospinal fluid (CSF) concentration of quinidine in patients with <i>KCNT1</i> -related
180 181 182 183 184 185	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB effectively is desirable, due to the abundance of K _{Na} 1.1 in the CNS [2,3]. No studies have reported cerebrospinal fluid (CSF) concentration of quinidine in patients with <i>KCNT1</i> -related DEEs. Previously, CSF levels of quinidine in humans were measured as between 4-37% of
180 181 182 183 184 185 186	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB effectively is desirable, due to the abundance of K _{Na} 1.1 in the CNS [2,3]. No studies have reported cerebrospinal fluid (CSF) concentration of quinidine in patients with <i>KCNT1</i> -related DEEs. Previously, CSF levels of quinidine in humans were measured as between 4-37% of unbound serum concentration [64], suggesting that even at therapeutic circulating
180 181 182 183 184 185 186 187	Quinidine has poor blood-brain-barrier (BBB) penetration and may not reach therapeutically-significant concentration in the CNS [13,18]. A drug that crosses the BBB effectively is desirable, due to the abundance of K_{Na} 1.1 in the CNS [2,3]. No studies have reported cerebrospinal fluid (CSF) concentration of quinidine in patients with <i>KCNT1</i> -related DEEs. Previously, CSF levels of quinidine in humans were measured as between 4-37% of unbound serum concentration [64], suggesting that even at therapeutic circulating concentrations, lower levels reach the CNS. Varying serum quinidine concentrations have

of 100 µM [55,60,61], it is unsurprising that clinical success is limited. Fitzgerald *et al* [15]
reported subtherapeutic levels of quinidine in more than half of the patients in their cohort.
Increasing the serum concentration to reach therapeutic levels may lead to off-target
effects, as was found in a randomised trial in 6 adult patients presenting with *KCNT1*-related
(AD)SHE (Australian Therapeutic Goods Administration Clinical Trial Registry, number
2015/0151) [19].

197

198 Combination therapy with hepatic cytochrome P450 enzyme-inducers, such as 199 phenobarbital and phenytoin, may hinder quinidine effectiveness by inducing its 200 metabolism and lowering serum concentrations by as much as 50%. This has been 201 evidenced in a patient with EIMFS resulting from two KCNT1 variants, R356W and 202 P724_L728 dup, though the second is of unknown significance. Serum levels of quinidine 203 were undetectable prior to discontinuation of concurrent phenobarbital administration [21]. 204 Similarly, two patients with EIMFS resulting from KCNT1 pathogenic variants, G288S and 205 A934T, had decreased quinidine serum concentration resulting from combination therapy 206 with phenobarbital [24].

207

Bepridil, quinidine, and clofilium all present a problem with selectivity when used
therapeutically for epilepsies. Bepridil is primarily an L-type Ca²⁺ channel blocker, but also
inhibits fast inward Na⁺ current through voltage-gated Na⁺ channels in a similar manner to
lidocaine [66]. Quinidine inhibits human *ether-a-go-go*-related gene (hERG) K⁺ channels
expressed in HEK293 cells with an IC₅₀ of 0.41 µM [67], which is several orders of magnitude
more potent than an IC₅₀ in the order of 100 µM required to inhibit K_{Na}1.1 expressed in
mammalian cells [55,60,61]. Since all three inhibitors are potent inhibitors of hERG

215	channels, adverse cardiac effects may arise from their clinical use [13]. The hERG channel
216	current is responsible for termination of the cardiac action potential, and inhibition can
217	induce Torsades de Pointes ventricular arrhythmia, mimicking the type-2 long-QT (LQT)
218	syndrome phenotype [68]. Though some reports suggest increasing dosage and
219	consequently serum concentration in some patients may lead to LQT-like side effects,
220	Fitzgerald et al [15] found there to be no relationship between blood quinidine level and
221	propensity for prolonged QTc interval . This raises the possibility that a prolonged QTc
222	interval can present even with subthreshold concentrations of quinidine. There is an unmet
223	need for more potent and selective inhibitors of K_{Na} 1.1 that supress the effects of GOF
224	pathogenic variants.
225	
226	Mode of action of known inhibitors
227	
228	Whilst the mechanism of action of K_{Na} 1.1 inhibitors was previously unknown, inhibition of
229	hERG channels by quinidine, bepridil and clofilium has been investigated in-depth. These
230	drugs block hERG by interacting with aromatic side chains of residues lining the inner pore
231	vestibule, which is largely hydrophobic, from the intracellular side. It is predicted that
232	inhibitors cross the plasma membrane and block the channel intracellularly [61]. A
233	phenylalanine residue located in the hERG channel pore, F656, was identified as a common
234	determinant of inhibition by the three inhibitors [69-72]. This led to the hypothesis that
235	quinidine and bepridil also bind to the inner pore vestibule of K_{Na} 1.1. A combination of <i>in</i>
236	silico modelling of quinidine and bepridil binding within the pore (Figure 2), utilising
237	structures of the chicken K_{Na} 1.1 channel and mutational analysis of the human K_{Na} 1.1
238	channel, supported this [61]. Indeed, the residue identified as important for quinidine and

239	bepridil binding to K_{Na} 1.1, F346, is the equivalent phenylalanine to that determining hERG
240	inhibition by quinidine, clofilium, and bepridil [69-72]. The same residue has also been
241	implicated in an EIMFS-causing KCNT1 pathogenic variant, F346L and is thus far the only
242	variant found to be completely insensitive to inhibition by quinidine in vitro, when
243	expressed in <i>Xenopus</i> oocytes [17].
244	
245	A number of small molecule inhibitors have been identified that inhibit the channel with

246 low- and sub-micromolar potencies. A combination of structure-based virtual screening 247 using a K_{Na}1.1 cyro-EM structure, and ligand-based virtual screening using bepridil as 248 reference, were used to identify inhibitors from a virtual library of 100,000 compounds. It 249 was proposed that the inhibitors had a similar mechanism of action to quinidine and 250 bepridil, blocking the channel via the intracellular vestibule (Figure 2). Furthermore, two of 251 the compounds had limited cytotoxicity and did not inhibit hERG channels in preliminary 252 toxicity screens. It is noteworthy that the two compounds identified that were structurally-253 similar to be ridil almost completely inhibited hERG channels at 10 μ M [61]. As well as 254 identifying potential pharmacophores, starting points for more potent inhibitors of K_{Na}1.1, 255 or tools to study the channel further, this work highlights the use of cryo-EM-derived 256 structures of membrane proteins for structure-based drug discovery. Though the structure 257 determined by Hite and MacKinnon [27] was that of chicken rather than human K_{Na}1.1, they 258 share 84% sequence homology. The success when testing the compounds against the 259 human K_{Na}1.1 channel demonstrates that proteins very close to the human structure can be 260 utilised in the absence of the desired structure.

261

262 More recently, a potent small molecule inhibitor, VU0606170, was identified using a high-263 throughput thallium flux screen. This compound inhibited WT channels expressed in 264 HEK293 cells with an IC₅₀ of 1.84 μ M, and EIMFS-causing pathogenic variant A934T with an 265 IC_{50} of 1.16 μ M. Further selectivity experiments found this compound to be inactive against 266 K_{Na}1.2, K_{Ca}1.1, GIRK1/2, K_v2.1, TREK1 potassium channels, and Ca_v3.2 and Na_v1.7. Though 267 the compound inhibited hERG channels to some degree, the potency was lower than 268 bepridil. Importantly, VU0606170 reduced the firing rate of hyperexcitable cultured cortical 269 rat neurons, providing evidence that selective K_{Na}1.1 inhibition may act to diminish 270 hyperexcitability [73]. Similarly, using another well-established high-throughput screen and 271 functional assays, Griffin et al [74] identified and characterised a small molecule inhibitor 272 with *in vivo* activity. Compound 31, an optimised derivative of a hit from a high-throughput 273 rubidium flux screen, reduced both seizure frequency and interictal spikes in a mouse 274 model of EIMFS-causing pathogenic variant P924L (mP905L). Compound 31 inhibited human 275 WT and mP905L channels in vitro with nanomolar and low micromolar potency respectively, 276 and was selective for K_{Na}1.1 channels over hERG, Na_v1.5, Ca_v1.2, I_{Ks}, K_{Ca}1.1, and K_{Na}1.2 [74]. 277 It is surprising that both VU0606170 and Compound 31 are both selective for K_{Na}1.1 over 278 K_{Na}1.2 channels, considering their high sequence homology; sharing 78% sequence identity 279 and differing by only one residue in the pore vestibule. Whilst it is possible that these 280 molecules target different and less well-conserved domains of the channel, the reduced potency of Compound 31 with F346L K_{Na}1.1 and the importance of trifluoromethyl groups 281 282 for potency, which in BC12 and BC14 were found to dock between the pore and S5 helices 283 [61] (Figure 2B), suggest that Compound 31 binds the channel pore in a similar manner. 284

- 285 **Potential new inhibitor modalities**
 - 12

286

To date, the literature principally describe K_{Na}1.1 pore-blocking drugs, a mechanism linked
to non-selectivity due to similarity in structure and pore-lining residues between different K⁺
channel subunits. Advances in structure-based drug design and information about the
underlying mechanisms of GOF pathogenic variants may give rise to alternative modalities
for therapeutics. Targeting other domains, such as those involved in ligand binding and
activation by ether Na⁺ or NADP, may provide alternative pharmacological opportunities.

294 Though many K⁺ channels have conserved sequences, particularly around the selectivity 295 filter and pore-forming region, RCK domains on the C-terminus are one of the features 296 separating SLO channels from other eukaryotic K⁺ channels [41]. Moreover, the RCK 297 domains of K_{Na}1.1 and K_{Na}1.2 deviate further from those of other members of the SLO 298 family due to the channel being activated by intracellular Na⁺. In place of the Ca²⁺-bowl possessed by K_{Ca} 1.1 channels, which enables Ca^{2+} activation, the $\alpha Q'$ helix of K_{Na} 1.1 is 299 300 extended across the assembly interface between RCK domains of adjacent subunits [42]. 301 Though homomeric pathogenic variant K_{Na}1.1 channels are shown to have some activity in 302 the absence of intracellular Na⁺ [55,56], the behaviour of heteromeric pathogenic variant 303 and WT channels in the absence of Na⁺ has not been widely explored. It is possible that an 304 antagonist acting at the Na⁺- binding site of the channel could diminish the effects of GOF 305 pathogenic variants effectively, without residual activity in heteromeric channels.

306

Previous work using a combination of homology modelling, molecular simulations and
mutagenesis has highlighted a conserved aspartate residue as being important for Na⁺sensitivity of rat K_{Na}1.1 [46] and K_{Na}1.2 [47] channels. In K_{Na}1.1, rH823 and rD818 (hH844

310 and hD839) are part of a proposed Na⁺-binding motif, DXRXXH, which is responsible for Na⁺ 311 sensitivity in G protein-coupled inwardly- rectifying K⁺ (GIRK) channels. Mutation of the 312 aspartate in this motif to neutral or positively-charged residues significantly reduced, but 313 did not abolish, Na⁺-sensitivity of the channel expressed in *Xenopus* oocytes [46]. This model 314 of Na⁺-activation does not align well with the since determined K_{Na}1.1 channel structure, 315 with the conserved loop containing this motif, including the equivalent aspartate side-chain 316 (cD812 in chicken K_{Na} 1.1), remaining in the same conformation in the active and inactive 317 channel states [27]. Further information is required on the location of the residues involved 318 in Na⁺-binding to the RCK domains, and the mechanisms by which Na⁺-binding leads to 319 K_{Na}1.1 activation. Similarly, whether the NADP binding site can be targeted to prevent the 320 modulatory effects of NADP on Na⁺-activation [44] has yet to be explored.

321

322 K_{Na}1.1 has a number of modulatory cytoplasmic binding partners that could potentially be 323 targeted. For example, Fragile X Mental Retardation Protein (FMRP) increases Po of K_{Na}1.1 324 [75], and TMEM16C directly interacts with K_{Na}1.1 subunits to increase Na⁺ sensitivity and 325 increase channel activity [76]. SCYL1 has also been found to increase Po of K_{Na}1.1 when the 326 two proteins are co-expressed in *Xenopus* oocytes, and their overlapping expression 327 patterns in mouse brain regions suggests this binding protein may regulate K_{Na}1.1 activity in 328 neurons [77]. Preventing the physical or functional interaction with these proteins may 329 suppress hyperactive K_{Na}1.1 channel activity. Conversely, in HEK293T cells, co-expression 330 with Phactr1 suppresses rat K_{Na} 1.1 current. It is hypothesised that this happens via protein 331 phosphatase 1-mediated (PP1) dephosphorylation of the channel at rS407 (hS426), the 332 critical PKC phosphorylation residue on the C-terminus of K_{Na}1.1 [58]. Suppression of K_{Na}1.1 333 by Phactr1 is disrupted by the introduction of two EIMFS-causing KCNT1 pathogenic variants

334 [57]. The interaction between K_{Na}1.1 and Phactr1 may therefore also be a useful therapeutic335 target.

337	K_{Na} 1.1 channels are activated both by intracellular Na ⁺ and voltage, whilst lacking the
338	canonical VSD that is found in other voltage-gated K ⁺ channels [42]. Understanding the
339	interactions of domains that underly the WT K_{Na} 1.1 gating mechanism would assist in
340	determining the effects of pathogenic variants on channel function, but also in finding new
341	treatment modalities. A negative allosteric modulator that uncouples the interaction
342	between Na ⁺ - binding and channel activation or affects the intrinsic closed-open transition
343	could act to suppress K_{Na} 1.1, perhaps in a similar manner to modulators of K_{Ca} 1.1 channels.
344	For example, paxilline allosterically modulates K_{Ca} 1.1, by preferentially occupying the closed
345	state and decreasing the equilibrium constant <i>L</i> described in the Horrigan-Aldrich allosteric
346	model for channel gating, with the overall effect of suppressing current [78]. L describes the
347	intrinsic closed to open channel transition in the absence of Ca ²⁺ , and no active VSD [79].
348	
349	Though it is currently unclear how GOF KCNT1 pathogenic variants may lead to
350	hyperexcitability, several mechanisms have been suggested. One such hypothesis is that
351	GOF of K_{Na} 1.1 channels expressed in GABAergic inhibitory interneurons could increase
352	hyperpolarisation [80,81]. This would dampen their inhibitory effect on excitatory
353	interneurons, leading to increased excitation. This has been evidenced by
354	electrophysiological recordings from primary cortical neurons cultured from a mouse model
355	of (AD)SHE-causing mutation Y796H, which resulted in increased K_{Na} 1.1 current at
355 356	of (AD)SHE-causing mutation Y796H, which resulted in increased K _{Na} 1.1 current at subthreshold voltages in both non-fast and fast-spiking GABAergic neurons [81]. Another

358	potentials, enabling more rapid recovery from action potentials. Voltage-gated Na $^{\scriptscriptstyle +}$
359	channels, which are responsible for the upstroke of the action potential, may become
360	inactivated and re-primed at a faster rate, increasing the rate of high frequency firing and
361	leading to hyperexcitability. The latter was evidenced by a study of potentially immature
362	iPSC-derived neurons that harbour homozygous variant P924L K_{Na} 1.1 through genome
363	editing [82]. This genotype, however, does not reflect the usual heterozygous nature of the
364	disorders and the function of homomeric mutant channels may differ from those co-
365	assembled with wild-type subunits.
366	
367	Considering the potentially neuron-subtype-specific effects of KCNT1 pathogenic variants, it
368	may be of use to target specific cell types therapeutically. Inhibiting subthreshold K_{Na} 1.1
369	current in GABAergic inhibitory interneurons [81], particularly non-fast spiking neurons,
370	could reverse the effects of pathogenic variants on membrane excitability and action
371	potential generation.
372	
372 373	Concluding remarks and future perspectives
	Concluding remarks and future perspectives
373	Concluding remarks and future perspectives Following the initial reports of pathogenic <i>KCNT1</i> variants [28,29], the broad spectrum of
373 374	
373 374 375	Following the initial reports of pathogenic <i>KCNT1</i> variants [28,29], the broad spectrum of
373 374 375 376	Following the initial reports of pathogenic <i>KCNT1</i> variants [28,29], the broad spectrum of disorders associated with K_{Na} 1.1 has become apparent. Normal function of K_{Na} 1.1 is
373 374 375 376 377	Following the initial reports of pathogenic <i>KCNT1</i> variants [28,29], the broad spectrum of disorders associated with K_{Na} 1.1 has become apparent. Normal function of K_{Na} 1.1 is important not only for regulating neuronal excitability [6-10], but also for cardiac and
373 374 375 376 377 378	Following the initial reports of pathogenic <i>KCNT1</i> variants [28,29], the broad spectrum of disorders associated with K_{Na} 1.1 has become apparent. Normal function of K_{Na} 1.1 is important not only for regulating neuronal excitability [6-10], but also for cardiac and intellectual functions [11,37,38], evidenced by the wide range of phenotypes resulting from

382	structures for the channel in different activation states [27,42], and animal models [83], will
383	aid this in future. As stated in the outstanding questions, determining how Na $^{\scriptscriptstyle +}$ acts to
384	activate K_{Na} 1.1, and the sequence of events involved in gating the channel is important in
385	understanding how pathogenic variants exert their effects. This will enable other, more
386	selective, treatment modalities to be explored that suppress K_{Na} 1.1 current and avoid off-
387	target cardiac effects.

388	Refere	ences
389		
390	1.	Stenson, P.D. <i>et al.</i> (2020) The Human Gene Mutation Database (HGMD((R))): optimizing its
391		use in a clinical diagnostic or research setting. <i>Hum Genet</i> 139, 1197-1207. 10.1007/s00439-
392		020-02199-3
393	2.	Rizzi, S. et al. (2016) Differential distribution of the sodium-activated potassium channels
394		slick and slack in mouse brain. <i>J Comp Neurol</i> 524, 2093-2116. 10.1002/cne.23934
395	3.	Bhattacharjee, A. et al. (2002) Localization of the Slack potassium channel in the rat central
396		nervous system. J Comp Neurol 454, 241-254. 10.1002/cne.10439
397	4.	Chen, H. et al. (2009) The N-terminal domain of Slack determines the formation and
398		trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J Neurosci 29,
399		5654-5665. 10.1523/JNEUROSCI.5978-08.2009
400	5.	Mao, X. et al. (2020) The Epilepsy of Infancy With Migrating Focal Seizures: Identification of
401	0.	de novo Mutations of the KCNT2 Gene That Exert Inhibitory Effects on the Corresponding
402		Heteromeric KNa 1.1/KNa 1.2 Potassium Channel. <i>Front Cell Neurosci</i> 14, 1.
403		10.3389/fncel.2020.00001
404	6.	Liu, X. and Stan Leung, L. (2004) Sodium-activated potassium conductance participates in the
405	0.	depolarizing afterpotential following a single action potential in rat hippocampal CA1
406		pyramidal cells. <i>Brain Res</i> 1023, 185-192. 10.1016/j.brainres.2004.07.017
407	7.	Franceschetti, S. <i>et al.</i> (2003) Na+-activated K+ current contributes to postexcitatory
407	7.	hyperpolarization in neocortical intrinsically bursting neurons. <i>J Neurophysiol</i> 89, 2101-2111.
408		
409 410	0	10.1152/jn.00695.2002
	8.	Yang, B. et al. (2007) Slack and Slick K(Na) channels regulate the accuracy of timing of
411	0	auditory neurons. J Neurosci 27, 2617-2627. 10.1523/JNEUROSCI.5308-06.2007
412	9.	Lee, J.H. <i>et al.</i> (2019) The local translation of KNa in dendritic projections of auditory
413		neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging
414	10	(Albany NY) 11, 11541-11564. 10.18632/aging.102553
415	10.	Reijntjes, D.O.J. et al. (2019) Sodium-activated potassium channels shape peripheral
416		auditory function and activity of the primary auditory neurons in mice. <i>Sci Rep</i> 9, 2573.
417		10.1038/s41598-019-39119-z
418	11.	Li, P. <i>et al.</i> (2019) Sodium-activated potassium channels moderate excitability in vascular
419		smooth muscle. <i>J Physiol</i> 597, 5093-5108. 10.1113/JP278279
420	12.	Villa, C. and Combi, R. (2016) Potassium Channels and Human Epileptic Phenotypes: An
421		Updated Overview. Front Cell Neurosci 10, 81. 10.3389/fncel.2016.00081
422	13.	Bearden, D. et al. (2014) Targeted treatment of migrating partial seizures of infancy with
423		quinidine. Ann Neurol 76, 457-461. 10.1002/ana.24229
424	14.	Dilena, R. et al. (2018) Early Treatment with Quinidine in 2 Patients with Epilepsy of Infancy
425		with Migrating Focal Seizures (EIMFS) Due to Gain-of-Function KCNT1 Mutations: Functional
426		Studies, Clinical Responses, and Critical Issues for Personalized Therapy. Neurotherapeutics
427		15, 1112-1126. 10.1007/s13311-018-0657-9
428	15.	Fitzgerald, M.P. et al. (2019) Treatment Responsiveness in KCNT1-Related Epilepsy.
429		Neurotherapeutics 16, 848-857. 10.1007/s13311-019-00739-y
430	16.	Madaan, P. et al. (2018) A quinidine non responsive novel KCNT1 mutation in an Indian
431		infant with epilepsy of infancy with migrating focal seizures. Brain Dev 40, 229-232.
432		10.1016/j.braindev.2017.09.008
433	17.	McTague, A. et al. (2018) Clinical and molecular characterization of KCNT1-related severe
434		early-onset epilepsy. <i>Neurology</i> 90, e55-e66. 10.1212/WNL.000000000004762
435	18.	Mikati, M.A. <i>et al.</i> (2015) Quinidine in the treatment of KCNT1-positive epilepsies. <i>Ann</i>
436		Neurol 78, 995-999. 10.1002/ana.24520

437 438	19.	Mullen, S.A. <i>et al.</i> (2018) Precision therapy for epilepsy due to KCNT1 mutations: A randomized trial of oral quinidine. <i>Neurology</i> 90, e67-e72.
439	20	10.1212/WNL.000000000004769
440	20.	Numis, A.L. <i>et al.</i> (2018) Lack of response to quinidine in KCNT1-related neonatal epilepsy.
441 442	21	Epilepsia 59, 1889-1898. 10.1111/epi.14551
442 443	21.	Passey, C.C. <i>et al.</i> (2019) Concurrent Quinidine and Phenobarbital in the Treatment of a Patient with 2 KCNT1 Mutations. <i>Curr Ther Res Clin Exp</i> 90, 106-108.
445 444		10.1016/j.curtheres.2019.02.002
445	22.	Patil, A.A. <i>et al.</i> (2019) Two South Indian Children with KCNT1-Related Malignant Migrating
446	22.	Focal Seizures of Infancy - Clinical Characteristics and Outcome of Targeted Treatment with
447		Quinidine. Ann Indian Acad Neurol 22, 311-315. 10.4103/aian.AIAN_229_18
448	23.	Takase, C. <i>et al.</i> (2020) KCNT1-positive epilepsy of infancy with migrating focal seizures
449	23.	successfully treated with nonnarcotic antitussive drugs after treatment failure with
450		quinidine: A case report. <i>Brain Dev</i> 42, 607-611. 10.1016/j.braindev.2020.05.002
451	24.	Yoshitomi, S. <i>et al.</i> (2019) Quinidine therapy and therapeutic drug monitoring in four
452		patients with KCNT1 mutations. <i>Epileptic Disord</i> 21, 48-54. 10.1684/epd.2019.1026
453	25.	Alsaleem, M. <i>et al.</i> (2019) Infantile refractory seizures due to de novo KCNT 1 mutation. <i>BMJ</i>
454		Case Rep 12. 10.1136/bcr-2019-231178
455	26.	Jia, Y. et al. (2019) Quinidine Therapy for Lennox-Gastaut Syndrome With KCNT1 Mutation. A
456		Case Report and Literature Review. Front Neurol 10, 64. 10.3389/fneur.2019.00064
457	27.	Hite, R.K. and MacKinnon, R. (2017) Structural Titration of Slo2.2, a Na+-Dependent K+
458		Channel. Cell 168, 390-399.e311. 10.1016/j.cell.2016.12.030
459	28.	Barcia, G. et al. (2012) De novo gain-of-function KCNT1 channel mutations cause malignant
460		migrating partial seizures of infancy. Nat Genet 44, 1255-1259. 10.1038/ng.2441
461	29.	Heron, S.E. et al. (2012) Missense mutations in the sodium-gated potassium channel gene
462		KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 44,
463		1188-1190. 10.1038/ng.2440
464	30.	Coppola, G. et al. (1995) Migrating partial seizures in infancy: a malignant disorder with
465		developmental arrest. Epilepsia 36, 1017-1024
466	31.	Ohba, C. <i>et al.</i> (2015) De novo KCNT1 mutations in early-onset epileptic encephalopathy.
467		<i>Epilepsia</i> 56, e121-128. 10.1111/epi.13072
468	32.	Kim, G.E. <i>et al.</i> (2014) Human slack potassium channel mutations increase positive
469		cooperativity between individual channels. <i>Cell Rep</i> 9, 1661-1672.
470	22	10.1016/j.celrep.2014.11.015
471	33.	Møller, R.S. <i>et al.</i> (2015) Mutations in KCNT1 cause a spectrum of focal epilepsies. <i>Epilepsia</i>
472 473	24	56, e114-120. 10.1111/epi.13071
473 474	34.	Gertler, T.S. <i>et al.</i> (2019) Functional consequences of a KCNT1 variant associated with status dystonicus and early-onset infantile encephalopathy. <i>Ann Clin Transl Neurol</i> 6, 1606-1615.
474 475		, , , , , , , , , , , , , , , , , , , ,
475	35.	10.1002/acn3.50847 Evely, K.M. <i>et al.</i> (2017) The Phe932IIe mutation in KCNT1 channels associated with severe
470	55.	epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel
478		phenotype. <i>Neuroscience</i> 351, 65-70. 10.1016/j.neuroscience.2017.03.035
479	36.	Vanderver, A. <i>et al.</i> (2014) Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a
480	50.	patient with leukoencephalopathy and severe epilepsy. <i>Pediatr Neurol</i> 50, 112-114.
481		10.1016/j.pediatrneurol.2013.06.024
482	37.	Kawasaki, Y. <i>et al.</i> (2017) Three Cases of KCNT1 Mutations: Malignant Migrating Partial
483		Seizures in Infancy with Massive Systemic to Pulmonary Collateral Arteries. J Pediatr 191,
484		270-274. 10.1016/j.jpeds.2017.08.057
485	38.	Kohli, U. <i>et al.</i> (2020) Cardiac phenotypic spectrum of KCNT1 mutations. <i>Cardiol Young</i> , 1-5.
486		10.1017/S1047951120002735

487	39.	Ikeda, A. et al. (2021) Recurrent pulmonary hemorrhage in juvenile patients with KCNT1
488		mutation. <i>Pediatr Int</i> 63, 352-354. 10.1111/ped.14427
489	40.	Yuan, A. et al. (2003) The sodium-activated potassium channel is encoded by a member of
490		the Slo gene family. <i>Neuron</i> 37, 765-773. 10.1016/s0896-6273(03)00096-5
491	41.	Salkoff, L. et al. (2006) High-conductance potassium channels of the SLO family. Nat Rev
492		Neurosci 7, 921-931. 10.1038/nrn1992
493	42.	Hite, R.K. et al. (2015) Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+)
494		channel. Nature 527, 198-203. 10.1038/nature14958
495	43.	Kaczmarek, L.K. (2013) Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci
496	-	2013. 10.1155/2013/354262
497	44.	Tamsett, T.J. <i>et al.</i> (2009) NAD+ activates KNa channels in dorsal root ganglion neurons. <i>J</i>
498		Neurosci 29, 5127-5134. 10.1523/JNEUROSCI.0859-09.2009
499	45.	Bhattacharjee, A. and Kaczmarek, L.K. (2005) For K+ channels, Na+ is the new Ca2+. <i>Trends</i>
500	45.	Neurosci 28, 422-428. 10.1016/j.tins.2005.06.003
501	46.	Zhang, Z. <i>et al.</i> (2010) The RCK2 domain uses a coordination site present in Kir channels to
	40.	
502		confer sodium sensitivity to Slo2.2 channels. <i>J Neurosci</i> 30, 7554-7562.
503	47	10.1523/JNEUROSCI.0525-10.2010
504	47.	Thomson, S.J. <i>et al.</i> (2015) Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium
505		Channels. <i>J Biol Chem</i> 290, 14528-14535. 10.1074/jbc.M115.653089
506	48.	Giese, M.H. et al. (2017) Molecular mechanisms of Slo2 K+ channel closure. J Physiol 595,
507		2321-2336. 10.1113/JP273225
508	49.	Garg, P. et al. (2013) Structural basis of ion permeation gating in Slo2.1 K+ channels. J Gen
509		Physiol 142, 523-542. 10.1085/jgp.201311064
510	50.	Kopec, W. et al. (2019) Molecular mechanism of a potassium channel gating through
511		activation gate-selectivity filter coupling. Nat Commun 10, 5366. 10.1038/s41467-019-
512		13227-w
513	51.	Nematian-Ardestani, E. et al. (2020) Selectivity filter instability dominates the low intrinsic
514		activity of the TWIK-1 K2P K. J Biol Chem 295, 610-618. 10.1074/jbc.RA119.010612
	52.	
515	52.	Schewe, M. et al. (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P
515 516		Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002
515 516 517	52. 53.	Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter
515 516 517 518	53.	Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988
515 516 517 518 519		 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by
515 516 517 518 519 520	53. 54.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128
515 516 517 518 519 520 521	53.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with
515 516 517 518 519 520 521 522	53. 54.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63.
515 516 517 518 519 520 521 522 522	53. 54. 55.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004
515 516 517 518 519 520 521 522 523 523 524	53. 54.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-
515 516 517 518 519 520 521 522 523 524 525	53. 54. 55. 56.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019
515 516 517 518 519 520 521 522 523 524 525 526	53. 54. 55.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma
515 516 517 518 519 520 521 522 523 524 525 526 526 527	53. 54. 55. 56.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16,
515 516 517 518 519 520 521 522 523 524 525 526 527 528	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529	53. 54. 55. 56.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1
515 516 517 518 520 521 522 523 524 525 526 525 526 527 528 529 530	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R
515 516 517 518 520 521 522 523 524 525 526 527 528 527 528 529 530 531	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy
515 516 517 518 520 521 522 523 524 525 526 527 528 529 530 531 532	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Hum Mol Genet</i> 23, 3200-3211.
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy
515 516 517 518 520 521 522 523 524 525 526 527 528 529 530 531 532	53. 54. 55. 56. 57.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Hum Mol Genet</i> 23, 3200-3211.
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533	53. 54. 55. 56. 57. 58. 59.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Hum Mol Genet</i> 23, 3200-3211. 10.1093/hmg/ddu030
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534	53. 54. 55. 56. 57. 58. 59.	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2020) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Hum Mol Genet</i> 23, 3200-3211. 10.1093/hmg/ddu030 Yang, B. <i>et al.</i> (2006) Pharmacological activation and inhibition of Slack (Slo2.2) channels.
515 516 517 518 520 521 522 523 524 525 526 527 528 529 530 531 532 531 532 533	 53. 54. 55. 56. 57. 58. 59. 60. 	 Schewe, M. <i>et al.</i> (2016) A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. <i>Cell</i> 164, 937-949. 10.1016/j.cell.2016.02.002 Lolicato, M. <i>et al.</i> (2017) K2P2.1(TREK-1):activator complexes reveal a cryptic selectivity filter binding site. <i>Nature</i> 547, 364-368. 10.1038/nature22988 Milligan, C.J. <i>et al.</i> (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. <i>Ann Neurol</i> 75, 581-590. 10.1002/ana.24128 Rizzo, F. <i>et al.</i> (2016) Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. <i>Mol Cell Neurosci</i> 72, 54-63. 10.1016/j.mcn.2016.01.004 Tang, Q.Y. <i>et al.</i> (2016) Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. <i>Cell Rep</i> 14, 129-139. 10.1016/j.celrep.2015.12.019 Fleming, M.R. <i>et al.</i> (2016) Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. <i>Cell Rep</i> 16, 2281-2288. 10.1016/j.celrep.2016.07.024 Ali, S.R. <i>et al.</i> (2010) Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). <i>FASEB J</i> 34, 1591-1601. 10.1096/fj.201902366R Martin, H.C. <i>et al.</i> (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. <i>Hum Mol Genet</i> 23, 3200-3211. 10.1093/hmg/ddu030 Yang, B. <i>et al.</i> (2006) Pharmacological activation and inhibition of Slack (Slo2.2) channels. <i>Neuropharmacology</i> 51, 896-906. 10.1016/j.neuropharm.2006.06.003

538 62. de Los Angeles Tejada, M. et al. (2012) Clofilium inhibits Slick and Slack potassium channels. 539 Biologics 6, 465-470. 10.2147/BTT.S33827 540 63. Borlot, F. et al. (2020) KCNT1-related epilepsy: An international multicenter cohort of 27 541 pediatric cases. Epilepsia 61, 679-692. 10.1111/epi.16480 542 Ochs, H.R. et al. (1980) Entry of quinidine into cerebrospinal fluid. Am Heart J 100, 341-346. 64. 543 10.1016/0002-8703(80)90148-9 544 65. Abdelnour, E. et al. (2018) Does age affect response to quinidine in patients with KCNT1 545 mutations? Report of three new cases and review of the literature. Seizure 55, 1-3. 546 10.1016/j.seizure.2017.11.017 547 Li, Y. et al. (1999) Bepridil blunts the shortening of action potential duration caused by 66. 548 metabolic inhibition via blockade of ATP-sensitive K(+) channels and Na(+)-activated K(+) 549 channels. J Pharmacol Exp Ther 291, 562-568 550 67. Paul, A.A. et al. (2002) Inhibition of the current of heterologously expressed HERG potassium 551 channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J 552 Pharmacol 136, 717-729. 10.1038/sj.bjp.0704784 553 Finlayson, K. et al. (2004) Acquired QT interval prolongation and HERG: implications for drug 68. 554 discovery and development. Eur J Pharmacol 500, 129-142. 10.1016/j.ejphar.2004.07.019 555 69. Macdonald, L.C. et al. (2018) Probing the molecular basis of hERG drug block with unnatural 556 amino acids. Sci Rep 8, 289. 10.1038/s41598-017-18448-x 557 Kamiya, K. et al. (2006) Molecular determinants of HERG channel block. Mol Pharmacol 69, 70. 558 1709-1716. 10.1124/mol.105.020990 559 71. Knape, K. et al. (2011) In silico analysis of conformational changes induced by mutation of 560 aromatic binding residues: consequences for drug binding in the hERG K+ channel. PLoS One 561 6, e28778. 10.1371/journal.pone.0028778 562 72. Perry, M. et al. (2004) Structural determinants of HERG channel block by clofilium and 563 ibutilide. Mol Pharmacol 66, 240-249. 10.1124/mol.104.000117 564 Spitznagel, B.D. et al. (2020) VU0606170, a Selective Slack Channels Inhibitor, Decreases 73. 565 Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 11, 3658-3671. 566 10.1021/acschemneuro.0c00583 567 74. Griffin, A.M. et al. (2021) Discovery of the First Orally Available, Selective KNa1.1 Inhibitor: In 568 Vitro and In Vivo Activity of an Oxadiazole Series. ACS Medicinal Chemistry Letters 12, 593-569 602. 10.1021/acsmedchemlett.0c00675 570 75. Zhang, Y. et al. (2012) Regulation of neuronal excitability by interaction of fragile X mental 571 retardation protein with slack potassium channels. J Neurosci 32, 15318-15327. 572 10.1523/JNEUROSCI.2162-12.2012 573 76. Huang, F. et al. (2013) TMEM16C facilitates Na(+)-activated K+ currents in rat sensory 574 neurons and regulates pain processing. Nat Neurosci 16, 1284-1290. 10.1038/nn.3468 575 77. Niu, L.G. et al. (2020) Slo2 potassium channel function depends on RNA editing-regulated 576 expression of a SCYL1 protein. Elife 9. 10.7554/eLife.53986 577 78. Zhou, Y. and Lingle, C.J. (2014) Paxilline inhibits BK channels by an almost exclusively closed -578 channel block mechanism. J Gen Physiol 144, 415-440. 10.1085/jgp.201411259 579 79. Horrigan, F.T. and Aldrich, R.W. (2002) Coupling between voltage sensor activation, Ca2+ 580 binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 581 120, 267-305. 10.1085/jgp.20028605 582 80. Kuchenbuch, M. et al. (2021) In silico model reveals the key role of GABA in KCNT1-epilepsy 583 in infancy with migrating focal seizures. Epilepsia 62, 683-697. 10.1111/epi.16834 584 81. Shore, A.N. et al. (2020) Reduced GABAergic Neuron Excitability, Altered Synaptic 585 Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. 586 *Cell Rep* 33, 108303. 10.1016/j.celrep.2020.108303

- 587 82. Quraishi, I.H. *et al.* (2019) An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of
 588 Human iPSC-Derived Neurons by Increasing Slack KNa Currents. *J Neurosci* 39, 7438-7449.
 589 10.1523/JNEUROSCI.1628-18.2019
- S90 83. Quraishi, I.H. *et al.* (2020) Impaired motor skill learning and altered seizure susceptibility in
 mice with loss or gain of function of the Kcnt1 gene encoding Slack (K. *Sci Rep* 10, 3213.
 10.1038/s41598-020-60028-z
- 59384.Datta, A.N. *et al.* (2019) Two Patients With KCNT1-Related Epilepsy Responding to594Phenobarbital and Potassium Bromide. *J Child Neurol* 34, 728-734.

595 10.1177/0883073819854853

- 59685.Cataldi, M. *et al.* (2019) Migrating focal seizures in Autosomal Dominant Sleep-related597Hypermotor Epilepsy with KCNT1 mutation. Seizure 67, 57-60.
- 598 10.1016/j.seizure.2019.02.019

601 <u>Glossary</u>

602

Afterhyperpolarisation: Repolarisation of the membrane potential following an action
 potential or burst of action potentials. The membrane potential falls lower than resting
 membrane potential, and this is usually facilitated by K⁺ channel activation.

606

Hydrophobic gating: In K⁺ channels gated by a hydrophobic gate, water transitions between
liquid and vapour states within the pore as it interacts with hydrophobic pore-lining
residues. In the vapour state, the pore cavity becomes 'de-wetted' or collapsed, and this
acts as a barrier to ion permeation. De-wetting is dependent on pore diameter.

611

Ligand-based virtual screening: Computer-aided drug screening technique that identifies
structurally similar compounds to a known ligand from a chemical library. These structurally
similar compounds can later be docked into the protein of interest and ranked based on
predicted binding affinity.

616

617 **QTc interval:** On an ECG, the QTc interval is defined as the time interval between the start 618 of the Q wave, and end of the T wave. This represents the onset of depolarisation, and end 619 of repolarisation of the cardiac action potential.

620

Rubidium flux screen: A high-throughput technique with the capability to screen large
libraries of compounds for K⁺ channel modulation, exploiting the ability of Rb⁺ to permeate
the channels. Cells can be pre-incubated with ⁸⁶RbCl and the degree of efflux during the
assay can be determined by liquid scintillation. Alternately, cells can be loaded with cold
RbCl and efflux determined by atomic absorption.

626

627 **S6 helix bundle-crossing:** The canonical mechanism of K⁺ channel gating. The cytoplasmic

end of S6 helices of K⁺ channel subunits converge at the bottom of the pore-forming region,

629 forming a 'bundle crossing'. Ion conduction is physically occluded by the S6 helix

630 bundle crossing and widening enables ion conduction.

- 632 Selectivity filter gating: A recently identified mechanism of K⁺ channel gating. The selectivity
 633 filter widens as a result of allosteric coupling with the activation gate, facilitated by pore634 lining transmembrane helices, to enable ion conduction.
- 635

636 Structure-based virtual screening: Computer-aided drug screening approach involving
637 docking compounds from a chemical library into a protein structure. Intermolecular
638 interactions can be predicted, and chemicals are ranked based on predicted binding
639 affinities.

- 640
- 641 Thallium flux screen: Fluorescence-based assay that utilises the permeability of TI⁺ through
- 642 K⁺ channels, to detect modulators of K⁺ channels heterologously expressed in mammalian
- 643 cells. A high-throughput technique with the capability to screen large libraries of
- 644 compounds.
- 645
- Torsades de Pointes ventricular arrhythmia: Associated with prolongation of the QTc
 interval, this acquired or inherited arrhythmia is characterised by 'twisting' of the QRS
 segment of an ECG. Torsades de Pointes can sometimes lead to ventricular fibrillation and
 cardiac arrest.
- 650

651 Figure Legends

652

653 Figure 1 Structure of the K_{Na}1.1 potassium channel and location of mutated residues. Cryo-

654 EM structure of the chicken K_{Na}1.1 channel in the active conformation (PDB: 5U70 [27]).

655 One subunit of the tetramer is coloured yellow with the residues coloured red indicating

those that are altered in the equivalent position in human K_{Na}1.1 by *KCNT1* gain-of-

657 function pathogenic variants. Figure prepared in UCSF Chimera.

658

Figure 2 Predicted interactions between K_{Na}1.1 and inhibiting compounds. A Structure of

660 the pore domain of the tetrameric chicken K_{Na}1.1 channel [27] comprising the S5, P-loop,

and S6 segments. The yellow dashed box indicates the region depicted in the figures in

panel B. B Docking poses of quinidine, bepridil, BC13, and BC14 from the study by Cole *et*

663 *al.* [61] in the K_{Na}1.1 channel pore. Compounds occupy the pore and interact with

residues in the S6 segment and also those immediately below the selectivity filter. Potency

of each of these inhibitors was reduced by mutation of a phenylalanine in S6 (shown at the

bottom of each figure) to serine [61]. Figure prepared in UCSF Chimera.

Table 1: Pathogenic variants in *KCNT1* that have been studied *in vitro* or clinically with inhibitors, their location on the channel structure, and the associated clinical phenotype.

Pathogenic variant	CDS change	Location	Associated disorder	Pharmacological modulation in vitro	Clinical response to therapies	References
R209C	c.625C>T	S3 domain	Lennox-Gastaut	N/A	Clinically significant response to quinidine	[26]
A259D	c.776C>A	S4-5 linker	EIMFS	Quinidine significantly decreased current amplitude (300 $\mu\text{M})$	No clinical response to quinidine	[20]
Q270E	c.808C>G	S5 domain	EIMFS	N/A	No clinical response to quinidine	[16,63]
					No clinical response to quinidine or ketogenic diet	_
V271F	c.811G>T	S5 domain	EIMFS	Quinidine significantly decreased current amplitude (300 μ M)	N/A	[17]
L274I	c.820C>A	S5 domain	EIMFS	Quinidine significantly decreased current amplitude (300 $\mu\text{M})$	No clinical response to quinidine	[17,63]
					Patient showed minimal response to ketogenic diet and no response to cannabidiol	_
G288S	c.862G>A	S5 domain	(AD)SHE EIMFS	Bepridil significantly more potent compared to WT IC ₅₀ for bepridil: 0.15±0.05 μM	Some patients have responded to quinidine, others have not	[15,24,55,63,7 4]
				No significant difference between inhibition of WT and mutant by quinidine IC ₅₀ for quinidine: 67±19 μM	No clinical response to quinidine, seizures worsened. Phenobarbital showed slight efficacy but discontinued due to drowsiness.	
				Inhibited by test compound 31 IC50: 221 nM	Three patients responded to quinidine, two out of the three had a marked response to ketogenic diet. The third had a marked response to cannabidiol.	_
F346L	c.1038C>G	S6 domain	EIMFS	Completely insensitive to quinidine (300 μM) in <i>Xenopus</i> oocytes	N/A	[17,74]
				Inhibited by test compound 31 IC 50: 1.77 μM		
R356W/ P724_L728 dup	c.1066C>T c.2170_2184dup 15	Bottom of S6 domain	EIMFS	N/A	Minor relief with quinidine. Interaction with phenobarbital, resulting in prolonged QTc interval.	[21]
R398Q	c. 1193G>A	RCK1 domain	(AD)SHE EIMFS	Quinidine significantly decreased current amplitude (300 $\mu\text{M})$	No clinical response to quinidine	[54,63]

Pathogenic variant	CDS change	Location	Associated disorder	Pharmacological modulation in vitro	Clinical response to therapies	References
R428Q	c.1283G>A	RCK1 domain	EIMFS	Quinidine significantly decreased current amplitude (300µM)	Patient responded to phenobarbital and potassium bromide (later died of sudden cardiac arrest). Quinidine exacerbated seizures and was discontinued.	[17,24,25,63,8 4]
					Patient responded to quinidine in combination with other antiepileptic medications and ketogenic diet	_
					>50% reduction in seizure frequency with quinidine, experienced ventricular tachycardia. Seizures unresponsive to phenobarbital, KBr, clonazepam, clobazam, levetiracetam.	_
					Patient showed marked response to ketogenic diet, some response to cannabidiol and no response to quinidine.	_
L437F	c.1309C>T	RCK1 domain	Epilepsy with status distonicus	IC₅₀ for quinidine: 66 μM	N/A	[34]
R474C	c.1420C>T	RCK1 domain	Focal epilepsy	N/A	23% reduction in seizure frequency with quinidine; not considered successful. No clinical response to conventional epilepsy therapeutics, methyl prednisolone pulse therapy, and ketogenic diet.	[24]
R474G	c.1420C>G	RCK1 domain	Multifocal seizures	N/A	Clinically significant response to phenobarbital	[84]
R474H	c.1421G>A	RCK1 domain	EIMFS	N/A	No clinical response to quinidine	[15,23,63]
					One patient responded to ketogenic diet, another showed no response to quinidine	_
					Patient responded to tipepidine and dextromethorphan	_
F502V	c.1504T>G	RCK1 domain	EIMFS	Quinidine significantly decreased current amplitude (300 $\mu\text{M})$	Clinically significant response to quinidine	[17]
M516V	c.1546A>G	RCK1 domain	EIMFS	Bepridil significantly more potent compared to WT IC ₅₀ for bepridil: 0.3±0.1 μM No significant difference between inhibition of WT and mutant by quinidine IC ₅₀ for quinidine: 46±12 μM	N/A	[55]
K629N	c.1887G>C	RCK2 domain	EIMFS	Quinidine (300 μM) less effective than when used for Y796H, R428Q and WT	Clinically significant response to quinidine; 80% decrease in seizure frequency	[18,54]

Pathogenic variant	CDS change	Location	Associated disorder	Pharmacological modulation in vitro	Clinical response to therapies	References
Ү796Н	c.2386T>C	NAD⁺ binding domain	(AD)SHE	IC ₅₀ for quinidine: 38±12.89 μM IC ₅₀ for bepridil: 12.8±2.48 μM Inhibited by test compounds BC5,6,7,12,13 and 14 with IC ₅₀ values ranging from 3.61-17.45 μM	No clinical response to quinidine	[18,61]
E893K	c.2677G>A	NAD⁺ binding domain	EIMFS	More sensitive to quinidine than WT in CHO cells IC_{50} for quinidine: $9.6\pm2.5\mu M$	Clinically significant response to quinidine; 90% reduction in seizures	[14]
M896K	c.2687T>A	NAD⁺ binding domain	EIMFS	Quinidine significantly decreased current amplitude (300 $\mu\text{M})$	Severe pulmonary vasculopathy resulting from clinical use of quinidine	[17]
M896I	c.2688 G>C	NAD ⁺ binding domain	SHE	Quinidine significantly decreased current amplitude (300 μM)	N/A	[54]
P924L	c.2771C>T	C-terminus (next to NAD ⁺ binding	EIMFS	Quinidine significantly decreased current amplitude (300 μ M)	N/A	[54,74]
		domain)		Mouse orthologue inhibited by test compound 31 IC ₅₀ : 1.012 μΜ		
R928C	c.2782C>T	C-terminus (next to NAD⁺ binding domain)	(AD)SHE	Quinidine significantly decreased current amplitude (300 μ M)	No clinical response to quinidine	[19,54]
A934T	c.2800G>A	C-terminus (next to NAD ⁺ binding domain)	EIMFS	Quinidine significantly decreased current amplitude (300 μM)	Clinically significant response to quinidine	[22,24,54,63,7 _ 3]
					Seizure frequency initially decreased, but later increased with	
				Inhibited by test compound VU0606170. IC50: 1.16 μΜ	quinidine therapy. In combination with phenobarbital and KBr, phenobarbital hindered increase in quinidine serum levels	
					One patient showed a marked response to both ketogenic diet and cannabidiol. Another responded to quinidine and low glycemic index diet. A third patient showed no clinical response to quinidine or ketogenic diet	_
R950Q	c.2849G>A	C-terminus	EIMFS	More sensitive to quinidine than WT in CHO cells IC_{50} for quinidine: 24±5.7 μM	No clinical response to quinidine. Significant reduction in seizure frequency in another patient with quinidine therapy.	[14,22,63]
					One patient showed some response to cannabidiol therapy, another showed a marked response to quinidine and some response to low glycemic index diet	-
L962P	c.2885T>C	C-terminus	EIMFS	N/A	Some clinical response to ketogenic diet	[63]

Pathogenic variant	CDS change	Location	Associated disorder	Pharmacological modulation in vitro	Clinical response to therapies	References
А966Т	c.2896G > A	C-terminus	Combination of (AD)SHE and EIMFS phenotype	N/A	Complete and persistent response to phenobarbital in patient	[85]
R1114W/ del 550	c.3340 C>T c.1649- 1651delAGC	End of C- terminus	EIMFS	Quinidine significantly decreased current amplitude of R1114W variant (300 $\mu M)$ but not del 550 variant	No clinical response to quinidine	[20]

<u>Highlights</u>

Gain-of-function pathogenic variants of *KCNT1*, the gene encoding Na⁺-activated K⁺ channel K_{Na}1.1, underlie a broad spectrum of severe and refractory developmental and epileptic encephalopathies accompanied by intellectual disabilities.

KCNT1 variants likely cause hyperexcitability by impairing GABAergic neuron excitability. Inhibition of mutant K_{Na} 1.1 channels is the current strategy to suppress hyperexcitability.

Known inhibitors block the inner pore vestibule of K_{Na} 1.1, similar to how they inhibit cardiac hERG channels. Potent inhibition of hERG is one of the limiting factors for their use, along with low potency.

Potent small-molecule inhibitors of the channel have been identified, using both high-throughput screening and *in silico* methods. These inhibitors show promise both in terms of improved selectivity for K_{Na} 1.1 and efficacy for suppressing hyperexcitable neurons.

Outstanding questions

- How is K_{Na} 1.1 activated by intracellular Na⁺?
- How do Na⁺ sensing and voltage interact to gate K_{Na} 1.1, and how is this affected by epilepsy-causing mutants?
- How does heteromeric assembly of mutant and WT K_{Na} 1.1 subunits affect inhibition and gating of the channel?

В

quinidine

BC13

bepridil

BC14