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Abstract

The understanding of large-scale rainfall microphysical characteristics plays a

significant role in meteorology, hydrology and natural hazards managements. Tradi-

tional instruments for estimating raindrop size distribution (DSD), including dis-

drometers and ground dual-polarization radars, are available only in limited areas.

However, the development of space-based radars and mesoscale numerical weather

predictionmodelswould allow forDSDestimation on a large scale. This study investi-

gated the performance of the weather research and forecasting (WRF)model and the

global precipitation measurement mission (GPM) dual-frequency precipitation radar

for DSD retrieval under different conditions. The DSD parameters (Dm andNw), rain

rate (R), rainfall kinetic energy (KE) and radar reflectivity (Z) were estimated in

Chilbolton, UnitedKingdom, by using long-termdisdrometer observations for valida-

tion. The rainfall kinetic energy–rain rate (KE–R) and radar reflectivity–rain rate

(Z–R) relationships were explored using a disdrometer, the WRFmodel and GPM. It

was found that the DSD parameter distribution trends of the three approaches are

similar although the WRF model has larger Dm and smaller Nw values. In terms of

the rainfall microphysical relationship, GPM performs better when both Ku- and Ka-

band precipitation radars (KuPR and KaPR) observe precipitation simultaneously

(R > 0.5 mm h�1), while the WRF model shows high accuracy in light rain

(R < 0.5 mm h�1). The fusion of GPM and WRF model is recommended for the

improved understanding of rainfallmicrophysical characteristics in ungauged areas.
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1 | INTRODUCTION

Raindrop size distribution (DSD), defined as the probabil-

ity density function of raindrop size, is an important

statistical characteristic used to reflect raindrop micro-

physics (Ulbrich, 1983). The DSD spectra play a crucial

role in a variety of environmental applications such as

precipitation estimation, remote sensing observations,
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radio communications, cloud microphysics investigation

and soil erosion driven by rainfall (Jameson & Kostinski,

2001b; Kirankumar et al., 2008; Tokay et al., 2013).

A good knowledge of DSD and its spatial–temporal vari-

ability within precipitation systems is vital to hydrology,

meteorology and natural hazards (Chapon et al., 2008;

Jaffrain et al., 2011; Uijlenhoet et al., 2003).

A range of research fields such as quantitative precipi-

tation estimation (QPE) and soil erosion assessment

require spatial DSD and microphysical characteristics

data. Two empirical relationships are commonly used to

bridge primitive rainfall microphysics observations and

practical applications: the rainfall kinetic energy (KE)–

rain rate (R) relationship (KE–R) and the radar reflectiv-

ity (Z)–rain rate relationship (Z–R). The KE–R relation-

ship is an essential factor in soil erosion assessment to

describe the splash impact energy of raindrops on soil

particles (Angulo-Martínez et al., 2016; Kinnell, 2005;

Renard, 1997; Wang et al., 2014; Wischmeier &

Smith, 1978). It is not stationary across space and time

and relies on the characteristics of DSD influenced by

various geographical and meteorological factors (Van

Dijk et al., 2002). The Z–R relationship under different

environments (e.g. storm type, temperature, horizontal

wind and aerosol effects) is the foundation of radar

remote sensing and fully depends on dynamic DSD (Dai

et al., 2019; Jameson & Kostinski, 2001a; Ji et al., 2019).

Ground-based disdrometers (electromechanical,

acoustic and optical types) are traditionally used to mea-

sure DSD; these approaches collect DSD spectra by con-

verting the signal generated by the falling drop and then

deriving the parameters of model DSDs with limited spa-

tial representability for the surrounding area (Angulo-

Martínez et al., 2012; Angulo-Martínez et al., 2016;

Jaffrain et al., 2011; Petan et al., 2010), owing to the spa-

tial similarity of geographic configuration (Lü et al., 2019;

Zhu et al., 2018). Considering that DSDs measured by

disdrometers are only point-based, DSD must be obtained

through large-scale raindrop microphysics measurements

or simulations. A ground dual-polarimetric radar can also

be used to derive DSD, which exhibits a circular domain

with a radius of up to 200 km, by using radar signatures

such as differential reflectivity and specific differential

phase shift (Brandes et al., 2004; Bringi et al., 2003; Dai

et al., 2019; Gorgucci et al., 2002).

Unlike ground dual-polarimetric radars that are avail-

able only in limited areas (Prigent, 2010), space-based

radars can help measure DSD on a large scale. For exam-

ple, the space-borne dual-frequency precipitation radar

(DPR) containing the Ku-band (13.6 GHz) and Ka-band

(35.5 GHz) on the global precipitation measurement mis-

sion (GPM) core satellite, which affords scan swaths of

245 and 120 km, allows researchers to estimate the 3D

spatial distribution of hydrometeors (Iguchi et al., 2018).

DPR can estimate DSDs with an approximate coverage of

up to 65� latitude by using wave dual-wavelength algo-

rithms. Dual-frequency radar techniques usually utilize a

differential frequency ratio within a 120 km inner swath

as well as radar reflectivity at lower frequencies to esti-

mate the DSD parameters (typically using a gamma dis-

tribution) and subsequently derive the rain rate (Liao

et al., 2014; Mardiana et al., 2004; Meneghini et al., 1997;

Rose & Chandrasekar, 2006; Seto et al., 2013; Seto &

Iguchi, 2015).

In addition to the direct measurement of DSD param-

eters, the mesoscale numerical weather prediction

(NWP) model is a promising method for interpreting the

DSD variation on a large scale. NWP models, such as

the weather research and forecasting (WRF) model, can

be used to simultaneously derive DSD parameters in 3D

spatial fields through microphysical cloud process simu-

lation and the evolution of particle size distribution pre-

diction based on computationally feasible

parameterization schemes (Brown et al., 2016). Numer-

ous options are provided by the WRF model for cloud

microphysical schemes with different DSD models and

parameter settings (Han et al., 2013). DSD on the ground

can be derived from the WRF model by considering vari-

ous hydrometeor types, physical processes and degrees of

freedom in hydrometeor size distributions (Brown

et al., 2016; Yang et al., 2019). The possible sensitivity

associated with the retrieval of DSD parameters by WRF

model has been investigated in recent studies (Khain

et al., 2016; Planche et al., 2019; Yang et al., 2019). The

WRF model can run with the initial and boundary condi-

tions taken from global reanalysis datasets, such as the

European Centre for Medium-range Weather Forecasts

(ECMWF) and the National Centers for Environmental

Prediction. In other words, WRF-derived DSD can be

obtained for any given area with fine spatial and tempo-

ral resolutions.

GPM and WRF model can derive large-scale DSD, but

their accuracy evaluation and verification are insufficient

at present and it is not clear which is more suitable for

practical applications in ungauged areas. The perfor-

mance of DSD estimation may vary under different con-

ditions, such as land cover, climate regime and storm

type. Therefore, this study comprehensively compares the

DSD retrieval performance of ground-based disdrometer

with the GPM DPR and WRF model to provide a new

perspective for using high-precision data fusion with the

aim of DSD product generation on a large scale. The KE–

R and Z–R relationships were established using all three

approaches to provide insights into the use of DSD for

rainfall erosivity estimation and accurate precipitation

forecasting.
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2 | MATERIALS

Ground-based disdrometer measurements of point DSD

have been widely used for validation of rainfall retrival

by radar or NWP models. A disdrometer works by cou-

nting individual raindrops and measuring their size. The

sensor consists of an electromechanical unit and a feed-

back amplifier housed in a cylindrical case (Islam

et al., 2012). We used data from an impact-type JWD

installed in the Chilbolton Observatory (51�080N,

01�260W; Figure 1), which records the number of rain-

drops striking a 50 cm2 sensor area with 127 bins of size

from 0.3 to 5.0 mm. Chilbolton experiences a temperate

maritime climate. The DSD data have been sampled and

recorded in a 50 cm2 area every 10 s from April 2003. The

data collected by the British Atmospheric Data Centre

can be retrieved online (http://data.ceda.ac.uk/badc). In

this study, the 10-s measurement data during the entire

4 years (2014–2017) were averaged over a 1-min period to

filter time variation, thereby avoiding the counting of

fluctuations for a short period or smoothing the actual

physical variation for a long period (Islam et al., 2012;

Montopoli et al., 2008; Song et al., 2017).

The GPM DPR level-2 (L2) product (version 6), which

covered the period from April 2014 to December 2019,

was used to investigate the radar-derived DSD. The DPR

L2 product consists of six datasets generated from basic,

unprocessed and primary instrument data. The major

improvement of GPM DPR compared with its predeces-

sor (a precipitation radar [PR] of the Tropical Rainfall

Measuring Mission) is the dual-frequency algorithm

based on dual-wavelength data measured by the Ku- and

Ka-band precipitation radars (KuPR and KaPR). Com-

pared with PR, DPR increases sensitivity, facilitates the

distinction between rain and snow and provides DSD

information (Iguchi et al., 2018). Here, only reflectivity in

the inner Ku swath pixels, which were obtained by

simultaneously using the Ku- and Ka-bands, could be

retrieved by the dual-frequency (DF) algorithm; others

were calculated from single-frequency (SF) retrieval.

The normal swath (NS) product in the DPR level-2A

product (2ADPR) combines the DF products of the inner

swath with the SF Ku-band products from the outer

swath. The Ku-band SF estimates have been corrected by

applying the DSD database derived from DF pixels. Verti-

cal sampling echoes for DPR NS cover 176 bins from the

ellipsoid to a height of 19 km above sea level, with

the aim of obtaining 3D information. This study mainly

uses the data of surface DSD parameters, including the

mass-weighted mean drop diameter (Dm) and normalized

intercept parameter (Nw) of the 2ADPR NS dataset. The

2ADPR data were obtained from the NASA GPM website

(https://pmm.nasa.gov/data-access/downloads/gpm) by

using approximately 16 files per day; this website has

been archived in a Version 5 Hierarchical Data Format

(HDF5) file for each orbit.

The ERA-Interim data provided by the ECMWF were

selected to run the WRF model. ERA-Interim includes

global atmospheric reanalysis data from January 1979 to

the present day; it is considered an ambitious reanalysis

project and an important atmospheric data source for sci-

entific research (Dee et al., 2011). It uses the 4D varia-

tional with 6- and 12-h cycling to assimilate data, such as

wind, temperature and humidity at different configura-

tions (Mooney et al., 2011; Simmons, 2006). ERA-Interim

provides a robust reanalysis system, while contributing to

difficult data assimilation and the improvement of tech-

nical aspects associated with reanalysis products (Dee

et al., 2011). The dataset is available at http://apps.

ecmwf.int/datasets; it exhibits a resolution of approxi-

mately 79 km on 60 vertical layers from the ground sur-

face to a 0.1 hPa atmosphere using a 30-min time step

(Berrisford et al., 2011). Many recent studies have indi-

cated that microphysical choices have an impact on the

FIGURE 1 Location of the

disdrometer in the Chilbolton

Observatory. The domain setting in

the WRF model and GPM region

collected for the present study in the

UK terrain elevation map. GPM,

global precipitation measurement

mission; WRF, weather research and

forecasting
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sensitivity and uncertainty of the WRF DSD model

through simulation of typical rainfall events (Brown

et al., 2016; Kala et al., 2015; Morrison et al., 2015; Yang

et al., 2019).

3 | METHODOLOGY

3.1 | DSD model

The natural variation of the DSD model is commonly

approximated using a normalized three-parameter (Nw, Dm,

μ) gamma model (Dai & Han, 2014; Ulbrich, 1983) as

follows:

N Dð Þ¼Nwf μð Þ
D

Dm

� �μ

exp �
4þμð ÞD

Dm

� �

, ð1Þ

f μð Þ¼
6 4þμð Þμþ4

44Γ μþ4ð Þ
, ð2Þ

where Γ denotes the mathematical gamma function, μ is

the shape factor of the gamma DSD, Nw (mm�1 m�3) is the

normalized intercept parameter and Dm (mm) represents

the volume-weighted diameter, which is defined as follows:

Dm ¼

Ð

D4N Dð ÞdD
Ð

D3N Dð ÞdD
: ð3Þ

Microphysics parameterization schemes can predict

changes in moisture and precipitation fields in atmo-

spheric models. They can be divided into bin and bulk

schemes. In the bin approach, the size distribution of

each hydrometeor is comprehensively computed; how-

ever, this requires storing variables for each bin with high

cost for most mesoscale modelling applications

(Cohard & Pinty, 2000). In simple bulk parameterization

models, a functional form for the size distribution of each

hydrometeor is assumed, and only the integral parame-

ters of this distribution are computed during the model

simulation to substantially reduce computational costs

(Khain et al., 2000; Lim & Hong, 2010; Morrison

et al., 2009). Most schemes use a constrained-gamma dis-

tribution model defined as follows:

N Dð Þ¼N0D
μexp �λDð Þ, ð4Þ

where N0 is the intercept and λ is the slope parameter of

the size distribution, which can be extracted from the

predicted mixing ratio q and number concentration Nc as

follows:

λ¼
cNcΓ μþdþ1ð Þ

qΓ μþ1ð Þ

� �1
d

, ð5Þ

N0 ¼
Ncλ

uþ1

Γ μþ1ð Þ
, ð6Þ

where c and d are the coefficients of the assumed power

law between mass and diameter (m = cDd) that have

been determined by the shape of precipitation particle.

The shape parameter μ is usually set to 0 or 1 in most

double-moment schemes (Johnson et al., 2016).

The space-borne DPR consists of Ku-band (13.6 GHz)

and Ka-band (35.5 GHz) channels. This feature provides

the opportunity to better detect raindrop characteristics,

and the form of the DSD model is assumed to use a

gamma distribution function (Equation 1). In the GPM

DPR algorithm, μ is assumed to be 3 and the two types of

R-Dm relationship are applied to stratiform precipitation

in Equation (7) and convective precipitation in Equa-

tion (8); this is regarded as a primary assumption:

R¼ 0:401ε4:649Dm
6:131, ð7Þ

R¼ 1:370ε4:258Dm
5:420, ð8Þ

where ε is an adjustment factor and is constant in the

retrieval process from the storm's top to the actual surface.

Once ε is determined, R and Dm for each range bin can be

searched in the scattering tables with given effective radar

reflectivity factor (Z) values in the Ku-band, and then the

path integrated attenuation (PIA) can be retrieved. By

changing ε from 0.2 to 5.0, its most optimum value can be

selected when the difference between the retrieved PIA and

estimated PIA as per the surface reference technique is min-

imal. If Ka-band Z is available, the difference between the

ε-retrieved Ka-band Z and the measured Ka-band Z is also

used to adjust ε and can be applied to improve retrieval

results (Chase et al., 2020; Leinonen et al., 2018). Note that

in the surface clutter region, the Ku-band Z value is

assumed to be the same as the clutter-free bottom value

because it is not available for retrieval. After R and Dm are

determined, Nw can be solved, as described in Section 3.2.

3.2 | Estimation of R, KE and Z

using DSD

DSD parameterization models have been widely used in

many environmental fields where rain rate and rainfall

kinetic energy are the two core elements (e.g. precipitation

microphysical processes, weather radar calibration and

4 of 16 ZHU ET AL.Meteorological Applications
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soil erosion estimation). The KE–R and Z–R relationships

are essential for a wide range of technologies. Rain rate

R is dependent on the rainfall DSD, which is expressed as

follows:

R¼ 6π�10�4

ð

N Dð ÞD3V Dð ÞdD, ð9Þ

where V(D) is the raindrop fall velocity that can be esti-

mated from a power law empirical relationship with rain-

drop diameter (Atlas & Ulbrich, 1977) by using the

following equation considered suitable for Chilbolton,

United Kingdom (Islam et al., 2012):

V i Dð Þ¼ 3:78Di
0:67

: ð10Þ

KE–R dominates the ability of a raindrop to detach soil

particles. Rainfall KE and R are functions of the local cli-

mate and precipitation microphysics at the measured loca-

tion; these parameters allow for the estimation of rainfall

erosivity. The kinetic energy e (J) of a raindrop with mass

m (g) and terminal velocity v (m s�1) is defined as follows:

e¼
1

2
mv2: ð11Þ

Assuming a spherical volume for every raindrop

shape, the mass of a drop can be calculated using the

cube of diameter D (mm). Considering the instrument

(e.g. disdrometer) sample drop size, the mean radius and

falling velocity of the corresponding sampling drop size

class used to represent D and v are expressed as Di and vi,

respectively. In such cases, ei of any drop pertaining to a

given class is given as follows:

ei ¼
1

12
�10�9ρvi

2Di
3, ð12Þ

where ρ is the density of water (g cm�3). The sum of the

kinetic energy of each raindrop, within a given rain depth

that hits a given area, defines the total kinetic energy. The

unit rainfall kinetic energy KEv for the unit rainfall depth

(J m�2 mm�1) and KEt for the unit time (J m�2 h�1) can be

calculated as the product of the kinetic energy of each drop

of each diameter class, which can be expressed as follows:

KEv ¼
esum

V tAPt

¼
1

V tAPt

X

ni

i¼1

N iei, ð13Þ

KEt ¼
esum

60APt

¼
1

60APt

X

ni

i¼1

N iei, ð14Þ

where A represents the sample area of the sensor, Pt is the

rainfall depth at the t-th minute, Ni is the number of drops

in class i and Vt indicates the rainfall depth during time t.

All the instruments can sum up the number of raindrops in

each sampling class and produce the raindrop spectra for a

time step. Then, we can obtain KE and R for each time step

to find the relationship between them.

Another important relationship, the Z–R relationship

is mostly expressed in power law terms, such as Z = aRb.

This relationship plays an important role in improving

radar QPE. In computing the radar reflectivity factor (Z),

Rayleigh scattering has been assumed; accordingly, Z can

be written as follows:

Z¼

ð

N Dð ÞD6dD: ð15Þ

This equation can be related to the DSD and expressed in

units of mm6 m�3.

3.3 | Evaluation methods

To quantitatively reveal the increasing trend of the DSD

parameters with rain rate, the R values were divided into six

scenarios, 0.1 ≤ R < 0.5, 0.5 ≤ R < 1, 1 ≤ R < 2, 2 ≤ R < 4,

4 ≤ R < 8 and R > 8 mm h�1, labelled as R1…R6, respec-

tively. The raindrop microphysics between GPM DPR mea-

surements and WRF simulation were also investigated, and

subsequently validated using a disdrometer. Several indica-

tors were used to evaluate the WRF- and DPR-derived DSD

performance (i.e. accuracy of rainfall estimation), including

Pearson's correlation coefficient, mean absolute error (MAE)

and root mean squared error (RMSE). Pearson's correlation

coefficient is a measure of the linear correlation between two

variables and is defined as follows:

Pearson¼
n
P

RDi

P

RW i
�
P

RDi

P

RW i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

RDi

2�
P

RDi
ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

RW i

2�
P

RW i
ð Þ2

q ,

ð16Þ

where n is the number of time steps. Considering that

this correlation cannot reveal the absolute bias of mea-

sured values, the MAE and RMSE are used and defined

as follows:

MAE¼

P

RW i
�RDi

j j

n
, ð17Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

h xið Þ� yi½ �2
r

: ð18Þ
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The two indicators are frequently used to measure the

differences between the simulated or predicted values

and the observed values, with the perfect score being

0. RMSE is the square root of the average of squared

errors, which is used to measure the deviation between

the observation value and the true value; MAE is the

average value of absolute errors, which can better

describe the predicted value error in time series analysis.

4 | RESULTS

4.1 | DSD parameter estimation by WRF
model and GPM

In this study, we used WRF model version 3.8, which down-

scaled the ERA-Interim data for every 15 min. A 2 � 2 km2

grid domain unit centred at the Chilbolton Observatory was

chosen as WRF sample area, and used the Thompson aero-

sol-aware scheme (Thompson & Eidhammer, 2014). The

Thompson aerosol-aware scheme can predict the ice nuclei

and cloud condensation nuclei number concentrations using

the fixed-μ gamma distribution with μ = 0 (Thompson &

Eidhammer, 2014). This parameterization scheme demon-

strates excellent performance in the WRF model when sim-

ulating the DSD for Chilbolton (Yang et al., 2019). Other

physical parameterizations include the Kain–Fritsch cumu-

lus scheme (Kain, 2004), the Mellor–Yamada–Janji�c plane-

tary boundary layer scheme (Janji�c, 1994), the RRTM

longwave radiation scheme (Mlawer et al., 1997), the

Dudhia shortwave radiation scheme (Dudhia, 1989) and the

Noah land-surface model (Ek et al., 2003). The domain set-

ting was the same as that adopted by Yang et al. (2019); that

is, 18, 6 and 2 km for the outer, middle and inner nested

domains, respectively.

In GPM DPR files, the variable named paramDSD is

generated by the DPR Solver module to save the parame-

ters of DSD functions, including Dm and Nw of each scan

pixel. The long revisit times of the GPM core satellite

imply that precipitation observations in any region are

discontinuous. Considering the disdrometer DSD is

point-based, GPM data are selected in a rectangular

domain of size 1� (longitude) � 1� (latitude), which is

centred at the location of the Chilbolton disdrometer to

ensure sufficient number of GPM samples and to avoid

the interference from the ocean and complex topography

(Radhakrishna et al., 2016). To obtain more sampling

points, we used the DPR data between May 2014 and

December 2019 for comparison; this period was observed

after the satellite had stabilized at the nominal observa-

tion altitude (Hamada & Takayabu, 2016).

To reduce the measurement error of small raindrops,

we selected data with a rain rate of >0.1 mm h�1 for

comparison (Angulo-Martínez et al., 2016). GPM samples

with R < 0.2 mm h�1 were discarded owing to radar sen-

sitivity limitations. The values of Nw in the DSD spectra

derived by the disdrometer for over 4 years reached

105 mm�1 m�3, with the lowest values being

<10 mm�1 m�3. Therefore, we calculated the log of Nw

(log10Nw) for intuitive comparison. Figure 2 shows the

Dm and log10Nw maps obtained using the WRF model at

the time of rain (January 3, 2015 12:00:00). The two maps

are centred on the disdrometer location, covering an area

of 90 � 90 km2. The Dm and log10Nw sometimes show

positive and sometimes negative correlation, indicating

the spatial complexity of the rainfall process and the

necessity for studying spatial DSD on a large scale.

For our experiment, we used a 2 � 2 km2 WRF grid

covering the Chilbolton Observatory. As the number of

sample points in the three datasets are different (112,067

for the disdrometer, 4093 for the WRF model and 10,503

for GPM), we compared the cumulative density distribu-

tions of the DSD parameters retrieved by each method

(Figure 3). The curves of the WRF model and the

disdrometer show the greatest similarity, although

the WRF model had larger Dm and smaller Nw compared

with that of the disdrometer. This difference may be cau-

sed by the absence of convective precipitation in the

WRF model, which is explained in detail in Section 4.2.

At extremely low and high parameter values, variation is

evident between the disdrometer and the GPM. Because

of limitations in the sensitivity of the DPR, only rain rates

greater than 0.5 mm h�1 are processed (Iguchi

et al., 2018; Radhakrishna et al., 2016). This feature

affects the DSD parameters that are associated with the

rain intensity observed by DPR. Thus, the cumulative dis-

tribution function (CDF) curves of GPM Dm and log10Nw

display the characteristics of small value ranges and large

intermediate slopes. Moreover, the numbers of all three

types of data were sufficient for the statistical analysis.

4.2 | Relationships between DSD
parameters and rain rate

DSD varies depending on the rain type; the distribution

of log10Nw–Dm is an indicator used to separate convective

and stratiform rain types (Ji et al., 2019). Here, we sepa-

rated disdrometer raindrops into two groups – convective

and stratiform – using the standard deviation method

described by Bringi et al. (2003). Figures 4 and 5 compare

the relationships of Dm–R and log10Nw–Dm derived from

the disdrometer, WRF model and GPM DPR estimations.

The blue and green dots represent the convective and

stratiform samples observed by the disdrometer, respec-

tively. The separation line between the two groups of

6 of 16 ZHU ET AL.Meteorological Applications
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data was regarded as the standard for the division of local

rainfall types. The results show that the WRF model and

GPM DPR samples are mainly concentrated in the strati-

form group of the disdrometer drops. In fact, the cumulus

scheme is not used in the WRF model physics parameter-

izations, where convective rainfall generation is assumed

to be entirely resolved (Yang et al., 2019). Therefore, the

WRF model outputs do not involve convective rain with

high Dm and Nw values (green dots in Figure 5). The

GPM not only measured a large amount of stratiform

rain, but also observed a small amount of convective pre-

cipitation and samples with high Nw and high

R throughout the study area. In Figure 4, the Dm values

from all measurements seldom exceed 2 mm and show

an approximate exponential increasing trend with respect

to rain rate. Under the same R value, the mean raindrop

diameter of GPM samples is the largest, followed by that

of the WRF model. DSDs derived from the WRF model

rely heavily on microphysical schemes, while GPM-

derived DSD results are affected by limitations in radar

sensitivities. Therefore, in comparison, the disdrometer

results show that DSDs exhibit higher variability.

Figure 5 shows the scatterplot of log10Nw versus Dm for

different DSD instruments. The domain shows a very

clear separation between stratiform and convective pre-

cipitation in disdrometer data points. All three types of

log10Nw–Dm samples almost completely coincide in the

stratiform raindrop spectra. For smaller diameters, the

WRF results show raindrops with a lower concentration

variation than those observed using the disdrometer;

GPM events have the highest concentrations.

Figure 6 specifically compares the log10Nw–Dm fre-

quencies from different measurements. Here, the number

of occurrences refers to the total number of 0.05 units of

Dm and log10Nw. The log10Nw–Dm domain of the

disdrometer is obviously concentrated in the entire range

of GPM measurement results; the highest number

of occurrence is in the ranges of Dm = �0.3–0.4 and

FIGURE 2 Maps of WRF-

derived Dm (a) and log10Nw

(b) (January 3, 2015 12:00:00),

centred on Chilbolton Observatory

(marked as �). WRF, weather

research and forecasting

FIGURE 3 CDF of Dm (a) and log10Nw (b) from disdrometer, WRF and GPM DPR. CDF, cumulative distribution function; DPR, dual-

frequency precipitation radar; GPM, global precipitation measurement mission; WRF, weather research and forecasting

ZHU ET AL. 7 of 16Meteorological Applications
Science and Technology for Weather and Climate



0.8–1.1 mm, with the corresponding log10Nw being in the

ranges of �4.6–5.2 and 3.7–4.0 units, respectively. Com-

pared with that of the disdrometer, the log10Nw–Dm

domain of the WRF model has lower concentrations

throughout the entire Dm range; however, the density is

similar between 0.5 < Dm < 1.5 mm, and reaches a maxi-

mum at Dm = 1.4 mm. To ensure that the WRF micro-

physical scheme matches the spatial and temporal

changes and particularities of regional precipitation,

merging the surface observation data is necessary to

modify the WRF DSD parameters; this should be

implemented in a future work.

Figure 7 shows the average values of Dm and log10Nw

versus the six R sets obtained from the disdrometer (blue

lines), WRF model (red lines) and GPM (yellow lines).

The mean Dm value increases with the growth of the rain

rate, while the mean log10Nw seems to have no obvious

change, even though all three lines change monotonically

(Figure 7b). Under the same R class, the mean Dm mea-

sured by the disdrometer is always the lowest among the

three data points, whereas the Nw values are the highest.

Apparently, the high concentrations of the disdrometer

raindrop spectrum are caused by convective rain with

high Nw values. Both the average Dm and log10Nw of the

GPM are the same as the WRF results under the R4 class.

Moreover, the differences between the disdrometer and

GPM lines gradually decrease as the rain rates increase,

and become very low at R6. The large differences under

low rain rates reflect the sensitivity limitation of DPR

measurements.

4.3 | KE–R relationship estimation and
error analysis

The total kinetic energy estimation of a rainfall event is

usually estimated by summing up the individual kinetic

energies of raindrops, based on its relationship with rain-

fall intensity (R) (Brown & Foster, 1987; Davison

et al., 2005; Wischmeier & Smith, 1978). The perfor-

mances of the unit kinetic energy–rain rate relationship

estimated using Equations (13) and (14) are compared in

Figure 8. The black lines indicate the fitted relationship

using disdrometer observations with R2 (KEv–R) = 0.44

and R2 (KEt–R) = 0.92. R2 is the proportion of the vari-

ance in the dependent variable, which can be predicted

using the independent variable. It provides a measure of

how well-observed outcomes are replicated by the model

based on the proportion of the total variation of outcomes

explained by the model.

The KE (including KEv and KEt)–R scatters of WRF

simulations are closer to the disdrometer trend lines than

those of the GPM KE-R results with lower rain rates

(R < 2 mm h�1). In contrast, the KE values from WRF

model tended to be overestimated (most data points are

above the black line) with increasing R. In terms of the

KEv–R relationship, exponential functions, formed as

KEv = a[1-b * exp(�cR)] have been widely used (Lim

et al., 2015; Petan et al., 2010; Renard, 1997; Van Dijk

et al., 2002), especially in soil erosion models including the

Revised Universal Soil Loss Equation (Renard, 1997).

Here, the KEv values tended to be stationary when the rain

rate reached approximately 10 mm h�1; however, the

FIGURE 4 Scatter diagrams of relationship between Dm and R

from disdrometer, WRF model and GPM DPR. conv, convective

precipitation; DPR, dual-frequency precipitation radar; GPM, global

precipitation measurement mission; stra, stratiform precipitation;

WRF, weather research and forecasting

FIGURE 5 Scatter diagrams of relationship between log10Nw

and Dm from disdrometer, WRF model and GPM DPR. conv,

convective precipitation; DPR, dual-frequency precipitation radar;

GPM, global precipitation measurement mission; stra, stratiform

precipitation; WRF, weather research and forecasting
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maximum value was roughly equal to 16.08 J m�2 mm�1,

which is the same as the coefficient of the KEv–R exponen-

tial trend line formula obtained from the disdrometer data.

The relationship between KEt and R is evident (Figure 8),

and can be described by a power law function (formed as

KEt = aRb; Meshesha et al., 2016). The values of KEt esti-

mated by GPM were the highest, with most of the sample

points being higher than the trend line. The high R2 of

WRF KEv–R (0.97) also shows the strong fitting relation-

ship for WRF retrievals. We observed a deviation in the

slope between the results of the WRF model and the

disdrometer, which may be related to the overestimation

of Dm derived by WRF model during high rainfall. The dis-

persion evaluation indicators (MAE, RMSE and Pearson)

of the KE–R samples versus disdrometer-based formulas

are listed in Table 1. The GPM scheme performed better

(i.e. lower MAE and RMSE and the same Pearson) com-

pared with WRF simulations in the KEv–R domain. The

WRF model has a better Pearson value for KEt–R com-

pared with the DPR observations. The primary difference

between GPM DPR and WRF model in DSD retrieval is

that the processes are achieved through measurement and

simulation, respectively. The DPR derives rainfall micro-

physical characteristics by observing radar signals that

come in direct contact with raindrops, while the WRF

model uses mesoscale meteorological data to simulate

rainfall processes through a series of numerical simula-

tions. Although both DPR and WRF model rely on impor-

tant assumptions, there are still differences in the

directness of rainfall characteristics estimation.

In Figure 9, KEt and KEv show an increasing trend

with respect to rain rate. The polyline values of GPM and

FIGURE 6 Occurrences of relationship between log10Nw and Dm from disdrometer (a), WRF model (b) and GPM DPR (c) per unit Dm and

log10Nw. DPR, dual-frequency precipitation radar; GPM, global precipitation measurement mission; WRF, weather research and forecasting

FIGURE 7 Comparison of mean Dm-R (a) and mean log10Nw-R (b) in the six R classes from disdrometer, WRF model and GPM DPR.

DPR, dual-frequency precipitation radar; GPM, global precipitation measurement mission; WRF, weather research and forecasting
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WRF model are extremely similar under R1 to R4 and are

always higher than the disdrometer values. The results

also show that WRF KEs have been overestimated; in par-

ticular, the differences between mean WRF KEv and mean

disdrometer KEv increased as the R class increased. The

WRF KEs were consistently the highest except at low rain

rates (R < 2 mm h�1). Based on our results and the physi-

cal assumptions of the scheme, we suggest that WRF DSD

may be suitable for simulating parameters that have a

strong relationship with rain rate. At the same time, mean

GPM KE values are close to the disdrometer measure-

ments, which may also be due to fewer data points with

high rain rates that were measured by the DPR.

4.4 | Z–R relationship estimation and
error analysis

The key problem of Z–R relationships is their limited spa-

tial and temporal representativeness because DSD

exhibits an appreciable amount of spatial and temporal

variability (Chapon et al., 2008; Uijlenhoet et al., 2003).

Power law terms, such as Z = aRb, are widely used to

describe the relationship between radar reflectivity and

rain rate. Note that the radar reflectivity factor, Z, is cal-

culated from Equation (15), which assumes Rayleigh

scattering and is independent of frequency. As shown in

Figure 10, a power-based smooth line relating Z and

R was generated to fit the disdrometer data, with values

of R2 reaching 0.80. The fitted Z–R relationship of the

disdrometer is slightly different from the standard Z–R

equation for the entire UK radar rainfall estimation

(Z = 200R1.6). The WRF model and GPM provide the

opportunity to deduce the Z–R relationship of any given

area and can better reflect dynamic changes in the Z–R

relationship caused by changes in DSD.

Figure 11 summarizes the mean Z values for each

R class. The overall trends of the three are similar. The

mean Z value of the disdrometer is almost consistently the

lowest, and its logarithmic change curve is approximately

parallel to that of the WRF model. This condition indicates

that the Z difference between the WRF simulations and

disdrometer increases by a power of 10 mm6 m�3 with

increasing rain rate, thereby predicting huge WRF deviation

FIGURE 8 Scatter diagram of KEv–R (a) and KEt–R (b) from disdrometer, WRF model and GPM DPR and the fitted relationships based

on the disdrometer. conv, convective precipitation; DPR, dual-frequency precipitation radar; GPM, global precipitation measurement

mission; stra, stratiform precipitation; WRF, weather research and forecasting

TABLE 1 Evaluated indicator comparison of WRF- and GPM-derived KEv –R and KEt –R, taking the fitted relationships as standards

KEv KEt

MAE RMSE Pearson MAE RMSE Pearson

WRF model 4.10 5.59 0.66 7.38 16.83 0.98

GPM 3.38 4.09 0.66 5.11 12.44 0.91

Abbreviations: GPM, global precipitation measurement mission; MAE, mean absolute error; RMSE, root mean squared error; WRF, weather research and

forecasting.
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when simulating heavy rainfall. At the same time, although

Z values of GPM are overestimated, they are close to the

disdrometer results for rain rates greater than 0.5 mm h�1,

which is also the minimum measurable rain rate that KuPR

and KaPR can detect simultaneously.

Figure 12 shows the cumulative density functions of

Z corresponding to the six rain rate classes. In most cases,

the CDF curve of the disdrometer (blue lines) is located at

the highest of the three, indicating that the Z values

obtained by the disdrometer are consistently lower under

the same rain rate. In lower R classes (R1 to R3), Z of

WRF simulations showed a faster growth in CDF than

that of GPM, but the CDF was overtaken by GPM. Instead,

the GPM curves become close to the disdrometer curves,

especially under heavy rain (R6), at which point the two

curves almost coincide. With the disdrometer CDF curve

as a reference, the WRF and GPM results show high

Z values in each diagram, especially the WRF simulations.

Table 2 summarizes the two deviations of CDF of the

WRF simulations and GPM versus the disdrometer CDF

results. With an increase in the rain rate, the errors of

WRF CDF gradually increased. The Pearson coefficient

FIGURE 9 Comparison of relationship between KEv and R (a) and relationship between KEt and R (b) in the six R classes from

disdrometer, WRF model and GPM DPR. DPR, dual-frequency precipitation radar; GPM, global precipitation measurement mission; WRF,

weather research and forecasting

FIGURE 10 Scatter diagram of relationship between Z and R

from disdrometer, WRF model and GPM DPR and the fitted power-

law relationship based on the disdrometer. conv, convective

precipitation; DPR, dual-frequency precipitation radar; GPM, global

precipitation measurement mission; stra, stratiform precipitation;

WRF, weather research and forecasting

FIGURE 11 Mean Z of different R classes from disdrometer,

WRF model and GPM DPR. DPR, dual-frequency precipitation

radar; GPM, global precipitation measurement mission; WRF,

weather research and forecasting
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continued to decrease, falling below 0.9 at the R4 class.

However, starting from R1, the GPM Pearson was consis-

tently above 0.9, reaching 0.98 in R6; the performances of

MAE and RMSE were consistently better than those of

WRF simulations. The results show that GPM and WRF

errors are stable, and GPM performs better than WRF

model despite the limited samples for low rain rates.

5 | DISCUSSION

Disdrometers are accurate devices used to obtain rain-

drop characteristics, but their high cost hinders their

application in large domains. This study shows that the

WRF model and GPM can be used to obtain rainfall DSD

and microphysical characteristics with acceptable errors;

for example, Pearson values of KEt–R of >0.90 were

exhibited for both WRF model and GPM, indicating that

the WRF model and GPM are good complementary tools

for disdrometer applications. Although these two large-

scale methods may not be able to accurately obtain DSD

at certain times and locations, they are powerful tools for

solving key issues with dynamic rainfall microphysics,

such as KE–R and Z–R relationships. At present, the rela-

tionships between KE–R and Z–R are unchanged in most

applications, which is unreasonable and does not

FIGURE 12 CDF of Z in the six R classes from disdrometer, WRF model and GPM DPR. DPR, dual-frequency precipitation radar;

GPM, global precipitation measurement mission; WRF, weather research and forecasting

TABLE 2 Indicator comparison of

CDF for WRF- and GPM-derived Z–R of

the six R classes, taking the fitted

relationships as standards"

WRF model GPM

R class MAE RMSE Pearson MAE RMSE Pearson

R1 0.00 0.02 0.94 0.00 0.03 0.90

R2 0.01 0.03 0.91 0.00 0.04 0.93

R3 0.01 0.06 0.92 0.01 0.05 0.95

R4 0.04 0.12 0.89 0.02 0.07 0.96

R5 0.13 0.24 0.82 0.04 0.09 0.97

R6 0.39 0.45 0.74 0.04 0.06 0.98

Abbreviations: CDF, cumulative distribution function; GPM, global precipitation measurement mission;

MAE, mean absolute error; RMSE, root mean squared error; WRF, weather research and forecasting.
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conform to the DSD reality of temporal and spatial

changes. Therefore, obtaining dynamic DSD using only

disdrometers is difficult; WRF simulations and GPM

measurements offer supplementary methods.

The WRF model has a clear physical process and

good potential for handling some rainfall features with

3D/4D non-hydrostatic methods. Its reliability is heavily

dependent on the model driving the initial data provided

by mesoscale or global models and complicated scheme

setting and parameter adjustment (Kumar et al., 2017;

Liu et al., 2013; Thompson & Eidhammer, 2014). How-

ever, many uncertainties are found in the parameteriza-

tion of the WRF simulation, and the choice of

microphysical schemes has a great influence on inverted

DSD (�Curi�c et al., 2009; Yang et al., 2019). The rainfall

DSD can also be influenced by the quality of the meteoro-

logical dataset. In future work, we plan to compare or

integrate several sources of meteorological data to

decrease to the greatest extent possible the uncertainty

induced in WRF modelling. GPM measurements have

high spatial resolution owing to the radar echoes trans-

mitted by DF radar on the core satellite. However, it may

not be possible to obtain global raindrop characteristics

at the same time or to capture a full storm because of the

long revisit time of the satellite, resulting in poor time

resolution. Therefore, GPM-derived DSD can be used to

investigate rainfall characteristics that do not require

continuous data and summarize the DSD microphysical

changes (such as the KE–R and Z–R relationships

analysed in this work) at different times and for different

places. WRF model can simulate continuous long-term

DSD and analyse the detailed rainfall characteristics of

storms. Compared with the observation methods, the

results simulated by WRF model were more aggregated

and regular. In accordance with the results, WRF pro-

vides more accurate DSD estimation under low rain rates.

At high rain rates, GPM-derived DSD may be more reli-

able for use with acceptable error.

Fusing the DSDs obtained by the disdrometers, WRF

model and GPM is valuable, and we recommend the

development of a data fusion algorithm to harness

the advantages of multiple data sources. The GPM mis-

sion deployed several temporary disdrometers, including

JWD and 2D-video disdrometers (2DVDs), around the

world for experimental validation. Thus, after

disdrometer calibration, global observations from GPM

could be used to modify the WRF model to ensure that

its physical process is more reasonable; this offers a

promising method for large-scale high-precision DSD

estimation. Accurately measured GPM information with

low time resolution can determine the selection of WRF

physical processes and model correction. We can analyse

GPM measurements to retrieve the raindrop

characteristics of sites or regions with similar geographi-

cal features based on a large number of long-interval scan

results, and subsequently use them to adjust the simula-

tion settings or correct deviations of the WRF model for

obtaining high-accuracy rainfall microphysics estimation

on a large scale. To achieve data fusion precisely, we

must recognize the uncertainties of each method; this

will be the focus of a future work.

6 | CONCLUSION

Rainfall microphysical processes play an important role

in many disciplines, such as hydrology and meteorology.

However, estimation traditionally relies on disdrometers,

which are not widely distributed owing to the massive

cost. To explore other methods for large-scale inversion

of rainfall microphysics, we extracted rainfall characteris-

tics, including drop size distribution (DSD) parameters,

rain rate, kinetic energy and radar reflectivity, retrieved

from the weather research and forecasting (WRF) estima-

tion and global precipitation measurement mission

(GPM) measurements over 4 years (GPM data were

retrieved for over 6 years approximately) and compared

them with disdrometer observations.

Few of the mass-weighted mean drop diameter values

for Chilbolton (United Kingdom), which were derived from

each DSD source, exceed 2 mm. The log10Nw–Dm domain

for the disdrometer was evidently concentrated within the

range of the GPM measurement results, and its density

reached the peak at Dm = 1 mm. The DSD parameter distri-

bution trends of the three approaches were similar,

although convective rainfall was ignored by the WRF

model, and the GPM dual-frequency precipitation radar

(DPR) captured little convective precipitation. Although the

WRF DSD approach underestimated the rain rate to some

extent, it is suitable for simulating parameters that have a

strong relationship with rain rate, such as the KEt–R and Z–

R relationships. Finally, under the same rain rate, the WRF

model and GPM slightly overestimated KE and Z. WRF

simulations was accurate in light rain (R < 0.5 mm h�1),

while GPM was the most accurate when the two DPR

radars could be fully used (R > 0.5 mm h�1).

In this study, we overcame the limitations of DSD

obtained by traditional instruments and comparatively

evaluated the performances of WRF model and GPM for

estimating DSD. GPM DSDs were derived from DPR

measurements and corrected using ground-based dis-

drometers. GPM can deduce accurate rainfall microphysi-

cal relationships. Meanwhile, WRF underestimates the

rain rate, resulting in poor estimation. However, GPM

could be used as a WRF correction because of its continu-

ous data and rare high R observations. We used the

ZHU ET AL. 13 of 16Meteorological Applications
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rainfall data from Chilbolton for the DSD comparisons,

and our conclusions may not necessarily represent other

situations completely. In future studies, we will analyse

the large-scale uncertainties of all three methods and com-

pare them at typical settings to obtain reliable conclusions.
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