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Abstract: Bilevel optimization has been recognized as one of the most difficult and challenging tasks to 
deal with because a solution to the upper level problem may be feasible only if it is also an optimal solution 
to the lower level problem. In recent years, evolutionary bilevel optimization has attracted increasing 
interest. In this paper, an efficient self-adaptive bilevel differential evolution (SABiLDE) with k-nearest 
neighbors (k-NN) based interpolation is proposed to solve bilevel optimization problems. The k-NN 
approximation is applied to estimate the optimal lower level variables for any newly generated upper 
candidates to improve the computational efficiency. A similarity based self-adaptive strategy for the 
dynamic control of lower level population size and search radius is introduced to further enhance the 
efficiency of the lower level function evaluations. A test set with 10 standard test problems and the SMD 
suite with controllable complexities are used to evaluate the performance of the proposed approach. 
Compared with two recent state-of-the-art methods, the numerical results produced by the proposed method 
are promising and show great potential for solving generic bilevel optimization problems. 
 

Keywords: Bilevel optimization; Differential evolution; k-Nearest neighbors learning; Self-adaptive 
strategy 

 

1. Introduction 

Bilevel optimization problems (BLOPs) are a special class of optimization problems, in which the 
lower level optimization problem acts as a constraint to the upper level problem and is required to solve 
first to get a feasible solution for the upper level optimization problem. Bilevel optimization problems 
widely exist in practice where a hierarchical decision-making is often required, particularly in economics 
[1]-[3], management [4], [5], transportation [6], [7], military [8], engineering [9], and others [10]-[11]. In 
comparison with traditional optimization problems, bilevel optimization problems are very difficult to solve 
as the nested structure of such a problem requires that a solution to the upper level problem should also be 
an optimal solution to the lower level problem. Mathematically, bilevel optimization is generally called 
bilevel programming. While in the domain of game theory, it is referred to as Stackelberg problem. A 
generic bilevel optimization problem can be formulated as follows [11]: minimize𝒙𝑢∈Ω𝑢,𝒙𝑙∈Ω𝑙   𝐹(𝒙𝑢, 𝒙𝑙)                                                
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subject to  𝒙𝑙 ∈ argmin{𝑓(𝒙𝑢, 𝒙𝑙)|                                    

                              𝑔𝑖(𝒙𝑢, 𝒙𝑙)≤0, 𝑖 = 1, ⋯ , 𝑞𝑙                            (1) ℎ𝑖(𝒙𝑢, 𝒙𝑙) = 0, 𝑖 = 𝑞𝑙 + 1, ⋯ , 𝑚𝑙}                         𝐺𝑗(𝒙𝑢, 𝒙𝑙) ≤ 0, 𝑗 = 1, ⋯ , 𝑞𝑢                                𝐻𝑗(𝒙𝑢, 𝒙𝑙) = 0, 𝑗 = 𝑞𝑢 + 1, ⋯ , 𝑚𝑢                           

where F and f are the objective functions at the upper and lower level, respectively. 𝒙𝑢 represents the 
upper level decision vector and 𝒙𝑙 represents the lower level decision vector. 𝐺𝑛 and 𝐻𝑚, 𝑔𝑖 and ℎ𝑗 
are inequality and equality constraints at the upper and lower levels, respectively. Ω𝑢 and Ω𝑙 are the 
search spaces for the upper and lower level decision vectors. Note that the lower level optimization 
problem is optimized only with respect to the variables 𝒙𝑙 and the variable vector 𝒙𝑢 is kept fixed. 
However, the upper level optimization involves both variable vectors 𝒙𝑢 and 𝒙𝑙. The bilevel optimization 
problem generally needs to find the lower level optimal solution first and then search for the optimal 
solution for the upper level optimization problem. 

In recent years, bilevel optimization has attracted much attention. However, due to the hierarchical 
structure in nature, solving a bilevel optimization problem is quite difficult and computationally demanding 
[11], [12]. It has been proved that even the simplest bilevel linear programming is strongly NP-hard [13], 
not to mention problems with complex nonlinear upper and lower objective functions and constraints. For 
example, if the lower level problem is a multimodal problem, there would be no guarantee that a lower 
level solution is the best for the upper level, and this can only lead to sub-optimal solutions  for the upper 
level problem. Therefore, the development of an efficient bilevel optimization algorithm is a challenging 
task. The early work for bilevel optimization was mainly focused on classical methods under various 
assumptions, including Karush-Kuhn-Tucker (KKT) approach, branch-and-bound techniques, cutting plane 
algorithms, descent methods, penalty functions based methods, and so on [10], [14], [15]. However, most 
of the classical approaches can only be used to handle simple bilevel problems with good properties such as 
smoothness, linearity, quadratic or convexity [11]. To overcome the limitations of classical optimization 
methods, it is quite natural to introduce evolutionary algorithms (EAs) to solve bilevel optimization 
problems with higher levels of complexity, since EAs have a number of good algorithmic features such as 
derivative free, flexible and robust. However, it should be stressed that most of the existing bilevel 
evolutionary optimization algorithms are nested and involve intensive computational expense; the 
development of evolutionary algorithms for bilevel problems is still in an early stage. Thus, to significantly 
improve the performance of the existing approaches and develop new methods are still highly demanded 
[11], [12]. 

As a simple but efficient and versatile global optimization method, the Differential Evolution (DE) [16] 
algorithm has been used to solve bilevel optimization problems in recent years. For example, in order to 
reduce the number of upper and lower level function evaluations, a differential evolution method assisted 
by a k-nearest neighbors (k-NN) approach, namely BlDE, is proposed to solve bilevel programming 
problems using a surrogate model [17]. The surrogate model is chosen to replace the lower level DE 
algorithm in a specific probability. However, the approximation ability of the k-NN based surrogate model 
is limited due to the drawback that the surrogate model may produce an inaccurate lower level solution 
which can therefore lead to a false upper level solution; this is particular true for problems with conflict 
upper and lower tasks [18], [19]. Although this surrogate modeling approach is computationally efficient, 
the computation efficiency is gained by sacrificing the reliability and accuracy of the solutions. 

To improve the efficiency of the k-NN approximation approach and meanwhile overcome its 
disadvantage, a novel self-adaptive bilevel differential evolution with k-NN approximation (SABiLDE) is 
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proposed in this paper. The two major contributions of this paper are as follows: 1) k-nearest neighbors in 
the upper archive are identified for a newly generated upper candidate to better approximate the optimal 
lower level variables through the inverse distance weighting interpolating. If the corresponding upper level 
vectors are not proximal enough to the upper level vectors in the extern archive, the estimated lower level 
variables are marked to be a non-optimal solution and is not directly passed to the upper level task, but only 
used as a basic individual for the initialization of the lower level population. While a newly generated upper 
level vector is very similar to one of the archived members (the nearest neighbor distance is small enough), 
the approximated lower level solution based on k-NN interpolation would be accurate enough to replace the 
corresponding optimal lower level solution, and there is no need to invoke a lower level DE algorithm or 
another evolutionary algorithm. 2) based on the similarity (the nearest neighbor distance), a self-adaptive 
control rate is proposed to dynamically adjust the lower level population size and search radius to reduce 
the computation of the lower level function evaluations and therefore to improve the computational 
efficiency. Two different types of test problems are used to test the effectiveness of the proposed SABiLDE. 
Numerical results show that the SABiLDE has better computational efficiency and solution accuracy than 
the improved BlDE in [17]. In comparison with other four representative algorithms, the proposed 
SABiLDE has better or competitive accuracy and robustness for most of the test problems considered, and 
has better computational efficiency for high dimensional problems. 

The rest of this paper is organized as follows. In Section 2, a literature review on evolutionary bilevel 
optimization is provided. Thereafter, the detailed descriptions of the framework of the SABiLDE algorithm 
are presented in Section 3. Numerical experiments and comparisons are illustrated in Section 4. Finally, 
Section 5 gives the concluding remarks. 

 

2. Current research on evolutionary bilevel optimization 

Bilevel optimization has been recognized as one of the most difficult and challenging tasks to deal 
with because of its intrinsic complexity in general. In the past decades, bilevel optimization has gained 
increasing interest due to its wide applications, and a number of classical methods and evolutionary 
algorithms have been developed to solve bilevel optimization problems. The traditional concepts and 
approaches for solving bilevel optimization problems were well reviewed in [10] and [13]. Interested 
readers are referred to these good surveys and the references therein. There has also been an interest in 
multi-objective bilevel optimization using evolutionary algorithms [7], [12], [20], [21]. Generally, the 
bilevel evolutionary algorithms (BLEAs) can be categorized into four groups: 1) single level transformation 
methods, 2) nested sequential strategies, 3) co-evolutionary approaches, and 4) surrogate model assisted 
methods. In the follows, a number of representative methods are briefly introduced. 

2.1 Single level transformation methods 

In these methods, a bilevel optimization problem is transformed into an equivalent single level 
optimization problem first, and an EA is then used to solve the equivalent problem. For example, Hejazi et 
al. [22] proposed a GA based method for linear bilevel programming, in which the Kuhn-Tucker conditions 
for the lower level problem are derived and then the bilevel programming problem is transferred into a 
single level problem. Wan et al. proposed a hybrid particle swarm optimization and chaos searching 
approach [23] and a distribution estimation algorithm [24] for solving bilevel programming problems. 
Similarly, the bilevel programming is transformed into a single level programming problem using the 
Karush-Kuhn-Tucker (KKT) conditions of the lower level problem. Wang et al. [25] proposed an EA for 
solving nonlinear bilevel programming problem (BLPP) based on a new constraint-handling scheme, where 
the nonlinear BLPP was firstly transferred into an equivalent nonlinear optimization problem with a single 
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non-differentiable and nonconvex objective function. Moreover, a new constraint-handling method with 
linear and nonlinear schemes were combined with the EA [Ref]. In [26], Jiang et al. presented a novel 
approach based on particle swarm optimization to solve nonlinear bilevel programming problem, by 
applying the KKT conditions and the Chen-Harker-Kanzow-Smale (CHKS) smoothing function to the 
lower level problem first and then transforming the nonlinear BLPP into a regular nonlinear programming 
with complementary constraints. Recently, Li [27] proposed a GA approach using finite search space 
(GA-FSS) for a special class of BLPPs in which the lower level is a fractional program, whereas the upper 
level problem is simply solvable. In order to evaluate the performance of each individual in GA, a fitness 
function was presented by making use of the optimality conditions of linear fractional programs. Hence, the 
GA-FSS belongs to the single level transformation method in essence. The main disadvantage of the single 
level transformation method is that it is problem-dependent and lacks generalization ability to extend to 
new problems. To convert the lower level problem into complementary constraints of the upper level, the 
lower level problem must satisfy some special conditions, such as linear, convex and differentiable. 

2.2 Nested strategies 

Since the upper and lower tasks of bilevel optimization problems are nested in nature, it is reasonable 
to use a nested strategy to handle bilevel problems; one of the best ways is that for every upper level vector, 
to find a solution for the lower level optimization problem. There are two nested frameworks, depending on 
how the lower level problem is solved by using either a classical optimization method or an EA. It should 
be stressed that an EA is always adopted to solve the upper level task. One of the first nested strategies for 
handling bilevel optimization problems was proposed by Mathieu et al. [28], where the upper level problem 
was solved using a genetic algorithm (GA), while the lower level problem was handled by a linear 
programming method. Later, Yin [29] proposed a similar strategy based on GA, using the Frank Wolf 
algorithm to solve the lower level problem. In [30], the DE algorithm was combined with an interior point 
method for solving nonlinear problems with linear constraints. The DE algorithm was employed to solve 
the upper level problem while the interior point method was used to optimize the lower level problem. The 
DE was also used to solve a bilevel programming problem in transportation [31], where an optimal solution 
for the lower level problem was obtained via a gradient based algorithm. Islam et al [32] presented a new 
nested approach for solving bilevel optimization problems, which uses DE and a memetic algorithm 
adapted from the Sequential Quadratic Programming (SQP) to find a solution for the upper level model, 
and the DE and SQP are also used in the lower level during various phases of the search. The common 
characteristic of the above methods is that they all use a deterministic local search algorithm to handle the 
lower level problem. Similar to the single level transformation methods, the nested approaches with 
classical lower level methods are only applicable to problems with good lower level properties. 

To overcome the disadvantages of the classical optimization algorithms and improve the 
generalization property of the existing bilevel optimization algorithms, EAs have also been proposed to 
solve the lower level problems. That is to say, both the upper and lower level tasks are optimized by EAs in 
a nested structure. For example, Zhang et al [3] proposed a nested particle swarm optimization (PSO) 
framework and applied it to solve a specific multi-leader one-follower nonlinear bilevel decision model for 
day-ahead electricity markets. The leader (upper level problem) and the follower (lower level problem) 
were solved by two separate PSO algorithms in an iterative manner. Such a bilevel PSO approach was also 
applied to solve bi-level pricing problems in supply chains [33], and satisfactory results were obtained. 
Recently, Zhao and Wei [34] proposed a nested particle swarm algorithm based on sphere mutation to solve 
bi-level optimization. The simulation results show that the proposed algorithm is effective. Sinha et al [35] 
presented a nested evolutionary strategy to find an optimal solution for a multi-period multi-leader-follower 
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Stackelberg competition model, with nonlinear cost and demand functions, and discrete production 
variables. The strategy was evaluated on a test-suite of bilevel problems, and it has been shown that the 
method is able to handle difficult bilevel problems. Angelo et al [36] proposed a nested bilevel differential 
evolution (BlDE), where two DE algorithms are used to solve the upper and the lower level problems. As 
mentioned earlier, even simple nested methods can be computationally expensive due to the need for 
evaluating a large number of lower level functions. Recently, a bilevel covariance matrix adaptation 
evolution strategy (BL-CMA-ES) is proposed in [37], where a novel search distribution sharing mechanism 
was designed to extract a priori knowledge of the lower-level problem from the upper-level optimizer; it 
was shown that the time for function evaluations could significantly be reduced through the proposed 
method. Huang and Wang [38] proposed a new framework (called GO) to identify and utilize the 
interactions between upper-level and lower-level variables for scalable bilevel optimization problems. 
However, the identification of the interactions between upper-level and lower-level variables for problems 
defined in a high dimensional space can be a very challenging task to do. 

2.3 Co-evolutionary methods 

Co-evolutionary algorithms generally maintain two populations, one for upper level, and another for 
lower level. The two populations evolve separately, but periodically exchange information to achieve a 
balanced evaluation for the problem. Oduguwa and Roy [39] firstly proposed a co-evolutionary approach, 
called bi-level   genetic   algorithm (BiGA), which can be used for solving bilevel optimization 
problems. The co-evolutionary operator is used to preserve the interactive nature of the bilevel optimization 
problem in the search process. An external elite population is maintained to identify the elite members of 
both populations after the co-evolutionary operation for every generation. However, the algorithm has 
limited ability to handle constraints, and it can get stuck in a local optimum. Legillon et al [40] further 
extended the BiGA and developed a more general co-evolutionary bilevel method using repeated 
algorithms (CoBRA). The application to a bi-level transportation problem with linear objectives and 
constraints confirmed its effectiveness. Chaabani et al [41] presented a co-evolutionary decomposition 
based bilevel algorithm (CODBA) to tackle combinatorial BLOPs. To reduce the complexity of the low 
level task, the lower level population is decomposed into M well distributed subpopulations over the search 
space for the lower level problem, and the sub-populations co-evolve in parallel using M threads (one 
thread for each sub-population). Recently, inspired from chemical reaction optimization algorithm, 
Chaabani et al. [42] proposed a new co-evolutionary decomposition algorithm, called E-CODBA 
(Energy-based CODBA), to solve combinatorial bi-level problems. However, the co-evolution in CODBA 
and E-CODBA is only limited to the lower population, and is different from the BiGA [39] and CoBRA 
[40], where the co-evolution is applied to both the upper and lower populations. So strictly speaking, the 
CODBA and E-CODBA are actually a nested approach. A similar co-evolutionary framework was reported 
in [43], where the upper and lower levels are in a nested structure but the lower level follows a 
co-evolutionary scheme of two EAs to reduce the computational cost of obtaining feasible solutions. 
Recently, by introducing a migration scheme and defining two populations in each level, Said et al [44] 
presented a Co-Evolutionary Migration-Based Algorithm (CEMBA) to solve combinatorial bi‑level 
optimization problems. CEMBA has been validated on a set of bi-level combinatorial 
production-distribution planning benchmark instances. However, similar to CODBA, the individual 
migration in CEMBA is only limited to the upper or lower level population, thus CEMBA is essentially a 
nested approach. 
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2.4 Surrogate model assisted methods 

In the last few years, Sinha and co-workers have developed a series of efficient bilevel evolutionary 
algorithms [11], [12], [14], [18]-[21]. For example, to reduce the lower level function evaluations and 
improve the computational efficiency, a novel and efficient bilevel evolutionary algorithm based on 
quadratic approximations (BLEAQ) of optimal lower level variables with respect to the upper level 
variables was proposed in [11]. To further enhance the performance of BLEAQ, an improved version was 
introduced by incorporating archiving and local search [14]. The archive is used to store the feasible 
members produced so far, therefore a larger pool of members for better quadratic approximations of 
optimal lower level solutions is available. Moreover, Sinha et al. [45] proposed a modified version of 
BLEAQ to reduce the computational expense by iteratively approximating the lower level rational reaction 
mapping and the lower level optimal value function mapping. However, the quadratic approximation is 
time demanding especially when the problem is defined in a high dimensional space and the archive is 
large, making the approximation accuracy of quadratic programming become lower with the increasing of 
the upper level dimensions. Recently, Islam et al. [46] presented a surrogate assisted approach for 
single-objective bilevel optimization (SABLA), which uses multiple surrogates such as response surface 
models of orders 1 and 2, and Kriging to approximate the lower level objective/constraint functions. To 
further reduce the computational expense of the upper level problem, Islam et al. [47] proposed an 
improved SABLA (SA-SA) which uses surrogate-assisted search at both levels to solve bilevel problems. 
However, the training of multiple surrogate models is computationally expensive and the algorithm 
realization is complicated. 

Angelo et al. [17] proposed a bilevel differential evolution framework assisted by a simple k-NN 
based surrogate model. The method uses two nested DE algorithms: one for the low level optimization task 
and another for upper level task. The k-NN based surrogate model is chosen to replace the lower level 
optimization on a specific probability. However, the results indicated that the associated surrogate models 
may be too simple to efficiently solve the variety of test problems as demonstrated in [17], where it showed 
that when the surrogate model was used at a probability larger than 0.5, the method generated poor quality 
solutions in some cases, and the convergence of the upper level was compromised. 
 

3. The proposed approach 

This work mainly focuses on the evolutionary algorithms for single-objective bilevel optimization. 
Since the bilevel optimization is nested in nature, the development of nested approach is a simple and 
intuitive choice for most applications. However, nested approaches are computationally expensive because 
a corresponding lower level optimization procedure must be performed for each upper level decision vector. 
So a nested approach requires an efficient method for solving the lower level task producing good 
responses for the upper level task, and therefore improving the overall efficiency of the bilevel optimization 
process. When it comes to the framework with EAs in both levels, a way to improve the computation 
efficiency is to reduce the load of function evaluations in the lower level. Obviously, a small population 
size, local oriented operators and less evolution generations are beneficial to cut down the function 
evaluations. In this paper, a bilevel differential evolution with k-NN approximation and self-adaptive 
strategies is proposed to achieve these objectives. The proposed approach follows a nested structure, where 
the k-NN approximation and self-adaptive strategies are used to reduce the lower level function evaluations 
and this is achieved by an efficient lower level DE. 
3.1 k-NN based approximation 

One of the difficulties in bilevel optimization is the nested lower level optimization problem where the 
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upper level constraint is required to be solved for each of the upper decision vectors. If the lower level 
optimization problem can be approximated by a simple model, the efficiency of the bilevel optimization 
can be greatly improved. To reduce the function evaluations on both levels, a k-NN approximation assisted 
DE was proposed in [17]. In this work, while the k-NN based surrogate model is also used to approximate 
the lower level problem, the approximation strategy proposed here is completely different from that given 
in [17] which is actually a probability based mechanism. 

For each individual of the upper initial population, the lower level DE (LLDE) is invoked to solve the 
lower level problem. If the obtained lower level solution satisfies the lower level constraints, the feasible 
lower level vector and the corresponding upper decision vector are stored into an external archive. But if 
the obtained lower level solution is infeasible, it will not be included in the archive. In the later evolutions, 
the lower level feasible solutions obtained by the LLDE and the corresponding upper level vectors are also 
added to the archive. 

Consider a new upper level candidate 𝒙𝑢 and the archive 𝐴 = {(𝒙1𝑢, 𝒙1𝑙 ), ⋯ , (𝒙𝑁𝑢 , 𝒙𝑁𝑙 )}, the jth lower 
level variable is approximated by the following inverse distance weighting (IDW) interpolation function: 

𝑥̃𝑗𝑙(𝒙𝑢) = { ∑ 𝑤𝑖(𝒙𝑢)𝑥𝑖,𝑗𝑙𝑘𝑖=1∑ 𝑤𝑖(𝒙𝑢)𝑘𝑖=1 ,   if 𝑑(𝒙𝑢, 𝒙𝑖𝑢) ≠ 0 𝑥𝑖𝑙 ,                     if 𝑑(𝒙𝑢, 𝒙𝑖𝑢) = 0 , 𝑖 = 1, … , 𝑘                 (5) 

where 𝑤𝑖(𝒙𝑢) = 1𝑑(𝒙𝑢,𝒙𝑖𝑢)𝑝                                  (6) 

is a simple IDW weighting function, which was initially defined by Shepard [48], 𝒙𝑢  denotes an 
interpolated (arbitrary) point, 𝒙𝑖𝑢 is an interpolating (known) point, d is a distance  metric operator 
measuring the distance from the known point 𝒙𝑖𝑢 to interpolated point 𝒙𝑢, p is a positive real number, 
called the power parameter, and k is the number of nearest neighbors used in interpolation. Obviously, the 
weight w decreases with the increase of the distance d. Greater values of p assign greater influence to when 
the two points 𝒙𝑢 and 𝒙𝑖𝑢 becomes closer. This study uses the Euclidean distance metric, that is, p = 2. 

For a newly generated upper vector by evolution operators, a number of k nearest neighbors in the 
archive are identified to approximate the lower level optimal variables using the IDW function. If the new 
upper vector is very close to its nearest archived member, the estimated lower level solution is then used to 
substitute the corresponding optimal solution. Therefore, it is not necessary to carry out a lower level DE. If 
the new upper vector is not sufficiently close to any one of the members in the archive, the approximated 
solution can then only be treated as a good prediction of the lower level optimum. In this case, the 
approximation is used as an interim solution to generate an initial population for the LLDE. Obviously, the 
initialization strategy will let the LLDE search around the potential lower level optimum, and therefore the 
convergence is speeded up. Hence, whatever the k-NN approximation accuracy, it is useful to help improve 
the efficiency of LLDE. 

3.2 Self-adaptive strategies for lower level population 

A general self-adaptive control ratio based on the nearest archived neighbor distance is proposed to 
adjust the lower level population size and search radius. For a newly generated candidate for the upper 
level problem, if it is necessary to run LLDE to obtain the lower level optimum, the lower population size 
and search radius are scaled to its nearest archived neighbor distance. A smaller nearest neighbor distance 
means a higher similarity of two upper vectors, as well as the closer of the two corresponding lower level 
optima. Hence, a small population size and a small search radius are assigned to the LLDE to reduce the 
workload if the lower level function evaluations if the newly generated upper candidate has a small 
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distance to its archived nearest neighbor, and vice versa. Taking a 2D case as an example (shown in Fig. 1), 
the nearest neighbor distance based self-adaptive control ratio 𝛿 is defined as: 𝛿 = (𝑑𝑛𝑛𝑑𝑏𝑠 )1𝑐                                     (7) 

dnn
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dbs

x
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u
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max

min

Feasible region

 

Fig.1 Calculation of self-adaptive control ratio 𝛿 in 2D space 

where 𝑑𝑛𝑛 is the Euclidean distance between the new upper candidate and its archived nearest neighbor, 𝑑𝑏𝑠 is the maximum distance of the upper level search space, and 𝑐 ≥ 1 is  an integer constant. Note that 𝑑𝑛𝑛 is always smaller than or equal to 𝑑𝑏𝑠, so 𝛿 ≤ 1, and a larger 𝑑𝑛𝑛 means a larger 𝛿. Hence,  𝛿 is a 
normalized index to measure the similarity between the upper candidate and the archived nearest member. 
A smaller 𝛿 means the upper candidate is more similar to the archived closest member, and vice versa. 
A. self-adaption of the lower level population size 

Based on an appropriately specified self-adaptive control ratio 𝛿, the lower level population size 𝑁𝑃𝑙 
is dynamically adjusted using the following strategy: 𝑁𝑃𝑙 = max ([𝛿𝑁𝑃𝑙(0)], 𝑁𝑃𝑚𝑖𝑛𝑙 )                            (8) 
where 𝑁𝑃𝑙(0) is the initial lower level population size, 𝑁𝑃𝑚𝑖𝑛𝑙  is the minimum lower level population 
size to be used, and [∙] denotes the greatest integer function. 

It is well known that the population size has great influence on the DE’s performance. To avoid the 
deterioration of the effectiveness of LLDE caused by too small population size, the lower level population 
size is confined between a minimum population size and the initial population size. Here, the minimum 
population size 𝑁𝑃𝑚𝑖𝑛𝑙  is determined by the dimensions of lower level optimization problems, and the rule 
is : 𝑁𝑃𝑚𝑖𝑛𝑙 = { 3𝐷𝑙 ,  if 𝐷𝑙 ≤ 50.5𝑁𝑃𝑙(0),  else                               (9) 

where 𝐷𝑙 is the  number of variables involved in the lower level problem. For problems with lower 
dimension (𝐷𝑙 ≤ 5), 𝑁𝑃𝑚𝑖𝑛𝑙  can be chosen to be three times of the dimension, while it is a half of the 
initial population size for higher dimensional problems. 

To keep a comparative large population size for LLDE when there is a small distance between the 
upper candidate and the closest archived member, a self-adaptive control ratio 𝛿 with a large parameter c 
is desirable. In this paper, c is set to be 10 for the self-adaptation of the lower population size. 
B. self-adaption of the lower level search radius 

Similar to the population size, a self-adaptive strategy for the lower level search radius is as below: 𝛾𝑗𝑙 = max (𝛿, 0.01) ∙ (𝑥𝑚𝑎𝑥,𝑗𝑙 − 𝑥𝑚𝑖𝑛,𝑗𝑙 )                         (10) 
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where 𝑥𝑚𝑎𝑥,𝑗𝑙  and 𝑥𝑚𝑖𝑛,𝑗𝑙  are the upper and lower bounds of the jth lower level variable. To enhance local 
search, a small power parameter of c = 3 is used. In addition, a minimum radius ratio of 0.01 is introduced 
to avoid too small search radius. Obviously, a higher similarity of an upper candidate to an archived 
member would mean a smaller search radius for the LLDE. Therefore, the convergence rate of the LLDE 
can be improved accordingly. 
    For a newly generated upper candidate 𝒙𝑢, if the LLDE cannot be sufficiently approximated by the 
k-NN approximation 𝒙̃𝑙, the corresponding population size of LLDE should be determined by Eq. 9 first 
and the initial population can then be generated based on the approximated 𝒙̃𝑙 and the search radius 
defined by (10). As a result, the LLDE will do local search around the 𝒙̃𝑙, and the efficiency can thus be 
enhanced. The lower initial population can be generated by 𝑥𝑖𝑗𝑙 (0) = 𝑥̃𝑗𝑙 + 𝛾𝑗𝑙 ∙ 𝐺𝑎𝑢𝑠𝑠(0,1), 𝑖 = 1, ⋯ , 𝑁𝑃𝑙 , 𝑗 = 1, ⋯ , 𝐷𝑙                (11) 
where Gauss(0,1) represents the Gaussian distribution with the mean value 0 and the standard deviation 1. 

3.3 Algorithm framework 

For bilevel optimization, both the computational efficiency and solution robustness should be equally 
emphasized. Differential Evolution proposed by Storn and Price in 1995 [16] is a simple but powerful 
real-coded stochastic optimization algorithm. In the last decades, DE has been successfully applied in many 
practical cases due to its good properties, and has been proven to be one of the most powerful global 
numerical optimization algorithms in the evolutionary algorithm community. In recent years, various 
mutation operators have been proposed [49]. Generally, different mutation operators have different features 
and there is no single one that can always perform well for all types of problems [50]. Among them, the 
DE/rand/1 and DE/best/1 are two of the most frequently used mutation strategies. To improve DE’s 
performance, the ensemble of multiple mutation operators is one of the popular approaches [51]. In this 
work, three mutation operators are selected to develop an efficient and effective bilevel DE algorithm. 

For the upper DE procedure, a simple ensemble mutation operator by probabilistically selecting 
DE/rand/1 or DE/best/1 is constructed to balance the global exploration and local search. The DE/best/1 
and DE/rand/1 are selected based on a specified probability. To enhance the local search efficiency, a higher 
probability (𝜏 = 0.7) is assigned to the DE/best/1, and the DE/rand/1 is used as an assistant strategy to 
improve the global convergence ability. The pseudo-code of the simple ensemble mutation operator is 
illustrated in Algorithm 1. Where rand is a uniformly distributed random number within [0, 1], Fr and Fb 
are mutation constants for DE/rand/1 strategy and DE/best/1 strategy, respectively. 

Algorithm 1 The Proposed Ensemble Mutation Operator 
 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

Input: 𝑁𝑃𝑢, 𝐹𝑏𝑢, 𝐹𝑟𝑢, 𝐶𝑅𝑏𝑢, 𝐶𝑅𝑟𝑢, 𝐷𝑢, and index i 

Select randomly r1 ≠ r2 ≠ r3 ≠ i 
jrand = rndint(1, 𝐷𝑢) 
if rand ≤ τ then /* DE/best/1 mutation strategy */ 𝒗𝑖𝑢 = 𝒙𝑏𝑒𝑠𝑡𝑢 + 𝐹𝑏𝑢 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢 )   

for j = 1 to 𝐷𝑢 do 

if rand < 𝐶𝑅𝑏𝑢 or j = jrand then 

  𝑢𝑖𝑗𝑢 = 𝑣𝑖𝑗𝑢  

 else 

  𝑢𝑖𝑗𝑢 = 𝑥𝑖𝑗𝑢  

 end if 
end for 

else 𝒗𝑖𝑢 = 𝒙𝑟1𝑢 + 𝐹𝑟𝑢 ∙ (𝒙𝑟2𝑢 − 𝒙𝑟3𝑢 )  

for j = 1 to 𝐷𝑢 do 

if rand < 𝐶𝑅𝑟𝑢 or j = jrand then 

  𝑢𝑖𝑗𝑢 = 𝑣𝑖𝑗𝑢  

else 
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18: 
19: 
20: 
21: 

 

  𝑢𝑖𝑗𝑢 = 𝑥𝑖𝑗𝑢  

end if 
end for 

end if 
Output: 𝒖𝑖𝑢 

For the lower level DE procedure, the DE/target-to-best/1 and DE/best/1 are dynamically selected 
based on the similarity between the upper candidate and the archived members. If a newly generated upper 
level candidate is close to an upper level member in the archive, it is often expected that their lower level 
solutions are also close to each other, therefore, the DE/best/1 is used to do local search around the archived 
lower level solution to speed up the convergence. Otherwise, the DE/target-to-best/1 is selected to solve the 
lower level optimization problem since it has a good balance between the exploration and exploitation. But 
for the upper initial population, the DE/target-to-best/1 is always used to obtain the lower level optima. The 
above self-adaptive mutation strategy for lower level DE is illustrated in Algorithm 2, where 𝑑̅(0) is the 
average distance among initial individuals in upper population. 

Algorithm 2 The Self-adaptive Mutation Strategy 

 

1: 
2: 
3: 
4: 
5: 

 

Input: 𝑑𝑖𝑛𝑛, 𝑑̅(0) and iteration t 
If 𝑑𝑖𝑛𝑛 ≥ 0.5𝑑̅(0) or t == 0 then 

flag = 0 /*DE/target-to-best/1 mutation strategy*/ 
else 

flag = 1 /*DE/best/1 mutation strategy*/ 
end if 
Output: flag 

In the following, the detailed procedures of the bilevel DE with k-NN approximation and self-adaptive 
control strategies are described. 
A. Upper level optimization 

The upper level optimization starts with a randomly initialized population in the upper variable space. 
For each of the initial individuals, the lower level DE is used to solve the lower optimization problem, and 
the obtained lower level optimal solutions and the corresponding upper level solutions are stored into an 
external archive A. By evaluating the upper level objective function and constraints, the upper level fitness 
is then assigned. Thereafter, the upper evolution operators are applied to the upper population and new 
candidates are generated. For each of the candidates, the k-NN approximations are firstly applied to 
estimate the lower optimal variables based on the archived members. If the nearest distance between the 
candidate and some of the archived members is small enough (𝑑𝑖𝑛𝑛 ≤ 𝑑𝑏𝑠 ∙ 10−5), the approximated lower 
level variables are directly accepted as the lower level optimal solution. Otherwise, the approximated lower 
level solution is used as the base solution to generate an initial population for the lower level DE. Moreover, 
the self-adaptive strategies based on the nearest distance for the lower population size and search radius are 
used to enhance the convergence performance of the lower level DE. The pseudo-code of upper level 
optimization is shown in Algorithm 3. 

Algorithm 3 Upper Level Differential Evolution (ULDE) 
 

1: 
2: 
3: 
4: 

 

5: 
6: 
7: 
8: 
9: 

10: 
11: 

Input: 𝑁𝑃𝑢, 𝐹𝑏𝑢, 𝐹𝑟𝑢, 𝐶𝑅𝑏𝑢, 𝐶𝑅𝑟𝑢, 𝑇𝑢, and 𝛼𝑠𝑡𝑜𝑝𝑢
 

Generate the initial population randomly in the upper search space 

Set flag=0 to call LLDE with DE/target-to-best/1 mutation 

Store the initial solutions (𝒙𝑢(0), 𝒙𝑙∗(0)) into the archive A 

Evaluate the upper fitness 𝑓𝑖𝑡𝑢(𝒙𝑢(0), 𝒙𝑙∗(0)) for each initial 
solution based on upper function and constraints 

Set iteration counter t = 1 

while the stop criteria are not satisfied do 

  for i =1 to 𝑁𝑃𝑢 do 

    Execute Algorithm 2 to obtain trail vector 𝒖𝑖𝑢 

end for 

for i =1 to 𝑁𝑃𝑢 do 

  Calculate distances between 𝒖𝑖𝑢  and the archive members 
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12: 
 

13: 
14: 
15: 
16: 

 

17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

 

27: 
28: 
29: 
30: 
31: 
32: 

 

and identify the nearest distance 𝑑𝑖𝑛𝑛 and k nearest archive 
neighbors 

  Estimate the optimal lower level variables using k-NN 
approximation for 𝒖𝑖𝑢 

  if 𝑑𝑖𝑛𝑛 ≤ 𝑑𝑏𝑠 ∙ 10−5 then 

    Accept the estimated solution as the optimal lower solution 

  else 

    Determine the population size 𝑁𝑃𝑖𝑙 of LLDE according to 
Eq.8 and Eq.9 

    Calculate the search radius of LLDE according to Eq.10 

    Initialize the 𝑃𝑜𝑝𝑖𝑙 according to Eq.11 

    if 𝑑𝑖𝑛𝑛 ≤ 0.5𝑑̅(0) 

      flag=1, execute LLDE with DE/best/1mutation 

    else 

      flag=0, execute LLDE with DE/target-to-best/1mutation 

    end if 
    copy the optimal lower level solution 𝒙𝑖𝑙∗ to the archive 

  end if 
  Evaluate the fitness of candidate (𝒖𝑖𝑢, 𝒙𝑖𝑙) based on upper 

level function and constraints 

if fitiu(uiu, xil∗) is better than or equal to fitiu(xiu, xil) then 

    (𝒙𝑖𝑢, 𝒙𝑖𝑙) = (uiu, xil∗) 

end if 
end for 

t = t+1 

end while 

Output: (𝒙𝑢∗, 𝒙𝑙∗) 

B. Lower level optimization 

If the estimated lower level variables are not accurate enough to approximate the optimal lower level 
solution, the lower level DE will be executed. For the nested BLEA structure, an efficient lower level EA is 
required. Hence, the two mutation strategies, DE/target-to-best/1 and DE/best/1, are used to develop an 
efficient lower level DE, and in each generation only the one that generates the ‘best’ individual is used. 
Moreover, the lower level population size and search radius are dynamically adjusted with respect to the 
similarity between the upper candidates and the archived members; this is beneficial to reduce the lower 
level function evaluations. The pseudo-code of the lower level DE is shown in Algorithm 4. 

Algorithm 4 Lower Level Differential Evolution (LLDE) 

 
1: 

 

2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

Input: 𝑃𝑜𝑝𝑙, 𝒙𝑢, flag, 𝐹𝑙, 𝐶𝑅𝑙, 𝑇𝑙, and 𝛼𝑠𝑡𝑜𝑝𝑙
 

Evaluate the lower fitness 𝑓𝑖𝑡𝑙(𝒙𝑢, 𝒙𝑙(0)) for each lower initial 
individual based on lower function and constraints 

Set iteration counter t = 1 

while the stop criteria are not satisfied do 

  for i =1 to 𝑁𝑃𝑙 do 

Select randomly r1 ≠ r2 ≠ i 
jrand = rndint(1, 𝐷𝑙) 

    if flag == 0 /* DE/target-to-best/1*/ 
      𝒗𝑖𝑙 = 𝒙𝑖𝑙 + 𝐹𝑙 ∙ (𝒙𝑏𝑒𝑠𝑡𝑙 − 𝒙𝑖𝑙) + 𝐹𝑙 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢 ) 

else /* DE/best/1*/ 
  𝒗𝑖𝑙 = 𝒙𝑏𝑒𝑠𝑡𝑙 + 𝐹𝑙 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢 ) 

end if 
for j = 1 to 𝐷𝑙 do 

  if rand < 𝐶𝑅𝑙 or j = jrand then 

    𝑢𝑖𝑗𝑙 = 𝑣𝑖𝑗𝑙  

  else 

    𝑢𝑖𝑗𝑙 = 𝑥𝑖𝑗𝑙  

  end if 
end for 

end for 

for i =1 to 𝑁𝑃𝑙 do 

Evaluate the fitness of candidate (𝒙𝑢 , 𝒙𝑖𝑙) based on lower 
level function and constraints 
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23: 
24: 
25: 
26: 
27: 
28: 

 

if 𝑓𝑖𝑡𝑖𝑙(𝒙𝑢, 𝒖𝑖𝑙) is better than or equal to 𝑓𝑖𝑡𝑖𝑙(𝒙𝑢, 𝒙𝑖𝑙) then 

    𝒙𝑖𝑙 =  𝒖𝑖𝑙  
end if 

end for 

t = t+1 

end while 

Output: 𝒙𝑙∗ 

C. Flowchart of SABiLDE 

The overall flowchart of the bilevel DE with k-NN approximation and self-adaptive control strategies 
is shown in Fig.2. In the ULDE, a nested LLDE is always invoked for each upper level initial individual. 
But for each upper trial individual, if it is similar to one of the history individuals in the archive, the k-NN 
is used to approximate the lower level optimal solution. Moreover, the population size and search radius of 
the LLDE are adaptively adjusted to reduce the function evaluation based on the nearest neighbor distance 𝑑𝑛𝑛. 
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Fig. 2 Flowchart of the proposed SABiLDE 

4. Numerical results and analysis 

Two sets of test problems are chosen to evaluate the performance of the proposed SABiLDE. The first 
set includes 10 standard bilevel test problems (referred to as TP [11]) collected from different sources. The 
second set is the recently proposed SMD test suite [18], which consists of 12 scalable bilevel problems with 
different difficulties in terms of convergence at the two levels, complexity of interactions between the two 
levels and multi-modalities at each of the levels. Among the 12 problems, the first eight  are unconstrained 
and the remaining four are constrained. 
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The results of the proposed algorithm are compared with the following four representative BLEAs for 
generic bilevel optimization problems: SABLA [46], BL-CMA-ES [37], BLEAQ [14] and BlDE [16],. The 
BlDE is an improved version of the nested bilevel differential evolution discussed in [35], with a k-NN 
based surrogate model being incorporated in the lower optimization. The BLEAQ proposed in [14] is an 
efficient bilevel evolutionary algorithm based on quadratic approximations of the lower level optimal 
variables as a function of upper level variables, which has been shown to outperform a number of 
contemporary strategies for bilevel optimization. The BL-CMA-ES [37] is a newly developed evolutionary 
bilevel optimization algorithm based on covariance matrix adaptation. The SABLA is a surrogate assisted 
approach for single-objective bilevel optimization, which uses multiple surrogates to approximate the lower 
level solutions. 

4.1 Parameter setting and test platform 

The population sizes at both levels are set to be 30 for both the TP group and the SMD suite. The 
mutation scaling factor F and crossover rate CR for DE/rand/1 mutation strategy are 0.5 and 0.1, 
respectively. The two strategies, DE/best/1 and DE/target-to-best/1, have the same mutation scaling factor 
and crossover rate, i.e. F = 0.5 and CR = 0.9. The values for the upper stop criterion 𝛼𝑠𝑡𝑜𝑝𝑢  and the lower 
stop criterion 𝛼𝑠𝑡𝑜𝑝𝑙  are both 1E-6. For another stop criterion, the maximum generations of no 
improvement are set to be 20 for both levels. The number of nearest neighbors of k used in interpolation is 
determined by 𝑘 = min {2𝐷𝑢 + 1, (𝐷𝑢 + 1)(𝐷𝑢 + 2)/2, 𝑁𝑃𝑢}                   (18) 
where 𝐷𝑢 is the dimension of the upper level decision vector, 𝑁𝑃𝑢 is the upper level population size. To 
highlight the local interpolation and reduce computational cost of the approximation procedure, k cannot be 
larger than the upper level population size. 

For BLDE, the probability of using the k-NN based surrogate model is 30%, and k is set to 2 as 
suggested in [16]. Other parameter settings of the compared algorithms are determined according to their 
original references. The code for the algorithm is realized in MATLAB 2012a, and all the computations 
have been performed on a laptop with 64 bit Windows 10 platform, 2.6GHz double-core Intel Core i5 
processor and 4GB of 1600MHz DDR3 RAM. The MATLAB code of BLEAQ is available at 
http://bilevel.org. We rewrote the code of BlDE based on the pseudo-codes in [16]. To avoid randomness, 
each test function is optimized over 30 independent runs. For fair comparison, a total of 30 different initial 
populations were considered, starting from which each algorithm was run 30 times, and the relevant overall 
performance was then compared. Because the code of SABLA and BL-CMA-ES are not open access, we 
just copy the results in the literature therein. 

To test the performance of the proposed algorithm, the test problems SMD1 to SMD9 with 10 
dimensions are considered. For problems SMD 1-5, 𝑝=3, 𝑞=3, and 𝑟=2; for problems SMD 7-9, 𝑝=3, 𝑞=1, 𝑟=2; for problem SMD6, 𝑝=3, 𝑞=1, 𝑟=2, and 𝑠=2, where 𝑝, 𝑞, 𝑟, and 𝑠 are the parameters of SMD test suite 
[18]. For the other three test problems SMD10 to SMD12 with complex constraints, only the case of 5 
dimensions is considered since the three algorithms (BlDE, SABLA and BL-CMA-ES) all fail to solve the 
three test problems with 10 dimensions. For the three problems with 5 dimensions, the values of the three 
parameters p, q and r are set to be 1, 2, and 1, respectively. 

4.2 Performance evaluation criteria 

Performance of the algorithms used is evaluated and compared using the following three criteria. 
1) Median of error values: the median of the errors between the obtained solutions and the true 

optimum over all independent runs is used to measure the accuracy of the solutions obtained. 
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2) Success rate (SR): the percentage of convergence to the optimal solution in all independent runs are 
used to evaluate the robustness and reliability of the proposed algorithm. 

3) CPU running time: the average and minimum CPU running time to reach the optimal solution is 
used to assess the computational cost. 

4.3 Comparison with the state-of-the-art 
A. Solutions 
The median solution accuracy of SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE are shown in 

Table 1 for the TP test problems and the SMD test suite (SMD1 to SMD9 with 10 dimensions, SMD10 to 
SMD12 with 5 dimensions). If the difference between the function value achieved by an algorithm and the 
true optimal function value is no more than 0.1, it is considered that the test problem is solved [18]. The 
success rates of the three algorithms in 30 runs for the two test sets are also shown in Table 1. In order to 
highlight the overall best result, the significantly better values are marked in bold. While reporting the 
median errors, we consider a precision of 1E-6. Consequently, if the error is less than 1E-6, it is simply set 
to 1E-6. This is can facilitate the comparison of extremely small values, where the difference in values is 
not significant. 

Table 1 Solution comparison among SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE 

Prob 
SABiLDE SABLA BL-CMA-ES BLEAQ BlDE 

UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) 

tp1 8.85E-4 1.17E-3 100 1.00E-6 1.00E-6 100 1.11E-6 3.78E-5 100 1.38E-6 1.00E-6 100 5.33E-2 1.13E-1 83.3 

tp2 6.42E-5 1.83E+0 86.7 1.34E-6 3.53E-6 100 1.00E-6 2.23E-4 100 1.10E-3 9.99E+1 36.7 1.00E-6 8.81E+1 36.7 

tp3 2.89E-5 9.34E-5 100 1.00E-6 1.00E-6 100 2.53E-2 2.80E-2 100 1.09E-5 2.50E-5 100 8.96E-5 2.41E-5 100 

tp4 3.93E-4 1.29E-6 100 8.21E+2 1.00E-6 - 1.00E-6 1.00E-6 100 1.64E-3 5.17E-4 100 6.54E-4 1.02E-5 100 

tp5 3.65E-6 1.92E-6 100 4.46E-6 7.77E-5 100 1.73E-1 2.20E-1 - 3.03E-3 1.51E-2 80 1.16E-5 8.37E-5 76.7 

tp6 7.77E-4 2.78E-3 100 1.75E-4 1.00E-6 100 1.00E-6 2.48E-5 100- 7.77E-4 2.78E-3 100 7.80E-4 2.80E-3 100 

tp7 8.01E-4 6.92E-4 100 1.00E-6 1.00E-6 100 6.74E-4 6.74E-4 100 7.84E-4 7.84E-4 100 8.46E-4 1.66E-3 100 

tp8 1.00E-6 1.00E-6 100 2.42E-5 1.00E-6 100 1.00E-6 1.05E-4 100 6.11E-3 9.99E+1 46.7 1.00E-6 9.48E+1 36.7 

tp9 1.00E-6 1.00E-6 100 6.51E-6 1.72E-5 100 1.00E-6 1.00E-6 100 8.94E-5 1.00E-6 100 1.80E-3 1.00E-6 100 

tp10 2.58E-6 1.00E-6 100 2.63E-6 4.65E-4 100 1.00E-6 1.00E-6 100 2.39E-5 1.00E-6 100 1.62E-3 1.00E-6 100 

SMD1 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 2.54E-5 1.74E-5 100 2.39E-5 1.36E-5 100 

SMD2 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.28E-6 100 1.39E-4 2.22E-4 100 4.18E-4 3.75E-3 66.7 

SMD3 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.12E-6 100 2.78E-2 9.29E-4 100 1.90E-5 1.68E-5 100 

SMD4 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 8.18E-6 100 2.45E-4 2.06E-4 100 8.99E-1 9.55E-1 3.33 

SMD5 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.49E-6 100 9.34E-5 3.22E-4 100 9.54E-5 1.61E-4 83.3 

SMD6 3.78E-4 2.71E-5 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.07E+0 5.02E-1 0.0 

SMD7 1.87E-4 1.52E+1 93.3 1.00E-6 1.00E-6 100 4.91E-2 6.25E+1 - 9.77E-2 1.20E+2 63.3 4.50E+0 5.03E+2 0.0 

SMD8 1.00E-6 3.58E-5 100 2.76E-3 6.77E-4 100 1.00E-6 1.00E-6 100 8.81E-3 1.02E-2 90 4.36E-4 3.21E-4 76.7 

SMD9 1.00E-6 1.00E-6 100 1.78E-6 1.77E-6 100 1.00E-6 1.98E-6 100 1.64E+0 5.53E+0 16.7 1.58E+0 1.99E+0 0.0 

SMD10 1.00E-6 8.32E-5 100 3.80E-6 3.90E-6 100 1.60E+1 1.00E-6 - 7.94E-1 9.53E-1 0.0 7.11E+0 8.11E+0 0.0 

SMD11 3.76E-3 4.54E-3 100 2.31E-1 3.25E-1 - 2.66E-3 3.49E-3 100 3.26E-4 7.14E-4 100 2.92E-1 3.28E-1 0.0 

SMD12 6.94E-5 1.10E-4 100 1.00E-6 1.00E-6 100 1.00E-6 1.07E+1 - 4.51E-1 1.75E+0 0.0 1.98E+0 8.02E+0 0.0 

It can be seen from Table 1, SABiLDE obtained better convergence accuracy than BlDE for almost all 
the test problems. Although both SABiLDE and BlDE use the k-NN approximation as the lower level 
surrogate model to reduce the lower level function evaluations, their assistant mechanism is completely 
different. BlDE adopts a probability based selection strategy, that is, the k-NN approximation is chosen to 
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replace the lower level DE in a specified probability no matter the solution accuracy obtained. However, 
the k-NN based surrogate model is too simple to effectively solve a variety of problems, especially when a 
small number of neighbors are used (i.e., a small k in k-NN) for multi-variables interpolation. In BlDE, the 
number of nearest candidate solutions selected to calculate the lower level variables via the surrogate model 
is set to 2 (k =2). Obviously, the approximation ability of the k-NN model used in BlDE is limited. Once a 
false estimation occurs, the upper optimization could be trapped into a sub-optimum or even a false 
solution. For example, it can be noticed from Table 1 that BlDE fails to handle most of the test problems, 
though it is able to converge to the upper and lower true optima of TP3, TP4, TP6, TP7, TP9, TP10, SMD1 
and SMD3 with a comparatively high accuracy. In SABiLDE, however, the estimated solution based on 
k-NN approximation is not directly used as the optimal lower level solution but a base solution for the 
initialization of lower level population if the approximation is not accurate enough. Therefore, the 
optimality of the lower level solution can be well guaranteed for SABiLDE. 

In comparison with the modified BLEAQ, SABiLDE provides better or competitive results for all the 
test problems except for SMD6. The test problem of SMD6 is very difficult to solve, because there is 
conflict between the two levels [18]. Moreover, the lower level problem is a multi-modal problem. For any 
given upper level vector, there are an infinite number of global solutions at the lower level. In the entire 
global solution set, there is only a single lower level point which corresponds to the best upper level 
function value [18]. SABiLDE is able to find one of lower level optima for any given upper candidate, but 
it is difficult to converge to the upper optimum with high accuracy because of the multi-modal property of 
the lower level problem and the conflict between the two levels. Interestingly, BLEAQ can easily handle 
this problem with very high precision. A reasonable interpretation may be that the local search at upper 
level supported by the quadratic approximations is especially beneficial to speed up the convergence of the 
algorithm for this test problem. However, BLEAQ is unable to solve the problems TP2, TP5, TP8, SMD7 
in all runs, and fail to solve the constrained problems SMD10 and SMD12, owing to the introduction of 
infeasible members at the upper level. 

When compared to SABLA, a novel multiple surrogate assisted bilevel algorithm [46], SABiLDE has 
competitive or better solution accuracy for the majority of the test problems. SABLA performs better than 
SABiLDE on the problems TP1, TP2, TP3, TP6, TP7, and SMD12, but SABiLDE wins when solving the 
problems TP4, TP5, TP8, TP9, TP10, SMD8, SMD9, SMD10, SMD11. It's interesting that SABLA cannot 
solve the upper level problem of TP4, and the upper and lower level problem of SMD11. 

For BL-CMA-ES, one of lately developed efficient BLEAs, it can be seen from Table 1 that the 
method generally obtained better upper level solutions on the most test problems than SABiLDE, but 
SABiLDE is able to obtain better lower level solutions on the majority of the test problems. Moreover, 
BL-CMA-ES cannot solve the upper problem of SMD10, the lower problems of SMD7 and SMD12, and 
the upper and lower problem of TP5. Therefore, it can be concluded that SABiLDE generally demonstrates 
better robustness than BL-CMA-ES. 

As it can be seen from Table 1, SABiLDE failed to find the lower level sub-optima of TP2 and SMD7 
in some runs. Although the problem TP2 is a bilevel optimization problem with low dimensions, the lower 
constraints separate the lower feasible region into several parts, solutions are quite easily to be trapped into 
sub-optima. In addition, there is a conflict between the two levels. For this problem, as shown in the Table 
1, SABLiDE, BLEAQ and BlDE cannot solve the lower problem in some runs, but SABiLDE has better 
global convergence ability and its success rate is much higher than BlDE and BLEAQ. It should be 
mentioned that both BlDE and BLEAQ gave false lower level solution to this problem, resulting in 
corresponding false upper level solutions. Moreover, BlDE and BLEAQ showed similar performance when 
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solving the test problems of SMD7 and SMD10. But the overall performance of BLEAQ is much better 
than that of BLDE.  in that false solutions frequently occurred in BlDE. When the lower level population 
sizes for TP2 and SMD7 were increased to 40, the premature convergence of SABiLDE in lower levels was 
avoided. However, with the increasing of population size, the function evaluations in the corresponding 
lower level or upper level are also increased. 

To further quantitatively assess the performance of the proposed method, the Wilcoxon signed ranks 
test and Friedman test [52] were carried out. The calculation of two tests and the associated multiple 
comparisons were conducted using the KEEL software tool [53]. Tables 2 and 3 show the upper and lower 
accuracy results when applying Wilcoxon test to detect significant differences for the control algorithm 
SABiLDE by means of pairwise comparisons, respectively. The symbol “◦” means that the method in the 
row performs better than the methods that column, and the “•” means that the method in the column 
improves the method of the row. Upper diagonal of level significance α = 0.1, and lower diagonal level of 
significance α = 0.05. As it can be seen from Tables 2 and 3, SABiLDE is significantly better than BlDE in 
both levels at α = 0.05, and significantly better than BLEAQ in the lower level at α =0.05, and better than 
BLEAQ in the upper level at α =0.1. However, the difference among SABiLDE, BL-CMA-ES and SABLA 
is not significant, which means that the three algorithms have competitive optimum performance. 

Table 2 Wilcoxon test results of upper level accuracy among different BLEAs 

 (1) (2) (3) (4) (5) 

SABiLDE (1) - 96.0 110.0 195.5● 244.0● 

BL-CMA-ES(2) 135.0 - 128.5 165.5● 201.5● 

SABLA(3) 121.0 102.5 - 193.0● 212.0● 

BLEAQ (4) 36.0ο 66.0 38.0ο - 171.0 

BlDE (5) 7.0ο 51.5ο 41.0ο 82.0 - 

Table 3 Wilcoxon test results of lower level accuracy among different BLEAs 

 (1) (2) (3) (4) (5) 

SABiLDE (1) - 118.5 89.5 195.5● 244.5● 

BL-CMA-ES(2) 112.5 - 66.5ο 166.5● 209.5● 

SABLA(3) 163.5 164.5 - 223.5● 231.0● 

BLEAQ (4) 35.5ο 64.5 29.5ο - 143.5 

BlDE (5) 8.5ο 43.5ο 22.0ο 109.5 - 

The average Friedman test rankings of the upper and lower results for all the five algorithms are 
shown in Fig.3. The lower the bar, the better ranking the algorithm obtains. According to Fig.3, it can be 
seen that SABiLDE has significantly better convergence performance than BlDE and BLEAQ. In 
comparison with BL-CMA-ES, SABiLDE has a better rank on the lower level convergence performance, 
but BL-CMA-ES has better convergence performance on the upper level solutions. In comparison with 
SABLA, SABiLDE has competitive convergence performance on the upper level solutions but exhibits 
inferior performance on the lower level solutions. 
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Fig.3 Average Friedman rankings of solution accuracy for different BLEAs 

B. Computational efficiency 

To compare the computational efficiency, the average and minimum number of function evaluations in 
both levels are generally used as the performance criterion. However, the number of function evaluations 
cannot accurately reflect the computational efficiency of BLEAQ [46], because the computational cost of 
the quadratic approximations of the lower level variables is neglected. If the quadratic approximation 
procedure is performed, a quadratic function must be constructed for each of the lower variables. That is, 
for a lower level solution with 𝐷𝑙  variables, 𝐷𝑙  quadratic approximations should be constructed. 
Obviously, the computational cost of quadratic approximation should be considered, especially when the 
dimension of lower level decision vector is high. To roughly measure the computational efficiency of the 
three algorithms, the CPU running time is recorded in Table 4. Because the code of SABLA and 
BL-CMA-ES are not open access, it is only compared among SABiLDE, BLEAQ and BlDE. To 
graphically illustrate the results, the comparison of mean of CPU running time is shown in Table 4 and Fig. 
4, from which it can be seen that BLEAQ generally has good efficiency in all of the test problems and 
outperforms SABiLDE in problems with low dimension such as TP1 to TP8. But when it comes to the 
problems with high dimension, i.e. TP9, TP10, and SMD1 to SMD9, the superiority of BLEAQ becomes 
less obvious, and actually SABiLDE provides better or competitive CPU running time in most of the high 
dimensional problems except for SMD6. The improved efficiency of SABiLDE benefits from the similarity 
based self-adaptive strategies for the size and initialization of lower population. Fig. 5 demonstrates the 
overall changing trends of the lower level population size of SABiLDE against the upper evolution when 
solving the problems of TP1 and SMD1. It can be seen from Fig. 5 that the lower level population size 
decreases with the increase of the upper population evolution. Obviously, a smaller population size means a 
smaller number of function evaluations. Moreover, the introduction of the two stop criteria is beneficial to 
reduce redundant function evaluations in both levels. For the complex constraint problems with low 
dimension such as SMD10, SMD11, and SMD12, BLEAQ also lost its dominant position on computational 
efficiency. The possible reason is that the quadratic functions cannot well approximate the complex 
interactive relationships between the upper and lower variables, and the lower level EA has to be more 
frequently performed.  
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Table 4 CPU running time comparison among SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE 

Prob 
BLDE SABiLDE BLEAQ 

mean min max mean min max mean min max 

tp1 32.714 18.321 112.173 16.660 14.432 21.374 6.678 4.559 8.646 

tp2 75.793 15.593 162.251 11.920 6.015 17.063 6.012 2.670 10.903 

tp3 268.432 46.109 364.649 42.372 35.825 57.881 10.570 8.632 11.317 

tp4 48.907 39.020 55.942 31.98 26.370 37.441 9.099 5.947 10.823 

tp5 228.538 208.604 238.950 14.915 13.325 18.093 8.067 4.883 11.640 

tp6 173.114 82.000 189.360 32.147 24.904 38.386 9.721 7.216 13.644 

tp7 126.857 45.708 181.652 31.831 19.007 37.091 18.101 13.423 24.456 

tp8 83.928 17.009 175.825 13.591 10.941 18.073 5.413 3.118 10.586 

tp9 146.917 88.985 181.029 12.742 9.731 15.730 17.114 14.933 20.581 

tp10 144.851 90.902 199.175 12.371 10.930 14.405 18.856 15.272 25.952 

smd1 158.597 147.217 186.586 44.080 39.438 48.787 47.068 28.369 70.9977 

smd2 351.467 148.855 526.594 39.245 35.063 42.905 42.716 31.783 55.2662 

smd3 180.742 145.235 437.828 36.595 33.143 40.650 54.786 46.503 65.9844 

smd4 489.516 147.623 526.934 37.701 32.538 47.615 51.386 30.914 72.4128 

smd5 703.625 289.160 1068 66.735 52.587 77.819 50.104 37.029 61.399 

smd6 854.257 840.717 886.098 318.958 116.008 583.446 29.052 18.439 36.113 

smd7 484.555 448.323 539.513 113.226 79.106 158.942 73.413 44.964 116.580 

smd8 473.222 244.372 2228 56.939 48.455 67.575 221.611 94.867 263.695 

smd9 794.143 737.537 1181 94.442 74.411 67.575 244.192 60.090 313.705 

smd10 1106.593 1030.802 1156 81.831 47.391 109.026 53.790 32.236 125.445 

smd11 1209.654 569.861 1433 56.558 37.672 77.921 206.845 59.363 360.439 

smd12 962.659 939.063 987.581 41.754 30.930 47.643 91.596 45.870 160.476 
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(a) TP test problems                     (b) SMD test problems 

Fig. 4 The comparison of mean of CPU running time 
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(a) TP1 test problem                       (b) SMD1 test problem 

Fig.5 Lower level population size dynamics with upper level evolution 

Finally, to achieve a closer inspection, the average CPU running time results of the Wilcoxon 
signed-rank statistic for all the test problems are shown in Table 5, from which it can be seen that 
SABiLDE is significantly better than BlDE, and competitive to BLEAQ at the two confidence levels of α = 
0.1 and α = 0.05. Figure 6 presents the average Friedman test rankings of the three algorithms for all the 
test functions. These statistics further show that SABiLDE has better performance than BlDE. BLEAQ 
obtained a better rank, but the difference between SABiLDE and BLEAQ is not obvious. All these show 
that SABiLDE has better computational efficiency than BlDE, and competitive computational cost to 
BLEAQ. 

Table 5 Wilcoxon test results of the computational efficiency among different BLEAs 

 (1) (2) (3) 

BlDE(1) - 0.0 ο 0.0 ο 

SABiLDE (2) 253.0 ● - 110.0 

BLEAQ (3) 253.0 ● 143.0 - 

 

 

Fig.6 Average Friedman rankings of computational efficiency for different BLEAs 

4.4 Evaluation of the proposed self-adaptive strategies 
To demonstrate the sensitivity of the proposed self-adaptive strategies to the population size, search 

bound and mutation operator of lower level DE, four different variants of SABiLDE, without using the 
proposed self-adaptive strategies, were evaluated. The four variants of SABiLDE  are as follows: 

SABiLDE-I: without self-adaptively adjusting the lower level population size 

SABiLDE-II: without self-adaptively adjusting the lower level search radius 
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SABiLDE-III: without self-adaptively adjusting the lower level population size and search radius 
SABiLDE-IV: without self-adaptively adjusting the lower level mutation strategy 

The upper and lower median error values of these SABiLDEs for the TP test problems are shown in 
Table 6. The upper and lower success rates of the five algorithms in 30 runs for the TP test set are also 
shown in Table 6. To evaluate the computational efficiency, the CPU running time of the five algorithms is 
recorded in Table 7. In order to highlight the overall best results, the significantly better values are marked 
in bold. 

Table 6 Median solution accuracy comparison among SABiLDEs 

Prob 
SABiLDE SABiLDE-I SABiLDE-II SABiLDE-III SABiLDE-IV 

UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) 

tp1 8.85E-4 1.17E-3 100 5.13E-4 9.62E-3 100 5.82E-3 8.42E-3 100 1.51E-4 9.42E-3 100 1.72E-3 7.24E-2 100 

tp2 6.42E-5 1.83E+0 93.3 4.57E-5 2.07E+1 86.7 5.77E-5 1.98E+1 86.7 4.91E-5 1.23E+1 90 4.45E-5 8.62E-4 100 

tp3 2.89E-5 9.34E-5 100 1.80E-4 1.62E-4 100 2.61E-4 1.96E-4 100 1.45E-4 2.79E-3 100 1.80E-4 9.86E-5 100 

tp4 3.93E-4 1.29E-6 100 3.89E-4 6.50E-4 100 4.71E-4 6.99E-4 100 6.05E-4 1.00E-6 100 6.16E-3 4.37E-4 100 

tp5 3.65E-6 1.92E-6 100 3.10E-6 6.07E-6 100 3.41E-6 1.76E-6 100 1.05E-6 1.18E-6 100 2.21E-5 2.47E-6 100 

tp6 7.77E-4 2.78E-3 100 7.77E-4 2.78E-3 100 7.80E-4 2.79E-3 100 7.79E-4 2.78E-3 100 7.77E-4 2.79E-3 100 

tp7 8.01E-4 6.92E-4 100 7.96E-4 6.11E-4 100 8.10E-4 7.27E-4 100 7.54E-4 6.45E-4 100 7.92E-4 7.43E-4 100 

tp8 1.00E-6 1.00E-6 100 2.24E-6 1.00E+1 93.3 2.45E-6 2.00E+1 86.7 6.84E-6 1.00E+1 96.6 2.21E-6 2.00E+1 86.7 

tp9 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 

tp10 2.58E-6 1.00E-6 100 2.82E-5 1.00E-6 100 2.73E-5 1.00E-6 100 2.28E-5 1.00E-6 100 2.39E-5 1.00E-6 100 

Table 7 The CPU running time comparison among SABiLDEs 

Prob. 
SABiLDE SABiLDE-I SABiLDE-II SABiLDE-III SABiLDE-IV 

mean min mean min mean min mean min mean min 

tp1 16.66 14.432 45.44 42.68 22.02 19.82 43.57 42.97 23.47 20.77 

tp2 11.92 6.015 36.67 29.37 18.01 17.39 28.99 28.36 18.34 17.51 

tp3 42.37 35.825 102.46 98.33 49.37 40.16 76.27 75.38 53.95 48.78 

tp4 31.98 26.370 61.99 54.76 31.65 27.57 52.84 50.82 49.32 46.13 

tp5 14.92 13.325 41.96 39.43 20.33 18.68 132.75 88.53 33.47 31.88 

tp6 32.15 24.904 86.70 71.87 35.50 30.20 176.70 97.39 61.28 59.49 

tp7 31.83 19.007 71.81 67.44 35.52 29.41 71.26 69.36 48.17 44.34 

tp8 13.59 10.941 32.94 30.12 16.57 12.39 30.13 28.45 22.91 20.74 

tp9 12.74 9.731 38.58 34.54 22.86 16.64 39.55 37.27 29.28 25.33 

tp10 12.37 10.930 32.63 31.05 22.58 16.78 39.57 38.16 30.42 25.06 

From Table 6, the difference of upper and lower convergence accuracy among the SABiLDEs is not 
obvious, but SABiLDE-I is generally able to obtain better results than SABiLDE for most of the test 
problems. The reason is that the lower level population of SABiLDE-I is fixed on the initial population size, 
enabling it to always have a larger lower level population size than SABiLDE. It is well known that, for the 
population based stochastic optimization algorithms, a larger population size is generally able to obtain a 
better result for the same stopping criteria. However, the cost is to perform more function evaluations. 
From Table 7, it can be seen that SABiLDE-I costs more CPU running time than SABiLDE for all the test 
problems.  

SABiLDE has better solution accuracy than that of SABiLDE-II with fix search bounds, because a 
smaller search radius is desirable for the LLDE to do local search and the solution accuracy and search 
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efficiency can thus be enhanced. Accordingly, it can be observed from Table 7 that SABiLDE generally has 
less CPU running time than SABiLDE-II.  

When no self-adaption is introduced for either the lower level population size and search radius, it is 
expected that SABiLDE-III has good convergence performance but bad computation efficiency. It can be 
observed from Table 6 that SABiLDE-III performs better than SABiLDE on the upper problems of TP2, 
TP5, TP7, TP10 and lower problems of TP1, TP4, TP5, TP7, TP10. But when it comes to the computation 
efficiency, as shown in Table 7, SABiLDE-III got the worst result compared with the other four 
SABiLDEs.  

As for SABiLDE-IV, because of the use of the DE/target-to-best/1 mutation strategy, a good balance 
between the exploration and exploitation can be achieved. It can be seen from Table 6 that SABiLDE-IV 
converges to the optimal solutions of all the test problems with success rate of 100%. For SABiLDE, the 
DE/best/1 is able to adaptively do local search to speed up the convergence. As shown in Table 7, 
SABiLDE has faster convergence speed than SABiLDE-IV.  

The above test results show that the proposed self-adaptive strategies are beneficial to improve the 
computational efficiency of the lower level DE, therefore, the computation efficiency of the whole bilevel 
DE is enhanced. 
 

5. Conclusions 
 

The paper introduced a new method for effectively solving bilevel optimization problems. The scheme 
is to efficiently find solutions for the lower level task, which produce good responses to the upper level task; 
in this way, the overall efficiency of solving bilevel optimization is significantly improved. Specifically, a 
novel efficient self-adaptive bilevel differential evolution (SABiLDE) with k-NN approximation for the 
lower level optimization was proposed. As detailed in Section 3, the proposed the self-adaptive control rate, 
together with the introduction of the archiving technique, plays a key role in effectively improving the 
overall efficiency of the optimization algorithm. 

The archiving technique is used to store all the feasible lower level solutions obtained by the lower 
level DE during the whole evolution and the corresponding upper decision variables. Based on the paired 
upper and lower solutions in the archive, k-nearest neighbors are identified for a newly generated upper 
candidate to approximate the optimal lower level variables by the inverse distance weighting interpolating. 
If the distance between the new upper candidate and its closest archived member is small enough, the 
approximated lower level variables are directly accepted as the optimal lower variables and the lower level 
DE does not need to perform. Otherwise, the approximated lower solution is used as a base individual to 
generate an initial population for the lower DE to speed up the convergence rate, because the surrogate 
model may not be an excellent approximation of the bilevel problem, but it is usually still a good prediction 
and can provide useful information to direct the search in some better regions. Based on the similarity (the 
nearest neighbor distance), the self-adaptive control rate is proposed to dynamically adjust the lower level 
population size and search radius to reduce the lower level function evaluations and therefore to improve 
the computational efficiency. 
     The performance of the proposed algorithm was evaluated on a test set with 10 standard bilevel test 
problems and the SMD benchmark suite with 12 scalable test problems. The test results show that the 
proposed SABiLDE is an efficient and effective approach for generic bilevel optimization problems. 
Compared with another k-NN assisted bilevel differential evolution, called BlDE, the proposed algorithm 
displayed better performance in both convergence accuracy and computational efficiency for almost all the 
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test problems. Compared with the modified BLEAQ, SABiLDE is able to provide better or competitive 
results, especially on the test problems with high dimensions. In comparison with two of the lately 
developed BLEAs, namely, SABLA and BL-CMA-ES, SABiLDE also demonstrates competitive 
convergence performance. 

For the future work, we are planning to apply the proposed algorithm to the bilevel robust dynamic 
economic emission dispatch of power systems. Moreover, it is also of our interest to investigate more 
efficient surrogate models such as radial base functions to approximate the lower level variables in future. 
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