
This is a repository copy of An efficient bilevel differential evolution algorithm with
adaptation of lower level population size and search radius.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174731/

Version: Accepted Version

Article:

Wu, L., Liu, Z., Wei, H.-L. orcid.org/0000-0002-4704-7346 et al. (1 more author) (2021) An
efficient bilevel differential evolution algorithm with adaptation of lower level population
size and search radius. Memetic Computing, 13 (2). pp. 227-247. ISSN 1865-9284

https://doi.org/10.1007/s12293-021-00335-8

This is a post-peer-review, pre-copyedit version of an article published in Memetic
Computing. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s12293-021-00335-8.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

1

An efficient bi-level differential evolution algorithm with adaptation of

lower level population size and search radius

Lianghong Wu1,*, Zhenzu Liu1, Hua-Liang Wei2, Rui Wang3,*

1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Hunan
Xiangtan, 411201, China

2. Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S1 3JD,
UK

3. School of Systems Engineering, National University of Defense Technology, Hunan Changsha, 410073,
China

*Corresponding authors: lhwu@hnust.edu.cn, ruiwangnudt@gmail.com

Abstract: Bilevel optimization has been recognized as one of the most difficult and challenging tasks to
deal with because a solution to the upper level problem may be feasible only if it is also an optimal solution
to the lower level problem. In recent years, evolutionary bilevel optimization has attracted increasing
interest. In this paper, an efficient self-adaptive bilevel differential evolution (SABiLDE) with k-nearest
neighbors (k-NN) based interpolation is proposed to solve bilevel optimization problems. The k-NN
approximation is applied to estimate the optimal lower level variables for any newly generated upper
candidates to improve the computational efficiency. A similarity based self-adaptive strategy for the
dynamic control of lower level population size and search radius is introduced to further enhance the
efficiency of the lower level function evaluations. A test set with 10 standard test problems and the SMD
suite with controllable complexities are used to evaluate the performance of the proposed approach.
Compared with two recent state-of-the-art methods, the numerical results produced by the proposed method
are promising and show great potential for solving generic bilevel optimization problems.

Keywords: Bilevel optimization; Differential evolution; k-Nearest neighbors learning; Self-adaptive
strategy

1. Introduction

Bilevel optimization problems (BLOPs) are a special class of optimization problems, in which the
lower level optimization problem acts as a constraint to the upper level problem and is required to solve
first to get a feasible solution for the upper level optimization problem. Bilevel optimization problems
widely exist in practice where a hierarchical decision-making is often required, particularly in economics
[1]-[3], management [4], [5], transportation [6], [7], military [8], engineering [9], and others [10]-[11]. In
comparison with traditional optimization problems, bilevel optimization problems are very difficult to solve
as the nested structure of such a problem requires that a solution to the upper level problem should also be
an optimal solution to the lower level problem. Mathematically, bilevel optimization is generally called
bilevel programming. While in the domain of game theory, it is referred to as Stackelberg problem. A
generic bilevel optimization problem can be formulated as follows [11]: minimize𝒙𝑢∈Ω𝑢,𝒙𝑙∈Ω𝑙 𝐹(𝒙𝑢, 𝒙𝑙)

mailto:lhwu@hnust.edu.cn
mailto:ruiwangnudt@gmail.com

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

2

subject to 𝒙𝑙 ∈ argmin{𝑓(𝒙𝑢, 𝒙𝑙)|

 𝑔𝑖(𝒙𝑢, 𝒙𝑙)≤0, 𝑖 = 1, ⋯ , 𝑞𝑙 (1) ℎ𝑖(𝒙𝑢, 𝒙𝑙) = 0, 𝑖 = 𝑞𝑙 + 1, ⋯ , 𝑚𝑙} 𝐺𝑗(𝒙𝑢, 𝒙𝑙) ≤ 0, 𝑗 = 1, ⋯ , 𝑞𝑢 𝐻𝑗(𝒙𝑢, 𝒙𝑙) = 0, 𝑗 = 𝑞𝑢 + 1, ⋯ , 𝑚𝑢

where F and f are the objective functions at the upper and lower level, respectively. 𝒙𝑢 represents the
upper level decision vector and 𝒙𝑙 represents the lower level decision vector. 𝐺𝑛 and 𝐻𝑚, 𝑔𝑖 and ℎ𝑗
are inequality and equality constraints at the upper and lower levels, respectively. Ω𝑢 and Ω𝑙 are the
search spaces for the upper and lower level decision vectors. Note that the lower level optimization
problem is optimized only with respect to the variables 𝒙𝑙 and the variable vector 𝒙𝑢 is kept fixed.
However, the upper level optimization involves both variable vectors 𝒙𝑢 and 𝒙𝑙. The bilevel optimization
problem generally needs to find the lower level optimal solution first and then search for the optimal
solution for the upper level optimization problem.

In recent years, bilevel optimization has attracted much attention. However, due to the hierarchical
structure in nature, solving a bilevel optimization problem is quite difficult and computationally demanding
[11], [12]. It has been proved that even the simplest bilevel linear programming is strongly NP-hard [13],
not to mention problems with complex nonlinear upper and lower objective functions and constraints. For
example, if the lower level problem is a multimodal problem, there would be no guarantee that a lower
level solution is the best for the upper level, and this can only lead to sub-optimal solutions for the upper
level problem. Therefore, the development of an efficient bilevel optimization algorithm is a challenging
task. The early work for bilevel optimization was mainly focused on classical methods under various
assumptions, including Karush-Kuhn-Tucker (KKT) approach, branch-and-bound techniques, cutting plane
algorithms, descent methods, penalty functions based methods, and so on [10], [14], [15]. However, most
of the classical approaches can only be used to handle simple bilevel problems with good properties such as
smoothness, linearity, quadratic or convexity [11]. To overcome the limitations of classical optimization
methods, it is quite natural to introduce evolutionary algorithms (EAs) to solve bilevel optimization
problems with higher levels of complexity, since EAs have a number of good algorithmic features such as
derivative free, flexible and robust. However, it should be stressed that most of the existing bilevel
evolutionary optimization algorithms are nested and involve intensive computational expense; the
development of evolutionary algorithms for bilevel problems is still in an early stage. Thus, to significantly
improve the performance of the existing approaches and develop new methods are still highly demanded
[11], [12].

As a simple but efficient and versatile global optimization method, the Differential Evolution (DE) [16]
algorithm has been used to solve bilevel optimization problems in recent years. For example, in order to
reduce the number of upper and lower level function evaluations, a differential evolution method assisted
by a k-nearest neighbors (k-NN) approach, namely BlDE, is proposed to solve bilevel programming
problems using a surrogate model [17]. The surrogate model is chosen to replace the lower level DE
algorithm in a specific probability. However, the approximation ability of the k-NN based surrogate model
is limited due to the drawback that the surrogate model may produce an inaccurate lower level solution
which can therefore lead to a false upper level solution; this is particular true for problems with conflict
upper and lower tasks [18], [19]. Although this surrogate modeling approach is computationally efficient,
the computation efficiency is gained by sacrificing the reliability and accuracy of the solutions.

To improve the efficiency of the k-NN approximation approach and meanwhile overcome its
disadvantage, a novel self-adaptive bilevel differential evolution with k-NN approximation (SABiLDE) is

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

3

proposed in this paper. The two major contributions of this paper are as follows: 1) k-nearest neighbors in
the upper archive are identified for a newly generated upper candidate to better approximate the optimal
lower level variables through the inverse distance weighting interpolating. If the corresponding upper level
vectors are not proximal enough to the upper level vectors in the extern archive, the estimated lower level
variables are marked to be a non-optimal solution and is not directly passed to the upper level task, but only
used as a basic individual for the initialization of the lower level population. While a newly generated upper
level vector is very similar to one of the archived members (the nearest neighbor distance is small enough),
the approximated lower level solution based on k-NN interpolation would be accurate enough to replace the
corresponding optimal lower level solution, and there is no need to invoke a lower level DE algorithm or
another evolutionary algorithm. 2) based on the similarity (the nearest neighbor distance), a self-adaptive
control rate is proposed to dynamically adjust the lower level population size and search radius to reduce
the computation of the lower level function evaluations and therefore to improve the computational
efficiency. Two different types of test problems are used to test the effectiveness of the proposed SABiLDE.
Numerical results show that the SABiLDE has better computational efficiency and solution accuracy than
the improved BlDE in [17]. In comparison with other four representative algorithms, the proposed
SABiLDE has better or competitive accuracy and robustness for most of the test problems considered, and
has better computational efficiency for high dimensional problems.

The rest of this paper is organized as follows. In Section 2, a literature review on evolutionary bilevel
optimization is provided. Thereafter, the detailed descriptions of the framework of the SABiLDE algorithm
are presented in Section 3. Numerical experiments and comparisons are illustrated in Section 4. Finally,
Section 5 gives the concluding remarks.

2. Current research on evolutionary bilevel optimization

Bilevel optimization has been recognized as one of the most difficult and challenging tasks to deal
with because of its intrinsic complexity in general. In the past decades, bilevel optimization has gained
increasing interest due to its wide applications, and a number of classical methods and evolutionary
algorithms have been developed to solve bilevel optimization problems. The traditional concepts and
approaches for solving bilevel optimization problems were well reviewed in [10] and [13]. Interested
readers are referred to these good surveys and the references therein. There has also been an interest in
multi-objective bilevel optimization using evolutionary algorithms [7], [12], [20], [21]. Generally, the
bilevel evolutionary algorithms (BLEAs) can be categorized into four groups: 1) single level transformation
methods, 2) nested sequential strategies, 3) co-evolutionary approaches, and 4) surrogate model assisted
methods. In the follows, a number of representative methods are briefly introduced.

2.1 Single level transformation methods

In these methods, a bilevel optimization problem is transformed into an equivalent single level
optimization problem first, and an EA is then used to solve the equivalent problem. For example, Hejazi et
al. [22] proposed a GA based method for linear bilevel programming, in which the Kuhn-Tucker conditions
for the lower level problem are derived and then the bilevel programming problem is transferred into a
single level problem. Wan et al. proposed a hybrid particle swarm optimization and chaos searching
approach [23] and a distribution estimation algorithm [24] for solving bilevel programming problems.
Similarly, the bilevel programming is transformed into a single level programming problem using the
Karush-Kuhn-Tucker (KKT) conditions of the lower level problem. Wang et al. [25] proposed an EA for
solving nonlinear bilevel programming problem (BLPP) based on a new constraint-handling scheme, where
the nonlinear BLPP was firstly transferred into an equivalent nonlinear optimization problem with a single

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

4

non-differentiable and nonconvex objective function. Moreover, a new constraint-handling method with
linear and nonlinear schemes were combined with the EA [Ref]. In [26], Jiang et al. presented a novel
approach based on particle swarm optimization to solve nonlinear bilevel programming problem, by
applying the KKT conditions and the Chen-Harker-Kanzow-Smale (CHKS) smoothing function to the
lower level problem first and then transforming the nonlinear BLPP into a regular nonlinear programming
with complementary constraints. Recently, Li [27] proposed a GA approach using finite search space
(GA-FSS) for a special class of BLPPs in which the lower level is a fractional program, whereas the upper
level problem is simply solvable. In order to evaluate the performance of each individual in GA, a fitness
function was presented by making use of the optimality conditions of linear fractional programs. Hence, the
GA-FSS belongs to the single level transformation method in essence. The main disadvantage of the single
level transformation method is that it is problem-dependent and lacks generalization ability to extend to
new problems. To convert the lower level problem into complementary constraints of the upper level, the
lower level problem must satisfy some special conditions, such as linear, convex and differentiable.

2.2 Nested strategies

Since the upper and lower tasks of bilevel optimization problems are nested in nature, it is reasonable
to use a nested strategy to handle bilevel problems; one of the best ways is that for every upper level vector,
to find a solution for the lower level optimization problem. There are two nested frameworks, depending on
how the lower level problem is solved by using either a classical optimization method or an EA. It should
be stressed that an EA is always adopted to solve the upper level task. One of the first nested strategies for
handling bilevel optimization problems was proposed by Mathieu et al. [28], where the upper level problem
was solved using a genetic algorithm (GA), while the lower level problem was handled by a linear
programming method. Later, Yin [29] proposed a similar strategy based on GA, using the Frank Wolf
algorithm to solve the lower level problem. In [30], the DE algorithm was combined with an interior point
method for solving nonlinear problems with linear constraints. The DE algorithm was employed to solve
the upper level problem while the interior point method was used to optimize the lower level problem. The
DE was also used to solve a bilevel programming problem in transportation [31], where an optimal solution
for the lower level problem was obtained via a gradient based algorithm. Islam et al [32] presented a new
nested approach for solving bilevel optimization problems, which uses DE and a memetic algorithm
adapted from the Sequential Quadratic Programming (SQP) to find a solution for the upper level model,
and the DE and SQP are also used in the lower level during various phases of the search. The common
characteristic of the above methods is that they all use a deterministic local search algorithm to handle the
lower level problem. Similar to the single level transformation methods, the nested approaches with
classical lower level methods are only applicable to problems with good lower level properties.

To overcome the disadvantages of the classical optimization algorithms and improve the
generalization property of the existing bilevel optimization algorithms, EAs have also been proposed to
solve the lower level problems. That is to say, both the upper and lower level tasks are optimized by EAs in
a nested structure. For example, Zhang et al [3] proposed a nested particle swarm optimization (PSO)
framework and applied it to solve a specific multi-leader one-follower nonlinear bilevel decision model for
day-ahead electricity markets. The leader (upper level problem) and the follower (lower level problem)
were solved by two separate PSO algorithms in an iterative manner. Such a bilevel PSO approach was also
applied to solve bi-level pricing problems in supply chains [33], and satisfactory results were obtained.
Recently, Zhao and Wei [34] proposed a nested particle swarm algorithm based on sphere mutation to solve
bi-level optimization. The simulation results show that the proposed algorithm is effective. Sinha et al [35]
presented a nested evolutionary strategy to find an optimal solution for a multi-period multi-leader-follower

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

5

Stackelberg competition model, with nonlinear cost and demand functions, and discrete production
variables. The strategy was evaluated on a test-suite of bilevel problems, and it has been shown that the
method is able to handle difficult bilevel problems. Angelo et al [36] proposed a nested bilevel differential
evolution (BlDE), where two DE algorithms are used to solve the upper and the lower level problems. As
mentioned earlier, even simple nested methods can be computationally expensive due to the need for
evaluating a large number of lower level functions. Recently, a bilevel covariance matrix adaptation
evolution strategy (BL-CMA-ES) is proposed in [37], where a novel search distribution sharing mechanism
was designed to extract a priori knowledge of the lower-level problem from the upper-level optimizer; it
was shown that the time for function evaluations could significantly be reduced through the proposed
method. Huang and Wang [38] proposed a new framework (called GO) to identify and utilize the
interactions between upper-level and lower-level variables for scalable bilevel optimization problems.
However, the identification of the interactions between upper-level and lower-level variables for problems
defined in a high dimensional space can be a very challenging task to do.

2.3 Co-evolutionary methods

Co-evolutionary algorithms generally maintain two populations, one for upper level, and another for
lower level. The two populations evolve separately, but periodically exchange information to achieve a
balanced evaluation for the problem. Oduguwa and Roy [39] firstly proposed a co-evolutionary approach,
called bi-level genetic algorithm (BiGA), which can be used for solving bilevel optimization
problems. The co-evolutionary operator is used to preserve the interactive nature of the bilevel optimization
problem in the search process. An external elite population is maintained to identify the elite members of
both populations after the co-evolutionary operation for every generation. However, the algorithm has
limited ability to handle constraints, and it can get stuck in a local optimum. Legillon et al [40] further
extended the BiGA and developed a more general co-evolutionary bilevel method using repeated
algorithms (CoBRA). The application to a bi-level transportation problem with linear objectives and
constraints confirmed its effectiveness. Chaabani et al [41] presented a co-evolutionary decomposition
based bilevel algorithm (CODBA) to tackle combinatorial BLOPs. To reduce the complexity of the low
level task, the lower level population is decomposed into M well distributed subpopulations over the search
space for the lower level problem, and the sub-populations co-evolve in parallel using M threads (one
thread for each sub-population). Recently, inspired from chemical reaction optimization algorithm,
Chaabani et al. [42] proposed a new co-evolutionary decomposition algorithm, called E-CODBA
(Energy-based CODBA), to solve combinatorial bi-level problems. However, the co-evolution in CODBA
and E-CODBA is only limited to the lower population, and is different from the BiGA [39] and CoBRA
[40], where the co-evolution is applied to both the upper and lower populations. So strictly speaking, the
CODBA and E-CODBA are actually a nested approach. A similar co-evolutionary framework was reported
in [43], where the upper and lower levels are in a nested structure but the lower level follows a
co-evolutionary scheme of two EAs to reduce the computational cost of obtaining feasible solutions.
Recently, by introducing a migration scheme and defining two populations in each level, Said et al [44]
presented a Co-Evolutionary Migration-Based Algorithm (CEMBA) to solve combinatorial bi‑level
optimization problems. CEMBA has been validated on a set of bi-level combinatorial
production-distribution planning benchmark instances. However, similar to CODBA, the individual
migration in CEMBA is only limited to the upper or lower level population, thus CEMBA is essentially a
nested approach.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

6

2.4 Surrogate model assisted methods

In the last few years, Sinha and co-workers have developed a series of efficient bilevel evolutionary
algorithms [11], [12], [14], [18]-[21]. For example, to reduce the lower level function evaluations and
improve the computational efficiency, a novel and efficient bilevel evolutionary algorithm based on
quadratic approximations (BLEAQ) of optimal lower level variables with respect to the upper level
variables was proposed in [11]. To further enhance the performance of BLEAQ, an improved version was
introduced by incorporating archiving and local search [14]. The archive is used to store the feasible
members produced so far, therefore a larger pool of members for better quadratic approximations of
optimal lower level solutions is available. Moreover, Sinha et al. [45] proposed a modified version of
BLEAQ to reduce the computational expense by iteratively approximating the lower level rational reaction
mapping and the lower level optimal value function mapping. However, the quadratic approximation is
time demanding especially when the problem is defined in a high dimensional space and the archive is
large, making the approximation accuracy of quadratic programming become lower with the increasing of
the upper level dimensions. Recently, Islam et al. [46] presented a surrogate assisted approach for
single-objective bilevel optimization (SABLA), which uses multiple surrogates such as response surface
models of orders 1 and 2, and Kriging to approximate the lower level objective/constraint functions. To
further reduce the computational expense of the upper level problem, Islam et al. [47] proposed an
improved SABLA (SA-SA) which uses surrogate-assisted search at both levels to solve bilevel problems.
However, the training of multiple surrogate models is computationally expensive and the algorithm
realization is complicated.

Angelo et al. [17] proposed a bilevel differential evolution framework assisted by a simple k-NN
based surrogate model. The method uses two nested DE algorithms: one for the low level optimization task
and another for upper level task. The k-NN based surrogate model is chosen to replace the lower level
optimization on a specific probability. However, the results indicated that the associated surrogate models
may be too simple to efficiently solve the variety of test problems as demonstrated in [17], where it showed
that when the surrogate model was used at a probability larger than 0.5, the method generated poor quality
solutions in some cases, and the convergence of the upper level was compromised.

3. The proposed approach

This work mainly focuses on the evolutionary algorithms for single-objective bilevel optimization.
Since the bilevel optimization is nested in nature, the development of nested approach is a simple and
intuitive choice for most applications. However, nested approaches are computationally expensive because
a corresponding lower level optimization procedure must be performed for each upper level decision vector.
So a nested approach requires an efficient method for solving the lower level task producing good
responses for the upper level task, and therefore improving the overall efficiency of the bilevel optimization
process. When it comes to the framework with EAs in both levels, a way to improve the computation
efficiency is to reduce the load of function evaluations in the lower level. Obviously, a small population
size, local oriented operators and less evolution generations are beneficial to cut down the function
evaluations. In this paper, a bilevel differential evolution with k-NN approximation and self-adaptive
strategies is proposed to achieve these objectives. The proposed approach follows a nested structure, where
the k-NN approximation and self-adaptive strategies are used to reduce the lower level function evaluations
and this is achieved by an efficient lower level DE.
3.1 k-NN based approximation

One of the difficulties in bilevel optimization is the nested lower level optimization problem where the

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

7

upper level constraint is required to be solved for each of the upper decision vectors. If the lower level
optimization problem can be approximated by a simple model, the efficiency of the bilevel optimization
can be greatly improved. To reduce the function evaluations on both levels, a k-NN approximation assisted
DE was proposed in [17]. In this work, while the k-NN based surrogate model is also used to approximate
the lower level problem, the approximation strategy proposed here is completely different from that given
in [17] which is actually a probability based mechanism.

For each individual of the upper initial population, the lower level DE (LLDE) is invoked to solve the
lower level problem. If the obtained lower level solution satisfies the lower level constraints, the feasible
lower level vector and the corresponding upper decision vector are stored into an external archive. But if
the obtained lower level solution is infeasible, it will not be included in the archive. In the later evolutions,
the lower level feasible solutions obtained by the LLDE and the corresponding upper level vectors are also
added to the archive.

Consider a new upper level candidate 𝒙𝑢 and the archive 𝐴 = {(𝒙1𝑢, 𝒙1𝑙), ⋯ , (𝒙𝑁𝑢 , 𝒙𝑁𝑙)}, the jth lower
level variable is approximated by the following inverse distance weighting (IDW) interpolation function:

𝑥̃𝑗𝑙(𝒙𝑢) = { ∑ 𝑤𝑖(𝒙𝑢)𝑥𝑖,𝑗𝑙𝑘𝑖=1∑ 𝑤𝑖(𝒙𝑢)𝑘𝑖=1 , if 𝑑(𝒙𝑢, 𝒙𝑖𝑢) ≠ 0 𝑥𝑖𝑙 , if 𝑑(𝒙𝑢, 𝒙𝑖𝑢) = 0 , 𝑖 = 1, … , 𝑘 (5)

where 𝑤𝑖(𝒙𝑢) = 1𝑑(𝒙𝑢,𝒙𝑖𝑢)𝑝 (6)

is a simple IDW weighting function, which was initially defined by Shepard [48], 𝒙𝑢 denotes an
interpolated (arbitrary) point, 𝒙𝑖𝑢 is an interpolating (known) point, d is a distance metric operator
measuring the distance from the known point 𝒙𝑖𝑢 to interpolated point 𝒙𝑢, p is a positive real number,
called the power parameter, and k is the number of nearest neighbors used in interpolation. Obviously, the
weight w decreases with the increase of the distance d. Greater values of p assign greater influence to when
the two points 𝒙𝑢 and 𝒙𝑖𝑢 becomes closer. This study uses the Euclidean distance metric, that is, p = 2.

For a newly generated upper vector by evolution operators, a number of k nearest neighbors in the
archive are identified to approximate the lower level optimal variables using the IDW function. If the new
upper vector is very close to its nearest archived member, the estimated lower level solution is then used to
substitute the corresponding optimal solution. Therefore, it is not necessary to carry out a lower level DE. If
the new upper vector is not sufficiently close to any one of the members in the archive, the approximated
solution can then only be treated as a good prediction of the lower level optimum. In this case, the
approximation is used as an interim solution to generate an initial population for the LLDE. Obviously, the
initialization strategy will let the LLDE search around the potential lower level optimum, and therefore the
convergence is speeded up. Hence, whatever the k-NN approximation accuracy, it is useful to help improve
the efficiency of LLDE.

3.2 Self-adaptive strategies for lower level population

A general self-adaptive control ratio based on the nearest archived neighbor distance is proposed to
adjust the lower level population size and search radius. For a newly generated candidate for the upper
level problem, if it is necessary to run LLDE to obtain the lower level optimum, the lower population size
and search radius are scaled to its nearest archived neighbor distance. A smaller nearest neighbor distance
means a higher similarity of two upper vectors, as well as the closer of the two corresponding lower level
optima. Hence, a small population size and a small search radius are assigned to the LLDE to reduce the
workload if the lower level function evaluations if the newly generated upper candidate has a small

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

8

distance to its archived nearest neighbor, and vice versa. Taking a 2D case as an example (shown in Fig. 1),
the nearest neighbor distance based self-adaptive control ratio 𝛿 is defined as: 𝛿 = (𝑑𝑛𝑛𝑑𝑏𝑠)1𝑐 (7)

dnn

Archive

member

New

candidate

dbs

x
u

x2
u

x1
u

maxmin

max

min

Feasible region

Fig.1 Calculation of self-adaptive control ratio 𝛿 in 2D space

where 𝑑𝑛𝑛 is the Euclidean distance between the new upper candidate and its archived nearest neighbor, 𝑑𝑏𝑠 is the maximum distance of the upper level search space, and 𝑐 ≥ 1 is an integer constant. Note that 𝑑𝑛𝑛 is always smaller than or equal to 𝑑𝑏𝑠, so 𝛿 ≤ 1, and a larger 𝑑𝑛𝑛 means a larger 𝛿. Hence, 𝛿 is a
normalized index to measure the similarity between the upper candidate and the archived nearest member.
A smaller 𝛿 means the upper candidate is more similar to the archived closest member, and vice versa.
A. self-adaption of the lower level population size

Based on an appropriately specified self-adaptive control ratio 𝛿, the lower level population size 𝑁𝑃𝑙
is dynamically adjusted using the following strategy: 𝑁𝑃𝑙 = max ([𝛿𝑁𝑃𝑙(0)], 𝑁𝑃𝑚𝑖𝑛𝑙) (8)
where 𝑁𝑃𝑙(0) is the initial lower level population size, 𝑁𝑃𝑚𝑖𝑛𝑙 is the minimum lower level population
size to be used, and [∙] denotes the greatest integer function.

It is well known that the population size has great influence on the DE’s performance. To avoid the
deterioration of the effectiveness of LLDE caused by too small population size, the lower level population
size is confined between a minimum population size and the initial population size. Here, the minimum
population size 𝑁𝑃𝑚𝑖𝑛𝑙 is determined by the dimensions of lower level optimization problems, and the rule
is : 𝑁𝑃𝑚𝑖𝑛𝑙 = { 3𝐷𝑙 , if 𝐷𝑙 ≤ 50.5𝑁𝑃𝑙(0), else (9)

where 𝐷𝑙 is the number of variables involved in the lower level problem. For problems with lower
dimension (𝐷𝑙 ≤ 5), 𝑁𝑃𝑚𝑖𝑛𝑙 can be chosen to be three times of the dimension, while it is a half of the
initial population size for higher dimensional problems.

To keep a comparative large population size for LLDE when there is a small distance between the
upper candidate and the closest archived member, a self-adaptive control ratio 𝛿 with a large parameter c
is desirable. In this paper, c is set to be 10 for the self-adaptation of the lower population size.
B. self-adaption of the lower level search radius

Similar to the population size, a self-adaptive strategy for the lower level search radius is as below: 𝛾𝑗𝑙 = max (𝛿, 0.01) ∙ (𝑥𝑚𝑎𝑥,𝑗𝑙 − 𝑥𝑚𝑖𝑛,𝑗𝑙) (10)

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

9

where 𝑥𝑚𝑎𝑥,𝑗𝑙 and 𝑥𝑚𝑖𝑛,𝑗𝑙 are the upper and lower bounds of the jth lower level variable. To enhance local
search, a small power parameter of c = 3 is used. In addition, a minimum radius ratio of 0.01 is introduced
to avoid too small search radius. Obviously, a higher similarity of an upper candidate to an archived
member would mean a smaller search radius for the LLDE. Therefore, the convergence rate of the LLDE
can be improved accordingly.
 For a newly generated upper candidate 𝒙𝑢, if the LLDE cannot be sufficiently approximated by the
k-NN approximation 𝒙̃𝑙, the corresponding population size of LLDE should be determined by Eq. 9 first
and the initial population can then be generated based on the approximated 𝒙̃𝑙 and the search radius
defined by (10). As a result, the LLDE will do local search around the 𝒙̃𝑙, and the efficiency can thus be
enhanced. The lower initial population can be generated by 𝑥𝑖𝑗𝑙 (0) = 𝑥̃𝑗𝑙 + 𝛾𝑗𝑙 ∙ 𝐺𝑎𝑢𝑠𝑠(0,1), 𝑖 = 1, ⋯ , 𝑁𝑃𝑙 , 𝑗 = 1, ⋯ , 𝐷𝑙 (11)
where Gauss(0,1) represents the Gaussian distribution with the mean value 0 and the standard deviation 1.

3.3 Algorithm framework

For bilevel optimization, both the computational efficiency and solution robustness should be equally
emphasized. Differential Evolution proposed by Storn and Price in 1995 [16] is a simple but powerful
real-coded stochastic optimization algorithm. In the last decades, DE has been successfully applied in many
practical cases due to its good properties, and has been proven to be one of the most powerful global
numerical optimization algorithms in the evolutionary algorithm community. In recent years, various
mutation operators have been proposed [49]. Generally, different mutation operators have different features
and there is no single one that can always perform well for all types of problems [50]. Among them, the
DE/rand/1 and DE/best/1 are two of the most frequently used mutation strategies. To improve DE’s
performance, the ensemble of multiple mutation operators is one of the popular approaches [51]. In this
work, three mutation operators are selected to develop an efficient and effective bilevel DE algorithm.

For the upper DE procedure, a simple ensemble mutation operator by probabilistically selecting
DE/rand/1 or DE/best/1 is constructed to balance the global exploration and local search. The DE/best/1
and DE/rand/1 are selected based on a specified probability. To enhance the local search efficiency, a higher
probability (𝜏 = 0.7) is assigned to the DE/best/1, and the DE/rand/1 is used as an assistant strategy to
improve the global convergence ability. The pseudo-code of the simple ensemble mutation operator is
illustrated in Algorithm 1. Where rand is a uniformly distributed random number within [0, 1], Fr and Fb
are mutation constants for DE/rand/1 strategy and DE/best/1 strategy, respectively.

Algorithm 1 The Proposed Ensemble Mutation Operator

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

Input: 𝑁𝑃𝑢, 𝐹𝑏𝑢, 𝐹𝑟𝑢, 𝐶𝑅𝑏𝑢, 𝐶𝑅𝑟𝑢, 𝐷𝑢, and index i

Select randomly r1 ≠ r2 ≠ r3 ≠ i
jrand = rndint(1, 𝐷𝑢)
if rand ≤ τ then /* DE/best/1 mutation strategy */ 𝒗𝑖𝑢 = 𝒙𝑏𝑒𝑠𝑡𝑢 + 𝐹𝑏𝑢 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢)

for j = 1 to 𝐷𝑢 do

if rand < 𝐶𝑅𝑏𝑢 or j = jrand then

 𝑢𝑖𝑗𝑢 = 𝑣𝑖𝑗𝑢

 else

 𝑢𝑖𝑗𝑢 = 𝑥𝑖𝑗𝑢

 end if
end for

else 𝒗𝑖𝑢 = 𝒙𝑟1𝑢 + 𝐹𝑟𝑢 ∙ (𝒙𝑟2𝑢 − 𝒙𝑟3𝑢)

for j = 1 to 𝐷𝑢 do

if rand < 𝐶𝑅𝑟𝑢 or j = jrand then

 𝑢𝑖𝑗𝑢 = 𝑣𝑖𝑗𝑢

else

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

10

18:
19:
20:
21:

 𝑢𝑖𝑗𝑢 = 𝑥𝑖𝑗𝑢

end if
end for

end if
Output: 𝒖𝑖𝑢

For the lower level DE procedure, the DE/target-to-best/1 and DE/best/1 are dynamically selected
based on the similarity between the upper candidate and the archived members. If a newly generated upper
level candidate is close to an upper level member in the archive, it is often expected that their lower level
solutions are also close to each other, therefore, the DE/best/1 is used to do local search around the archived
lower level solution to speed up the convergence. Otherwise, the DE/target-to-best/1 is selected to solve the
lower level optimization problem since it has a good balance between the exploration and exploitation. But
for the upper initial population, the DE/target-to-best/1 is always used to obtain the lower level optima. The
above self-adaptive mutation strategy for lower level DE is illustrated in Algorithm 2, where 𝑑̅(0) is the
average distance among initial individuals in upper population.

Algorithm 2 The Self-adaptive Mutation Strategy

1:
2:
3:
4:
5:

Input: 𝑑𝑖𝑛𝑛, 𝑑̅(0) and iteration t
If 𝑑𝑖𝑛𝑛 ≥ 0.5𝑑̅(0) or t == 0 then

flag = 0 /*DE/target-to-best/1 mutation strategy*/
else

flag = 1 /*DE/best/1 mutation strategy*/
end if
Output: flag

In the following, the detailed procedures of the bilevel DE with k-NN approximation and self-adaptive
control strategies are described.
A. Upper level optimization

The upper level optimization starts with a randomly initialized population in the upper variable space.
For each of the initial individuals, the lower level DE is used to solve the lower optimization problem, and
the obtained lower level optimal solutions and the corresponding upper level solutions are stored into an
external archive A. By evaluating the upper level objective function and constraints, the upper level fitness
is then assigned. Thereafter, the upper evolution operators are applied to the upper population and new
candidates are generated. For each of the candidates, the k-NN approximations are firstly applied to
estimate the lower optimal variables based on the archived members. If the nearest distance between the
candidate and some of the archived members is small enough (𝑑𝑖𝑛𝑛 ≤ 𝑑𝑏𝑠 ∙ 10−5), the approximated lower
level variables are directly accepted as the lower level optimal solution. Otherwise, the approximated lower
level solution is used as the base solution to generate an initial population for the lower level DE. Moreover,
the self-adaptive strategies based on the nearest distance for the lower population size and search radius are
used to enhance the convergence performance of the lower level DE. The pseudo-code of upper level
optimization is shown in Algorithm 3.

Algorithm 3 Upper Level Differential Evolution (ULDE)

1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:

Input: 𝑁𝑃𝑢, 𝐹𝑏𝑢, 𝐹𝑟𝑢, 𝐶𝑅𝑏𝑢, 𝐶𝑅𝑟𝑢, 𝑇𝑢, and 𝛼𝑠𝑡𝑜𝑝𝑢

Generate the initial population randomly in the upper search space

Set flag=0 to call LLDE with DE/target-to-best/1 mutation

Store the initial solutions (𝒙𝑢(0), 𝒙𝑙∗(0)) into the archive A

Evaluate the upper fitness 𝑓𝑖𝑡𝑢(𝒙𝑢(0), 𝒙𝑙∗(0)) for each initial
solution based on upper function and constraints

Set iteration counter t = 1

while the stop criteria are not satisfied do

 for i =1 to 𝑁𝑃𝑢 do

 Execute Algorithm 2 to obtain trail vector 𝒖𝑖𝑢

end for

for i =1 to 𝑁𝑃𝑢 do

 Calculate distances between 𝒖𝑖𝑢 and the archive members

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

11

12:

13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

and identify the nearest distance 𝑑𝑖𝑛𝑛 and k nearest archive
neighbors

 Estimate the optimal lower level variables using k-NN
approximation for 𝒖𝑖𝑢

 if 𝑑𝑖𝑛𝑛 ≤ 𝑑𝑏𝑠 ∙ 10−5 then

 Accept the estimated solution as the optimal lower solution

 else

 Determine the population size 𝑁𝑃𝑖𝑙 of LLDE according to
Eq.8 and Eq.9

 Calculate the search radius of LLDE according to Eq.10

 Initialize the 𝑃𝑜𝑝𝑖𝑙 according to Eq.11

 if 𝑑𝑖𝑛𝑛 ≤ 0.5𝑑̅(0)

 flag=1, execute LLDE with DE/best/1mutation

 else

 flag=0, execute LLDE with DE/target-to-best/1mutation

 end if
 copy the optimal lower level solution 𝒙𝑖𝑙∗ to the archive

 end if
 Evaluate the fitness of candidate (𝒖𝑖𝑢, 𝒙𝑖𝑙) based on upper

level function and constraints

if fitiu(uiu, xil∗) is better than or equal to fitiu(xiu, xil) then

 (𝒙𝑖𝑢, 𝒙𝑖𝑙) = (uiu, xil∗)

end if
end for

t = t+1

end while

Output: (𝒙𝑢∗, 𝒙𝑙∗)

B. Lower level optimization

If the estimated lower level variables are not accurate enough to approximate the optimal lower level
solution, the lower level DE will be executed. For the nested BLEA structure, an efficient lower level EA is
required. Hence, the two mutation strategies, DE/target-to-best/1 and DE/best/1, are used to develop an
efficient lower level DE, and in each generation only the one that generates the ‘best’ individual is used.
Moreover, the lower level population size and search radius are dynamically adjusted with respect to the
similarity between the upper candidates and the archived members; this is beneficial to reduce the lower
level function evaluations. The pseudo-code of the lower level DE is shown in Algorithm 4.

Algorithm 4 Lower Level Differential Evolution (LLDE)

1:

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Input: 𝑃𝑜𝑝𝑙, 𝒙𝑢, flag, 𝐹𝑙, 𝐶𝑅𝑙, 𝑇𝑙, and 𝛼𝑠𝑡𝑜𝑝𝑙

Evaluate the lower fitness 𝑓𝑖𝑡𝑙(𝒙𝑢, 𝒙𝑙(0)) for each lower initial
individual based on lower function and constraints

Set iteration counter t = 1

while the stop criteria are not satisfied do

 for i =1 to 𝑁𝑃𝑙 do

Select randomly r1 ≠ r2 ≠ i
jrand = rndint(1, 𝐷𝑙)

 if flag == 0 /* DE/target-to-best/1*/
 𝒗𝑖𝑙 = 𝒙𝑖𝑙 + 𝐹𝑙 ∙ (𝒙𝑏𝑒𝑠𝑡𝑙 − 𝒙𝑖𝑙) + 𝐹𝑙 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢)

else /* DE/best/1*/
 𝒗𝑖𝑙 = 𝒙𝑏𝑒𝑠𝑡𝑙 + 𝐹𝑙 ∙ (𝒙𝑟1𝑢 − 𝒙𝑟2𝑢)

end if
for j = 1 to 𝐷𝑙 do

 if rand < 𝐶𝑅𝑙 or j = jrand then

 𝑢𝑖𝑗𝑙 = 𝑣𝑖𝑗𝑙

 else

 𝑢𝑖𝑗𝑙 = 𝑥𝑖𝑗𝑙

 end if
end for

end for

for i =1 to 𝑁𝑃𝑙 do

Evaluate the fitness of candidate (𝒙𝑢 , 𝒙𝑖𝑙) based on lower
level function and constraints

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

12

23:
24:
25:
26:
27:
28:

if 𝑓𝑖𝑡𝑖𝑙(𝒙𝑢, 𝒖𝑖𝑙) is better than or equal to 𝑓𝑖𝑡𝑖𝑙(𝒙𝑢, 𝒙𝑖𝑙) then

 𝒙𝑖𝑙 = 𝒖𝑖𝑙
end if

end for

t = t+1

end while

Output: 𝒙𝑙∗

C. Flowchart of SABiLDE

The overall flowchart of the bilevel DE with k-NN approximation and self-adaptive control strategies
is shown in Fig.2. In the ULDE, a nested LLDE is always invoked for each upper level initial individual.
But for each upper trial individual, if it is similar to one of the history individuals in the archive, the k-NN
is used to approximate the lower level optimal solution. Moreover, the population size and search radius of
the LLDE are adaptively adjusted to reduce the function evaluation based on the nearest neighbor distance 𝑑𝑛𝑛.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

13

Upper population initialization

LLDE

Upper mutation and crossover operator

Upper level function evaluation

External archive AUnion the upper and lower population

Upper level trial individual

k-NN approximation

dnn ≤ ε

LLDE

Calculate the nearest neighbor distance dnn

Y N

Upper level function evaluation

Update the external archive AUnion the upper and lower population

Upper selection operator

Stop criteria
N

Y

X
u

X
l

(X
u
, X

l
)

(X
u
, X

l
)

X
l

Output result

Self-adaption of the lower level population size

Self-adaption of the lower level search radius

Fig. 2 Flowchart of the proposed SABiLDE

4. Numerical results and analysis

Two sets of test problems are chosen to evaluate the performance of the proposed SABiLDE. The first
set includes 10 standard bilevel test problems (referred to as TP [11]) collected from different sources. The
second set is the recently proposed SMD test suite [18], which consists of 12 scalable bilevel problems with
different difficulties in terms of convergence at the two levels, complexity of interactions between the two
levels and multi-modalities at each of the levels. Among the 12 problems, the first eight are unconstrained
and the remaining four are constrained.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

14

The results of the proposed algorithm are compared with the following four representative BLEAs for
generic bilevel optimization problems: SABLA [46], BL-CMA-ES [37], BLEAQ [14] and BlDE [16],. The
BlDE is an improved version of the nested bilevel differential evolution discussed in [35], with a k-NN
based surrogate model being incorporated in the lower optimization. The BLEAQ proposed in [14] is an
efficient bilevel evolutionary algorithm based on quadratic approximations of the lower level optimal
variables as a function of upper level variables, which has been shown to outperform a number of
contemporary strategies for bilevel optimization. The BL-CMA-ES [37] is a newly developed evolutionary
bilevel optimization algorithm based on covariance matrix adaptation. The SABLA is a surrogate assisted
approach for single-objective bilevel optimization, which uses multiple surrogates to approximate the lower
level solutions.

4.1 Parameter setting and test platform

The population sizes at both levels are set to be 30 for both the TP group and the SMD suite. The
mutation scaling factor F and crossover rate CR for DE/rand/1 mutation strategy are 0.5 and 0.1,
respectively. The two strategies, DE/best/1 and DE/target-to-best/1, have the same mutation scaling factor
and crossover rate, i.e. F = 0.5 and CR = 0.9. The values for the upper stop criterion 𝛼𝑠𝑡𝑜𝑝𝑢 and the lower
stop criterion 𝛼𝑠𝑡𝑜𝑝𝑙 are both 1E-6. For another stop criterion, the maximum generations of no
improvement are set to be 20 for both levels. The number of nearest neighbors of k used in interpolation is
determined by 𝑘 = min {2𝐷𝑢 + 1, (𝐷𝑢 + 1)(𝐷𝑢 + 2)/2, 𝑁𝑃𝑢} (18)
where 𝐷𝑢 is the dimension of the upper level decision vector, 𝑁𝑃𝑢 is the upper level population size. To
highlight the local interpolation and reduce computational cost of the approximation procedure, k cannot be
larger than the upper level population size.

For BLDE, the probability of using the k-NN based surrogate model is 30%, and k is set to 2 as
suggested in [16]. Other parameter settings of the compared algorithms are determined according to their
original references. The code for the algorithm is realized in MATLAB 2012a, and all the computations
have been performed on a laptop with 64 bit Windows 10 platform, 2.6GHz double-core Intel Core i5
processor and 4GB of 1600MHz DDR3 RAM. The MATLAB code of BLEAQ is available at
http://bilevel.org. We rewrote the code of BlDE based on the pseudo-codes in [16]. To avoid randomness,
each test function is optimized over 30 independent runs. For fair comparison, a total of 30 different initial
populations were considered, starting from which each algorithm was run 30 times, and the relevant overall
performance was then compared. Because the code of SABLA and BL-CMA-ES are not open access, we
just copy the results in the literature therein.

To test the performance of the proposed algorithm, the test problems SMD1 to SMD9 with 10
dimensions are considered. For problems SMD 1-5, 𝑝=3, 𝑞=3, and 𝑟=2; for problems SMD 7-9, 𝑝=3, 𝑞=1, 𝑟=2; for problem SMD6, 𝑝=3, 𝑞=1, 𝑟=2, and 𝑠=2, where 𝑝, 𝑞, 𝑟, and 𝑠 are the parameters of SMD test suite
[18]. For the other three test problems SMD10 to SMD12 with complex constraints, only the case of 5
dimensions is considered since the three algorithms (BlDE, SABLA and BL-CMA-ES) all fail to solve the
three test problems with 10 dimensions. For the three problems with 5 dimensions, the values of the three
parameters p, q and r are set to be 1, 2, and 1, respectively.

4.2 Performance evaluation criteria

Performance of the algorithms used is evaluated and compared using the following three criteria.
1) Median of error values: the median of the errors between the obtained solutions and the true

optimum over all independent runs is used to measure the accuracy of the solutions obtained.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

15

2) Success rate (SR): the percentage of convergence to the optimal solution in all independent runs are
used to evaluate the robustness and reliability of the proposed algorithm.

3) CPU running time: the average and minimum CPU running time to reach the optimal solution is
used to assess the computational cost.

4.3 Comparison with the state-of-the-art
A. Solutions
The median solution accuracy of SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE are shown in

Table 1 for the TP test problems and the SMD test suite (SMD1 to SMD9 with 10 dimensions, SMD10 to
SMD12 with 5 dimensions). If the difference between the function value achieved by an algorithm and the
true optimal function value is no more than 0.1, it is considered that the test problem is solved [18]. The
success rates of the three algorithms in 30 runs for the two test sets are also shown in Table 1. In order to
highlight the overall best result, the significantly better values are marked in bold. While reporting the
median errors, we consider a precision of 1E-6. Consequently, if the error is less than 1E-6, it is simply set
to 1E-6. This is can facilitate the comparison of extremely small values, where the difference in values is
not significant.

Table 1 Solution comparison among SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE

Prob
SABiLDE SABLA BL-CMA-ES BLEAQ BlDE

UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%)

tp1 8.85E-4 1.17E-3 100 1.00E-6 1.00E-6 100 1.11E-6 3.78E-5 100 1.38E-6 1.00E-6 100 5.33E-2 1.13E-1 83.3

tp2 6.42E-5 1.83E+0 86.7 1.34E-6 3.53E-6 100 1.00E-6 2.23E-4 100 1.10E-3 9.99E+1 36.7 1.00E-6 8.81E+1 36.7

tp3 2.89E-5 9.34E-5 100 1.00E-6 1.00E-6 100 2.53E-2 2.80E-2 100 1.09E-5 2.50E-5 100 8.96E-5 2.41E-5 100

tp4 3.93E-4 1.29E-6 100 8.21E+2 1.00E-6 - 1.00E-6 1.00E-6 100 1.64E-3 5.17E-4 100 6.54E-4 1.02E-5 100

tp5 3.65E-6 1.92E-6 100 4.46E-6 7.77E-5 100 1.73E-1 2.20E-1 - 3.03E-3 1.51E-2 80 1.16E-5 8.37E-5 76.7

tp6 7.77E-4 2.78E-3 100 1.75E-4 1.00E-6 100 1.00E-6 2.48E-5 100- 7.77E-4 2.78E-3 100 7.80E-4 2.80E-3 100

tp7 8.01E-4 6.92E-4 100 1.00E-6 1.00E-6 100 6.74E-4 6.74E-4 100 7.84E-4 7.84E-4 100 8.46E-4 1.66E-3 100

tp8 1.00E-6 1.00E-6 100 2.42E-5 1.00E-6 100 1.00E-6 1.05E-4 100 6.11E-3 9.99E+1 46.7 1.00E-6 9.48E+1 36.7

tp9 1.00E-6 1.00E-6 100 6.51E-6 1.72E-5 100 1.00E-6 1.00E-6 100 8.94E-5 1.00E-6 100 1.80E-3 1.00E-6 100

tp10 2.58E-6 1.00E-6 100 2.63E-6 4.65E-4 100 1.00E-6 1.00E-6 100 2.39E-5 1.00E-6 100 1.62E-3 1.00E-6 100

SMD1 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 2.54E-5 1.74E-5 100 2.39E-5 1.36E-5 100

SMD2 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.28E-6 100 1.39E-4 2.22E-4 100 4.18E-4 3.75E-3 66.7

SMD3 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.12E-6 100 2.78E-2 9.29E-4 100 1.90E-5 1.68E-5 100

SMD4 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 8.18E-6 100 2.45E-4 2.06E-4 100 8.99E-1 9.55E-1 3.33

SMD5 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.49E-6 100 9.34E-5 3.22E-4 100 9.54E-5 1.61E-4 83.3

SMD6 3.78E-4 2.71E-5 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.07E+0 5.02E-1 0.0

SMD7 1.87E-4 1.52E+1 93.3 1.00E-6 1.00E-6 100 4.91E-2 6.25E+1 - 9.77E-2 1.20E+2 63.3 4.50E+0 5.03E+2 0.0

SMD8 1.00E-6 3.58E-5 100 2.76E-3 6.77E-4 100 1.00E-6 1.00E-6 100 8.81E-3 1.02E-2 90 4.36E-4 3.21E-4 76.7

SMD9 1.00E-6 1.00E-6 100 1.78E-6 1.77E-6 100 1.00E-6 1.98E-6 100 1.64E+0 5.53E+0 16.7 1.58E+0 1.99E+0 0.0

SMD10 1.00E-6 8.32E-5 100 3.80E-6 3.90E-6 100 1.60E+1 1.00E-6 - 7.94E-1 9.53E-1 0.0 7.11E+0 8.11E+0 0.0

SMD11 3.76E-3 4.54E-3 100 2.31E-1 3.25E-1 - 2.66E-3 3.49E-3 100 3.26E-4 7.14E-4 100 2.92E-1 3.28E-1 0.0

SMD12 6.94E-5 1.10E-4 100 1.00E-6 1.00E-6 100 1.00E-6 1.07E+1 - 4.51E-1 1.75E+0 0.0 1.98E+0 8.02E+0 0.0

It can be seen from Table 1, SABiLDE obtained better convergence accuracy than BlDE for almost all
the test problems. Although both SABiLDE and BlDE use the k-NN approximation as the lower level
surrogate model to reduce the lower level function evaluations, their assistant mechanism is completely
different. BlDE adopts a probability based selection strategy, that is, the k-NN approximation is chosen to

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

16

replace the lower level DE in a specified probability no matter the solution accuracy obtained. However,
the k-NN based surrogate model is too simple to effectively solve a variety of problems, especially when a
small number of neighbors are used (i.e., a small k in k-NN) for multi-variables interpolation. In BlDE, the
number of nearest candidate solutions selected to calculate the lower level variables via the surrogate model
is set to 2 (k =2). Obviously, the approximation ability of the k-NN model used in BlDE is limited. Once a
false estimation occurs, the upper optimization could be trapped into a sub-optimum or even a false
solution. For example, it can be noticed from Table 1 that BlDE fails to handle most of the test problems,
though it is able to converge to the upper and lower true optima of TP3, TP4, TP6, TP7, TP9, TP10, SMD1
and SMD3 with a comparatively high accuracy. In SABiLDE, however, the estimated solution based on
k-NN approximation is not directly used as the optimal lower level solution but a base solution for the
initialization of lower level population if the approximation is not accurate enough. Therefore, the
optimality of the lower level solution can be well guaranteed for SABiLDE.

In comparison with the modified BLEAQ, SABiLDE provides better or competitive results for all the
test problems except for SMD6. The test problem of SMD6 is very difficult to solve, because there is
conflict between the two levels [18]. Moreover, the lower level problem is a multi-modal problem. For any
given upper level vector, there are an infinite number of global solutions at the lower level. In the entire
global solution set, there is only a single lower level point which corresponds to the best upper level
function value [18]. SABiLDE is able to find one of lower level optima for any given upper candidate, but
it is difficult to converge to the upper optimum with high accuracy because of the multi-modal property of
the lower level problem and the conflict between the two levels. Interestingly, BLEAQ can easily handle
this problem with very high precision. A reasonable interpretation may be that the local search at upper
level supported by the quadratic approximations is especially beneficial to speed up the convergence of the
algorithm for this test problem. However, BLEAQ is unable to solve the problems TP2, TP5, TP8, SMD7
in all runs, and fail to solve the constrained problems SMD10 and SMD12, owing to the introduction of
infeasible members at the upper level.

When compared to SABLA, a novel multiple surrogate assisted bilevel algorithm [46], SABiLDE has
competitive or better solution accuracy for the majority of the test problems. SABLA performs better than
SABiLDE on the problems TP1, TP2, TP3, TP6, TP7, and SMD12, but SABiLDE wins when solving the
problems TP4, TP5, TP8, TP9, TP10, SMD8, SMD9, SMD10, SMD11. It's interesting that SABLA cannot
solve the upper level problem of TP4, and the upper and lower level problem of SMD11.

For BL-CMA-ES, one of lately developed efficient BLEAs, it can be seen from Table 1 that the
method generally obtained better upper level solutions on the most test problems than SABiLDE, but
SABiLDE is able to obtain better lower level solutions on the majority of the test problems. Moreover,
BL-CMA-ES cannot solve the upper problem of SMD10, the lower problems of SMD7 and SMD12, and
the upper and lower problem of TP5. Therefore, it can be concluded that SABiLDE generally demonstrates
better robustness than BL-CMA-ES.

As it can be seen from Table 1, SABiLDE failed to find the lower level sub-optima of TP2 and SMD7
in some runs. Although the problem TP2 is a bilevel optimization problem with low dimensions, the lower
constraints separate the lower feasible region into several parts, solutions are quite easily to be trapped into
sub-optima. In addition, there is a conflict between the two levels. For this problem, as shown in the Table
1, SABLiDE, BLEAQ and BlDE cannot solve the lower problem in some runs, but SABiLDE has better
global convergence ability and its success rate is much higher than BlDE and BLEAQ. It should be
mentioned that both BlDE and BLEAQ gave false lower level solution to this problem, resulting in
corresponding false upper level solutions. Moreover, BlDE and BLEAQ showed similar performance when

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

17

solving the test problems of SMD7 and SMD10. But the overall performance of BLEAQ is much better
than that of BLDE. in that false solutions frequently occurred in BlDE. When the lower level population
sizes for TP2 and SMD7 were increased to 40, the premature convergence of SABiLDE in lower levels was
avoided. However, with the increasing of population size, the function evaluations in the corresponding
lower level or upper level are also increased.

To further quantitatively assess the performance of the proposed method, the Wilcoxon signed ranks
test and Friedman test [52] were carried out. The calculation of two tests and the associated multiple
comparisons were conducted using the KEEL software tool [53]. Tables 2 and 3 show the upper and lower
accuracy results when applying Wilcoxon test to detect significant differences for the control algorithm
SABiLDE by means of pairwise comparisons, respectively. The symbol “◦” means that the method in the
row performs better than the methods that column, and the “•” means that the method in the column
improves the method of the row. Upper diagonal of level significance α = 0.1, and lower diagonal level of
significance α = 0.05. As it can be seen from Tables 2 and 3, SABiLDE is significantly better than BlDE in
both levels at α = 0.05, and significantly better than BLEAQ in the lower level at α =0.05, and better than
BLEAQ in the upper level at α =0.1. However, the difference among SABiLDE, BL-CMA-ES and SABLA
is not significant, which means that the three algorithms have competitive optimum performance.

Table 2 Wilcoxon test results of upper level accuracy among different BLEAs

 (1) (2) (3) (4) (5)

SABiLDE (1) - 96.0 110.0 195.5● 244.0●

BL-CMA-ES(2) 135.0 - 128.5 165.5● 201.5●

SABLA(3) 121.0 102.5 - 193.0● 212.0●

BLEAQ (4) 36.0ο 66.0 38.0ο - 171.0

BlDE (5) 7.0ο 51.5ο 41.0ο 82.0 -

Table 3 Wilcoxon test results of lower level accuracy among different BLEAs

 (1) (2) (3) (4) (5)

SABiLDE (1) - 118.5 89.5 195.5● 244.5●

BL-CMA-ES(2) 112.5 - 66.5ο 166.5● 209.5●

SABLA(3) 163.5 164.5 - 223.5● 231.0●

BLEAQ (4) 35.5ο 64.5 29.5ο - 143.5

BlDE (5) 8.5ο 43.5ο 22.0ο 109.5 -

The average Friedman test rankings of the upper and lower results for all the five algorithms are
shown in Fig.3. The lower the bar, the better ranking the algorithm obtains. According to Fig.3, it can be
seen that SABiLDE has significantly better convergence performance than BlDE and BLEAQ. In
comparison with BL-CMA-ES, SABiLDE has a better rank on the lower level convergence performance,
but BL-CMA-ES has better convergence performance on the upper level solutions. In comparison with
SABLA, SABiLDE has competitive convergence performance on the upper level solutions but exhibits
inferior performance on the lower level solutions.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

18

Fig.3 Average Friedman rankings of solution accuracy for different BLEAs

B. Computational efficiency

To compare the computational efficiency, the average and minimum number of function evaluations in
both levels are generally used as the performance criterion. However, the number of function evaluations
cannot accurately reflect the computational efficiency of BLEAQ [46], because the computational cost of
the quadratic approximations of the lower level variables is neglected. If the quadratic approximation
procedure is performed, a quadratic function must be constructed for each of the lower variables. That is,
for a lower level solution with 𝐷𝑙 variables, 𝐷𝑙 quadratic approximations should be constructed.
Obviously, the computational cost of quadratic approximation should be considered, especially when the
dimension of lower level decision vector is high. To roughly measure the computational efficiency of the
three algorithms, the CPU running time is recorded in Table 4. Because the code of SABLA and
BL-CMA-ES are not open access, it is only compared among SABiLDE, BLEAQ and BlDE. To
graphically illustrate the results, the comparison of mean of CPU running time is shown in Table 4 and Fig.
4, from which it can be seen that BLEAQ generally has good efficiency in all of the test problems and
outperforms SABiLDE in problems with low dimension such as TP1 to TP8. But when it comes to the
problems with high dimension, i.e. TP9, TP10, and SMD1 to SMD9, the superiority of BLEAQ becomes
less obvious, and actually SABiLDE provides better or competitive CPU running time in most of the high
dimensional problems except for SMD6. The improved efficiency of SABiLDE benefits from the similarity
based self-adaptive strategies for the size and initialization of lower population. Fig. 5 demonstrates the
overall changing trends of the lower level population size of SABiLDE against the upper evolution when
solving the problems of TP1 and SMD1. It can be seen from Fig. 5 that the lower level population size
decreases with the increase of the upper population evolution. Obviously, a smaller population size means a
smaller number of function evaluations. Moreover, the introduction of the two stop criteria is beneficial to
reduce redundant function evaluations in both levels. For the complex constraint problems with low
dimension such as SMD10, SMD11, and SMD12, BLEAQ also lost its dominant position on computational
efficiency. The possible reason is that the quadratic functions cannot well approximate the complex
interactive relationships between the upper and lower variables, and the lower level EA has to be more
frequently performed.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SABiLDE BL-CMA-ES SABLA BLEAQ BlDE

R
an

k
in

g

Upper level solution

Lower level solution

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

19

Table 4 CPU running time comparison among SABiLDE, SABLA, BL-CMA-ES, BLEAQ and BlDE

Prob
BLDE SABiLDE BLEAQ

mean min max mean min max mean min max

tp1 32.714 18.321 112.173 16.660 14.432 21.374 6.678 4.559 8.646

tp2 75.793 15.593 162.251 11.920 6.015 17.063 6.012 2.670 10.903

tp3 268.432 46.109 364.649 42.372 35.825 57.881 10.570 8.632 11.317

tp4 48.907 39.020 55.942 31.98 26.370 37.441 9.099 5.947 10.823

tp5 228.538 208.604 238.950 14.915 13.325 18.093 8.067 4.883 11.640

tp6 173.114 82.000 189.360 32.147 24.904 38.386 9.721 7.216 13.644

tp7 126.857 45.708 181.652 31.831 19.007 37.091 18.101 13.423 24.456

tp8 83.928 17.009 175.825 13.591 10.941 18.073 5.413 3.118 10.586

tp9 146.917 88.985 181.029 12.742 9.731 15.730 17.114 14.933 20.581

tp10 144.851 90.902 199.175 12.371 10.930 14.405 18.856 15.272 25.952

smd1 158.597 147.217 186.586 44.080 39.438 48.787 47.068 28.369 70.9977

smd2 351.467 148.855 526.594 39.245 35.063 42.905 42.716 31.783 55.2662

smd3 180.742 145.235 437.828 36.595 33.143 40.650 54.786 46.503 65.9844

smd4 489.516 147.623 526.934 37.701 32.538 47.615 51.386 30.914 72.4128

smd5 703.625 289.160 1068 66.735 52.587 77.819 50.104 37.029 61.399

smd6 854.257 840.717 886.098 318.958 116.008 583.446 29.052 18.439 36.113

smd7 484.555 448.323 539.513 113.226 79.106 158.942 73.413 44.964 116.580

smd8 473.222 244.372 2228 56.939 48.455 67.575 221.611 94.867 263.695

smd9 794.143 737.537 1181 94.442 74.411 67.575 244.192 60.090 313.705

smd10 1106.593 1030.802 1156 81.831 47.391 109.026 53.790 32.236 125.445

smd11 1209.654 569.861 1433 56.558 37.672 77.921 206.845 59.363 360.439

smd12 962.659 939.063 987.581 41.754 30.930 47.643 91.596 45.870 160.476

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

M
ea

n
 C

P
U

 t
im

e
(s

)

BlDE

SABiLDE

BLEAQ

TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 S
M

D
1

0

200

400

600

800

1000

1200

1400

M
ea

n
 C

P
U

 t
im

e
(s

)

BlDE

SABiLDE

BLEAQ

S
M

D
2

S
M

D
3

S
M

D
4

S
M

D
5

S
M

D
6

S
M

D
7

S
M

D
8

S
M

D
9

S
M

D
1
0

S
M

D
1
1

S
M

D
1
2

(a) TP test problems (b) SMD test problems

Fig. 4 The comparison of mean of CPU running time

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

20

(a) TP1 test problem (b) SMD1 test problem

Fig.5 Lower level population size dynamics with upper level evolution

Finally, to achieve a closer inspection, the average CPU running time results of the Wilcoxon
signed-rank statistic for all the test problems are shown in Table 5, from which it can be seen that
SABiLDE is significantly better than BlDE, and competitive to BLEAQ at the two confidence levels of α =
0.1 and α = 0.05. Figure 6 presents the average Friedman test rankings of the three algorithms for all the
test functions. These statistics further show that SABiLDE has better performance than BlDE. BLEAQ
obtained a better rank, but the difference between SABiLDE and BLEAQ is not obvious. All these show
that SABiLDE has better computational efficiency than BlDE, and competitive computational cost to
BLEAQ.

Table 5 Wilcoxon test results of the computational efficiency among different BLEAs

 (1) (2) (3)

BlDE(1) - 0.0 ο 0.0 ο

SABiLDE (2) 253.0 ● - 110.0

BLEAQ (3) 253.0 ● 143.0 -

Fig.6 Average Friedman rankings of computational efficiency for different BLEAs

4.4 Evaluation of the proposed self-adaptive strategies
To demonstrate the sensitivity of the proposed self-adaptive strategies to the population size, search

bound and mutation operator of lower level DE, four different variants of SABiLDE, without using the
proposed self-adaptive strategies, were evaluated. The four variants of SABiLDE are as follows:

SABiLDE-I: without self-adaptively adjusting the lower level population size

SABiLDE-II: without self-adaptively adjusting the lower level search radius

0 500 1000 1500 2000
5

10

15

20

25

30

Upper level function evaluations

L
o

w
er

 l
ev

el
 p

o
p

u
la

ti
o

n
 s

iz
e

0 200 400 600 800 1000
15

20

25

30

Upper level function evaluations

L
o

w
e
r

le
v

e
l

p
o

p
u

la
ti

o
n

 s
iz

e

0

0.5

1

1.5

2

2.5

3

3.5

BIDE SABiDE BLEAQ

R
an

k
in

g

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

21

SABiLDE-III: without self-adaptively adjusting the lower level population size and search radius
SABiLDE-IV: without self-adaptively adjusting the lower level mutation strategy

The upper and lower median error values of these SABiLDEs for the TP test problems are shown in
Table 6. The upper and lower success rates of the five algorithms in 30 runs for the TP test set are also
shown in Table 6. To evaluate the computational efficiency, the CPU running time of the five algorithms is
recorded in Table 7. In order to highlight the overall best results, the significantly better values are marked
in bold.

Table 6 Median solution accuracy comparison among SABiLDEs

Prob
SABiLDE SABiLDE-I SABiLDE-II SABiLDE-III SABiLDE-IV

UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%) UL Acc. LL Acc. SR(%)

tp1 8.85E-4 1.17E-3 100 5.13E-4 9.62E-3 100 5.82E-3 8.42E-3 100 1.51E-4 9.42E-3 100 1.72E-3 7.24E-2 100

tp2 6.42E-5 1.83E+0 93.3 4.57E-5 2.07E+1 86.7 5.77E-5 1.98E+1 86.7 4.91E-5 1.23E+1 90 4.45E-5 8.62E-4 100

tp3 2.89E-5 9.34E-5 100 1.80E-4 1.62E-4 100 2.61E-4 1.96E-4 100 1.45E-4 2.79E-3 100 1.80E-4 9.86E-5 100

tp4 3.93E-4 1.29E-6 100 3.89E-4 6.50E-4 100 4.71E-4 6.99E-4 100 6.05E-4 1.00E-6 100 6.16E-3 4.37E-4 100

tp5 3.65E-6 1.92E-6 100 3.10E-6 6.07E-6 100 3.41E-6 1.76E-6 100 1.05E-6 1.18E-6 100 2.21E-5 2.47E-6 100

tp6 7.77E-4 2.78E-3 100 7.77E-4 2.78E-3 100 7.80E-4 2.79E-3 100 7.79E-4 2.78E-3 100 7.77E-4 2.79E-3 100

tp7 8.01E-4 6.92E-4 100 7.96E-4 6.11E-4 100 8.10E-4 7.27E-4 100 7.54E-4 6.45E-4 100 7.92E-4 7.43E-4 100

tp8 1.00E-6 1.00E-6 100 2.24E-6 1.00E+1 93.3 2.45E-6 2.00E+1 86.7 6.84E-6 1.00E+1 96.6 2.21E-6 2.00E+1 86.7

tp9 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100 1.00E-6 1.00E-6 100

tp10 2.58E-6 1.00E-6 100 2.82E-5 1.00E-6 100 2.73E-5 1.00E-6 100 2.28E-5 1.00E-6 100 2.39E-5 1.00E-6 100

Table 7 The CPU running time comparison among SABiLDEs

Prob.
SABiLDE SABiLDE-I SABiLDE-II SABiLDE-III SABiLDE-IV

mean min mean min mean min mean min mean min

tp1 16.66 14.432 45.44 42.68 22.02 19.82 43.57 42.97 23.47 20.77

tp2 11.92 6.015 36.67 29.37 18.01 17.39 28.99 28.36 18.34 17.51

tp3 42.37 35.825 102.46 98.33 49.37 40.16 76.27 75.38 53.95 48.78

tp4 31.98 26.370 61.99 54.76 31.65 27.57 52.84 50.82 49.32 46.13

tp5 14.92 13.325 41.96 39.43 20.33 18.68 132.75 88.53 33.47 31.88

tp6 32.15 24.904 86.70 71.87 35.50 30.20 176.70 97.39 61.28 59.49

tp7 31.83 19.007 71.81 67.44 35.52 29.41 71.26 69.36 48.17 44.34

tp8 13.59 10.941 32.94 30.12 16.57 12.39 30.13 28.45 22.91 20.74

tp9 12.74 9.731 38.58 34.54 22.86 16.64 39.55 37.27 29.28 25.33

tp10 12.37 10.930 32.63 31.05 22.58 16.78 39.57 38.16 30.42 25.06

From Table 6, the difference of upper and lower convergence accuracy among the SABiLDEs is not
obvious, but SABiLDE-I is generally able to obtain better results than SABiLDE for most of the test
problems. The reason is that the lower level population of SABiLDE-I is fixed on the initial population size,
enabling it to always have a larger lower level population size than SABiLDE. It is well known that, for the
population based stochastic optimization algorithms, a larger population size is generally able to obtain a
better result for the same stopping criteria. However, the cost is to perform more function evaluations.
From Table 7, it can be seen that SABiLDE-I costs more CPU running time than SABiLDE for all the test
problems.

SABiLDE has better solution accuracy than that of SABiLDE-II with fix search bounds, because a
smaller search radius is desirable for the LLDE to do local search and the solution accuracy and search

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

22

efficiency can thus be enhanced. Accordingly, it can be observed from Table 7 that SABiLDE generally has
less CPU running time than SABiLDE-II.

When no self-adaption is introduced for either the lower level population size and search radius, it is
expected that SABiLDE-III has good convergence performance but bad computation efficiency. It can be
observed from Table 6 that SABiLDE-III performs better than SABiLDE on the upper problems of TP2,
TP5, TP7, TP10 and lower problems of TP1, TP4, TP5, TP7, TP10. But when it comes to the computation
efficiency, as shown in Table 7, SABiLDE-III got the worst result compared with the other four
SABiLDEs.

As for SABiLDE-IV, because of the use of the DE/target-to-best/1 mutation strategy, a good balance
between the exploration and exploitation can be achieved. It can be seen from Table 6 that SABiLDE-IV
converges to the optimal solutions of all the test problems with success rate of 100%. For SABiLDE, the
DE/best/1 is able to adaptively do local search to speed up the convergence. As shown in Table 7,
SABiLDE has faster convergence speed than SABiLDE-IV.

The above test results show that the proposed self-adaptive strategies are beneficial to improve the
computational efficiency of the lower level DE, therefore, the computation efficiency of the whole bilevel
DE is enhanced.

5. Conclusions

The paper introduced a new method for effectively solving bilevel optimization problems. The scheme
is to efficiently find solutions for the lower level task, which produce good responses to the upper level task;
in this way, the overall efficiency of solving bilevel optimization is significantly improved. Specifically, a
novel efficient self-adaptive bilevel differential evolution (SABiLDE) with k-NN approximation for the
lower level optimization was proposed. As detailed in Section 3, the proposed the self-adaptive control rate,
together with the introduction of the archiving technique, plays a key role in effectively improving the
overall efficiency of the optimization algorithm.

The archiving technique is used to store all the feasible lower level solutions obtained by the lower
level DE during the whole evolution and the corresponding upper decision variables. Based on the paired
upper and lower solutions in the archive, k-nearest neighbors are identified for a newly generated upper
candidate to approximate the optimal lower level variables by the inverse distance weighting interpolating.
If the distance between the new upper candidate and its closest archived member is small enough, the
approximated lower level variables are directly accepted as the optimal lower variables and the lower level
DE does not need to perform. Otherwise, the approximated lower solution is used as a base individual to
generate an initial population for the lower DE to speed up the convergence rate, because the surrogate
model may not be an excellent approximation of the bilevel problem, but it is usually still a good prediction
and can provide useful information to direct the search in some better regions. Based on the similarity (the
nearest neighbor distance), the self-adaptive control rate is proposed to dynamically adjust the lower level
population size and search radius to reduce the lower level function evaluations and therefore to improve
the computational efficiency.
 The performance of the proposed algorithm was evaluated on a test set with 10 standard bilevel test
problems and the SMD benchmark suite with 12 scalable test problems. The test results show that the
proposed SABiLDE is an efficient and effective approach for generic bilevel optimization problems.
Compared with another k-NN assisted bilevel differential evolution, called BlDE, the proposed algorithm
displayed better performance in both convergence accuracy and computational efficiency for almost all the

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

23

test problems. Compared with the modified BLEAQ, SABiLDE is able to provide better or competitive
results, especially on the test problems with high dimensions. In comparison with two of the lately
developed BLEAs, namely, SABLA and BL-CMA-ES, SABiLDE also demonstrates competitive
convergence performance.

For the future work, we are planning to apply the proposed algorithm to the bilevel robust dynamic
economic emission dispatch of power systems. Moreover, it is also of our interest to investigate more
efficient surrogate models such as radial base functions to approximate the lower level variables in future.

Acknowledgment: This work was partly supported by the National Natural Science Foundation of P. R.
China (Grant no. 61203309), Engineering and Physical Sciences Research Council (EPSRC) under Grant
EP/I011056/1 and Platform Grant EP/H00453X/1, and Natural and Environment Research Council (NERC)
under the grant NE-V002511, National Defense Basic Research Program of China (Grant no.
JCKY2019403D006), Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2137),
Hunan Provincial Science and Technology Plan of China (Grant no. 2017XK2302) and Hunan Provincial
Innovation Foundation for Postgraduate (CX20190807).

References:
[1] Benth F E, Dahl G, and Mannino C (2012) Computing optimal recovery policies for financial markets.

Oper Res 60(6):1373-1388

[2] Chiou S W (2009) A bi-level programming for logistics network design with system-optimized flows.
Inf Sci 179: 2434-2441

[3] Zhang G, Gao Y, Lu J (2011) Competitive strategic bidding optimization in electricity markets using
bilevel programming and swarm technique. IEEE Trans Ind Electron 58:2138-2146

[4] Calvete H I, Galé C, Oliveros M J (2011) Bilevel model for production distribution planning solved by
using ant colony optimization. Comput Oper Res 38:320-327

[5] Kuo R J, Han Y S (2011) A hybrid of genetic algorithm and particle swarm optimization for solving
bi-level linear programming problem – a case study on supply chain model. Applied Mathematical
Modelling 35:3905-3917.

[6] Koh A (2007) Solving transportation bi-level programs with differential evolution. In IEEE Congress
on Evolutionary Computation. IEEE, pp. 2243-2250

[7] Sinha A, Malo P, and Deb K (2015) Transportation policy formulation as a multi-objective bilevel
optimization problem. In 2015 IEEE Congress on Evolutionary Computation (CEC-2015).

[8] Wein L (2009) Homeland security: from mathematical models to policy implementation: the 2008
Philip McCord Morse lecture. Oper Res 57(4):801-811

[9] Shabde V S, Hoo K A (2008) Optimum controller design for a spray drying process. Control
Engineering Practice 16:541-552

[10] Lu J, Han J, Hu Y, and Zhang G (2016) Multilevel decision-making: A survey. Inf Sci
346-347:463-487

[11] Sinha A, Malo P, and Deb K (2013) Efficient evolutionary algorithm for single-objective bilevel
optimization. CoRR, abs/1303.3901.

[12] Sinha A, Malo P, Deb K, Korhonen P and Wallenius J (2016) Solving bilevel multi-criterion
optimization problems with lower level decision uncertainty. IEEE Trans Evol Comput 20(2):199-217

[13] Hansen P, Jaumard B, and Savard G (1992) New branch-and-bound rules for linear bilevel
programming. SIAM J Sci and Statis Comput 13(5):1194-1217.

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

24

[14] Sinha A, Malo P, and Deb K (2014) An improved bilevel evolutionary algorithm based on quadratic
approximations. In 2014 IEEE Congress on Evolutionary Computation (CEC-2014). IEEE, pp.
1870-1877

[15] Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann Oper Res 153:
235-256.

[16] Storn R and Price K (1977) Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J Global Optim 11(4):341-359

[17] Angelo J S, Krempser E, Barbosa H J C (2014) Differential evolution assisted by a surrogate model
for bilevel programming problems. In 2014 IEEE Congress on Evolutionary Computation (CEC-2014).
pp. 1784-1791

[18] Sinha A, Malo P, and Deb K (2012) Unconstrained scalable test problems for single-objective bilevel
optimization. In 2012 IEEE World Congress on Computational Intelligence, 2012.

[19] Sinha A, Malo P, and Deb K (2014) Test problem construction for single-objective bilevel
optimization. Evol Comput 22(3):439-477

[20] Deb K and Sinha A (2010) An efficient and accurate solution methodology for bilevel multi-objective
programming problems using a hybrid evolutionary-local-search algorithm. Evol Comput
18(3):403-449.

[21] Sinha A, Malo P, and Deb K (2015) Towards understanding bilevel multi-objective optimization with
deterministic lower level decisions. In Proceedings of the Eighth International Conference on
Evolutionary Multi-Criterion Optimization (EMO-2015). Springer-Verlag, 2015.

[22] Hejazi S, Memariani A, Jahanshahloo G, and Sepehri M (2002) Linear bilevel programming solution
by genetic algorithm. Comput & Oper Res 29(13):1913-1925

[23] Wan Z, Wang G, Sun B (2013) A hybrid intelligent algorithm by combining particle swarm
optimization with chaos searching technique for solving nonlinear bilevel programming problems.
Swarm and Evol Comput 8:26-32.

[24] Z. Wan, L. Mao, G. Wang. (2014) Estimation of distribution algorithm for a class of nonlinear bilevel
programming problems. Inf Sci 256:184-196.

[25] Wang Y, Jiao Y C, and Li H (2005) An evolutionary algorithm for solving nonlinear bilevel
programming based on a new constraint-handling scheme. IEEE Trans Sys Man and Cyber Part C:
Appl and Reviews 35(2):221-232

[26] Jiang Y, Li X, Huang C, Wu X (2013) Application of particle swarm optimization based on CHKS
smoothing function for solving nonlinear bilevel programming problem. Appl Math Comput
219:4332-4339

[27] Li H (2015) A genetic algorithm using a finite search space for solving nonlinear/linear fractional
bilevel programming problems. Ann Oper Res 235:543-558

[28] Mathieu R, Pittard L, and Anandalingam G (1994) Genetic algorithm based approach to bi-level linear
programming. Oper Res 28(1):1-21

[29] Yin Y (2000) Genetic algorithm based approach for bilevel programming models. J of Transport Eng,
126(2):115-120

[30] Zhu X, Yu Q, and Wang X (2006) A hybrid differential evolution algorithm for solving nonlinear
bilevel programming with linear constraints. In the 5th IEEE International Conference on Cognitive
Informatics. IEEE, pp. 126-131

[31] Koh A (2007) Solving transportation bi-level programs with differential evolution. In IEEE Congress
on Evol Comput. IEEE, pp. 2243-2250

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

25

[32] Islam M M, Singh H K and Ray T (2015) A memetic algorithm for solving single objective bilevel
optimization problems. In 2015 IEEE Congress on Evolutionary Computation (CEC-2015). IEEE, pp.
1643-1650

[33] Gao Y, Zhang G, Lu J, Wee H M (2011) Particle swarm optimization for bi-level pricing problems in
supply chains. J Global Optim 51:245-254

[34] Zhao L, Wei J X. (2019) A nested particle swarm algorithm based on sphere mutation to solve bi-level
optimization. Soft Comput 23:11331-11341

[35] Sinha A, Malo P, Frantsev A, and Deb K (2014) Finding optimal strategies in a multi-period
multi-leader-follower stackelberg game using an evolutionary algorithm. Comput Oper Res
41:374-385.

[36] Angelo J S, Krempser E, Barbosa H J C (2013) Differential evolution for bilevel programming. In
2013 IEEE Congress on Evolutionary Computation (CEC-2013). IEEE, pp. 470-477

[37] He X, Zhou Y, Chen Z. (2018) Evolutionary Bilevel Optimization based on Covariance Matrix
Adaptation. IEEE Trans Evol Comput 23(2):258-272.

[38] Huang P Q, Wang Y (2020) A Framework for Scalable Bilevel Optimization: Identifying and Utilizing
the Interactions Between Upper-Level and Lower-Level Variables. IEEE Trans Evol Comput
24(6):1150-1163

[39] Oduguwa V and Roy R (2002) Bi-level optimization using genetic algorithm. In Proceedings of the
2002 IEEE International Conference on Artificial Intelligence Systems. IEEE, pp.123-128

[40] Legillon F, Liefooghe A, and Talbi E G (2012) Cobra: a cooperative coevolutionary algorithm for
bi-level optimization. In 2012 IEEE Congress on Evolutionary Computation (CEC-2012). IEEE, 2012.

[41] Chaabani A, Bechikh S, Said L B (2015) A co-evolutionary decomposition-based algorithm for
bi-level combinatorial optimization. In IEEE Congress on Evolutionary Computation. IEEE, pp.
1659-1666

[42] Chaabani A, Bechikh S, Said L B (2018) A co-evolutionary hybrid decomposition-based algorithm for
bi-level combinatorial optimization problems. Appl Intelligence 48:2847-2872

[43] Li H, Fang L (2014) Co-evolutionary algorithm: an efficient approach for bilevel programming
problem. Eng Optim 46(3):361-374.

[44] Said R, Elarbi M, Bechikh S, Said L B (2021) Solving combinatorial bi-level optimization problems
using multiple populations and migration schemes. Oper Res doi.org/10.1007/s12351-020-00616-z.

[45] Sinha A, Lu Z, Deb K, Malo P (2020) Bilevel optimization based on iterative approximation of
multiple mappings. J Heuristics 26:151-185

[46] Islam M, Singh H K, Ray T (2017) A Surrogate Assisted Approach for Single-Objective Bilevel
Optimization. IEEE Trans Evol Comput 21(5):681-696

[47] Singh H K, Islam M, Ray T, Ryan M J (2019) Nested evolutionary algorithms for computationally
expensive bilevel optimization problems: Variants and their systematic analysis. Swarm Evol Comput
48:329-344

[48] Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In Proc. of the
23rd ACM National Conference. ACM, pp. 517-524.

[49] Das S and Suganthan P N (2011) Differential evolution: A survey of the state-of-the-art. IEEE Trans
Evol Comput 15(1): 4-31

[50] Qin A K, Huang V L, and Sugannthan P N (2009) Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2): 398-417

[51] Mezura-Montes E, Velázquez-Reyes J, and Coello Coello C A (2006) A comparative study of

Accepted by Memetic Computing on 5 March 2021. https://doi.org/10.1007/s12293-021-00335-8

26

differential evolution variants for global optimization. In Proc. Genet. Evol. Comput. Conf. pp.
485-492.

[52] Derrac J, GarcíaS, Molina D (2011) A practical tutorial on the use of nonparametric statistical tests as
a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput
1(1):3-18

[53] Alcalá-Fdez J, Sánchez L, García S et al (2009) KEEL: a software tool to assess evolutionary
algorithms for data mining problems. Soft Comput 13(3):307-318

