
This is a repository copy of Light curve classification with recurrent neural networks for 
GOTO: dealing with imbalanced data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174727/

Version: Accepted Version

Article:

Burhanudin, U.F., Maund, J.R. orcid.org/0000-0003-0733-7215, Killestein, T. et al. (42 
more authors) (2021) Light curve classification with recurrent neural networks for GOTO: 
dealing with imbalanced data. Monthly Notices of the Royal Astronomical Society, 505 (3). 
pp. 4345-4361. ISSN 0035-8711 

https://doi.org/10.1093/mnras/stab1545

This is a pre-copyedited, author-produced PDF of an article accepted for publication in 
Monthly Notices of the Royal Astronomical Society following peer review. The version of 
record U F Burhanudin, J R Maund, T Killestein, K Ackley, M J Dyer, J Lyman, K Ulaczyk, 
R Cutter, Y-L Mong, D Steeghs, D K Galloway, V Dhillon, P O’Brien, G Ramsay, K 
Noysena, R Kotak, R P Breton, L Nuttall, E Pallé, D Pollacco, E Thrane, S Awiphan, P 
Chote, A Chrimes, E Daw, C Duffy, R Eyles-Ferris, B Gompertz, T Heikkilä, P Irawati, M R 
Kennedy, A Levan, S Littlefair, L Makrygianni, D Mata-Sánchez, S Mattila, J McCormac, D 
Mkrtichian, J Mullaney, U Sawangwit, E Stanway, R Starling, P Strøm, S Tooke, K 
Wiersema, Light curve classification with recurrent neural networks for GOTO: dealing with
imbalanced data, Monthly Notices of the Royal Astronomical Society, 2021;, stab1545 is 
available online at: https://doi.org/10.1093/mnras/stab1545.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MNRAS 000, 1–16 (2020) Preprint 26 May 2021 Compiled using MNRAS LATEX style file v3.0

Light curve classification with recurrent neural networks for GOTO:
dealing with imbalanced data

U. F. Burhanudin,1★ J. R. Maund,1 T. Killestein,2 K. Ackley,3,4 M. J. Dyer,1 J. Lyman,2 K. Ulaczyk,2

R. Cutter,2 Y.-L. Mong,3,4 D. Steeghs,2,4 D. K. Galloway,3,4 V. Dhillon,1,11 P. O’Brien,5 G. Ramsay,6

K. Noysena,7 R. Kotak,8 R. P. Breton,9 L. Nuttall,10 E. Pallé,11 D. Pollacco,2 E. Thrane,3 S. Awiphan,7

P. Chote,2 A. Chrimes,2 E. Daw,1 C. Duffy,6 R. Eyles-Ferris,5 B. Gompertz,2 T. Heikkilä,8 P. Irawati,7

M. R. Kennedy,9 A. Levan,2 S. Littlefair,1 L. Makrygianni,1 D. Mata-Sánchez,9, S. Mattila,8

J. McCormac,2 D. Mkrtichian,7 J. Mullaney,1 U. Sawangwit,7 E. Stanway,2 R. Starling,5 P. Strøm,2

S. Tooke,5 K. Wiersema2

1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
2Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
3School of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia
4OzGRav-Monash, School of Physics and Astronomy, Monash University, Victoria 3800, Australia
5School of Physics & Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
6Armagh Observatory & Planetarium, College Hill, Armagh, BT61 9DG
7National Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180 Thailand
8Department of Physics & Astronomy, University of Turku, Vesilinnantie 5, Turku, FI-20014, Finland
9Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
10University of Portsmouth, Portsmouth, PO1 3FX, UK
11Instituto de Astrof’isica de Canarias, E-38205 La Laguna, Tenerife, Spain

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge

produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through

the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is

imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for over-represented classes in

the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and

additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification

of objects observed by the Gravitational-wave Optical Transient Observer (GOTO), and use an algorithm-level approach for

handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972
when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN
architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are
included. We also investigate the role that contextual information plays in producing reliable object classification.

Key words: methods: data analysis – techniques: photometric – survey

1 INTRODUCTION

Time domain astronomy concerns the study of astronomical objects
that exhibit variability in brightness over short timescales, ranging
from seconds to months, compared to typical cosmic timescales that
span millions to billions of years. The study of transient and variable
sources allows us to gain a better understanding of the Universe, by
way of measuring cosmic distances and cosmic expansion. The dis-

★ E-mail: ufburhanudin1@sheffield.ac.uk

covery of the period-luminosity relation of Cepheid variables in the
Small Magellanic Cloud enabled the use of Cepheid variables as a
standard candle to measure extra-galactic distances (Leavitt & Picker-
ing 1912). Type Ia supernovae have been used to trace the expansion
history of the Universe, and two teams independently measured the
luminosity-distance relationship of SNe Ia up to redshift 𝑧 ∼ 1 to de-
termine that the Universe is undergoing accelerated expansion (Riess
et al. 1998; Perlmutter et al. 1999).

Historically, the discovery of transient and variable sources has
been serendipitous. The advent of repeated sky surveys such as the

© 2020 The Authors

ar
X

iv
:2

10
5.

11
16

9v
2 

 [
as

tr
o-

ph
.I

M
] 

 2
5 

M
ay

 2
02

1



2 U. F. Burhanudin et al.

Catalina Real-Time Survey (CRTS; Drake et al. 2009), the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS; Kaiser
et al. 2010), the Palomar Transient Factory (PTF; Rau et al. 2009),
the All Sky Automated Survey for SuperNovae (ASAS-SN; Shappee
et al. 2014), and the Subaru Hyper Suprime-Cam transient survey
(HSC; Yasuda et al. 2019) have greatly increased the rate at which
new transient and variable sources are discovered. The large quantity
of data produced by these surveys have led to the discovery of new
types of transients such as superluminous supernovae (Quimby et al.
2007), and calcium-rich transients (Kasliwal et al. 2012).

Recently, the growing number of surveys across the world has
facilitated a new era of multi-messenger astronomy. Observing a
single event across multiple wavelengths and through different de-
tectors allows for a deeper understanding of the physics behind tran-
sient phenomena. In 2017, the gravitational wave signals of a binary
neutron star merger (designated GW170817) were detected by the
Advanced LIGO and Advanced Virgo gravitational-wave detectors
(Abbott et al. 2017a). Follow-up observations across the electro-
magnetic spectrum led to the discovery of the kilonova AT2017gfo,
thought to be powered by the radioactive decay of 𝑟-process nu-
clei following a binary neutron star merger (Abbott et al. 2017b;
Chornock et al. 2017; Coulter et al. 2017; Drout et al. 2017; Shappee
et al. 2017; Smartt et al. 2017; Villar et al. 2017).

Current surveys such as the Zwicky Transient Factory (ZTF; Bellm
et al. 2018) and the upcoming Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST; Ivezić et al. 2008) will generate
large amounts of observational data. On a typical night of observing,
ZTF will produce up to ∼ 1TB of raw image data, and up to 2 million
source alerts extracted from difference imaging (Masci et al. 2018).
The rate of data generation exceeds human capability for manual
processing, and the role of identifying and classifying new sources
from survey data falls to machine learning algorithms (Bloom &
Richards 2012; Bloom et al. 2012; Ball & Brunner 2010)

The first step in the automated process of discovery from image
data is determining whether a source is astrophysically real, or if it is
a ’bogus’ detection such as an image artifact (e.g. as a result of poor
subtraction from difference imaging) or a cosmic ray. The real-bogus
classification problem has been well studied and applied to surveys,
and is becoming a standard part of automated discovery pipelines
(Killestein et al. 2021; Mong et al. 2020; Duev et al. 2019; Lin et al.
2018; Gieseke et al. 2017; Wright et al. 2015; Brink et al. 2013).

Once a source has been identified as real, the next step is classi-
fying the source. Various taxonomies exist in astronomy, with broad
categorisations such as consistently varying sources versus transient
events, and classifications based on spectroscopic features for super-
novae subtypes (Filippenko 1997). Usually, confidently classifying
new optical transients relies on additional observations with spec-
troscopic facilities. However, in the era of large scale sky surveys,
spectroscopic follow-up of all new discoveries is not guaranteed and
is prohibitively time-consuming. As a result, alternative methods
of classification relying on photometric and image data have been
developed.

Both traditional feature-based machine learning (ML) and deep
learning (DL) methods have been used to classify astronomical ob-
jects into distinct classes. Features are metrics derived from the data
that are able to encapsulate the properties that differentiate between
different classes. Light curve-derived features have been used to
classify a set of simulated supernova light curves from the Super-
nova Photometric Classification Challenge (SPCC) (Kessler et al.
2010) into different spectroscopic types (Lochner et al. 2016; Ishida
& de Souza 2013), and also for supernova classification with real
survey data (Dauphin et al. 2020; Hosseinzadeh et al. 2020).

In contrast to feature-based ML models, DL models are able to
learn salient features from the data, and do not require a feature
extraction step prior to training. Deep neural network and recur-
rent neural network (RNN) architectures have been used to classify
simulated light curves (Möller & de Boissière 2020; Pasquet et al.
2019; Charnock & Moss 2017) and real light curves (Takahashi et al.
2020) for supernova classification, general transient classification
(Muthukrishna et al. 2019), and variable star classification with real
light curves (Becker et al. 2020; Tsang & Schultz 2019; Mahabal
et al. 2017). Work has also been done on classifying objects using
image stamps as input to convolutional neural networks (Wardęga
et al. 2020; Gómez et al. 2020; Carrasco-Davis et al. 2019).

In search of the optical counterparts to gravitational wave sig-
nals is the Gravitational-wave Optical Transient Observer (GOTO)
(Steeghs et al. in prep) survey. When GOTO receives an alert for
gravitational wave or gamma-ray burst detection from other facili-
ties, it will rapidly begin observing the localised region of sky to
look for optical counterparts (Dyer et al. 2020).

While not in gravitational wave follow-up mode, GOTO conducts
an all-sky survey to search for transient and variable sources. A real-
bogus classifier (Killestein et al. 2021) first identifies astrophysically
real detections and ’bogus’ subtraction artefacts from difference im-
ages. Detections that are identified as real by the real-bogus classifier
are then passed on to the GOTO Marshall (Lyman et al. in prep) , a
web-based interface for GOTO observers to vet, search, and trigger
follow-up observations of new discoveries. The next step in object
classification is classifying real discoveries into distinct astrophysical
types. Providing object classifications for real objects will be useful
for the GOTO collaboration in helping to identify interesting targets
for follow-up and further science goals.

Effective classification by ML and DL models rely on good repre-
sentation of the labelled classes in the data set to learn class separa-
bility across the labelled objects. In real-world applications, the data
will typically contain one or more classes that have more examples
than other classes. This type of data is referred to as ’imbalanced
data’, and it poses a difficulty for classification as models will be bi-
ased towards the class where there are many more examples to learn
from. Here, we present an RNN-based classifier for classification of
objects discovered by GOTO.

In section 2, we provide an overview of the GOTO survey and
the data used to train and test the RNN classifier. In section 3, we
introduce the RNN architecture, the class imbalance problem, and
the approach taken to deal with an imbalance data set. In section
4, we outline the training process, and in section 5, we discuss the
performance of the classifier, and how contextual information plays
a role in how models learn to classify. We discuss how the work
presented in this paper can be improved upon, and conclude with
sections 6 and 7.

2 THE GOTO SURVEY AND DATA

2.1 The Gravitational-wave Optical Transient Observer

The Gravitational-wave Optical Transient Observer (GOTO) is a
ground-based observatory, with a modular design situated at the
Roque de los Muchachos Observatory on La Palma, Canary Islands
(Steeghs et al. in prep). GOTO consists of multiple nodes, with each
node hosting an array of up to eight 40 cm diameter unit telescopes
(UTs) providing a combined 40 square degree field of view in a sin-
gle pointing. The current configuration consists of a single node in
La Palma, with a plan to add another node in La Palma and another

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 3

two nodes at the Siding Spring Observatory in Australia. When fully
complete, GOTO will have two nodes in La Palma (GOTO North)
and two nodes in Australia (GOTO South), for a total of 4 nodes and
32 UTs and the ability to have constant coverage of the night sky.
The primary science aim of GOTO is to search for optical signatures
following a gravitational wave detection from detectors such as the
Advanced LIGO (Abbott et al. 2009) and Advanced Virgo (Acernese
et al. 2015) facilities. When GOTO is not searching for gravitational
wave counterparts, it conducts an all-sky survey enabling the discov-
ery of new variables and, in particular, new transients.

Each GOTO UT is equipped with four Baader filters: a wide band
𝐿 filter (covering 400 − 700 nm), and three 𝑅, 𝐺, 𝐵 filters. GOTO
currently conducts all-sky surveys with the 𝐿 filter, and is able to
achieve a depth of up to 20.5 mag in a 60 second exposure under
dark conditions. New transient and variable detections are obtained
through difference imaging, where the difference between an image
of a new source that is undergoing a change in brightness and a
reference image at the same location is calculated to produce an
image of the new source. The difference imaging process is done
through an image processing pipeline (Steeghs et al. in prep).

2.2 Data

The data set used to train the classifier is obtained from GOTO obser-
vations spanning the period of 20 March 2019 to 4 November 2020,
during the GOTO prototype phase. Light curves of objects observed
during this period are created using photometric measurements de-
rived from difference imaging in the 𝐿 filter. The catalog of GOTO
objects is then cross-matched to a number of external catalogs to
determine objects that have also been observed by other telescopes
and surveys, and to obtain classification labels. The list of external
catalogs include:

1. The American Association of Variable Star Observers (AAVSO)
International Variable Star Index (Watson et al. 2006)

2. The Veron Catalog of Quasars & AGN, 13th edition (Véron-Cetty
& Véron 2010)

3. The Transient Name Server 1

Additionally, the GOTO objects are also cross-matched against
the Galaxy List for the Advanced Detector Era (GLADE) (Dálya
et al. 2018) galaxy catalog to identify if there is a nearby galaxy
associated with the object. In total, the data set comprises 99, 201

labelled objects, and are split into three broad classes: variable stars
(VS), active galactic nuclei (AGN), and supernovae (SN). The data
set is heavily imbalanced with 99 % (98, 457) of labelled objects
belonging to the variable star class, and only 543 and 201 belonging
to the active galactic nuclei and supernovae classes, respectively. The
largest class (VS) contains almost 500 times more examples than the
smallest class (SN).

Within the astronomical taxonomy for transient and variable
sources, there are wide range of classification schemes: classify-
ing variable stars by the physical mechanism that causes variability
(eclipsing binaries, RR Lyrae stars, Cepheids) and classifying su-
pernovae by spectroscopic features (type Ia, type Ib/c, type II). The
use of ‘super-classes’ that group together distinct types of objects
simplifies the classification task while still providing clear classifi-
cations. For rapidly evolving objects that would benefit from early
time follow-up observations such as supernovae, it is beneficial to
separate it from objects that show photometric variation over longer

1 https://wis-tns.weizmann.ac.il/

Figure 1. A scatter plot of the mean magnitude of light curves against the
standard deviation in magnitudes of light curves for variable stars (VS) in grey,
supernovae (SN) in red, and active galactic nuclei (AGN) in blue. In the top
and left panels are histograms showing the distribution of mean magnitudes
(top) and standard deviation in magnitudes (left). The histograms are plotted
as normalised counts, for each class.

timescales with just a few observations. Providing a more general
classification in real-time acts as a ‘first-pass’ classification, and fur-
ther classification into more specific subtypes can be done when
additional observations become available.

Figure 1 shows the distribution of mean magnitudes and standard
deviation in magnitudes, where each statistic is calculated from all
measurements in a light curve. VS have a broad range of magnitudes,
while SN and AGN tend to be fainter compared to VS. Figure 2
summarises the light curve properties within the data set. SN are
typically observed no longer than 100 days, while VS and AGN are
observed over longer timescales (>300 days). The median number
of points in a light curve for the data set is 6, and the median time
between successive observations is ∼ 11 days. The data set contains
light curves ranging in duration from a single day to a few hundred
days. The distribution of number of observations in a light curve and
the time between successive observations within a light curve over
all classes is fairly similar.

2.3 Data preprocessing

Before being used as input into the classifier, the data needs to be pre-
processed. For each light curve, the time-series input matrix consists
of the times of observation t, the magnitudes m, and the errors in
magnitude𝜎𝜎𝜎𝑚. The time is scaled to the time of the first observation,
so that it starts at zero, and subsequent time steps are times since the
first observation. The time-series input matrix XT for a light curve
with 𝑛 observations is

XT =



t

m

𝜎𝜎𝜎𝑚


=



𝑡0 𝑡1 ... 𝑡𝑛
𝑚0 𝑚1 ... 𝑚𝑛

𝜎𝑚0 𝜎𝑚1 ... 𝜎𝑚𝑛


. (1)

Light curves with more than 30 observations are truncated, and light
curves with fewer than 30 observations are padded, so that all time-

MNRAS 000, 1–16 (2020)



4 U. F. Burhanudin et al.

Figure 2. Normalised histograms showing different properties of the light
curves in the data set, separated by class. From top to bottom: the time between
the first and last observations of the light curves (length of observation), the
number of observations in the light curves, and the time between successive
observations over all light curves.

series input matrices XT are matrices with 5 rows and 30 columns,
where each column represents a time step. Padding is required since
the input matrices to the classifier needs to have a fixed input size,
but a masking layer can be used to tell the classifier to ignore padded
time steps (section 3.2). We choose 30 observations since we are
interested in being able to classify objects early in their light curve
evolution.

For each object, the contextual information used are the galactic
longitude 𝑙 and latitude 𝑏 in degrees, and distance in arcseconds to
the nearest galaxy in the GLADE catalog 𝑑𝐺 . Objects that have 𝑑𝐺 >

60 arcseconds have their 𝑑𝐺 set to a dummy value. The contextual
information input vector XC = (𝑙, 𝑏, 𝑑𝐺) is used alongside the time-
series input matrix XT as inputs for the classifier. Figure 3 shows
the distribution of 𝑑𝐺 and 𝑏 for all objects. AGN and SN are more
commonly found to have a nearby galaxy in the GLADE catalog than
VS. VS are mostly located close to the galactic plane, while AGN
and SN are usually found & 10◦ away from the galactic plane.

3 MODEL

3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks
that operate on sequential data. The sequential data can take the form

Figure 3. Normalised histograms showing how the distance to the nearest
galaxy in the GLADE catalog and galactic latitude for all objects in the data
set varies by class.

[𝑥𝑥𝑥0, 𝑥𝑥𝑥1, . . . , 𝑥𝑥𝑥𝜏 ], where 𝑥𝑥𝑥𝑡 is a vector with time step index 𝑡 running
from 𝑡 = 0 to 𝑡 = 𝜏 for a sequence with 𝜏 time steps. The time step
index 𝑡 does not necessarily have to represent the passage of time,
but can also denote the position of a vector in the sequence. RNNs
make use of ‘hidden states’ (similar to the hidden layers of a deep
neural network) that incorporate information from the hidden state
at the previous time step.

The traditional RNN learns by minimising a loss function (loss
functions are explained in detail in section 3.3) through gradient
optimisation, in a process known as backpropagation through time
(Werbos 1990) - this is the analog for backpropagation in fixed in-
put size neural networks but applied to sequential data. Traditional
RNNs struggle to encapsulate long-term time dependencies because
gradients propagated over many time steps tend to explode or vanish
- this is known as the vanishing and exploding gradient problem.
Vanishing gradients make it difficult to improve the cost function be-
cause the incremental steps needed to find a local minimum become
infinitesimal, and exploding gradients can make training unstable
since since a local minimum may never be found. Practical appli-
cations in processing sequential data make use of gated recurrent
neural networks, which can control the flow of information through
time. For an in-depth discussion on recurrent neural networks, refer
to Goodfellow et al. (2016).

There are two widely used gated RNN models: the long short-term
memory (LSTM) and gated recurrent unit (GRU) networks. LSTM
networks (Hochreiter & Schmidhuber 1997) use "LSTM" cells that
behave similar to hidden states in vanilla RNNs, but have additional
parameters and a series of gates that control the flow of inputs and
outputs within the cell, and the amount of information from previous
timesteps to retain. The cell parameters are trainable, so the LSTM
network also learns how to control the flow of information through
time. An alternative gated RNN is the GRU (Cho et al. 2014), which
uses a single gate rather than a set of multiple gates to control how
information flows within the unit.

In this work, both LSTM and GRU networks are used to process

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 5

Figure 4. Diagram of the mixed input network. The time-series input XT

is passed to the RNN branch, and the contextual information input XC is
appended to the output of the final RNN layer, before being passed on to
merged branch of the network.

light curve data and produce a set of class probabilities. It should be
noted that the values returned by the classifier are not automatically
true probabilities, rather they are a scores given to an object by the
classifier that indicate the level of ’belongingness’ to a certain class.
In this work, the scores returned by the RNN classifiers are referred
to as the class or prediction probabilities. The outputs are produced
after reading in the entire light curve, along with additional contextual
information.

3.2 Mixed input network

In order to utilise both the time-series data from the light curve and
contextual information, the neural network model is formed of two
branches: the first branch reads in the time-series input matrix XT

and the second branch reads in the contextual information input vec-
tor XC. Since recurrent neural networks are optimised for processing
sequential data, the contextual information is fed to the model sep-
arately as opposed to together with the time-series data (e.g. as a
vector of constant values), so that the RNN can extract high-level
time-series features from the light curve. We use a similar approach
to Muthukrishna et al. (2019) to construct the RNN branch of the
network.

The first branch acts as a standard RNN, consisting of two RNN
layers, and the second branch is just an input layer for XC. The output
of the final layer in RNN branch is concatenated with XC, and forms
the input for two dense layers, the latter of which is connected to the
final output layer. The output layer produces a list of numbers which
sum to 1, which are the class probabilities of an object belonging to
each of the defined classes. Figure 4 illustrates the model architecture.
To avoid overfitting (where a model performs well on the training
set but underperforms on the test set) dropout and regularisation are
used within the model. A summary of the different components of
the model is presented below.

• Masking layer: The masking layer is placed between the input
layer of the time-series branch of the model and the first RNN layer.
It applies a mask to a sequence of of time steps, where each time
step refers to a column in the XT, and uses a mask value to skip time
steps. Subsequent layers will ignore masked timesteps. A masking
layer allows the model to process sequences with a different number
of time steps.

• Long short-term memory (LSTM) layer: The LSTM layer
takes in the masked XT as input, and applies the LSTM operation.
The dimension of the output 𝑛out from this layer is an adjustable
hyperparameter. Two LSTM layers are stacked in the RNN branch
of the model: the first LSTM layer returns a sequence of outputs
each with dimension 𝑛out, which is passed on to the second LSTM
layer that returns a single output with dimension 𝑛out.

• Gated recurrent unit (GRU) layer: The GRU layer functions
in the same way as the LSTM layer and has the same adjustable
hyperparameter 𝑛out, but it applies the GRU operation to the data
instead. Like the LSTM layers, two GRU layers are stacked and the
first GRU layer passes a sequence to the second GRU layer, which
returns a single output with dimension 𝑛out.

• Dropout: A dropout layer randomly drops input neurons and their
corresponding connections during training, as a method to reduce
overfitting (Srivastava et al. 2014). This forces the neurons to derive
more meaningful features from the data without heavily relying on
other neurons in the network. During testing, the data is passed
through the network without dropout. The dropout fraction sets the
fraction of input neurons that are dropped.

• Batch normalisation: During training, the parameters for each
layer change, affecting the distribution of the inputs in the proceeding
layers in the network. The change in the distribution of inputs in
the layers requires the layers to adapt to the new distribution, a
phenomenon known as internal covariate shift. Batch normalisation
scales the inputs to a layer for each batch so that mean value is close
to 0 and the standard deviation is close to 1, reducing the impact of
internal covariate shift (Ioffe & Szegedy 2015).

• Dense layer: A dense layer is the simplest layer in a neural network:
it consists of a fully connected layer of neurons and takes in a fixed
size input. The number of neurons in the dense layer is an adjustable
hyperparameter. All dense layers in the merged branch have the
same number of neurons, which is set by the hyperparameter. The
output layer is just a dense layer with three neurons with a softmax
activation function that ensures the values returned by the output
layer all sum to 1.

• Regularisation: Regularisation introduces a penalty term to the

MNRAS 000, 1–16 (2020)



6 U. F. Burhanudin et al.

loss function as a method to reduce overfitting. The L2 regularisation
is used, which adds a penalty term equal to the sum of all the
model weights squared, multiplied by a regularisation factor 𝜆. The
regularisation factor 𝜆 sets the strength of ’weight decay’ in the loss
function. A larger value of 𝜆 forces the weights to have smaller
values and helps to reduce overfitting (Goodfellow et al. 2016).

The LSTM and GRU layers serve the purpose of extracting meaning-
ful features from the time-series data. The dense layers then combine
the the time-series representations and contextual information and
further extract features from the combined features to produce a
prediction. After each LSTM/GRU layer and the first dense layer,
dropout is applied in an attempt to reduce overfitting, and batch nor-
malisation is applied to reduce internal covariate shift throughout
the network. We use a combination of three methods as an approach
to deal with potential overfitting: dropout, batch normalisation, and
regularisation in the loss function. It is possible to further investigate
how these methods work with or without each other and the impact
they have on reducing overfitting, but it is beyond the scope of this
work.

3.3 Class imbalance

In classification problems, class imbalance occurs when one class
contains significantly fewer examples compared to other classes. The
class with fewer examples is often referred to as the minority class,
and the classes with many examples are referred to as the majority
class. Extreme imbalance can occur when the minority class contains
significantly fewer examples than the majority class. Learning from
imbalanced data can be difficult, since conventional ML and DL
algorithms assume an even distribution of classes within the data set.
Classifiers will tend to misclassify examples from the minority class,
and will be optimised to perform well on classifying examples from
the majority class.

There are three main approaches for dealing with class imbalance
(Krawczyk 2016):

1. Data-level methods: reduce imbalance by modifying the data with
resampling methods

2. Algorithm-level methods: modify the algorithm to reduce bias
towards examples from the majority class

3. Hybrid methods: combine both data resampling and algorithm-
level methods

The problem of class imbalance within astronomy has been ad-
dressed in a number of works dealing with light curve classifica-
tion. Synthetic Minority Over-sampling Technique (SMOTE; Chawla
et al. 2002) and a Gaussian resampling variant have been used to aug-
ment a training set of spectroscopically classified supernovae from
the Pan-STARRS1 Medium-Deep Survey (Villar et al. 2019). Gaus-
sian processes have been used to augment a set of simulated LSST
lightcurves from the PLAsTiCC data set (The PLAsTiCC team et al.
2018) to generate a more representative training set (Boone 2019).
Hosenie et al. (2020) combine data resampling methods and a hierar-
chical classification system to deal with class imbalance for variable
star classification.

All the above methods use feature-based ML algorithms to classify
light curves. Despite the popularity of DL-based classifiers, there is
a lack of research into dealing with class imbalance when using DL
architectures (Johnson & Khoshgoftaar 2019). Data augmentation
for light curves of different astrophysical objects can be a laborious
process, as models are needed to generate simulated examples of
real observations, and multiple models may be required to simulate

objects from multiple classes. This work attempts an algorithm-level
approach for dealing with class imbalance by using a focal loss
function to optimise the RNN classifier, as an alternative to a data-
level approach such as data augmentation.

In supervised learning, a model is trained for a prediction task
by optimising an objective function, commonly referred to as the
loss function. A loss function measures the error between the model
output and the target output. The model adjusts its internal weights to
reduce the error by calculating the gradient in weight space that will
minimise the loss function value (Lecun et al. 2015). This process is
referred to as gradient descent.

For multi-class classification, the cross entropy loss is typically
used. Given a multi-class problem with 𝑁 classes, the cross entropy
loss (CE) for an example 𝑖 is

CE = −

𝑁∑︁

𝑗=1

𝛿𝑖 𝑗 log(𝑝𝑖 𝑗 ), (2)

where 𝑝𝑖 𝑗 is the probability of example 𝑖 belonging to class 𝑗 , and
𝛿𝑖 𝑗 is the Kronecker delta function. The loss for the entire data set is
given by summing the loss of all examples.

The focal loss (Lin et al. 2017) addresses class imbalance by down-
weighting examples from the majority class. For the same multi-class
problem as above, the focal loss (FL) for an example 𝑖 is

FL = −

𝑁∑︁

𝑗=1

𝛿𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )
𝛾 log(𝑝𝑖 𝑗 ), (3)

where (1 − 𝑝𝑖 𝑗 ) is the modulating factor, and 𝛾 is the parameter that
adjusts the rate at which majority class examples are down-weighted.
Increasing 𝛾 reduces the contribution from well classified examples
to the loss, and increases the importance of improving misclassified
examples (Lin et al. 2017). For a misclassified example, 𝑝𝑖 𝑗 is small
so the modulating factor is close to 1 and the loss is unaffected.
Examples that are well classified will have 𝑝𝑖 𝑗 close to 1, so the
modulating factor is small, and the loss from well classified examples
will be down-weighted. The focal loss is equivalent to the cross
entropy loss when 𝛾 = 0. In practice, a weighted version of the focal
loss can be used, which Lin et al. (2017) find to perform better than
the unweighted focal loss (eq. 3) for imbalanced classification tasks:

FL = −

𝑁∑︁

𝑗=1

𝛿𝑖 𝑗𝛼 𝑗 (1 − 𝑝𝑖 𝑗 )
𝛾 log(𝑝𝑖 𝑗 ), (4)

where 𝛼 𝑗 is a weighting factor for class 𝑗 . In this work, the weighting
factor is given by

𝛼 𝑗 =
1

𝑛
×

𝑁

𝑁 𝑗
(5)

where 𝑁 is the total number of examples in the training set, 𝑁 𝑗 is the
number of examples in class 𝑗 in the training set, and 𝑛 is the total
number of classes which in this case is 𝑛 = 3. For all the above loss
functions, the best case is a loss value of zero.

4 METHOD

The GOTO data set is split into 70% for training, and 30% for
testing. Of the training set, 30% is set aside for validation. The data
are split so that the training, validation, and test sets all have the

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 7

Figure 5. A confusion matrix representing the possible outcomes in binary
classification for a positive and negative class. Class labels along the hori-
zontal axis are the labels predicted by the classifier, and class labels along
the vertical axis are the true labels. The total number of all true positives is
denoted by 𝑃 and the total number of all true negatives is denoted by 𝑁 .

same proportions of VS, AGN, and SN. A validation set is useful as
it provides a measure of how well a model is able to generalise during
training. The RNN is implemented and trained using the TensorFlow
2.0 package for Python (Abadi et al. 2016)2 with Keras (Chollet et al.
2015) for implementation of network layers.

4.1 Classification metrics

For a binary classification task where one class is positive and the
other class is negative, there are four possible outcomes when evalu-
ating the performance of a classifier. If an example from the positive
class is classified as positive, then the result is a true positive; if it is
classified as negative then the result is a false negative. If an example
from the negative class is classified as negative, the result is a true

negative; if it is classified as positive then the result is a false positive.
Figure 5 shows a confusion matrix that represents the possible out-

comes from a classifier in a binary classification task. There a number
of commonly used classification metrics that can be calculated from
the confusion matrix. The accuracy of a classifier is

Accuracy =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
. (6)

The 𝐹1 score of a classifier is

𝐹1 =

𝑇𝑃

𝑇𝑃 + 1
2
(𝐹𝑃 + 𝐹𝑁)

. (7)

The true positive rate (TPR) or the recall, is

TPR =

Correctly classified positives

Total positives
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
. (8)

The false positive rate (FPR) or the false alarm rate is

FPR =

Incorrectly classified negatives

Total negatives
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑃

𝑁
. (9)

2 https://www.tensorflow.org/

When dealing with imbalanced data, metrics such as accuracy and
𝐹1 score are sensitive to the class distribution in the data set. For
example, a classifier predicting on a test set that contains 99% posi-
tive examples and 1% negative examples can achieve an accuracy of
99% by predicting all examples as positive. Consider the confusion
matrix in figure 5. The proportion of positive to negative examples
is a relationship between the top row (positive) and the bottom row
(negative). Metrics that are calculated using values from both rows
(i.e. accuracy and 𝐹1 score) will be sensitive to class imbalance.
Alternative metrics for classification are receiver operating charac-
teristics (ROC) graphs and the area under the ROC graph (AUC).
The ROC is based on the TPR and FPR, where each metric is a
ratio calculated from values along a row of the confusion matrix, and
hence is insensitive to class imbalance. ROC graphs plot the TPR on
the 𝑦-axis and the FPR on the 𝑥-axis.

A ROC graph shows the trade-off between true positives and false
positives - an ideal classifier will return all true positives and no false
positives. A classifier that returns discrete classifications (i.e. one that
predicts the class labels) will produce a single pair of values for TPR
and FPR, and a corresponding point in ROC space. A classifier that
returns probabilities can produce a range of TPR and FPR values
by varying a threshold: if the probability is above the threshold,
then the classifier returns a positive classification, if it is below the
threshold then the classifier returns a negative classification. Since
different threshold values produce different TPR and FPR values, it
is possible to plot a curve in ROC space by varying the threshold.

In order to compare different classifiers, it is convenient to have
a single score that represents classifier performance. Since the ROC
curve is in two-dimensional space, the AUC is a fraction of the total
area of ROC space, and will always have a value between 0 and 1.
For an in-depth discussion of ROC analysis, see Fawcett (2006).

These metrics can extended to a multi-class classification problem:
the confusion matrix for 𝑛 classes becomes an 𝑛 × 𝑛 matrix with
the diagonal entries representing correct classifications and the off-
diagonal entries representing incorrect classifications. A method for
plotting ROC graphs for multiple classes is to plot ROC graphs
for each class, treating one class as the positive, and all others as
negative. A formulation of the AUC for multi-class classification
that is insensitive to imbalanced data was derived by Hand & Till
(2001), which calculates the unweighted mean of the pairwise AUC
over all classes. Although this formulation of the AUC is insensitive
to class imbalance, it is not straightforward to visualise the ROC
space with this method. Nevertheless, the pairwise AUC metric is
useful to evaluate the performance of multiple classification models
during hyperparameter optimization.

4.2 Hyperparameters

The model has a number of adjustable hyperparameters, parame-
ters that are not derived through training, but are pre-defined before
the training process. Table 1 lists the adjustable hyperparameters of
the model. Two hyperparameters are varied during training for all
models: the dimension of the LSTM/GRU output and the number of
neurons in the dense layers. We select the values of the LSTM/GRU
output dimension to be similar to those used in (Muthukrishna et al.
2019). For models trained with the focal loss, there is another hy-
perparameter that is varied: the focal loss 𝛾 parameter. We limit the
number of adjustable hyperparameters since we want to limit the total
number of models to be trained - there are a total of 32 models with all
possible hyperparameter combinations. We find that varying the hy-
perparameters during hyperparameter optimisation does not hugely

MNRAS 000, 1–16 (2020)



8 U. F. Burhanudin et al.

Hyperparameter Value

Batch size 128
Learning rate 1 × 10−4

LSTM/GRU output dimension [100, 150]

Dropout 0.4
Number of neurons in dense layers [100, 200]

Focal loss 𝛾 [1.0, 2.0]

Regularization factor 𝜆 0.01

Table 1. Adjustable hyperparameters in the model. Hyperparameters with
values in square brackets indicate the range of values used during training.

impact performance on the validation set, and the hyperparameters
listed in Table 1 produce good classification results.

Hyperparameters that remain fixed are the batch size, the learning
rate, the dropout fraction, and the regularization factor. Batch size
sets the number of samples that is passed through the model at each
epoch of training before the weights are updated. Given that the data
is imbalanced, the batch size is set to 128 to ensure that examples from
the minority class are passed through the model while the weights
are being updated. We note that this is a rudimentary method, and a
more thorough approach would be to employ a ’stratified’ batching,
where each batch has the same proportion of minority and majority
examples. Nevertheless, we find that simply setting the batch size
to 128 is sufficient to achieve good results (section 5). The learning
rate defines the step size taken during gradient descent to determine
the optimal set of weights, in other words it controls how much the
weights are changed during training. A learning rate that is too small
will fail to find a local minimum in weight space, and a learning
rate too large will result in unstable training and fail to find a local
minimum. During training, the learning rate is left to the default
TensorFlow value of 1 × 10−4.

Srivastava et al. (2014) find that setting the probability of retaining
a unit in the network between 0.4 and 0.8 optimally reduces test error
on a classification task with a deep neural network. In this work, the
dropout fraction used in the TensorFlow implementation is defined
as the fraction of units that are dropped, so the optimal range found
by (Srivastava et al. 2014) translates to 0.2 − 0.6 when expressed as
the fraction of units to be dropped. We opt for a dropout fraction
of 0.4 in this work. The regularization factor 𝜆 is set to the default
TensorFlow value 0.01.

The dropout fraction and regularization factor 𝜆 could have been
used as additional hyperparameters to see if varying their values
would impact classification performance, but we choose to keep
these values constant as to minimise the total number possible model
configurations that need to be trained. The main motivation for this
work is to see how using weighted loss functions affects performance
on imbalanced data.

4.3 Training process

There are two different RNN architectures used, one with LSTM
and the other with GRU, and three different loss functions: an un-
weighted cross entropy loss (eq. 2), a weighted cross entropy loss,
and a weighted focal loss (eq. 4). In total there are six classes of
models, each trained with a range of hyperparameters (Table 1). For
models trained with the cross entropy loss functions, the focal loss
parameter 𝛾 is not an adjustable parameter.

All models are trained for 200 epochs with no early stopping using
the Adam optimizer (Kingma & Ba 2014), and then evaluated on the
validation set. The best performing model is selected by choosing

the model that has the best AUC score calculated on the validation
set. The best models from the six different configurations are then
evaluated on the test set. Training was executed on an 8-core CPU.
The average time taken to train a single model was approximately
one hour at an average of 20 seconds per epoch, and the total time
taken to train all models presented in this paper was ∼ 44 hours. The
trained models are able to return predictions on the entire test set
within ∼ 5 seconds.

5 RESULTS

5.1 Hyperparameter optimisation

The models are trained with all possible hyperparameter combina-
tions presented in Table 1. After training, all models are evaluated
on the validation set. The best set of hyperparameters for the six
different model configurations are summarised in Table 2, with both
AUC and the 𝐹1 score shown for each model. All models converge
within 200 epochs, figure A1 in the appendix illustrates how the loss
on the training and validation sets evolve during training.

The weighted cross entropy models show a small increase of ∼
0.03 in AUC over the unweighted cross entropy models, and the
weighted focal loss shows an additional increase of ∼ 0.05 in AUC.
In this work we used the unweighted 𝐹1 score, which calculates the
𝐹1 score for each class and takes the unweighted mean. Although the
unweighted cross entropy loss models both have higher 𝐹1 scores, the
models with weighted loss functions perform better overall across all
classes - the 𝐹1 score is skewed towards the class with more examples
and is not a metric well-suited for imbalanced data. For the weighted
focal loss models, the LSTM appears to perform slightly better than
the GRU on the validation set.

5.2 Test set performance

After the best hyperparameters are determined for all the models, the
models are then evaluated on the test set. The test set consists of data
that the classifier has not seen during the training phase. Columns
8 and 9 of table 2 summarises the performance of the six different
model configuration on the test set, using all available observations.

As in the results for the validation set, the performance of the
models on the test set indicate that simply adding weights to the loss
function to account for class imbalance improves performance. Both
the weighted cross entropy and weighted focal loss models show an
increase of∼ 0.02 in AUC over the unweighted cross entropy. The 𝐹1

scores are also shown for illustrative purposes; although the models
with unweighted cross entropy loss have the highest 𝐹1 scores, they
have the lowest AUC scores. To better clarify the improvement of
weighted loss models over the unweighted cross entropy models, it
is prudent to also look at the confusion matrices for each of these
models.

Figure 6 shows the confusion matrices for all the models evalu-
ated on the test set. Confusion matrices are useful evaluation tools for
multi-class classification problems; they visualise how often a classi-
fier makes correct predictions, and where misclassifications between
classes occur (Figure 5). The models with unweighted cross entropy
loss perform the worst, and the confusion matrices for these models
show the impact of class imbalance on the model.

Figures 6a and 6d show that the unweighted cross entropy loss
models have complete recovery for VS, but also misclassify roughly
a third of SN and AGN as variable stars. The LSTM model correctly
classifies 63% of SN and 68% of AGN, and the GRU model correctly

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 9

RNN type Loss Dense layer neurons RNN output dimension 𝛾
Validation Test

AUC 𝐹1 AUC 𝐹1

LSTM Weighted focal loss 200 150 1 0.958 0.469 0.966 0.486
GRU Weighted focal loss 200 150 2 0.947 0.425 0.972 0.468

LSTM Weighted cross entropy 200 100 - 0.939 0.404 0.967 0.464
GRU Weighted cross entropy 200 150 - 0.932 0.378 0.968 0.442

LSTM Unweighted cross entropy 200 150 - 0.899 0.727 0.948 0.794
GRU Unweighted cross entropy 200 150 - 0.909 0.758 0.937 0.806

GRU NC Weighted focal loss 100 100 1 0.922 0.322 0.909 0.324

Table 2. Results for the best performing models and their best hyperparameters with AUC and 𝐹1 scores, evaluated on the validation and test sets. On the bottom
row, GRU NC denotes the GRU model with weighted focal loss trained only on time-series data without contextual information.

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

1.00
(29498)

0.00
(9)

0.00
(30)

0.34
(21)

0.63
(39)

0.03
(2)

0.26
(43)

0.05
(9)

0.68
(112)

0.0

0.2

0.4

0.6

0.8

1.0

(a) LSTM with unweighted cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l
0.95

(28061)
0.01
(372)

0.04
(1104)

0.03
(2)

0.87
(54)

0.10
(6)

0.07
(12)

0.05
(9)

0.87
(143)

0.0

0.2

0.4

0.6

0.8

1.0

(b) LSTM with weighted cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.96
(28234)

0.01
(276)

0.03
(1027)

0.02
(1)

0.87
(54)

0.11
(7)

0.07
(12)

0.06
(10)

0.87
(142)

0.0

0.2

0.4

0.6

0.8

1.0

(c) LSTM with weighted focal loss

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

1.00
(29518)

0.00
(5)

0.00
(14)

0.34
(21)

0.58
(36)

0.08
(5)

0.27
(44)

0.04
(7)

0.69
(113)

0.0

0.2

0.4

0.6

0.8

1.0

(d) GRU with unweighted cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.94
(27637)

0.01
(402)

0.05
(1498)

0.00
(0)

0.85
(53)

0.15
(9)

0.07
(11)

0.05
(9)

0.88
(144)

0.0

0.2

0.4

0.6

0.8

1.0

(e) GRU with weighted cross entropy

VS SN AGN
Predicted label

VS

SN

AGN

Tr
ue

 la
be

l

0.95
(28111)

0.01
(337)

0.04
(1089)

0.03
(2)

0.87
(54)

0.10
(6)

0.08
(13)

0.08
(13)

0.84
(138)

0.0

0.2

0.4

0.6

0.8

1.0

(f) GRU with weighted focal loss

Figure 6. Confusion matrices for the best performing models on test data. The labels on the 𝑥-axis are the labels predicted by the classifier, and the labels on the
𝑦-axis are the true labels. Correct predictions are represented by values along the diagonal, incorrect predictions are represented by values in the off-diagonal.
The rows of the matrix show the fraction of correct and incorrect predictions for each class, and where incorrect predictions between classes occur. Below the
fractions are the number of objects that have been predicted, in parentheses.

classifies 58% of SN and 69% of AGN. There is relatively little
confusion between SN and AGN for the LSTM and GRU models.

Using a weighted cross entropy loss function improves perfor-
mance on AGN and supernovae, but slightly decreases performance
for VS. Figures 6b and 6e show increased recovery for SN and AGN:
up to 87% and 85% accuracy for SN with the LSTM and GRU mod-
els, respectively, and up to 87% and 88% accuracy for AGN with the
LSTM and GRU models, respectively. The accuracy for VS dropped
to 95% for the LSTM model and 94% for the GRU model, with
misclassifications occurring in both SN and AGN. There is a small
amount of confusion (< 15%) between SN and AGN for the LSTM
and GRU models with weighted cross entropy loss functions.

The models using weighted focal loss show similar performance to
the weighted cross entropy models, with minor improvements. Fig-
ures 6c and 6f show that both LSTM and GRU models with weighted
focal loss are able to achieve 88% accuracy for SN, up to 96% accu-

racy for VS (with the GRU model achieving 95% accuracy for VS),
and up to 87% accuracy for AGN (with the GRU model achieving
84% accuracy for AGN). There is some degree of confusion between
SN and AGN, but no more that 11% of examples from these classes
are misclassified as the other. Only up to 3% of examples from SN
are classified as VS, and up to 8% of AGN are classified as VS. This
is a significant improvement over the models with unweighted cross
entropy, where up to a third of objects from the minority classes (SN,
AGN) are misclassified as the majority class (VS).

Looking at the number of predictions made for each entry in the
confusion matrix for the GRU model trained with focal loss (Figure
6f), it can be seen that the number of VS predicted as SN and AGN
is greater than the number of actual SN and AGN in the test set.
The classifier is designed to produce prediction probabilities, and the
predicted class is simply selected by choosing the class prediction
that has the highest probability. We can examine how varying the

MNRAS 000, 1–16 (2020)



10 U. F. Burhanudin et al.

Figure 7. Receiver operating characteristic (ROC) curves for the VS, SN,
and AGN classes (grey, red, and blue respectively). ROC curves plot the true
positive rate (TPR) against the false positive rate (FPR) for a range of threshold
values that dictate whether an object is classified as positive or negative. The
curve is obtained by considering a separate binary classification case for each
class, treating one class as positive, and the rest as negative.

Figure 8. AUC scores evaluated for all models on the test data, plotted as
a function of increasing number of light curve observations included in the
light curve. The black dotted line with triangular markers shows the AUC
scores for the GRU model trained with weighted focal loss without contextual
information (labelled GRU Focal Loss (NC)).

Class Threshold TPR FPR

VS 0.7 86.2% (25,465) 1.8% (4)
SN 0.7 74.2% (46) 0.2% (57)
AGN 0.7 72.6% (119) 0.7% (213)

Table 3. The true positive rate (TPR) and false positive rate (FPR) for each
class, evaluated on the test set at a threshold for the GRU model trained with
focal loss. The positive and negative predictions are obtained by treating each
class as positive, and the other two as negative, creating a binary classification
problem for each of the three classes. The number of true positive predictions
and false positive predictions are shown in parentheses with the TPR and FPR
values.

threshold value for the class probability can refine the classification
results. By breaking down the three class problem into three binary
classification problems, where for each case the positive class is one
of VS, SN, or AGN, and the negative class are the other two, we can
calculate the true positive rate (TPR) and false positive rate (FPR) for
each case. The probability of a negative prediction is simply given
as the sum of the probability of the two non-positive classes. We use
the predictions given by the GRU model trained with focal loss since
it has the highest AUC score on the test set, and compute the TPR
and FPR., and produce a ROC curve for each class (Figure 7). The
ROC curves for all the classes reflects the high AUC score of the
GRU model trained with weighted focal loss, covering most of the
TPR-FPR space and reaching the top left-hand corner (high TPR at
low FPR).

We can examine how varying the threshold can reduce contami-
nation, that is, to reduce the number of false positives in each class.
By selecting a ’cut-off’ threshold, any objects that have a prediction
probability below the threshold can be regarded as negative, and those
with a prediction probability above the threshold can be regarded as
positive. Table 3 shows the TPR and FPR along with the number of
true positive and false positive predictions for each class by using a
threshold value of 0.7. By selecting a cut-off threshold, the number
of false positive predictions for all classes is reduced. At a threshold
value of 0.7, the TPR of SN and AGN is > 70% at a FPR of < 1%.
The number of false positives for SN and AGN is still significant,
and we note that reducing contamination on minority classes in an
imbalanced data setting remains a challenge.

5.3 Time-dependent performance

With an RNN architecture, it is possible to take in sequential inputs
of different lengths. Hence, it is possible to evaluate the classifiers
performance by varying the number of light curve observations used.
To do this, the time-series input matrix can be formatted so that it
contains only the first 𝑛 observations, and the remaining values are
padded. The models are then evaluated on the test data, using an
increasing number of observations from 𝑛 = 1 to a maximum of
𝑛 = 30.

Figure 8 shows how the AUC of all models vary as the number of
observations included in the light curves are increased. In this case,
the number of observations refers to the maximum number of obser-
vations that are included. If the maximum number of observations is
𝑚, then a light curve with fewer than 𝑚 observations will have all its
observations included. If a light curve has more than 𝑚 observations,
then only the first 𝑚 observations are used.

With just one light curve observation, the unweighted cross en-
tropy models, weighted cross entropy models, and the LSTM model
with weighted focal loss achieve AUC scores of ∼ 0.82. The GRU
model with weighted focal loss achieves the highest AUC score with
a single light curve observation with 0.84. As more observations are
included, all models show an increase in AUC until around ten obser-
vations, after which the AUC scores maintain a constant value. Since
a majority of the light curves in the data set only have up to ten ob-
servations (see Figure 2), it is not surprising that model performance
remains constant after a maximum of ten light curve observations
are included. The final values of the AUC for all models are shown
in column 8 of table 2.

We perform some additional analysis on how the GRU model with
weighted focal loss performs over time, choosing the aforementioned
model since it has the highest AUC score on the test set. Figure 9
shows the confusion matrices for the GRU model with weighted focal
loss evaluated with different numbers of light curve observations.

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 11

(a) Maximum observations = 1 (b) Maximum observations = 6 (c) Maximum observations = 20

Figure 9. Confusion matrices for the GRU model with weighted focal loss, evaluated with an increasing number light curve observations.

With one observation, the model is already able to separate out VS
from other objects to a good degree of accuracy, achieving 93%

accuracy for VS. At one epoch of observation, the model achieves
73% accuracy for SN, and 42% accuracy for AGN, with 43% of AGN
being misclassified as SN. Other than AGN being misclassified as
supernovae, there is some degree of confusion between all classes:
13% of SN are misclassified as AGN, and 15% of SN and AGN are
misclassified as variable stars.

With up to six light curve observations, the accuracy for SN and
AGN improves. 89% of supernovae and 76% of AGN are correctly
classified, with some misclassifications between the two (< 16%),
and few SN and AGN being misclassified as variable stars. At a
maximum of twenty observations, the model reaches the maximum
performance. The confusion matrix for the GRU model with weighted
focal loss at twenty epochs in figure 9c appears similar to the con-
fusion matrix evaluated with all epochs of observations as in figure
6f. The SN accuracy drops from 89% at six observations to 87% at
twenty observations, suggesting some confusion as more observa-
tions are included and light curves appearing similar to each other at
longer timescales.

5.4 Importance of contextual information with t-SNE

Imaging surveys such as GOTO will be able to provide contextual in-
formation for newly discovered objects (for example, cross matching
to galaxy catalogs) in addition to photometric data. We now discuss
the importance of contextual information for the model in learning
to differentiate between objects from different classes. To investigate
the impact of contextual information, we train a grid of GRU models
with weighted focal loss using the hyperparameters in Table 1 on
the same data as the other models, but without additional contextual
information. The inputs to these models are just the time-series data
from the light curves XT. We identify the best performing model by
selecting the model that achieves the highest AUC score on validation
set.

5.4.1 Performance without contextual information

The hyperparameters, AUC and 𝐹1 scores of the best performing
GRU model with weighted focal loss trained only on time-series
data is shown in the bottom row of Table 2. The model achieves an
AUC score of 0.922 on the validation set, which is higher than the
validation AUC scores of the unweighted cross entropy models.

We follow the same process as in section 5.2 and evaluate this

model on the test set. The model achieves an AUC score of 0.902
on the test set, which is the lowest AUC score out of all models.
In figure 8, we plot how the AUC score evolves as more light curve
observations are included. At one observation, the model achieves an
AUC score of 0.717 and then increases up until the six observations
after which is starts to maintain a constant value.

Figure 10 shows the confusion matrices evaluated on the test set
using an increasing number of maximum observations. With just
one light curve observation, the model performs worse than the GRU
model with weighted focal loss trained with contextual information.
The model achieves an accuracy of 39% for VS and incorrectly clas-
sifying 55% of VS as SN, and 34% accuracy for AGN and incorrectly
classifying 62% of AGN as SN. SN accuracy for the model is similar
to the models trained with weighted focal loss, with an accuracy of
73%. When using all available light curve observations, the model
trained only on time series data achieves a similar accuracy for SN as
the weighted focal loss models at 87%, but lower accuracy for VS at
78% and AGN at 70%. There is a slightly higher degree of misclassi-
fication between classes compared to the models with weighted loss
functions trained with contextual information.

Figure 11 shows the ROC curve for the model trained only on
time-series data (using all available light curve observations), by
separating the three-class problem into three separate binary classi-
fication problems. Compared to figure 7, the ROC curves show that
the model does not perform as well when contextual information is
excluded.

Overall, the model trained only with time-series data performs
worse than its counterpart trained with contextual information, but is
able to achieve comparable accuracy for SN. This suggests that the
model is able to extract information from the light curves that allows
for good separation of SN from the other classes. We expand on this
in the following analysis.

5.4.2 t-Distributed Stochastic Neighbor Embedding representation

We use t-Distributed Stochastic Neighbor Embedding (t-SNE) to
represent how the model transforms the input data at different layers
of the network. t-SNE is a data visualization technique used to map a
high-dimensional data set into a low-dimensional data set that can be
visualised in a two or three dimensional scatter plot (van der Maaten
& Hinton 2008). We provide a summary of how t-SNE makes a
low-dimensional visualization of a high-dimensional data set in the
appendix.

t-SNE has been used to visualise class separability in supernovae

MNRAS 000, 1–16 (2020)



12 U. F. Burhanudin et al.

(a) Maximum observations = 1 (b) Maximum observations = 6 (c) Maximum observations = 30

Figure 10. Confusion matrices for the GRU model with weighted focal loss trained only on time-series data, evaluated with an increasing number light curve
observations.

Figure 11. ROC curves for the VS, SN, and AGN classes (grey, red, and blue
respectively) for the GRU model with weighted focal loss, trained only on
time-series data.

classification with ML algorithms (Lochner et al. 2016). In this anal-
ysis, we use t-SNE to visualise how class separability changes at
different layers in the network. We consider two models: the GRU
model with weighted focal loss trained with contextual information
and the same model trained with only time-series data.

We take the output of the model at two points: the output after
the final GRU layer, where the model only considers time-series in-
formation from the light curve, and the output after the final dense
layer before the output layer. In the model trained with contextual
information, the output of the final dense layer will encode the con-
textual information introduced after the final GRU layer. The model
is fed the training data as input, and t-SNE is used to produce a
low-dimension visualization of the high-dimensional intermediate
outputs. Figure 12 shows the two-dimensional mapping of the model
outputs at the final GRU layer and the final dense layer, for both
models. The scikit-learn Python package (Pedregosa et al. 2011)
implementation of t-SNE is used in this analysis.

Looking at the t-SNE representation of the outputs for the model
trained without contextual information, there appears to be no clear
clustering in the representation for the output after the GRU layer
in figure 12a. The majority of AGN occupy the right side of the
plot, the majority of SN are sparsely clustered in the bottom-right

region, and few AGN and SN occupy the left side. In figure 12b, the
t-SNE representation of the output after the final dense layer shows
some coherent clustering of SN and AGN. AGN cluster around the
top-right and bottom-left region, with some spread out in the middle.
There is a compact structuring of SN on the left side, and a cluster of
SN in the bottom-left near the AGN. There are a few AGN and SN
in the top-left region of the plot.

From figure 12c for the output after the final GRU layer for the
model trained with contextual information, there appears to be no
clear clusters of objects from the same class. AGN are spread out
across the plot, and there is some clustering of SN in the top-right
region. Looking at figure 12d after including contextual information,
the clustering of objects from the same class becomes more apparent.
There appears to be a compact and distinct cluster of AGN near the
bottom of the plot, and a tight clustering of SN along with AGN
in the bottom-right region. There is some overlap between SN and
AGN, indicating where some of the misclassifications are occurring.

We note that the VS class is a very broad class, containing a
multitude of different variable objects with distinct subclassifications.
In figure 12d, there seems to be a few coherent structures which may
indicate where variable objects from the same or similar classes are
located.

From Figure 12, it is clear that the incorporation of contextual
information into the classifier provides useful information that allows
the model to learn better class separability. Using t-SNE in this way is
a method to provide an approximate measure of ‘feature importance’
in deep learning models, which can be challenging compared to
deriving feature importance in feature-based ML algorithms such as
random forests which utilize hand-made features.

It should be noted that t-SNE is primarily a data visualization tool,
and here it is used to visualise class separability learnt by the model
at different stages. It is possible to explore the hyperparameter space
when generating t-SNE plots, and use a number of diagnostics to
assess the ‘quality’ of the dimensionality reduction (such as compar-
ing distances between points in high and low-dimensional space) and
identify any correlating features within the high-dimensional data set
(Chatzimparmpas et al. 2020). However, further interpretation of the
t-SNE plots is beyond the scope of this work.

6 DISCUSSION

Here, we provide a discussion on the task of object classification in
the context of the GOTO survey, how we handle class imbalance in

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 13

(a) t-SNE representation of model output after the final GRU layer, with no
contextual information.

(b) t-SNE representation of model output after the dense layer before the
output layer, with no contextual information.

(c) t-SNE representation of model output after the final GRU layer, with
contextual information.

(d) t-SNE representation of model output after the dense layer before the
output layer, with contextual information.

Figure 12. t-SNE representation for the network outputs at different stages. Each datapoint corresponds to a single object in the training set; grey points are VS,
red points are SN, and blue points are AGN.

this work, and how the use of contextual information in addition to
time-series data from light curves can help classifiers produce more
robust classifications.

6.1 Classification strategy for GOTO

In this work, the data set of 99,201 labelled objects are split into
three broad classes: variable stars, supernovae, and AGN. There are
over 98,000 variable star light curves in the data set, and more than
350 unique class labels provided in the AAVSO catalog (Watson
et al. 2006). A number of these labels include a mixture of classes,
where there is no certainty to which class an object belongs to.
Grouping all variable type objects into a single super-class makes
the classification task simpler for the model, and allows for a reliable
early-time classifications. We also assume that the classifications
provided in these catalogs are the ground-truth. To create an extended
and more robust labelled dataset, additional catalogs can be used to

provide more labelled examples, and also verify the labels provided
for already known objects.

The data set used to train the classifier was obtained from obser-
vations conducted in the GOTO all-sky survey mode. Given that the
light curves in the data set can be quite sparse, and are only in a sin-
gle filter, this may have presented a challenge for classification into
multiple object subtypes. A more refined classifier can be trained to
classify between subtypes of objects. An approach for a more refined
classification could be to take a hierarchical classification scheme
as in Hosenie et al. (2020), where once a subset of objects have
been classified into broad types, another classifier is used to further
classify the subset into more specific classes.

Targeted sub-sky surveys that focus on observing a smaller area
of sky and local galaxy clusters in search of transients present a
chance to conduct observations at higher cadences and in multiple
filters. Additional colour information and more uniform light curve
sampling can provide data that can be used to train models to produce
better and more refined classifications into object subtypes. Models

MNRAS 000, 1–16 (2020)



14 U. F. Burhanudin et al.

trained on light curves in multiple filters have been shown to be able
to differentiate between different types of transients and supernovae
subtypes (Villar et al. 2019; Muthukrishna et al. 2019).

One of the objectives of this work was to highlight the usefulness
of RNNs for real-time object classification in surveys. Work is cur-
rently ongoing to implement this classifier in the GOTO discovery
pipeline, where new objects observed by GOTO are classified and
the classification is returned to the GOTO Marshall (Lyman et al. in
prep.), where it can be displayed in a web interface for users to see.
The classifier returns class probabilities that give a measure of how
confident the classifier thinks an object belongs to certain class. This
information can be used to decide to trigger additional follow-up
observations. With the RNN architecture, it is possible to update the
classification probability as new observations of an object are made.

6.2 Handling class imbalance in deep neural network

architectures

The dataset used to train the RNN classifier for GOTO light curves
presented a class imbalance problem. Other works dealing with class
imbalance have utilised data augmentation methods for classifica-
tion with feature based machine learning algorithms (Hosenie et al.
2020; Villar et al. 2019; Boone 2019; Revsbech et al. 2018) and
achieved good performance. Here, we provide an alternative to data
augmentation with a RNN classifier, and use an algorithm-level ap-
proach to dealing with imbalance, where a weighted cross entropy
loss function and a weighted focal loss function are used to account
for imbalanced class distribution in the training set. We train two
types of RNN architectures, the LSTM and GRU, with three differ-
ent loss functions: an unweighted cross entropy, a weighted cross
entropy, and a weighted focal loss.

Weighting the cross entropy loss function shows an improvement
over the unweighted cross entropy, going from an AUC of 0.948
to 0.968 for the best unweighted cross entropy and weighted cross
entropy loss models when evaluated on the test set, respectively. The
confusion matrices show that the degree of confusion between the
majority and minority classes is reduced by simply weighting the
cross-entropy loss function.

The focal loss models perform similar to the weighted cross en-
tropy loss models. The AUC for the best focal loss model was 0.972,
evaluated on the test set. For the focal loss models, the GRU model
achieves a higher AUC score. We have shown that by using an ap-
propriate loss function to account for imbalanced data, it is possible
to achieve good real-time classification of transient and variable
sources, without having to artificially augment the training data.

Krawczyk (2016) note that even if a data set is heavily imbalanced,
if the classes are well represented and come from non-overlapping
class distributions, it is still possible to achieve good classifications.
Future surveys may benefit from obtaining spectroscopy of a wider
diversity of targets, and not just based on good signal-to-noise ratios.
Having good spectroscopic coverage of sources over a range of mag-
nitudes can help data augmentation efforts to create representative
training sets for supernovae classification Carrick et al. (2020). Ac-
tive learning, a class of ML algorithms used to optimise a labelling
strategy for unlabelled data, has been used to select spectroscopic
follow-up for objects that would give the best improvement to a
learning model in supernova classification (Ishida et al. 2018). Data
augmentation methods could be combined with the approach used in
this work for an improvement in classification performance in a class
imbalanced setting.

6.3 Contextual information

We trained a GRU model with weighted focal loss to classify light
curves using only time-series data without additional contextual in-
formation, to investigate the impact of contextual information on
classification. The model trained without contextual information
achieved an AUC score of 0.902 on the test set, which is the low-
est AUC score on the test set out of all models. Without contextual
information, the model has an overall worse performance compared
to the models with weighted focal loss functions that incorporate
contextual information.

Using t-SNE to visualise the intermediate outputs of the GRU
models trained with and without contextual information, it can be
seen that using contextual information such as location in the sky
and distance to the nearest galaxy allows the model to learn better
class separability compared to just using information from the light
curve. In principle, the model architecture used in this work where
contextual information is ingested into the model separately to the
time-series information from the light curve can be applied to any
survey.

Only three values were used as the contextual information input
into all the models: the galactic latitude and longitude, and the dis-
tance to the nearest galaxy from the object. It is possible to include
additional information, such as additional information about nearby
galaxies (colour and metallicity), redshift, and galactic extinction.

In the era of large sky surveys such as ZTF and the Vera Rubin
LSST, and the availability of multiple alert brokers (Möller et al.
2020; Förster et al. 2020; Smith et al. 2019; Narayan et al. 2018),
additional information on newly discovered objects other than photo-
metric data should be leveraged to provide accurate real-time classi-
fication of objects. Being able to classify explosive transients early in
their light curve evolution allows for follow-up in the early stages of
evolution that can provide constraints on explosion mechanisms and
progenitor environments (Zhang et al. 2018; Khazov et al. 2016).

7 CONCLUSION

In this paper we present a recurrent neural network classifier to clas-
sify objects observed with the GOTO survey using their light curves,
and additional contextual information such as on-sky position and
distance to the nearest galaxy obtained by cross-matching with a cat-
alog. We create a labelled dataset from the GOTO data, and split the
dataset into three classes: variable stars (VS), supernovae (SN), and
active galactic nuclei (AGN). The dataset is imbalanced, with 99%
of labelled objects belonging to the variable star class. We adopt
weighted cross entropy and focal loss functions to account for the
imbalance, and reduce the model bias towards the majority class.
The weighted loss functions improves overall classification perfor-
mance over the standard approach of an unweighted cross entropy
loss function with deep neural network classifiers. We also train a
model without contextual information and only time-series data, and
find that it performs worse than the model with the same configura-
tion trained with contextual information, but is still able to provide
meaningful classification. Looking at the low-dimensional represen-
tations of model outputs shows that contextual information allows
the model to make better distinctions between objects.

The classification problem presented in this work is a supervised
learning problem, where the expected output of the classifier is
known. With future surveys expected to discover orders of magni-
tudes more objects, a point of interest is identifying previously undis-
covered objects - the ‘unknown unknowns’. Unsupervised learning

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 15

is an approach where a model is trained to identify patterns within
unlabelled data with minimal human intervention. This approach can
be used to identify outliers within the data, and this process is usually
referred to as novelty or anomaly detection.

Unsupervised learning algorithms have been used to identify
anomalies within the Open Supernova Catalog (Pruzhinskaya et al.
2019), and in conjunction with deep neural network supervised learn-
ing for anomaly detection in variable stars (Tsang & Schultz 2019).
Active learning has also been used for anomaly detection, and to iden-
tify informative objects for labelling to improve a learning model as
new observations become available (Ishida et al. 2019).

Within the GOTO discovery pipeline, an anomaly detection algo-
rithm can be used once an object has been identified as real to detect
potential new discoveries, or applied to subsets of classified objects
to identify peculiarities within known classes. The high-dimensional
output of the dense layer carries some feature representation of the
data, and could be fed into an anomaly detection algorithm. Both su-
pervised and unsupervised classifications are useful in astronomical
surveys: supervised classification provides utility and automation by
classifying new objects into known classes, and unsupervised clas-
sification acts as a facilitator for specific science goals that utilise
observations of rare and novel objects or even discovery of new
transients.

ACKNOWLEDGEMENTS

We thank the anonymous referee for their comments in helping
to improve the quality of this paper. The research of U.F.B and
J.R.M are funded through a Royal Society PhD studentship (Royal
Society Enhancement Award RGF\EA\180234) and University Re-
search Fellowship, (Royal Society URF UF150689 and STFC grant
ST/R000964/1) respectively. V.S.D and M.J.D acknowledge the sup-
port of a Leverhulme Trust Research Project Grant. R.P.B, M.R.K,
and D.M.S acknowledge support from the ERC under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement no. 715051; Spiders). R.L.C.S acknowledges funding
from STFC Parts of this research were conducted by the Australian
Research Council Centre of Excellence for Gravitational Wave Dis-
covery (OzGrav), through project number CE170100004.

The Gravitational-wave Optical Transient Observer (GOTO)
project acknowledges the support of the Monash-Warwick Alliance;
Warwick University; Monash University; Sheffield University; the
University of Leicester; Armagh Observatory & Planetarium; the
National Astronomical Research Institute of Thailand (NARIT); the
University of Turku; the University of Manchester; the University of
Portsmouth; the Instituto de Astrofísica de Canarias (IAC) and the
Science and Technology Facilities Council (STFC).

U.F.B would like to thank Maurico A. Àlavarez and Fariba Yousefi
for helpful discussions in producing the work presented in this paper.

DATA AVAILABILITY

Data products will be available as part of planned GOTO public data
releases.

REFERENCES

Abadi M., et al., 2016, in 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16). pp

265–283, https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

Abbott B. P., et al., 2009, Reports on Progress in Physics, 72, 076901
Abbott B. P., et al., 2017a, Phys. Rev. Lett., 119, 161101
Abbott B. P., et al., 2017b, ApJ, 848, L12
Acernese F., et al., 2015, Classical and Quantum Gravity, 32, 024001
Ball N., Brunner R., 2010, International Journal of Modern Physics D, 19,

1049
Becker I., Pichara K., Catelan M., Protopapas P., Aguirre C., Nikzat F., 2020,

MNRAS, 493, 2981
Bellm E. C., et al., 2018, Publications of the Astronomical Society of the

Pacific, 131, 018002
Bloom J. S., Richards J. W., 2012, Data Mining and Machine Learning in

Time-Domain Discovery and Classification. Chapman & Hall, pp 89–112
Bloom J. S., et al., 2012, PASP, 124, 1175
Boone K., 2019, AJ, 158, 257
Brink H., Richards J. W., Poznanski D., Bloom J. S., Rice J., Negahban S.,

Wainwright M., 2013, MNRAS, 435, 1047
Carrasco-Davis R., et al., 2019, PASP, 131, 108006
Carrick J. E., Hook I. M., Swann E., Boone K., Frohmaier C., Kim A. G.,

Sullivan M., 2020, arXiv e-prints, p. arXiv:2012.12122
Charnock T., Moss A., 2017, ApJ, 837, L28
Chatzimparmpas A., Martins R. M., Kerren A., 2020, arXiv e-prints, p.

arXiv:2002.06910
Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer W. P., 2002, J. Artif.

Int. Res., 16, 321–357
Cho K., van Merrienboer B., Bahdanau D., Bengio Y., 2014, arXiv e-prints,

p. arXiv:1409.1259
Chollet F., et al., 2015, Keras, https://keras.io
Chornock R., et al., 2017, ApJ, 848, L19
Coulter D. A., et al., 2017, Science, 358, 1556
Dálya G., et al., 2018, MNRAS, 479, 2374
Dauphin F., Hosseinzadeh G., Villar V., Berger E., Gomez S., 2020, in Amer-

ican Astronomical Society Meeting Abstracts. American Astronomical
Society Meeting Abstracts. p. 276.18

Drake A. J., et al., 2009, ApJ, 696, 870
Drout M. R., et al., 2017, Science, 358, 1570
Duev D. A., et al., 2019, MNRAS, 489, 3582
Dyer M. J., et al., 2020, arXiv e-prints, p. arXiv:2012.02685
Fawcett T., 2006, Pattern Recognition Letters, 27, 861
Filippenko A. V., 1997, ARA&A, 35, 309
Förster F., et al., 2020, arXiv e-prints, p. arXiv:2008.03303
Gieseke F., et al., 2017, MNRAS, 472, 3101
Gómez C., Neira M., Hernández Hoyos M., Arbeláez P., Forero-Romero J. E.,

2020, MNRAS,
Goodfellow I., Bengio Y., Courville A., 2016, Deep Learning. The MIT Press
Hand D., Till R., 2001, Hand, The, 45, 171
Hochreiter S., Schmidhuber J., 1997, Neural Comput., 9, 1735–1780
Hosenie Z., Lyon R., Stappers B., Mootoovaloo A., McBride V., 2020, MN-

RAS, 493, 6050
Hosseinzadeh G., et al., 2020, arXiv e-prints, p. arXiv:2008.04912
Ioffe S., Szegedy C., 2015, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift (arXiv:1502.03167)
Ishida E. E. O., de Souza R. S., 2013, Monthly Notices of the Royal Astro-

nomical Society, 430, 509
Ishida E. E. O., et al., 2018, Monthly Notices of the Royal Astronomical

Society, 483, 2
Ishida E. E. O., et al., 2019, arXiv e-prints, p. arXiv:1909.13260
Ivezić Ž., et al., 2008, preprint, p. arXiv:0805.2366 (arXiv:0805.2366)
Johnson J., Khoshgoftaar T., 2019, Journal of Big Data, 6, 27
Kaiser N., et al., 2010, Proc. SPIE, 7733, 7733
Kasliwal M. M., et al., 2012, ApJ, 755, 161
Kessler R., Conley A., Jha S., Kuhlmann S., 2010, arXiv e-prints, p.

arXiv:1001.5210
Khazov D., et al., 2016, ApJ, 818, 3
Killestein T. L., et al., 2021, MNRAS, 503, 4838
Kingma D. P., Ba J., 2014, arXiv e-prints, p. arXiv:1412.6980
Krawczyk B., 2016, Progress in Artificial Intelligence, 5, 221

MNRAS 000, 1–16 (2020)



16 U. F. Burhanudin et al.

Kullback S., Leibler R. A., 1951, Ann. Math. Statist., 22, 79
Leavitt H. S., Pickering E. C., 1912, Harvard College Observatory Circular,

173, 1
Lecun Y., Bengio Y., Hinton G., 2015, Nature Cell Biology, 521, 436
Lin T.-Y., Goyal P., Girshick R., He K., Dollár P., 2017, arXiv e-prints, p.

arXiv:1708.02002
Lin H.-W., Chen Y.-T., Wang J.-H., Wang S.-Y., Yoshida F., Ip W.-H., Miyazaki

S., Terai T., 2018, PASJ, 70, S39
Lochner M., McEwen J. D., Peiris H. V., Lahav O., Winter M. K., 2016,

ApJS, 225, 31
Mahabal A., Sheth K., Gieseke F., Pai A., Djorgovski S. G., Drake A.,

Graham M., the CSS/CRTS/PTF Collaboration 2017, arXiv e-prints,
p. arXiv:1709.06257

Masci F. J., et al., 2018, Publications of the Astronomical Society of the
Pacific, 131, 018003

Möller A., de Boissière T., 2020, MNRAS, 491, 4277
Möller A., et al., 2020, MNRAS,
Mong Y.-L., et al., 2020, arXiv e-prints, p. arXiv:2008.10178
Muthukrishna D., Narayan G., Mandel K. S., Biswas R., Hložek R., 2019,

PASP, 131, 118002
Narayan G., et al., 2018, ApJS, 236, 9
Pasquet J., Pasquet J., Chaumont M., Fouchez D., 2019, A&A, 627, A21
Pedregosa F., et al., 2011, Journal of Machine Learning Research, 12, 2825
Perlmutter S., et al., 1999, ApJ, 517, 565
Pruzhinskaya M. V., Malanchev K. L., Kornilov M. V., Ishida E. E. O.,

Mondon F., Volnova A. A., Korolev V. S., 2019, MNRAS, 489, 3591
Quimby R. M., Aldering G., Wheeler J. C., Höflich P., Akerlof C. W., Rykoff

E. S., 2007, The Astrophysical Journal, 668, L99
Rau A., et al., 2009, PASP, 121, 1334
Revsbech E. A., Trotta R., van Dyk D. A., 2018, MNRAS, 473, 3969
Riess A. G., et al., 1998, AJ, 116, 1009
Shappee B. J., et al., 2014, ApJ, 788, 48
Shappee B. J., et al., 2017, Science, 358, 1574
Smartt S. J., et al., 2017, Nature, 551, 75
Smith K. W., et al., 2019, Research Notes of the AAS, 3, 26
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.,

2014, Journal of Machine Learning Research, 15, 1929
Takahashi I., Suzuki N., Yasuda N., Kimura A., Ueda N., Tanaka M., Tomi-

naga N., Yoshida N., 2020, PASJ,
The PLAsTiCC team et al., 2018, arXiv e-prints, p. arXiv:1810.00001
Tsang B. T. H., Schultz W. C., 2019, ApJ, 877, L14
Véron-Cetty M. P., Véron P., 2010, A&A, 518, A10
Villar V. A., et al., 2017, ApJ, 851, L21
Villar V. A., et al., 2019, ApJ, 884, 83
Wardęga K., Zadrożny A., Beroiz M., Camuccio R., Díaz M. C., 2020, arXiv

e-prints, p. arXiv:2009.14614
Watson C. L., Henden A. A., Price A., 2006, Society for Astronomical Sci-

ences Annual Symposium, 25, 47
Werbos P. J., 1990, Proceedings of the IEEE, 78, 1550
Wright D. E., et al., 2015, MNRAS, 449, 451
Yasuda N., et al., 2019, Publications of the Astronomical Society of Japan,

71
Zhang J., et al., 2018, ApJ, 863, 109
van der Maaten L., Hinton G., 2008, Journal of Machine Learning Research,

9, 2579

APPENDIX A: TRAINING AND VALIDATION LOSS

GRAPHS

Figure A1 show how the models optimize the different loss func-
tions during training. At each epoch, the model weights are updated
through gradient descent such that the loss will be minimized. A
model is said to converge once the the loss stops decreasing, indicat-
ing that the model has reached a local minimum in weight space.

APPENDIX B: T-DISTRIBUTED STOCHASTIC

NEIGHBOR EMBEDDING

t-SNE is a dimensionality reduction technique, that takes a high-
dimensional data set X = {𝑥1, 𝑥2, ..., 𝑥𝑛} and converts it into
a low-dimensional representation Y = {𝑦1, 𝑦2, ..., 𝑦𝑛}. The low-
dimensional data points Y are mappings of the high-dimensional
data points X in the low-dimensional space.

The high-dimensional Euclidean distances between points are con-
verted into probabilities that represent similarities between points by
centering a Gaussian distribution onto each point. The similarity be-
tween points 𝑥𝑖 and 𝑥 𝑗 are encapsulated in the joint probability 𝑝𝑖 𝑗 ;
if 𝑥𝑖 and 𝑥 𝑗 are near, then 𝑝𝑖 𝑗 will be high and if they are far apart
then 𝑝𝑖 𝑗 will be low.

In the low-dimensional mapping, the probability 𝑞𝑖 𝑗 is a measure
of similarity between 𝑦𝑖 and 𝑦 𝑗 , and 𝑞𝑖 𝑗 will be high if the two
points are near each other and low if they are far apart. Instead of
centering a Gaussian distribution onto the points in low-dimensional
space, a student t-distribution is used instead. Using a heavier-tailed
distribution allows moderate distances in the high-dimensional map
to be modelled by larger distances in the lower-dimensional map,
preventing a ’crowding’ of points that are not too dissimilar (van der
Maaten & Hinton 2008).

The variance of the Gaussian distribution is set so that the prob-
ability distribution produced by the variance has a fixed perplexity,
which is set by the user. The perplexity can be thought of as a mea-
sure of the effective number of neighbors in the region of the data
point in question. Here, the perplexity parameter is set to 20.

Given the two joint probabilities 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 , t-SNE determines an
optimal low-dimensional mapping Y of the high-dimensional data
set X by minimising the Kullback-Leibler divergence (Kullback &
Leibler 1951) of 𝑞𝑖 𝑗 and 𝑝𝑖 𝑗 using a gradient descent method.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–16 (2020)



GOTO RNN classifier 17

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model loss
Train loss
Validation loss

(a) GRU with weighted focal loss.

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model loss
Train loss
Validation loss

(b) LSTM with weighted focal loss.

0 25 50 75 100 125 150 175 200
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Model loss
Train loss
Validation loss

(c) GRU with weighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Model loss
Train loss
Validation loss

(d) LSTM with weighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Model loss
Train loss
Validation loss

(e) GRU with unweighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Model loss
Train loss
Validation loss

(f) LSTM with unweighted cross entropy loss.

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Model loss
Train loss
Validation loss

(g) GRU with weighted focal loss, trained only time-
series data

Figure A1. Evolution of training and validation loss for the best performing models during training. Models with the cross entropy loss converge quickly, but
the loss is dominated by contribution from easy to classify examples. Models with the weighted cross entropy loss and focal loss eventually converge within 200
epochs of training, and are also able to account for examples from the minority classes.

MNRAS 000, 1–16 (2020)


	1 Introduction
	2 The GOTO survey and data
	2.1 The Gravitational-wave Optical Transient Observer
	2.2 Data
	2.3 Data preprocessing

	3 Model
	3.1 Recurrent Neural Networks
	3.2 Mixed input network
	3.3 Class imbalance

	4 Method
	4.1 Classification metrics
	4.2 Hyperparameters
	4.3 Training process

	5 Results
	5.1 Hyperparameter optimisation
	5.2 Test set performance
	5.3 Time-dependent performance
	5.4 Importance of contextual information with t-SNE

	6 Discussion
	6.1 Classification strategy for GOTO
	6.2 Handling class imbalance in deep neural network architectures
	6.3 Contextual information

	7 Conclusion
	A Training and validation loss graphs
	B t-Distributed Stochastic Neighbor Embedding

