

This is a repository copy of Competition between allowed and first-forbidden  $\beta$  decays of at 208 and expansion of the Po 208 level scheme.

White Rose Research Online URL for this paper: <a href="https://eprints.whiterose.ac.uk/id/eprint/174720/">https://eprints.whiterose.ac.uk/id/eprint/174720/</a>

Version: Published Version

#### Article:

Brunet, M., Podolyák, Zs, Berry, T. A. et al. (46 more authors) (2021) Competition between allowed and first-forbidden  $\beta$  decays of at 208 and expansion of the Po 208 level scheme. Physical Review C - Nuclear Physics. 054327. ISSN: 2469-9993

https://doi.org/10.1103/PhysRevC.103.054327

# Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



# Competition between allowed and first-forbidden $\beta$ decays of <sup>208</sup>At and expansion of the <sup>208</sup>Po level scheme

```
M. Brunet , 1,* Zs. Podolyák, T. A. Berry, B. A. Brown, R. J. Carroll, R. Lica, 4.4 Ch. Sotty, A. N. Andreyev, 6,7
     M. J. G. Borge, J. G. Cubiss, 3,8 L. M. Fraile, H. O. U. Fynbo, E. Gamba, P. Greenlees, L. J. Harkness-Brennan, 12
         M. Huyse, <sup>5</sup> D. S. Judson, <sup>12</sup> J. Konki, <sup>11</sup> J. Kurcewicz, <sup>3</sup> I. Lazarus, <sup>13</sup> M. Madurga, <sup>3</sup> N. Marginean, <sup>4</sup> R. Marginean, <sup>4</sup>
       I. Marroquin, <sup>14</sup> C. Mihai, <sup>4</sup> E. Nácher, <sup>15</sup> A. Negret, <sup>4</sup> S. Pascu, <sup>4</sup> R. D. Page, <sup>12</sup> A. Perea, <sup>14</sup> J. Phrompao, <sup>16</sup> M. Piersa, <sup>17</sup>
V. Pucknell, <sup>13</sup> P. Rahkila, <sup>11</sup> E. Rapisarda, <sup>3</sup> P. H. Regan, <sup>1,18</sup> F. Rotaru, <sup>4</sup> M. Rudigier, <sup>1</sup> C. M. Shand, <sup>1</sup> R. Shearman, <sup>1,18</sup> E. C. Simpson, <sup>19</sup> T. Stora, <sup>3</sup> O. Tengblad, <sup>14</sup> P. Van Duppen, <sup>5</sup> V. Vedia, <sup>8</sup> S. Vinals, <sup>14</sup> R. Wadsworth, <sup>6</sup> N. Warr, <sup>19</sup> and H. De Witte<sup>5</sup>
                                  <sup>1</sup>Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
            <sup>2</sup>Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University,
                                                           East Lansing, Michigan 48824-1321, USA
                                                 <sup>3</sup>Physics Department, CERN, 1211 Geneva 23, Switzerland
                 <sup>4</sup>H. Hulubei National Institute for Physics and Nuclear Engineering, Strada Reactorului 30, Măgurele, Romania
                          <sup>5</sup>KU Leuven, Institut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
                               <sup>6</sup>Department of Physics, University of York, North Yorkshire YO10 5DD, United Kingdom
     <sup>7</sup>Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
                <sup>8</sup>Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
                                <sup>9</sup>Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
               <sup>10</sup>School of Computing, Engineering, and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
                          <sup>11</sup>Department of Physics, P.O. Box 35 (YFL), University of Jyväskylä, FI-40014 Jyväskylä, Finland
                  <sup>12</sup>Department of Physics Oliver Lodge Laboratory, University of Liverpool, Liverpool L7 7BD, United Kingdom
                                         <sup>13</sup>STFC, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
                                <sup>14</sup>Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain
                              <sup>15</sup>Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46980 Valencia, Spain
                         <sup>16</sup>Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
                                          <sup>17</sup>Faculty of Physics, University of Warsaw, PL 02-093 Warsaw, Poland
                                 <sup>18</sup>National Physical Laboratory, Teddington, Middlesex TW11 OLW, United Kingdom
         <sup>19</sup>Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
```

(Received 22 October 2020; revised 23 March 2021; accepted 29 April 2021; published 28 May 2021)

The structure of  $^{208}$ Po populated through the EC/ $\beta^+$  decay of  $^{208}$ At is investigated using  $\gamma$ -ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed  $\gamma$  rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the  $\beta$ -decay strength of  $^{208}$ At is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass region provides an excellent testing ground for the competition between allowed and first-forbidden  $\beta$ -decay calculations, important for the detailed understanding of the nucleosynthesis of heavy elements.

DOI: 10.1103/PhysRevC.103.054327

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

## I. INTRODUCTION

The proximity of <sup>208</sup>Po to the doubly magic <sup>208</sup>Pb nucleus makes it an excellent tool to test the shell model. With two-proton particles and two-neutron holes, its low-energy level scheme is characterized by excited states of predominantly neutron and proton character. At higher energies additional unpaired protons and neutrons contribute and the wave functions become more fragmented.

By populating <sup>208</sup>Po via the EC/ $\beta$ <sup>+</sup> decay of its parent nucleus <sup>208</sup>At ( $J^{\pi} = 6^+$ ,  $Q_{EC} = 5000(9)$  keV [1]) the

<sup>\*</sup>m.h.brunet@surrey.ac.uk

observed states are restricted to low to medium energy ( $< Q_{EC}$ ) and single-digit-spin states by virtue of  $\beta$ -decay selection rules. Such restrictions offer an opportunity to observe these, predominantly nonyrast, states more exclusively than other production methods such as those used in a number of fewnucleon transfer reactions [2–4].

The EC/ $\beta^+$  decay of  $^{208}$ At populating  $^{208}$ Po was last studied in the early 1980s [5,6]. The data produced were used to identify a large number of states and transitions in  $^{208}$ Po, which were subsequently incorporated into a detailed decay scheme. The small Ge(Li) detectors used in these experiments had a lower efficiency than their modern counterparts, particularly at higher energies, thus many of the observed transitions remained unplaced [5,7–9].

Here we present results from an experiment performed at the ISOLDE Decay Station (IDS) at CERN. The high statistics provided by the increased detection efficiency of the large germanium detectors provided an opportunity to expand and improve upon previous works. Furthermore, it allowed for a more extensive study of the  $^{208}\mathrm{At}$  decay itself. The  $\beta$  population strength of states in  $^{208}\mathrm{Po}$  has been reported in previous work, but the higher detection efficiency allows for a better understanding of the population of high-energy states within the level scheme. These are often of negative parity and, therefore, populated in first-forbidden  $\beta$  decays.

## II. EXPERIMENTAL DETAILS

The experiment was performed at the CERN-ISOLDE facility with the intention of measuring decays of  $^{208}$ Hg [ $T_{1/2} = 135(10)$  s] [10]. However, the beam contained an unexpectedly high yield of  $^{208}$ At at  $\approx 5 \times 10^4$  pps. Thus the data collected were used to investigate the  $\beta$  population of  $^{208}$ Po.

To generate the desired beam, a molten lead target in conjunction with a VD5 FEBIAD [11] ion source was bombarded by a 1.4-GeV pulsed beam from the PS-Booster [12]. The proton beam intensity was  $\approx 0.5~\mu A$  and the measurement lasted 7.5 h. A beam with mass A=208 was extracted with a potential of 50 kV and mass separated using the General Purpose Separator. The cause of the abundance of  $^{208}$ At is as yet unknown.

At the IDS, the beam was stopped on a movable tape, such that long-lived isotopes in the decay chains could be removed from the measurement area to avoid contaminating the desired spectrum. The tape cycle was set for a 539-s period of implantation followed by a further 539 s without implantation, after which the tape was moved. The four resident, four-crystal HPGe clover detectors at the IDS were combined with a fifth TIGRESS germanium detector [13], which provided a total  $\gamma$ efficiency of 11% at 100 keV and 4% at 1 MeV. The efficiency calibration was performed using <sup>152</sup>Eu and <sup>60</sup>Co sources. Extension of this up to an energy of 2615 keV utilized the known ratio [14] between the intensity of the 583-keV and that of the 2615-keV transition in  $^{208}$ Pb following  $\beta$  decay of  $^{208}$ Tl. A plastic scintillator block and photomultiplier tube setup surrounding the tape were used for  $\beta$  coincidence measurements. However, as <sup>208</sup>At predominantly decays via electron capture such coincidences are significantly less efficient and thus had little impact on this analysis. The triggerless total data readout

system [15] at the IDS was used for data acquisition. More details are given in Refs. [16,17].

#### III. RESULTS

The predominantly  $\beta$ -decaying ground state of  $^{208}$ At has spin parity  $^{+}$  [14]. Due to  $\gamma$  and  $\beta$  selection rules, the  $^{208}$ Po  $^{+}$  ground state cannot be populated in a single  $\gamma$  transition. Therefore the data gathered in this experiment were used to generate matrices of  $\gamma\gamma$  and  $\beta\gamma\gamma$  coincidences from which the level scheme of  $^{208}$ Po was built. Furthermore, due to the large spin change between parent and daughter ground states, a  $\gamma$ -normalization factor of 1.0 can be used to obtain photon intensities per  $100 \, \beta^+/\text{EC}$  decays. Due to the presence of a long-lived isomeric state in  $^{208}$ Po at 1528 keV [14], a coincidence window of 1  $\mu$ s was selected to avoid significant loss of statistics in the coincidence spectra. The half-life of this isomeric state was determined in this analysis using time differences in coincidence spectra. A value of 377(9) ns was obtained as presented in [18], which is in agreement with the previously accepted value of 350(20) ns [14].

The full projection of the  $\gamma$ - $\gamma$  matrix is presented in Fig. 1. This spectrum is dominated by transitions in  $^{208}$ Po, populated from the  $\beta$  decay of  $^{208}$ At [14]. The high detection efficiency of the large HPGe cluster detectors in place at the IDS results in higher statistics ( $\approx 10^3$ ) than in previous experiments, particularly for higher-energy  $\gamma$  rays. As a consequence, Fig. 1 features a number of high-energy  $\gamma$  rays which were previously observed [14] but are not placed in the  $^{208}$ Po level scheme.

As is typical for spectra of this nature two strong background peaks, 1460.8 and 2614.5 keV, which correspond to the decay of  $^{40}$ K and  $^{208}$ Tl, respectively [19], are clearly visible. In addition, a number of contaminant peaks result from A=207 nuclei which were not fully removed by the mass separator. The most abundant of these is  $^{207}$ Po, which  $EC/\beta^+$  decays to  $^{207}$ Bi. This decay can be attributed to all of the remaining labeled contaminant peaks (405.8, 742.7, 911.8, 1148.5, 1372.5, and 2060.8 keV [20]). Weaker  $\gamma$  rays from decays of  $^{207,208}$ Tl and  $^{207}$ Bi were also identified in energy-gated spectra but are not abundant enough to be visible in the full projection. Energy-gated spectra for transitions of interest are shown in [17,18].

The level scheme obtained for  $^{208}$ Po populated via  $\beta^+/EC$ decay of <sup>208</sup>At is shown in Fig. 2. The full list of the observed transitions ranging in relative intensity from 0.01% to 100%, together with their properties, is given in Table I.The intensities were obtained from analysis of  $\gamma$  singles and  $\gamma$ - $\gamma$  data, without the requirement for  $\beta$ -particle detection. The majority of the previously reported states populated in  $\beta$  decay [14] are confirmed, however, the previously suggested 3145-, 3202-, 3535-, and 4509-keV states were not observed and thus do not feature in the presented level scheme (note that the new 4508-keV state is based on different  $\gamma$  rays than the previous 4509-keV level). In addition, 27 new excited states and 43 new  $\gamma$ -ray transitions were observed for the first time. Furthermore, 33 of the previously observed but unplaced transitions are firmly included in the level scheme, which accounts for ≈45% of all previously unplaced transitions, including all

TABLE I. Full list of levels and transitions observed in  $^{208}$ Po in this analysis. New states are indicated in boldface. New, assigned, and (re)assigned  $\gamma$  rays are indicated by x, y, and z superscripts, respectively.  $E_{i/f}$  and  $J_{i/f}^{\pi}$  are the energies and spin parities of initial and final states.  $E_{\gamma}$  is the measured energy of the transition. Multipolarities, where possible, have been taken from Ref. [14] and are based on previous conversion electron coefficient measurements from Refs. [5], [7], and [21]. When spin parities are not firmly established from experimental considerations, the assignment favored by shell model calculations is listed in boldface. References to Nuclear Data Sheet compilations [14] are provided for the spin parities of states which have been observed in non- $\beta$ -decay studies. For instances where levels have only been observed previously in  $\beta$ -decay studies, all information relevant to their spin-parity assignments is provided here.  $I_{\gamma}$ , rel. and  $I_{\gamma}$  + IC, rel. represent the relative intensity of  $\gamma$  rays with and without internal electron conversion, with respect to 100 for the combined intensities of  $\gamma$ s to the ground state (with IC).  $\log ft$  values were calculated using the measured transition intensity imbalances (given above the  $\log ft$  values as  $I_{\beta}\%$  or the  $\beta$  population intensity per 100 decays). The Comment column lists additional information needed for the spin-parity assignments. *Note*: \*The  $\gamma$  ray has been newly identified in this analysis.  $^{\gamma}$ The  $\gamma$  ray was observed in previous decay studies [14] and has been placed in the level scheme in this analysis.  $^{\gamma}$ The  $\gamma$  ray has been reassigned from its position in a prior analysis [14]. \*The measured conversion coefficient was taken from [14], however, the multipolarity was reinterpreted from this analysis

| $E_i$ (keV) | $J_i^\pi$           | $E_f$ (keV) | $J_f^\pi$      | $E_{\gamma}$ (keV)                | $\sigma L$   | $I_{\gamma,\mathrm{rel.}}$ | $I_{\gamma+{ m IC,rel.}}$ | $I_{\beta}\%$ (log $ft$ ) | Comment                                               |
|-------------|---------------------|-------------|----------------|-----------------------------------|--------------|----------------------------|---------------------------|---------------------------|-------------------------------------------------------|
| 686.6(2)    | 2+ [14]             | 0.0         | 0+             | 686.6(2)                          | E2 [14]      | 98(10)                     | 100(10)                   | _                         | _                                                     |
| 1263.2(3)   | 2+ [14]             | 686.6(2)    | 2+             | 576.7(3)                          | M1(+E2)[14]  | 0.35(9)                    | 0.38(9)                   | _                         | _                                                     |
|             |                     | 0.0         | $0_{+}$        | 1263.0(2)                         | E2 [14]      | 0.15(1)                    | 0.15(1)                   |                           |                                                       |
| 1346.7(3)   | 4 <sup>+</sup> [14] | 686.6(2)    | $2^{+}$        | 660.1(2)                          | E2 [14]      | 92(8)                      | 93(8)                     | _                         | _                                                     |
| 1420.3(3)   | 3 <sup>+</sup> [14] | 686.6(2)    | $2^{+}$        | 733.7(3)                          | M1 + E2 [14] | 1.4(3)                     | 1.4(3)                    | _                         | _                                                     |
| 1524.4(3)   | 6 <sup>+</sup> [14] | 1346.7(3)   | $4^{+}$        | 177.7(2)                          | E2 [14]      | 50(3)                      | 87(4)                     | _                         | _                                                     |
| 1528.3(5)   | 8+ [14]             | 1524.4(3)   | $6^{+}$        | $3.9(4)^{a}$                      | E2 [48,49]   | _                          | 40(2) <sup>a</sup>        | _                         | _                                                     |
| 1583.4(3)   | 4 <sup>+</sup> [14] | 1420.3(3)   | $3^+$          | 163.3(3)                          | _            | 0.16(4)                    | 0.46(21)                  | _                         | _                                                     |
|             |                     | 1346.7(3)   | $4^+$          | 236.8(2)                          | M1(+E2)[14]  | 0.35(5)                    | 0.69(10)                  |                           |                                                       |
|             |                     | 686.6(2)    | $2^{+}$        | 896.6(2)                          | E2 [14]      | 4.8(2)                     | 4.8(2)                    |                           |                                                       |
| 1995.2(4)   | 3-                  | 1420.3(3)   | 3+             | 575.3(3)                          | _            | 0.40(7)                    | 0.41(8)                   | _                         | Populated by 3554-<br>and 3610-keV 5                  |
|             |                     | 686.6(2)    | 2+             | 1308.2(2)                         | E1(+M2) [14] | 0.22(1)                    | 0.22(1)                   |                           | states                                                |
| 2041.6(4)   | 6 <sup>+</sup> [14] | 1524.4(3)   | 6 <sup>+</sup> | 517.2(2)                          | M1(+E2) [14] | 6.3(4)                     | 7.0(4)                    | 3.8(12) 7.75(1)           | Populated by M1                                       |
| 2041.0(4)   | 0 [14]              | 1324.4(3)   | 0              | 317.2(2)                          | WII(+E2)[14] | 0.3(4)                     | 7.0(4)                    | 3.8(12) 7.73(1)           | [14] 294-keV                                          |
|             |                     |             |                |                                   |              |                            |                           |                           | transition from 2336-keV 7 <sup>+</sup> state         |
|             |                     | 1346.7(3)   | 4+             | <sup>z</sup> 694.8(3)             | _            | 2.5(4)                     | 2.5(4)                    |                           |                                                       |
| 2149.1(4)   | $3^+, 4^+$          | 1583.4(3)   | 4+             | 566.1(2)                          | M1 + E2 [14] | 0.75(3)                    | 0.80(4)                   | See text                  | _                                                     |
|             |                     | 1420.3(3)   | 3+             | <sup>z</sup> 729.2(3)             | _            | 0.38(6)                    | 0.39(6)                   |                           |                                                       |
|             |                     | 1346.7(3)   | 4+             | 802.6(2)                          | _            | 0.40(6)                    | 0.42(6)                   |                           |                                                       |
|             |                     | 686.6(2)    | 2+             | x1461.5(3)                        | _            | 0.57(5)                    | 0.57(5)                   |                           |                                                       |
| 2160.3(5)   | 8+ [14]             | 1528.3(5)   | 8+             | 631.9(2)                          | M1(+E2)[14]  | 3.7(4)                     | 3.9(4)                    | See text                  | _                                                     |
| 2222.6(4)   | 8+                  | 2160.3(5)   | 8+             | <sup>x</sup> 62.3(9) <sup>a</sup> | _            | _                          | $0.45(34)^{a}$            | _                         | See text                                              |
|             |                     | 1528.3(5)   | 8+             | <sup>z</sup> 694.3(2)             | M1*          | 1.9(2)                     | 2.0(2)                    |                           |                                                       |
|             |                     | 1524.4(3)   | 6+             | <sup>z</sup> 698.2(2)             | E2 [14]      | 1.24(7)                    | 1.27(9)                   |                           |                                                       |
| 2280.8(3)   | 5+                  | 1346.7(3)   | 4+             | 934.1(2)                          | M1 + E2 [14] | 0.95(6)                    | 0.97(6)                   | 0.86(13) 8.32(7)          | Populated by 3113-keV 5 <sup>-</sup> , 6 <sup>-</sup> |
|             |                     |             |                |                                   |              |                            |                           |                           | state, $J^{\pi}$ values                               |
|             |                     |             |                |                                   |              |                            |                           |                           | limited by $\beta^+$ population                       |
| 2293.8(4)   | 6 <sup>+</sup> [14] | 2041.6(4)   | $6^+$          | 252.5(2)                          | _            | 0.62(6)                    | 0.93(24)                  | 4.13(57) 7.63(6)          | _                                                     |
|             |                     | 1583.4(3)   | $4^{+}$        | 710.5(2)                          | _            | 0.65(2)                    | 0.66(2)                   |                           |                                                       |
|             |                     | 1528.3(5)   | $8^+$          | 765.2(3)                          | _            | 0.13(7)                    | 0.14(7)                   |                           |                                                       |
|             |                     | 1524.4(3)   | $6^+$          | 769.5(2)                          | M1(+E2)[14]  | 2.1(2)                     | 2.2(2)                    |                           |                                                       |
|             |                     | 1346.7(3)   | $4^+$          | 947.0(2)                          | E2 [14]      | 1.60(4)                    | 1.61(4)                   |                           |                                                       |
| 2335.7(5)   | 7 <sup>+</sup> [14] | 2041.6(4)   | $6^{+}$        | 294.2(2)                          | M1 [14]      | 0.99(7)                    | 1.53(11)                  | 6.50(49) 7.42(4)          | _                                                     |
|             |                     | 1528.3(5)   | $8^{+}$        | 807.2(2)                          | M1(+E2)[14]  | 6.2(2)                     | 6.4(2)                    |                           |                                                       |
|             |                     | 1524.4(3)   | $6^+$          | 811.4(2)                          | M1 + E2 [14] | 1.22(7)                    | 1.25(7)                   |                           |                                                       |
| 2369.3(4)   | 7 <sup>-</sup> [14] | 1528.3(5)   | 8+             | 840.8(4)                          | E1 [14]      | 3.0(3)                     | 3.0(3)                    | _                         | _                                                     |
|             |                     | 1524.4(3)   | $6^+$          | 845.1(2)                          | E1 [14]      | 21.1(7)                    | 21.1(7)                   |                           |                                                       |

TABLE I. (Continued).

| $E_i$ (keV)                | $J_i^\pi$                                            | $E_f$ (keV) | $J_f^\pi$                       | $E_{\gamma}$ (keV)      | $\sigma L$       | $I_{\gamma,\mathrm{rel.}}$ | $I_{\gamma+{ m IC,rel.}}$ | $I_{\beta}\%$ (log $ft$ ) | Comment                                                                                |
|----------------------------|------------------------------------------------------|-------------|---------------------------------|-------------------------|------------------|----------------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------|
| 2402.1(5)                  | 3-,4+                                                | 1263.2(3)   | 2+                              | <sup>y</sup> 1139.0(4)  | E1,E2 [14]       | 0.5(2)                     | 0.5(2)                    | _                         | Populated by 3610-keV 5 <sup>-</sup> state and 3683-keV                                |
| 2415.0(5)                  | <b>7</b> <sup>+</sup> , 8 <sup>+</sup>               | 2160.3(5)   | 8+                              | 254.8(3)                | _                | 0.32(4)                    | 0.48(14)                  | _                         | 5 <sup>-</sup> , 6 <sup>-</sup> state<br>Populated by<br>3565-keV 6 <sup>-</sup> state |
|                            |                                                      | 2041.6(4)   | $6^{+}$                         | 373.4(2)                | _                | 0.71(4)                    | 0.80(12)                  |                           | 3303 Re V O Blace                                                                      |
|                            |                                                      | 1528.3(5)   | 8+                              | 886.3(2)                | M1 + E2[14]      | 2.95(9)                    | 3.02(9)                   |                           |                                                                                        |
|                            |                                                      | 1524.4(3)   | 6+                              | ×890.8(3)               | _                | 0.47(4)                    | 0.47(4)                   |                           |                                                                                        |
| 2437.6(4)                  | 5+                                                   | 1420.3(3)   | 3+                              | y1017.2(2)              | E2*              | 0.77(6)                    | 0.78(6)                   | _                         | See text                                                                               |
| 2507.7(3)                  | 5 <sup>+</sup> , <b>6</b> <sup>+</sup>               | 2293.8(4)   | 6+                              | 214.1(3)                | M1 +E2 [14]      | 0.28(5)                    | 0.59(12)                  | 5.91(20) 7.39(2)          | _                                                                                      |
| 200111(0)                  | 5 , 5                                                | 1583.4(3)   | 4+                              | <sup>z</sup> 924.2(2)   | _                | 0.57(5)                    | 0.58(6)                   | 0.51(20) 7.05(2)          |                                                                                        |
|                            |                                                      | 1524.4(3)   | 6 <sup>+</sup>                  | 983.2(2)                | M1 + E2 [14]     | 4.7(2)                     | 4.7(2)                    |                           |                                                                                        |
| 2526.7(4)                  | 5+                                                   | 2041.6(4)   | 6 <sup>+</sup>                  | 485.0(2)                | M1 [14]          | 0.44(5)                    | 0.50(6)                   | 1.74(21) 7.92(6)          | _                                                                                      |
| 2320.7(1)                  | 3                                                    | 1524.4(3)   | 6 <sup>+</sup>                  | 1002.2(2)               | M1(+E2)[14]      | 0.45(2)                    | 0.46(2)                   | 1.7 1(21) 7.52(0)         |                                                                                        |
|                            |                                                      | 1420.3(3)   | 3 <sup>+</sup>                  | x1106.9(3)              | WII(+E2)[14]     | 0.43(2)                    | 0.40(2)                   |                           |                                                                                        |
|                            |                                                      | 1346.7(3)   | 4 <sup>+</sup>                  | 1179.6(2)               | M1(+E2) [14]     |                            |                           |                           |                                                                                        |
| 2556 5(5)                  | 7+ [14]                                              |             |                                 |                         | $MI(\pm E2)[14]$ | 1.05(4)                    | 1.05(4)                   | 22.0(16) 6.9(2)           |                                                                                        |
| 2556.5(5)                  | 7+ [14]                                              | 2369.3(4)   | 7-<br>6+                        | y188.2(2)               | - M1(+E2) [14]   | 0.5(2)                     | 0.5(2)                    | 22.9(16) 6.8(2)           | _                                                                                      |
|                            |                                                      | 2293.8(4)   | 6 <sup>+</sup>                  | 262.0(3)                | M1(+E2) [14]     | 0.38(6)                    | 0.62(13)                  |                           |                                                                                        |
|                            |                                                      | 2222.6(4)   | 8+                              | <sup>z</sup> 333.9(3)   | M1(+E2) [14]     | 2.5(5)                     | 2.9(9)                    |                           |                                                                                        |
|                            |                                                      | 2160.3(5)   | 8+                              | 396.2(3)                | M1 + E2[14]      | 1.16(2)                    | 1.41(4)                   |                           |                                                                                        |
|                            |                                                      | 1528.3(5)   | 8+                              | 1027.7(2)               | M1 + E2[14]      | 19.4(7)                    | 19.7(7)                   |                           |                                                                                        |
| 2574.8(4)                  | <b>6</b> <sup>-</sup> , 7 <sup>-</sup> [ <b>14</b> ] | 2369.3(4)   | 7-                              | 205.5(2)                | M1(+E2)[14]      | 7.9(4)                     | 19.4(9)                   | _                         | _                                                                                      |
|                            |                                                      | 1524.4(3)   | 6+                              | x1050.3(2)              | _                | 0.26(3)                    | 0.26(3)                   |                           |                                                                                        |
| 2863.0(4)                  | $3^-, 4, 5, 6^+$                                     | 2402.1(5)   | 3-, 4+                          | *460.9(3)               | _                | 0.23(7)                    | 0.24(8)                   | -                         | Populated by 3553-<br>and 3610-keV 5 <sup>-</sup><br>states                            |
|                            |                                                      | 1583.4(3)   | $4^{+}$                         | <sup>y</sup> 1279.62(2) | _                | 0.87(7)                    | 0.87(7)                   |                           |                                                                                        |
| 2884.5(3)                  | 5-                                                   | 1583.4(3)   | $4^{+}$                         | <sup>z</sup> 1301.2(3)  | _                | 0.12(3)                    | 0.12(3)                   | _                         | _                                                                                      |
|                            |                                                      | 1524.4(3)   | 6+                              | 1360.0(2)               | E1 [14]          | 0.99(1)                    | 0.99(1)                   |                           |                                                                                        |
|                            |                                                      | 1346.7(3)   | 4+                              | 1537.6(2)               | E1 [14]          | 1.52(5)                    | 1.52(5)                   |                           |                                                                                        |
| 2926.6(4)                  | 5-                                                   | 2574.8(4)   | 6-, 7-                          | x351.7(4)               | _                | 0.31(7)                    | 0.35(11)                  | 0.62(47) 8.2(4)           | M1 + E2 [14]                                                                           |
| <b>-</b> > <b>-</b> 010(1) | Ü                                                    | 20 / 110(1) | · , ,                           | 56111(1)                |                  | 0.01(7)                    | 0.65(11)                  | 0.02(17) 0.12(1)          | (638-keV)<br>transition from<br>3565-keV 6 <sup>-</sup> state                          |
|                            |                                                      | 1583.4(3)   | 4+                              | 1343.4(2)               | E1 [14]          | 2.46(8)                    | 2.46(8)                   |                           |                                                                                        |
|                            |                                                      | 1346.7(3)   | $4^{+}$                         | x1579.9(4)              | _                | 0.4(2)                     | 0.4(2)                    |                           |                                                                                        |
| 3024.2(5)                  | $6^+, 7, 8^-$                                        | 2222.6(4)   | 8+                              | <sup>x</sup> 801.6(3)   | _                | 0.48(8)                    | 0.48(9)                   | 0.91(13) 8.0(2)           | $J^{\pi}$ values limited by $\beta^+$ population                                       |
|                            |                                                      | 2160.3(5)   | $8^+$                           | <sup>y</sup> 863.8(2)   | _                | 0.42(4)                    | 0.42(4)                   |                           |                                                                                        |
| 3072.5(4)                  | 6-, 7-, 8-                                           | 2041.6(4)   | 6+                              | *1030.9(3)              | _                | 0.32(5)                    | 0.32(5)                   | _                         | M1(+E2) [14]<br>transition from<br>4167-keV 7 <sup>-</sup> state                       |
| 3103.8(4)                  | 4-, 5, 6, 7, 8-                                      | 2041.6(4)   | 6+                              | <sup>y</sup> 1062.2(3)  | _                | 0.10(3)                    | 0.10(3)                   | 0.10(3) 8.9(2)            | $J^{\pi}$ values limited by $\beta^+$ population                                       |
| 3113.3(5)                  | $5^-, 6^-$                                           | 2574.8(4)   | $6^-, 7^-$                      | 538.6(3)                | M1 + E2[14]      | 0.30(7)                    | 0.32(7)                   | _                         | _                                                                                      |
|                            | •                                                    | 2369.3(4)   | 7-                              | ×744.0(3)               |                  | 0.26(7)                    | 0.27(7)                   |                           |                                                                                        |
|                            |                                                      | 2280.8(3)   | 5+                              | <sup>z</sup> 832.6(7)   | _                | 0.06(6)                    | 0.06(6)                   |                           |                                                                                        |
|                            |                                                      | 2041.6(4)   | 6+                              | 1071.4(3)               | _                | 0.25(4)                    | 0.25(4)                   |                           |                                                                                        |
|                            |                                                      | 1524.4(3)   | 6+                              | 1588.8(2)               | _                | 0.24(1)                    | 0.24(1)                   |                           |                                                                                        |
| 3163.7(5)                  | 4-, 5-, 6-                                           | 2574.8(4)   | 6-, 7-                          | <sup>x</sup> 588.9(4)   | -                | 0.6(2)                     | 0.6(2)                    | -                         | M1(+E2) [14]<br>from 3554-keV 5 <sup>-</sup>                                           |
|                            |                                                      | 1583.4(3)   | 4+                              | y1580 3(4)              |                  | 0.31(8)                    | 0.31(8)                   |                           | state                                                                                  |
| 2276 D(E)                  | 1-567-                                               |             | 5-                              | y1580.3(4)              | _                | 0.31(8)                    |                           |                           | Can tart                                                                               |
| 3276.0(5)                  | $4^-, 5, 6, 7^-$                                     | 2884.5(3)   | 3 <sup>+</sup> , 4 <sup>+</sup> | x391.6(3)               | _                | 0.14(4)                    | 0.16(5)                   | _                         | See text                                                                               |
|                            |                                                      | 2149.1(4)   |                                 | x1126.2(5)              | _                | 0.24(8)                    | 0.24(8)                   |                           |                                                                                        |
|                            |                                                      | 1583.4(3)   | $4^{+}$                         | <sup>y</sup> 1692.8(3)  | _                | 0.32(5)                    | 0.32(5)                   |                           |                                                                                        |

TABLE I. (Continued).

| <b>3533.6(4)</b> 5 <sup>-</sup> , 3553.9(4) 3564.8(4) | 5-<br>6-        | 3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                               | 4 <sup>+</sup> 5 <sup>-</sup> 4 <sup>+</sup> 5 <sup>-</sup> 5 <sup>-</sup> 6 <sup>-</sup> , 7 <sup>-</sup> 7 <sup>-</sup> 4 <sup>-</sup> , 5, 6, 7 <sup>-</sup> 4 <sup>-</sup> , 5 <sup>-</sup> , 6 <sup>-</sup> 5 <sup>-</sup> 5 <sup>-</sup> 3 <sup>-</sup> , 4, 5, 6 <sup>+</sup> 3 <sup>+</sup> , 4 <sup>+</sup> 6 <sup>+</sup> 4 <sup>+</sup> 6 <sup>+</sup> | <sup>y</sup> 1929.8(4)<br><sup>x</sup> 515.5(4)<br><sup>z</sup> 2094.8(2)<br><sup>x</sup> 606.7(3)<br><sup>x</sup> 649.4(3)<br><sup>y</sup> 958.9(2)<br><sup>y</sup> 1164.2(3)<br><sup>x</sup> 278.5(4)<br><sup>z</sup> 390.3(2)<br>627.1(2)<br>669.5(2)<br><sup>x</sup> 691.2(1)<br><sup>x</sup> 1404.6(4)<br><sup>z</sup> 1512.4(3)<br><sup>x</sup> 1558.2(5) | - Lange of the state of the sta | 0.20(4)<br>0.33(5)<br>0.30(4)<br>0.12(3)<br>0.17(3)<br>0.71(8)<br>0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3) | 0.53(13)<br>0.31(4)                                                                    | 0.65(9) 7.9(7)<br>1.39(20) 7.52(7)<br>5.31(60) 6.94(6) | $J^{\pi}$ values limited by $\beta^+$ population — |
|-------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| <b>3533.6(4)</b> 5 <sup>-</sup> , 3553.9(4) 3564.8(4) | 5-              | 1346.7(3)<br>2926.6(4)<br>2884.5(3)<br>2574.8(4)<br>2369.3(4)<br>3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3) | 4 <sup>+</sup> 5 <sup>-</sup> 5 <sup>-</sup> 6 <sup>-</sup> ,7 <sup>-</sup> 7 <sup>-</sup> 4 <sup>-</sup> ,5,6,7 <sup>-</sup> 4 <sup>-</sup> ,5 <sup>-</sup> ,6 <sup>-</sup> 5 <sup>-</sup> 3 <sup>-</sup> ,4,5,6 <sup>+</sup> 3 <sup>+</sup> ,4 <sup>+</sup> 6 <sup>+</sup> 3 <sup>-</sup> 4 <sup>+</sup>                                                        | z2094.8(2) x606.7(3) x649.4(3) y958.9(2) y1164.2(3) x278.5(4) z390.3(2) 627.1(2) 669.5(2) x691.2(1) x1404.6(4) z1512.4(3)                                                                                                                                                                                                                                       | E1,E2 [14]  -  M1(+E2) [14]  -  M1(+E2) [14]  M1(+E2) [14]  M1(+E2) [14]  -  -  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30(4)<br>0.12(3)<br>0.17(3)<br>0.71(8)<br>0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                       | 0.30(4)<br>0.12(3)<br>0.18(4)<br>0.73(9)<br>0.37(6)<br>0.19(11)<br>0.53(13)<br>0.31(4) | 1.39(20) 7.52(7)                                       |                                                    |
| 3553.9(4)<br>3564.8(4)<br>3610.1(4)                   | 5-              | 2926.6(4)<br>2884.5(3)<br>2574.8(4)<br>2369.3(4)<br>3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)              | 5-<br>5-<br>6-,7-<br>7-<br>4-,5,6,7-<br>4-,5-,6-<br>5-<br>5-<br>3-,4,5,6+<br>3+,4+<br>6+<br>3-<br>4+                                                                                                                                                                                                                                                              | *606.7(3)<br>*649.4(3)<br>*958.9(2)<br>*1164.2(3)<br>*278.5(4)<br>*390.3(2)<br>627.1(2)<br>669.5(2)<br>*691.2(1)<br>*1404.6(4)<br>*21512.4(3)                                                                                                                                                                                                                   | -<br>M1(+E2) [14]<br>-<br>M1(+E2) [14]<br>M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12(3)<br>0.17(3)<br>0.71(8)<br>0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                                  | 0.12(3)<br>0.18(4)<br>0.73(9)<br>0.37(6)<br>0.19(11)<br>0.53(13)<br>0.31(4)            |                                                        | -<br>-                                             |
| 3553.9(4)<br>3564.8(4)<br>3610.1(4)                   | 5-              | 2884.5(3)<br>2574.8(4)<br>2369.3(4)<br>3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                           | 5-<br>6-,7-<br>7-<br>4-,5,6,7-<br>4-,5-,6-<br>5-<br>5-<br>3-,4,5,6+<br>3+,4+<br>6+<br>3-<br>4+                                                                                                                                                                                                                                                                    | x649.4(3)<br>y958.9(2)<br>y1164.2(3)<br>x278.5(4)<br>z390.3(2)<br>627.1(2)<br>669.5(2)<br>x691.2(1)<br>x1404.6(4)<br>z1512.4(3)                                                                                                                                                                                                                                 | -<br>M1(+E2) [14]<br>M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.17(3)<br>0.71(8)<br>0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                                             | 0.18(4)<br>0.73(9)<br>0.37(6)<br>0.19(11)<br>0.53(13)<br>0.31(4)                       |                                                        | _                                                  |
| 3564.8(4)<br>3610.1(4)                                |                 | 2574.8(4)<br>2369.3(4)<br>3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                        | $6^-, 7^ 7^ 4^-, 5, 6, 7^ 4^-, 5^-, 6^ 5^ 3^-, 4, 5, 6^+$ $3^+, 4^+$ $6^+$ $3^ 4^+$                                                                                                                                                                                                                                                                               | y958.9(2)<br>y1164.2(3)<br>x278.5(4)<br>z390.3(2)<br>627.1(2)<br>669.5(2)<br>x691.2(1)<br>x1404.6(4)<br>z1512.4(3)                                                                                                                                                                                                                                              | -<br>M1(+E2) [14]<br>M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.71(8)<br>0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                                                        | 0.73(9)<br>0.37(6)<br>0.19(11)<br>0.53(13)<br>0.31(4)                                  | 5.31(60) 6.94(6)                                       | -                                                  |
| 3564.8(4)<br>3610.1(4)                                |                 | 2369.3(4)<br>3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                     | 7 <sup>-</sup> 4 <sup>-</sup> , 5, 6, 7 <sup>-</sup> 4 <sup>-</sup> , 5 <sup>-</sup> , 6 <sup>-</sup> 5 <sup>-</sup> 5 <sup>-</sup> 3 <sup>-</sup> , 4, 5, 6 <sup>+</sup> 3 <sup>+</sup> , 4 <sup>+</sup> 6 <sup>+</sup> 3 <sup>-</sup> 4 <sup>+</sup>                                                                                                            | y1164.2(3) x278.5(4) z390.3(2) 627.1(2) 669.5(2) x691.2(1) x1404.6(4) z1512.4(3)                                                                                                                                                                                                                                                                                | -<br>M1(+E2) [14]<br>M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37(6)<br>0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                                                                   | 0.37(6)<br>0.19(11)<br>0.53(13)<br>0.31(4)                                             | 5.31(60) 6.94(6)                                       | -                                                  |
| 3564.8(4)<br>3610.1(4)                                |                 | 3276.0(5)<br>3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                  | 4 <sup>-</sup> , 5, 6, 7 <sup>-</sup><br>4 <sup>-</sup> , 5 <sup>-</sup> , 6 <sup>-</sup><br>5 <sup>-</sup><br>5 <sup>-</sup><br>3 <sup>-</sup> , 4, 5, 6 <sup>+</sup><br>3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                   | *278.5(4)<br>*2390.3(2)<br>627.1(2)<br>669.5(2)<br>*691.2(1)<br>*1404.6(4)<br>*21512.4(3)                                                                                                                                                                                                                                                                       | M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15(7)<br>0.48(9)<br>0.29(4)<br>1.32(3)                                                                              | 0.19(11)<br>0.53(13)<br>0.31(4)                                                        | 5.31(60) 6.94(6)                                       | -                                                  |
| 3564.8(4)<br>3610.1(4)                                |                 | 3163.7(5)<br>2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                               | 4 <sup>-</sup> , 5 <sup>-</sup> , 6 <sup>-</sup><br>5 <sup>-</sup><br>5 <sup>-</sup><br>3 <sup>-</sup> , 4, 5, 6 <sup>+</sup><br>3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                            | <sup>2</sup> 390.3(2)<br>627.1(2)<br>669.5(2)<br><sup>x</sup> 691.2(1)<br><sup>x</sup> 1404.6(4)<br><sup>2</sup> 1512.4(3)                                                                                                                                                                                                                                      | M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48(9)<br>0.29(4)<br>1.32(3)                                                                                         | 0.53(13)<br>0.31(4)                                                                    | 5.31(60) 6.94(6)                                       | _                                                  |
| 3610.1(4)                                             | 6-              | 2926.6(4)<br>2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                            | 5 <sup>-</sup><br>5 <sup>-</sup><br>3 <sup>-</sup> , 4, 5, 6 <sup>+</sup><br>3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                | 627.1(2)<br>669.5(2)<br>x691.2(1)<br>x1404.6(4)<br>z1512.4(3)                                                                                                                                                                                                                                                                                                   | M1(+E2) [14]<br>M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29(4)<br>1.32(3)                                                                                                    | 0.31(4)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 2884.5(3)<br>2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                         | 5 <sup>-</sup><br>3 <sup>-</sup> , 4, 5, 6 <sup>+</sup><br>3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                                  | 669.5(2) x691.2(1) x1404.6(4) z1512.4(3)                                                                                                                                                                                                                                                                                                                        | M1(+E2) [14]<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.32(3)                                                                                                               |                                                                                        |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 2863.0(4)<br>2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                                      | 3 <sup>-</sup> , 4, 5, 6 <sup>+</sup><br>3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                                                    | x691.2(1)<br>x1404.6(4)<br>z1512.4(3)                                                                                                                                                                                                                                                                                                                           | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                        |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 2149.1(4)<br>2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                                                   | 3 <sup>+</sup> , 4 <sup>+</sup><br>6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                                                                                             | <sup>x</sup> 1404.6(4)<br><sup>z</sup> 1512.4(3)                                                                                                                                                                                                                                                                                                                | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24(2)                                                                                                               | 1.38(5)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 2041.6(4)<br>1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                                                                | 6 <sup>+</sup><br>3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                                                                                                                                | <sup>z</sup> 1512.4(3)                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34(2)                                                                                                               | 0.34(3)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 1995.2(4)<br>1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                                                                             | 3 <sup>-</sup><br>4 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24(6)                                                                                                               | 0.24(6)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 1583.4(3)<br>1524.4(3)<br>1346.7(3)                                                                                                                                                                          | $4^+$                                                                                                                                                                                                                                                                                                                                                             | x1558.2(5)                                                                                                                                                                                                                                                                                                                                                      | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.24(3)                                                                                                               | 0.24(3)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 1524.4(3)<br>1346.7(3)                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   | (-)                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3(2)                                                                                                                | 0.3(2)                                                                                 |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 1346.7(3)                                                                                                                                                                                                    | 6±                                                                                                                                                                                                                                                                                                                                                                | 1970.3(2)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12(1)                                                                                                               | 0.12(1)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              |                                                                                                                                                                                                              | O ·                                                                                                                                                                                                                                                                                                                                                               | 2029.4(2)                                                                                                                                                                                                                                                                                                                                                       | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30(6)                                                                                                               | 1.30(6)                                                                                |                                                        |                                                    |
| 3610.1(4)                                             | 6-              | 3276.0(5)                                                                                                                                                                                                    | 4+                                                                                                                                                                                                                                                                                                                                                                | 2207.0(2)                                                                                                                                                                                                                                                                                                                                                       | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.41(3)                                                                                                               | 0.41(3)                                                                                |                                                        |                                                    |
|                                                       |                 |                                                                                                                                                                                                              | $4^-, 5, 6, 7^-$                                                                                                                                                                                                                                                                                                                                                  | x289.6(10)                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1(1)                                                                                                                | 0.1(1)                                                                                 | 25.9(15) 6.24(1)                                       | _                                                  |
|                                                       |                 | 3113.3(5)                                                                                                                                                                                                    | $5^-, 6^-$                                                                                                                                                                                                                                                                                                                                                        | 451.7(4)                                                                                                                                                                                                                                                                                                                                                        | M1(+E2)[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6(3)                                                                                                                | 0.7(3)                                                                                 |                                                        |                                                    |
|                                                       |                 | 2926.6(4)                                                                                                                                                                                                    | 5-                                                                                                                                                                                                                                                                                                                                                                | <sup>z</sup> 638.1(2)                                                                                                                                                                                                                                                                                                                                           | M1 + E2 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.34(4)                                                                                                               | 0.35(5)                                                                                |                                                        |                                                    |
|                                                       |                 | 2574.8(4)                                                                                                                                                                                                    | $6^-, 7^-$                                                                                                                                                                                                                                                                                                                                                        | 990.0(2)                                                                                                                                                                                                                                                                                                                                                        | M1(+E2)[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.3(5)                                                                                                               | 16.6(5)                                                                                |                                                        |                                                    |
|                                                       |                 | 2556.5(5)                                                                                                                                                                                                    | 7+                                                                                                                                                                                                                                                                                                                                                                | 1008.6(2)                                                                                                                                                                                                                                                                                                                                                       | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.92(6)                                                                                                               | 1.92(6)                                                                                |                                                        |                                                    |
|                                                       |                 | 2526.7(4)                                                                                                                                                                                                    | 5 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                    | 1038.1(3)                                                                                                                                                                                                                                                                                                                                                       | (E1 + M2)[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.52(3)                                                                                                               | 0.52(3)                                                                                |                                                        |                                                    |
|                                                       |                 | 2437.6(4)                                                                                                                                                                                                    | 5 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                    | <sup>z</sup> 1126.9(4)                                                                                                                                                                                                                                                                                                                                          | E1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12(5)                                                                                                               | 0.12(5)                                                                                |                                                        |                                                    |
|                                                       |                 | 2415.0(5)                                                                                                                                                                                                    | $7^+, 8^+$                                                                                                                                                                                                                                                                                                                                                        | x1149.5(3)                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2(3)                                                                                                                | 1.2(3)                                                                                 |                                                        |                                                    |
|                                                       |                 | 2369.3(4)                                                                                                                                                                                                    | 7-                                                                                                                                                                                                                                                                                                                                                                | 1195.2(2)                                                                                                                                                                                                                                                                                                                                                       | M1 + E2 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.86(4)                                                                                                               | 1.86(4)                                                                                |                                                        |                                                    |
|                                                       |                 | 2335.7(5)                                                                                                                                                                                                    | 7+                                                                                                                                                                                                                                                                                                                                                                | 1229.1(2)                                                                                                                                                                                                                                                                                                                                                       | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5(2)                                                                                                                | 2.5(2)                                                                                 |                                                        |                                                    |
|                                                       |                 | 2041.6(4)                                                                                                                                                                                                    | $6^{+}$                                                                                                                                                                                                                                                                                                                                                           | 1523.5(3)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07(2)                                                                                                               | 0.07(2)                                                                                |                                                        |                                                    |
|                                                       | 5-              |                                                                                                                                                                                                              | $4^-, 5, 6, 7^-$                                                                                                                                                                                                                                                                                                                                                  | x334.1(7)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2(2)                                                                                                                | 0.3(2)                                                                                 | 3.28(43) 7.10(6)                                       | _                                                  |
| 3682.6(4) 5                                           |                 |                                                                                                                                                                                                              | $3^-, 4, 5, 6^+$                                                                                                                                                                                                                                                                                                                                                  | <sup>y</sup> 747.4(1)                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.62(6)                                                                                                               | 0.63(7)                                                                                |                                                        |                                                    |
| 3682.6(4) 5                                           |                 | 2402.1(5)                                                                                                                                                                                                    | $3^{-}, 4^{+}$                                                                                                                                                                                                                                                                                                                                                    | x1208.3(2)                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.21(3)                                                                                                               | 0.21(3)                                                                                |                                                        |                                                    |
| 3682.6(4) 5                                           |                 | 2149.1(4)                                                                                                                                                                                                    | $3^+, 4^+$                                                                                                                                                                                                                                                                                                                                                        | x1460.6(2)                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.70(6)                                                                                                               | 0.70(6)                                                                                |                                                        |                                                    |
| 3682.6(4) 5                                           |                 | 1995.2(4)                                                                                                                                                                                                    | 3-                                                                                                                                                                                                                                                                                                                                                                | x1614.4(3)                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37(9)                                                                                                               | 0.37(9)                                                                                |                                                        |                                                    |
| 3682.6(4) 5                                           |                 | 1583.4(3)                                                                                                                                                                                                    | 4+                                                                                                                                                                                                                                                                                                                                                                | <sup>y</sup> 2026.7(2)                                                                                                                                                                                                                                                                                                                                          | E1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61(4)                                                                                                               | 0.61(4)                                                                                |                                                        |                                                    |
| 3682.6(4) 5                                           |                 | 1524.4(3)                                                                                                                                                                                                    | $6^{+}$                                                                                                                                                                                                                                                                                                                                                           | <sup>y</sup> 2085.9(2)                                                                                                                                                                                                                                                                                                                                          | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55(4)                                                                                                               | 0.55(4)                                                                                |                                                        |                                                    |
| ,                                                     | 5-, 6-          |                                                                                                                                                                                                              | $4^-, 5, 6, 7^-$                                                                                                                                                                                                                                                                                                                                                  | x406.5(3)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4(2)                                                                                                                | 0.5(2)                                                                                 | 4.46(64) 6.91(7)                                       | _                                                  |
|                                                       | ,               | 3163.7(5)                                                                                                                                                                                                    | $4^-, 5^-, 6^-$                                                                                                                                                                                                                                                                                                                                                   | x518.9(4)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4(2)                                                                                                                | 0.5(2)                                                                                 |                                                        |                                                    |
|                                                       |                 | 2926.6(4)                                                                                                                                                                                                    | 5-                                                                                                                                                                                                                                                                                                                                                                | 755.5(2)                                                                                                                                                                                                                                                                                                                                                        | M1(+E2)[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30(2)                                                                                                               | 1.35(2)                                                                                |                                                        |                                                    |
|                                                       |                 | 2884.5(3)                                                                                                                                                                                                    | 5-                                                                                                                                                                                                                                                                                                                                                                | 798.2(2)                                                                                                                                                                                                                                                                                                                                                        | M1(+E2)[14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75(6)                                                                                                               | 0.78(6)                                                                                |                                                        |                                                    |
|                                                       |                 |                                                                                                                                                                                                              | $3^-, 4, 5, 6^+$                                                                                                                                                                                                                                                                                                                                                  | x820.0(4)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15(4)                                                                                                               | 0.15(4)                                                                                |                                                        |                                                    |
|                                                       |                 | 2574.8(4)                                                                                                                                                                                                    | 6-, 7-                                                                                                                                                                                                                                                                                                                                                            | 1107.9(3)                                                                                                                                                                                                                                                                                                                                                       | M1 + E2 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.54(8)                                                                                                               | 0.54(8)                                                                                |                                                        |                                                    |
|                                                       |                 | 2402.1(5)                                                                                                                                                                                                    | $3^{-}, 4^{+}$                                                                                                                                                                                                                                                                                                                                                    | <sup>z</sup> 1281.7(3)                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19(3)                                                                                                               | 0.19(3)                                                                                |                                                        |                                                    |
|                                                       |                 | 2041.6(4)                                                                                                                                                                                                    | 6+                                                                                                                                                                                                                                                                                                                                                                | 1640.6(5)                                                                                                                                                                                                                                                                                                                                                       | E1 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.12(4)                                                                                                               | 0.12(4)                                                                                |                                                        |                                                    |
|                                                       |                 | 1524.4(3)                                                                                                                                                                                                    | 6+                                                                                                                                                                                                                                                                                                                                                                | 2157.8(6)                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.14(5)                                                                                                               | 0.14(5)                                                                                |                                                        |                                                    |
|                                                       |                 | 1346.7(3)                                                                                                                                                                                                    | $4^{+}$                                                                                                                                                                                                                                                                                                                                                           | 2336.0(3)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38(4)                                                                                                               | 0.38(4)                                                                                |                                                        |                                                    |
| <b>3708.0(5)</b> 5 <sup>-</sup> , 6 <sup>-</sup>      | 6-, 7 8-        | 2574.8(4)                                                                                                                                                                                                    | 6-, 7-                                                                                                                                                                                                                                                                                                                                                            | y1133.2(4)                                                                                                                                                                                                                                                                                                                                                      | M1 + E2 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.36(10)                                                                                                              | 0.36(10)                                                                               | 0.36(10) 8.0(2)                                        | _                                                  |
|                                                       | $, 6, 7, 8^{-}$ | 2160.3(5)                                                                                                                                                                                                    | 8+                                                                                                                                                                                                                                                                                                                                                                | <sup>z</sup> 1584.2(2)                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07(1)                                                                                                               | 0.07(1)                                                                                | 0.07(1) 8.67(7)                                        | $J^{\pi}$ values limited                           |
| , ,                                                   | , -, . , -      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****(=)                                                                                                               | ****(-)                                                                                | (-)(.)                                                 | by $\beta^+$ population                            |
| 3808.4(4) 6                                           |                 | 2574.8(4)                                                                                                                                                                                                    | $6^-, 7^-$                                                                                                                                                                                                                                                                                                                                                        | 1233.9(3)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.42(6)                                                                                                               | 0.42(6)                                                                                | 1.80(16) 7.21(5)                                       | $J^{\pi}$ values limited by $\beta^+$ population   |
|                                                       | 6-, 7-          |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                        |                                                        | and $\log ft$                                      |
|                                                       | 6-, 7-          | 2369.3(4)                                                                                                                                                                                                    | 7-                                                                                                                                                                                                                                                                                                                                                                | 1438.9(2)                                                                                                                                                                                                                                                                                                                                                       | M1 + E2 [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.26(7)                                                                                                               | 1.26(7)                                                                                |                                                        | una 105J i                                         |
|                                                       | 6-, 7-          | 2335.7(5)                                                                                                                                                                                                    | 7+                                                                                                                                                                                                                                                                                                                                                                | 1472.7(6)                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03(2)                                                                                                               | 0.03(2)                                                                                |                                                        |                                                    |
|                                                       | 6-, 7-          | 1524.4(3)                                                                                                                                                                                                    | 6 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                    | 2283.8(3)                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10(2)                                                                                                               | 0.10(2)                                                                                |                                                        |                                                    |

TABLE I. (Continued).

| $E_i$ (keV) | $J_i^\pi$           | $E_f$ (keV)            | $J_f^\pi$       | $E_{\gamma}$ (keV)                               | $\sigma L$   | $I_{\gamma, { m rel.}}$ | $I_{\gamma+{ m IC,rel.}}$ | $I_{\beta}\%$ (log $ft$ ) | Comment                                                              |
|-------------|---------------------|------------------------|-----------------|--------------------------------------------------|--------------|-------------------------|---------------------------|---------------------------|----------------------------------------------------------------------|
| 3893.9(4)   | 4-, 5, 6, 7-        | 2926.6(4)              | 5-              | ×967.0(4)                                        | _            | 0.03(2)                 | 0.03(2)                   | 0.79(16) 7.5(1)           | $J^{\pi}$ values limited                                             |
|             |                     | 2.425.6(4)             | <b>~</b> ±      | V1.456.0(4)                                      |              | 0.4(2)                  | 0.4(2)                    |                           | by $\beta^+$ population                                              |
|             |                     | 2437.6(4)              | 5 <sup>+</sup>  | y1456.3(4)                                       | _            | 0.4(2)                  | 0.4(2)                    |                           |                                                                      |
|             |                     | 2280.8(3)              | 5+              | y1613.2(3)                                       | _            | 0.03(1)                 | 0.03(1)                   |                           |                                                                      |
| 20042(6)    | 4 5 6 5 0           | 1524.4(3)              | 6+              | y2369.8(2)                                       | _            | 0.36(2)                 | 0.36(2)                   | 0.05(10) 5.0(0)           |                                                                      |
| 3904.3(6)   | $4^-, 5, 6, 7, 8^-$ | 2556.5(5)              | 7+              | x1346.7(2)                                       | _            | 0.28(2)                 | 0.28(2)                   | 0.37(12) 7.8(2)           | _                                                                    |
| 4010.0(5)   | 5.65                | 2437.6(4)              | 5 <sup>+</sup>  | <sup>y</sup> 1467.9(10)                          | _            | 0.08(4)                 | 0.08(4)                   | 1.05(00) 5.15(0)          | 777 1 11 11 1                                                        |
| 4018.9(5)   | 5,6,7               | 3113.3(5)              | 5-, 6-          | <sup>x</sup> 905.2(4)                            | _            | 0.5(3)                  | 0.6(3)                    | 1.35(28) 7.17(9)          | $J^{\pi}$ values limited<br>by $\beta^+$ population<br>and $\log ft$ |
|             |                     | 2526.7(4)              | 5+              | x1492.8(8)                                       | _            | 0.05(4)                 | 0.05(4)                   |                           |                                                                      |
|             |                     | 2293.8(4)              | $6^+$           | 1725.0(2)                                        | _            | 0.02(1)                 | 0.02(1)                   |                           |                                                                      |
|             |                     | 1524.4(3)              | $6^+$           | 2494.6(2)                                        | _            | 0.73(3)                 | 0.73(3)                   |                           |                                                                      |
| 4046.8(5)   | 4-, 5, 6, 7, 8-     | 2335.7(5)              | 7+              | x1710.8(4)                                       | _            | 0.03(1)                 | 0.03(1)                   | 0.15(4) 8.1(2)            | $J^{\pi}$ values limited by $\beta^+$ population                     |
|             |                     | 1524.4(3)              | $6^+$           | <sup>y</sup> 2522.8(4)                           | _            | 0.12(3)                 | 0.12(3)                   |                           |                                                                      |
| 4079.4(4)   | 5,6,7               | 2574.8(4)              | 6-, 7-          | <sup>x</sup> 1504.8(3)                           | _            | 0.35(6)                 | 0.35(6)                   | 0.64(10) 7.41(8)          | $J^{\pi}$ values limited<br>by $\beta^+$ population<br>and $\log ft$ |
|             |                     | 2280.8(3)              | 5+              | x1798.3(4)                                       | _            | 0.02(1)                 | 0.02(1)                   |                           |                                                                      |
|             |                     | 2041.6(4)              | $6^{+}$         | <sup>y</sup> 2037.8(2)                           | _            | 0.15(1)                 | 0.15(1)                   |                           |                                                                      |
|             |                     | 1524.4(3)              | $6^{+}$         | <sup>y</sup> 2555.2(4)                           | _            | 0.12(2)                 | 0.12(2)                   |                           |                                                                      |
| 4143.2(5)   | 5,6,7               | 2415.0(5)              | 7+, 8+          | x1728.0(3)                                       | -            | 1.8(3)                  | 1.8(3)                    | 2.38(33) 6.77(7)          | $J^{\pi}$ values limited<br>by $\beta^+$ population<br>and $\log ft$ |
|             |                     | 2369.3(4)              | 7-              | <sup>y</sup> 1773.5(3)                           | _            | 0.34(4)                 | 0.34(4)                   |                           |                                                                      |
|             |                     | 2335.7(5)              | 7+              | ×1807.9(4)                                       | _            | 0.03(1)                 | 0.03(1)                   |                           |                                                                      |
|             |                     | 2041.6(4)              | $6^{+}$         | <sup>y</sup> 2101.3(3)                           | _            | 0.04(1)                 | 0.04(1)                   |                           |                                                                      |
|             |                     | 1524.4(3)              | $6^+$           | <sup>y</sup> 2619.3(4)                           | _            | 0.21(3)                 | 0.21(3)                   |                           |                                                                      |
| 4166.6(5)   | 7-                  | 3072.5(4)              | $6^-, 7^-, 8^-$ | <sup>y</sup> 1094.4(3)                           | M1(+E2) [14] | 0.32(5)                 | 0.32(5)                   | 5.43(81) 6.39(8)          | _                                                                    |
| . ,         |                     | 2415.0(5)              | $7^+, 8^+$      | 1751.7(4)                                        | E1 [14]      | 1.5(5)                  | 1.5(5)                    | . , . , ,                 |                                                                      |
|             |                     | 2369.3(4)              | 7-              | 1796.9(2)                                        | M1(+E2)[14]  | 0.69(1)                 | 0.69(1)                   |                           |                                                                      |
|             |                     | 2335.7(5)              | 7+              | 1830.4(4)                                        | _            | 0.03(1)                 | 0.03(1)                   |                           |                                                                      |
|             |                     | 2293.8(4)              | $6^+$           | 1872.6(3)                                        | E1 [14]      | 0.19(3)                 | 0.19(3)                   |                           |                                                                      |
|             |                     | 2222.6(4)              | $8^+$           | <sup>y</sup> 1944.1(3)                           | -            | 0.12(3)                 | 0.12(3)                   |                           |                                                                      |
|             |                     | 2041.6(4)              | $6^{+}$         | 2125.1(3)                                        | E1 [14]      | 0.46(5)                 | 0.46(5)                   |                           |                                                                      |
|             |                     | 1528.3(5)              | 8+              | 2638.5(3)                                        | _            | 1.70(9)                 | 1.70(9)                   |                           |                                                                      |
|             |                     | 1524.4(3)              | $6^{+}$         | 2642.4(5)                                        | _            | 0.47(4)                 | 0.47(4)                   |                           |                                                                      |
| 4187.2(4)   | 4-, 5, 6, 7, 8-     | 1524.4(3)              | 6+              | <sup>y</sup> 2662.7(3)                           | -            | 0.04(1)                 | 0.04(1)                   | 0.04(1) 8.5(2)            | $J^{\pi}$ values limited by $\beta^+$ population                     |
| 4196.0(7)   | 5-, 6, 7, 8-        | 1528.3(5)              | 8+              | <sup>2</sup> 2667.7(5)                           | _            | 0.04(1)                 | 0.04(1)                   | 0.04(1) 8.5(2)            | $J^{\pi}$ values limited by $\beta^+$ population                     |
| 4209.1(4)   | $5^+, 6^+, 7^+$     | 2437.6(4)              | 5+              | x1772.5(4)                                       | _            | 0.10(2)                 | 0.10(2)                   | 0.31(4) 7.58(7)           | $J^{\pi}$ values limited by $\beta^{+}$ population                   |
| 1051 (1)    |                     | 2041.6(4)              | 6+              | y2168.2(2)                                       | E2,M1 [14]   | 0.21(1)                 | 0.21(1)                   | 0.10(0) = 7(2)            |                                                                      |
| 4251(1)     | 4-, 5, 6, 7, 8-     | 2574.8(4)              | 6-, 7-          | *1675.8(5)                                       | =            | 0.15(6)                 | 0.15(6)                   | 0.19(8) 7.7(2)            | $J^{\pi}$ values limited by $\beta^+$ population                     |
| 40EF 1745   | 4= 5 ( 7 0=         | 2335.7(5)              | 7 <sup>+</sup>  | 1916.8(3)                                        | _            | 0.04(2)                 | 0.04(2)                   | 0.00(1) 0.05(6)           | Ιπ1 1' '/ 1                                                          |
| 4257.1(4)   | 4-, 5, 6, 7, 8-     | 1524.4(3)              | 6 <sup>+</sup>  | <sup>y</sup> 2732.7(3)                           | _            | 0.09(1)                 | 0.09(1)                   | 0.09(1) 8.05(6)           | $J^{\pi}$ values limited<br>by $\beta^+$ population                  |
| 4426.9(6)   | 5, 6, 7, 8          | 2369.3(4)              | 7-<br>7+        | <sup>x</sup> 2057.4(6)<br><sup>z</sup> 2091.3(6) | _            | 0.03(1) 0.01(1)         | 0.03(1)                   | 0.07(3) 7.9(2)            | $J^{\pi}$ values limited by $\beta^+$ population                     |
|             |                     | 2335.7(5)<br>1524.4(3) | 6 <sup>+</sup>  | y2902.6(4)                                       | _            | 0.01(1)                 | 0.01(1)                   |                           |                                                                      |
| 4468 3(7)   | 4-, 5, 6, 7, 8-     | 1324.4(3)<br>2437.6(4) | 5 <sup>+</sup>  | x2030.8(6)                                       | _            | 0.03(1)                 | 0.03(1)<br>0.10(5)        | 0.10(5) 7.7(3)            | $J^{\pi}$ values limited                                             |
| 7700.J(/)   | ¬ , J, U, I, O      | 2 <del>4</del> 37.0(4) | <i>J</i> .      | 2030.0(0)                                        | _            | 0.10(3)                 | 0.10(3)                   | 0.10(3) 1.1(3)            | by $\beta^+$ population                                              |

| TARI | ÆΙ | (Continued) |  |
|------|----|-------------|--|

| $E_i$ (keV) | $J_i^\pi$           | $E_f$ (keV) | $J_f^\pi$ | $E_{\gamma}$ (keV)     | $\sigma L$ | $I_{\gamma,\mathrm{rel.}}$ | $I_{\gamma+{ m IC,rel.}}$ | $I_{\beta}\%$ (log $ft$ ) | Comment                                            |
|-------------|---------------------|-------------|-----------|------------------------|------------|----------------------------|---------------------------|---------------------------|----------------------------------------------------|
| 4508.2(5)   | $4^-, 5, 6, 7$      | 2926.6(4)   | 5-        | <sup>y</sup> 1581.5(4) | -          | 0.08(2)                    | 0.08(2)                   | 0.08(2) 7.7(2)            | $J^{\pi}$ values limited by $\beta^{+}$ population |
| 4524.9(6)   | $4^-, 5, 6, 7, 8^-$ | 1524.4(3)   | 6+        | <sup>y</sup> 3000.5(5) | _          | 0.03(1)                    | 0.03(1)                   | 0.03(1) 8.1(2)            | $J^{\pi}$ values limited by $\beta^+$ population   |

<sup>&</sup>lt;sup>a</sup>This low-energy  $\gamma$  ray was not observed directly. Its energy and intensity were determined from coincidence relationships.

those with a relative intensity greater than 0.35% [14] (a more detailed analysis is given in Ref. [17]). In addition, 17  $\gamma$ -ray placements were changed from a previous analysis based on coincidence relationships observed, however, most were of a relatively low intensity.

The spin-parity assignments of the excited states are based on their decay pattern and on previously reported experimental information and occasionally are restricted by experimentally determined logft values. Realistically, only E1, M1, and E2 transitions can occur however, M2 and E3 transitions were considered for high energies ( $E_{\gamma} > 1$  MeV), the latter of which is justified by the strong octupole collectivity in the region. Internal conversion coefficients were previously measured for a large number of transitions, sometimes even for transitions which were not placed in the level scheme [5,7,21]. These often proved to be crucial for our spin-parity

assignments. The logft values were determined from measured  $\gamma$ -ray intensities and used to limit spin-parity values of  $\beta$ -populated states based on comparison with recommended ranges [22], where the lower limit for first-forbidden unique decays ( $\Delta J = 2$ ,  $\Delta \pi = \text{yes}$ ) is 7.5. Internal electron conversion was considered. If no experimental value was available, theoretical internal conversion coefficients were used from the BRICC code [23]. When the multipolarity was unknown an average internal conversion coefficient value was used with sufficient uncertainty to cover E1, M1, and E2 possibilities. The list of observed states, with justification of their spin-parity assignments, and logft values is given in Table I. Several states were previously populated in experiments involving different types of reactions and their spin parities were already unambiguously established. In this case we refer to the Nuclear Data Sheets evaluation [14]. A small number of

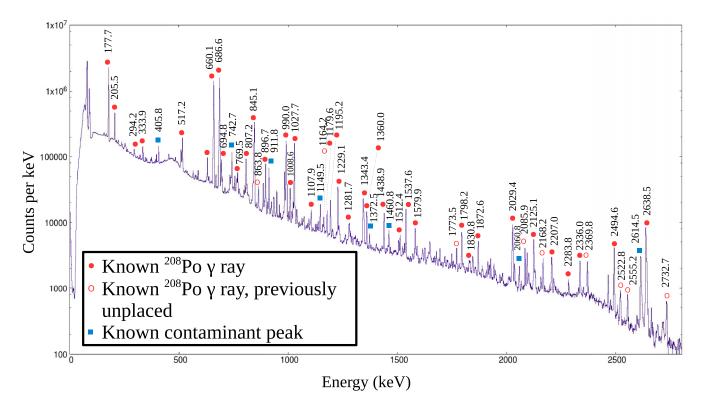



FIG. 1. Full  $\gamma$ - $\gamma$  matrix projection (1- $\mu$ s coincidence window) for all A=208 data collected. Peak positions are given for previously identified  $^{208}$ Po  $\gamma$  rays (indicated by filled red circles), known  $^{208}$ Po but previously unplaced  $\gamma$  rays (indicated by open red circles), and known contaminant peaks (indicated by filled blue squares). The contaminant peaks feature results from decays in  $^{207}$ Bi, as well as strong background peaks ( $^{40}$ K at 1460.8 keV and  $^{208}$ Tl at 2614.5 keV).



FIG. 2. Level scheme for  $^{208}$ Po observed in this work. Energies of levels and transitions are given in keV. Relative intensities of the most intense transitions are indicated by the thicknesses of arrows.

states require additional explanation; the following paragraphs detail the justifications for the spin-parity assignments of these states.

The loght values indicate that states which were fed directly were populated in either allowed or first-forbidden  $\beta$  decays. We note that according to our level scheme and transition intensities, the 2149-keV  $3^+$ ,  $4^+$  and the 2160-keV  $8^+$  states are populated directly by  $\beta$  decay at levels of 1.0(4)% and 1.1(5)%, respectively. These correspond to loght values around 8, much lower than previously observed for a second-forbidden decay [22]. These population intensities are roughly within two standard deviations from 0 and thus the loght values are not listed in Table I. In addition, some internal feeding into these states may not have been observed.

The 2223-keV level is the lowest-energy new state identified in the present work. Its spin parity is determined by the properties of its depopulating transitions as listed in Table I. Both of the observed transitions at energies of 694 and 698 keV, as well as the 334-keV transition directly populating the 2223-keV state, were observed previously, and their internal conversion coefficients measured. However, all were placed in different parts of the level scheme [14]. The multipolarities of the 698- and 334-keV transitions fix the spin parity of the 2223-keV level at 8<sup>+</sup>. The 694-keV peak results from a doublet. The electron conversion coefficient  $\alpha_K = 0.026(4)$ [5,7,14] was measured for the doublet and the multipolarity of the 694.8-keV transition from the 2042-keV 6<sup>+</sup> level has to be E2. Considering these factors the conversion coefficient of the 694.3-keV transition can be calculated as  $\alpha_K = 0.05(1)$ , indicating an M1 character, in agreement with the spin-parity assignment.

The 2438-keV state is populated, among others, by an 1126-keV transition from a 6<sup>-</sup> state with a previously measured conversion coefficient of  $\alpha_K \leq 0.006$  [21], which limits its multipolarity to E1 or E2. In addition, the 2438-keV state decays via a 1017-keV transition to a 3<sup>+</sup> state which was assigned M1 + E2 multipolarity on account of the internal conversion coefficient measurement of  $\alpha_K = 0.010(2)$  [5]. Here we reinterpret it as either M1 ( $\alpha_K = 0.016$ ) or E2 ( $\alpha_K = 0.006$ ). This reinterpretation allows for an unmixed E2 character which fixes the spin parity of the 2438-keV level to 5<sup>+</sup>.

The 3276-keV state decays, among others, by two previously identified but unplaced transitions at 1693 and 1930 keV [21], both populating firmly established 4<sup>+</sup> states. However, based on conversion coefficient measurements, the 1693-keV  $\gamma$  ray was identified as an E1 transition, while the 1930-keV  $\gamma$  ray was M1 + E2 [14,21]. These require opposite parities and are thus unresolvable. At this time we do not have a solution to this discrepancy.

## IV. DISCUSSION

The experimental results were compared to shell model calculations to gain a better understanding of the structure of the observed states. The shell model calculations were performed with the NUSHELLX code [24]. The modified Kuo-Herling Hamiltonian [25] was used for the proton-proton

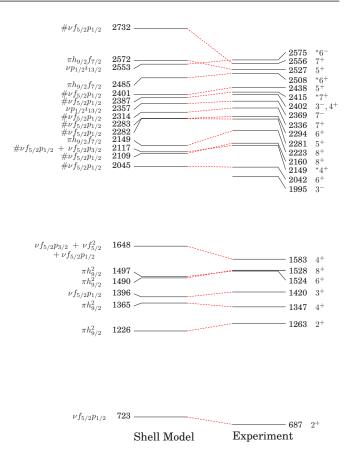



FIG. 3. Comparison of shell model and experimental excited states in  $^{208}$ Po. Left: Dominant configurations are given, taken from shell model calculations, with # denoting  $\pi h_{9/2}^2$ . Right: Spin-parity assignments, with asterisks denoting states where assignments have been made using branching ratio comparisons.

and neutron-neutron interactions, with the M3Y potential [26,27] for the proton-neutron interaction. Single-particle energies were taken from Fig. 1 in [25]. The model space used considers the proton and neutron orbitals  $1h_{9/2}$ ,  $2f_{7/2}$ ,  $2f_{5/2}$ ,  $3p_{3/2}$ ,  $3p_{1/2}$ , and  $1i_{13/2}$ , covering 82 < Z, N < 126. Therefore for <sup>208</sup>Po this gives two proton-particle and two neutron-hole states and no core excitations. For the E2 matrix elements radial wave functions from the Skx Skyrme Hartree-Fock calculation [28] were used. The effective charges were  $e_p = 1.5e$  and  $e_n = 0.8e$  for E2 transitions, taken from [29]. Free nucleon g factors were used for the M1 and M2 matrix elements ( $g_{sp} = 5.586$  and  $g_{sn} = -3.826$ , with  $g_{lp} = 1.0$ , and  $g_{ln} = 0.0$ ). The E1 matrix elements are 0 in this model space.

The dominant configuration of the  $^{208}$ Po ground state is  $\pi(h_{9/2}^2)\nu(p_{1/2}^{-2})$ . The experimental level scheme is compared with predictions from the shell model in Fig. 3, with the dominant configurations indicated. The  $\pi h_{9/2}^2$  seniority scheme is reproduced, however, the ordering of the  $8^+$  and  $6^+$   $\pi h_{9/2}^2$  states is inverted in the calculations. For several states no firm spin-parity assignment could be achieved based on experimental considerations. In most of these cases, indicated by asterisks in Fig. 3, a preferred spin parity could be proposed

TABLE II. Comparison between experimental and shell model  $\gamma$ -ray branching ratios. Only transitions with an experimental or theoretical BR $_{\gamma} > 1\%$  are listed. In some cases no firm experimental spin-parity assignments could be achieved, as shown in Table I. When the proposed spin parity is based on comparison with theory, it is preceded by a superscript asterisk.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Experiment                   | S                 | Shell model |             |                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------|-------------|-------------|-------------------|--|--|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $E_i \text{ (keV)}/J_i^{\pi}$ | $E_f (\text{keV})/J_f^{\pi}$ | $BR_{\gamma}$ (%) | $E_i$ (keV) | $E_f$ (keV) | $BR_{\gamma}$ (%) |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 100               | 723         | 0           | 100               |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1263/2^{+}$                  |                              | 70                | 1226        | 723         | 30                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 30                |             |             | 70                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 100               | 1365        |             | 100               |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1420/3^{+}$                  |                              | _                 | 1396        | 1226        | 1                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | •                            |                   |             |             | 99                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                             |                              | 100               | 1497        | 1365        |                   |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              |                   |             | _           | _a                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1583/4^{+}$                  |                              |                   | 1648        |             |                   |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1347/4^{+}$                 | 7                 |             |             | 4                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | •                            | 90                |             | 723         | 83                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2042/6^{+}$                  |                              | 72                | 2045        | 1497        | 61                |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                              | 28                |             | 1365        | 38                |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2149/*4+                      | $1583/4^{+}$                 | 36                | 2117        | 1648        | 26                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1420/3^{+}$                 | 18                |             | 1396        | 59                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1347/4^{+}$                 | 19                |             | 1365        | 8                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $687/2^{+}$                  | 27                |             | 723         | 7                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2160/8^{+}$                  | $1528/8^{+}$                 | 100               | 2109        | 1490        | 99                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1524/6^{+}$                 | _                 |             | 1497        | 1                 |  |  |
| 2281/5+ 2042/6+ - 2282 2045 6 1583/4+ - 1648 3 1524/6+ - 1497 15 1347/4+ 100 1365 75 2294/6+ 2042/6+ 12 2283 2045 11 1583/4+ 13 1648 10 1524/6+ 41 1497 38 1528/8+ 3 1490 1 1347/4+ 31 1365 41 2336/7+ 2160 / 8+ - 2314 2109 1 2042/6+ 12 2045 14 1524/6+ 15 1497 21 1528/8+ 74 1490 64 2369/7- 1528/8+ 12 2357 1490 0.3 1524/6+ 88 1497 100 2415/*7+ 2223/8+ - 2387 2149 4 2160/*8+ 7 2109 6 2042/6+ 16 2045 4 1524/6+ 11 1497 7 1528/8+ 66 1490 79 2438/5+ 2042/6+ - 2401 2045 2 1583/4+ - 1648 3 1524/6+ - 1497 29 1420/3+ 100 1396 61 1347/4+ - 1365 3 2508/*6+ 2415/*7+ - 2485 2387 1 2336/7+ - 2336/7+ - 2314 1 2294/6+ 5 2283 7 | 2223/8+                       | $2160/8^{+}$                 | $\approx 1$       | 2149        | 2109        | 1                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1524/6^{+}$                 | 39                |             | 1497        | 70                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1528/8^{+}$                 | 61                |             | 1490        | 29                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2281/5^{+}$                  | $2042/6^{+}$                 | _                 | 2282        | 2045        | 6                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1583/4^{+}$                 | _                 |             | 1648        | 3                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1524/6^{+}$                 | _                 |             | 1497        | 15                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1347/4^{+}$                 | 100               |             | 1365        | 75                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2294/6^{+}$                  | $2042/6^{+}$                 | 12                | 2283        | 2045        | 11                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1583/4^{+}$                 | 13                |             | 1648        | 10                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1524/6^{+}$                 | 41                |             | 1497        | 38                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1528/8^{+}$                 | 3                 |             | 1490        | 1                 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | $1347/4^{+}$                 | 31                |             | 1365        | 41                |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2336/7+                       | 2160 / 8+                    | _                 | 2314        | 2109        | 1                 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 2042/6+                      | 12                |             | 2045        | 14                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 1524/6+                      | 15                |             | 1497        | 21                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 1528/8+                      | 74                |             | 1490        | 64                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2369/7-                       |                              | 12                | 2357        | 1490        | 0.3               |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | $1524/6^{+}$                 | 88                |             | 1497        | 100               |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2415/*7+                      | 2223/8+                      | _                 | 2387        | 2149        | 4                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 7                 |             | 2109        | 6                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 16                |             |             | 4                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | 11                |             | 1497        | 7                 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | •                            | 66                |             |             | 79                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2438/5+                       |                              | _                 | 2401        | 2045        |                   |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                             |                              | _                 |             | 1648        |                   |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                              | _                 |             | 1497        |                   |  |  |
| 1347/4 <sup>+</sup> - 1365 3<br>2508/*6 <sup>+</sup> 2415/*7 <sup>+</sup> - 2485 2387 1<br>2336/7 <sup>+</sup> - 2314 1<br>2294/6 <sup>+</sup> 5 2283 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                              | 100               |             |             |                   |  |  |
| $2508/*6^+$ $2415/*7^+$ - $2485$ $2387$ 1 $2336/7^+$ - $2314$ 1 $2294/6^+$ 5 $2283$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                              | _                 |             |             |                   |  |  |
| $2336/7^{+}$ - $2314$ 1 $2294/6^{+}$ 5 $2283$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2508/*6+                      |                              | _                 | 2485        |             |                   |  |  |
| $2294/6^+$ 5 $2283$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / ~                           |                              | _                 |             |             |                   |  |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                              | 5                 |             |             |                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                              | _                 |             |             |                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | ===-/ 0                      |                   |             | <b>_</b>    |                   |  |  |

TABLE II. (Continued).

|                                          | Experiment                   | Shell model         |                   |             |                     |  |
|------------------------------------------|------------------------------|---------------------|-------------------|-------------|---------------------|--|
| $\overline{E_i \text{ (keV)}/J_i^{\pi}}$ | $E_f (\text{keV})/J_f^{\pi}$ | BR <sub>γ</sub> (%) | $E_i$ (keV)       | $E_f$ (keV) | BR <sub>γ</sub> (%) |  |
|                                          | 2042/6+                      | _                   |                   | 2045        | 3                   |  |
|                                          | 1583/4+                      | 10                  |                   | 1648        | 2                   |  |
|                                          | $1524/6^{+}$                 | 85                  |                   | 1497        | 83                  |  |
|                                          | $1528/8^{+}$                 | _                   |                   | 1490        | 1                   |  |
| 2527/5+                                  | $2294/6^{+}$                 | _                   | 2572              | 2283        | 5                   |  |
|                                          | $2281/*5^{+}$                | _                   |                   | 2282        | 5                   |  |
|                                          | 2149/*4+                     | _                   |                   | 2117        | 9                   |  |
|                                          | $2042/6^{+}$                 | 20                  |                   | 2045        | 23                  |  |
|                                          | -/4+                         | _                   |                   | 2005        | 4                   |  |
|                                          | $1583/4^{+}$                 | _                   |                   | 1648        | 8                   |  |
|                                          | 1524/6+                      | 20                  |                   | 1497        | 30                  |  |
|                                          | $1420/3^{+}$                 | 13                  |                   | 1396        | 2                   |  |
|                                          | $1347/4^{+}$                 | 47                  |                   | 1365        | 13                  |  |
| $2556/7^{+}$                             | $2369/7^{-}$                 | 2                   | 2732 <sup>b</sup> | 2357        | <1                  |  |
|                                          | $2336/7^{+}$                 | _                   |                   | 2314        | 4                   |  |
|                                          | $2294/6^{+}$                 | 2                   |                   | 2283        | <1                  |  |
|                                          | $2223/8^{+}$                 | 10                  |                   | 2149        | 45                  |  |
|                                          | 2160/*8+                     | 5                   |                   | 2109        | 3                   |  |
|                                          | 2042/6+                      | _                   |                   | 2045        | 11                  |  |
|                                          | 1524/6+                      | _                   |                   | 1497        | 5                   |  |
|                                          | 1528/8+                      | 81                  |                   | 1490        | 32                  |  |
| 2575/*6-                                 | 2369/7-                      | 97                  | 2553              | 2357        | 100                 |  |
| •                                        | $1524/6^{+}$                 | 3                   |                   | 1497        | <1                  |  |
|                                          |                              |                     |                   |             |                     |  |

<sup>&</sup>lt;sup>a</sup>Due to the inversion of the  $6^+$  and  $8^+$  states, no branching ratio could be calculated, however, the theoretical B(E2) value ( $\approx$ )1 W.u.) indicates the existence of a transition between the two states.

by comparing measured and theoretical branching ratios, as reported in Table II. However, this argument is weak and thus purely used for comparison with theoretical calculations. A firm or preferred spin parity was assigned for all levels up to 2.6-MeV excitation energy (excluding 2402 keV). A good agreement (usually within 100 keV) between experiment and shell model level energies was obtained for all these excited states. Shell model calculations using a smaller model space (neutron orbitals  $2f_{5/2}$ ,  $3p_{3/2}$ ,  $3p_{1/2}$ ,  $1i_{13/2}$  and proton orbitals  $1h_{9/2}$ ,  $2f_{7/2}$ ,  $1i_{13/2}$ ) were compared in [18] to experimental results, which showed a greater energy disparity and systematic energy shift.

The only levels without theoretical counterparts are the 3<sup>-</sup> state at 1995 keV and the 2402-keV level. The former is a collective octupole state and is thus not reproducible within the model space used. It is discussed in detail in Ref. [30].

The 2402-keV level has been assigned 3<sup>-</sup> or 4<sup>+</sup> spin parity. There is a 4<sup>+</sup> state with a similar energy predicted by the shell model at 2473 keV, however, the decay pattern of this state does not match what was observed [17]. At the same time the closest 3<sup>-</sup> state predicted in the present model space is at 2824 keV. Therefore we do not have a preferred spin-parity assignment for the 2402-keV level.

<sup>&</sup>lt;sup>b</sup>There is a 7<sup>+</sup> state predicted at 2618 keV, which is closer to the experimental value. However, its decay pattern is very different from the observed one.

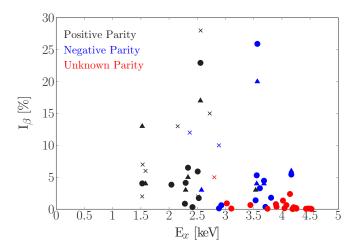



FIG. 4.  $\beta$ -population intensity as a function of the <sup>208</sup>Po excitation energy. The present results are indicated by filled circles. These are compared with result obtained from experiments performed in the 1960s [8] (x's) and the 1980s [14] (filled triangles). The parity of the excited states is indicated by the color of the symbol.

#### V. BETA DECAY

Both positive- and negative-parity states are fed directly in the  $\beta^+/EC$  decay of <sup>208</sup>At. The  $\beta$ -decay feeding intensity as a function of the excited-state energy in <sup>208</sup>Po is shown in Fig. 4. According to the present work  $\approx$ 44% of the decay proceeds via allowed  $\beta$  decay and  $\approx$ 46% via first-forbidden decay, with the remaining  $\approx$ 10% decaying to states of unknown parity.

The large role of first-forbidden decays can be qualitatively understood through shell model considerations. All allowed transitions are hindered. The decays populating non-core-excited states proceed via  $\pi h_{9/2} \rightarrow \nu f_{7/2}$ ,  $h_{9/2}$  and  $\pi f_{7/2} \rightarrow \nu f_{5/2,7/2}$ ,  $h_{9/2}$ , which are impeded by (almost) fully occupied  $\nu f_{7/2}$ ,  $h_{9/2}$  orbitals as well as a small  $\pi f_{7/2}$  contribution in the <sup>208</sup>At ground state. Allowed  $\beta$  decays populating core-excited states suffer from similar obstructions. In contrast, first-forbidden decays proceeding via  $\pi h_{9/2} \rightarrow \nu g_{9/2}$ ,  $i_{11/2}$  and  $\pi s_{1/2}$ ,  $d_{3/2} \rightarrow \nu p_{1/2}$  are unhindered by the aforementioned factors. These decays populate core-excited negative-parity states with excitation energies of 3–4.5 MeV. These factors contribute to the observed high abundance of first-forbidden decays, particularly at higher energies.

The pandemonium effect [31] refers to the underestimation of  $\beta$ -decay feeding into high-excitation-energy states. It is caused by the low/limited efficiency for the detection of high-energy  $\gamma$  rays. The large crystal size of the HPGe detectors of the IDS allowed for the identification of weak, high-energy transitions, the weakest being at the level of  $10^{-4}$  per  $\beta$  decay. The  $\beta$ -feeding intensity from previous works, compared with the present study, are also shown in Fig. 4. Naturally, experiments in the past were performed with much smaller, less efficient detectors. The largest detector used by Treytl *et al.* [8] in the 1960s was a 32-cm<sup>3</sup> Ge(Li) detector. Consequently no excited states above 2.9 MeV were observed, and the amount of feeding to first-forbidden (negative-parity) states was only  $\approx$ 22% (with  $\approx$ 5% to unknown parity). Experiments in the 1980s were performed with slightly larger

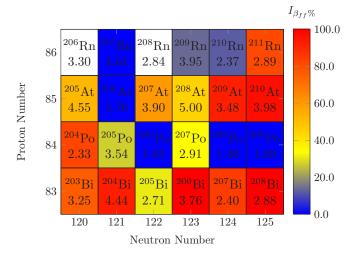



FIG. 5. Intensity of first-forbidden decays ( $I_{\beta_{\rm ff}}$ %) for proton-rich A  $\approx$  208 nuclei [14,20,32–38].  $I_{\beta_{\rm ff}}$ % =  $I_{\beta_{\rm ff}}/I_{\beta_{\rm tot}}$ . The parent nuclei are indicated.  $Q_{\rm EC}$  values, in MeV, are also given. In the majority of nuclei, competition between first-forbidden and allowed  $\beta$  decay is expected. For details, see the text.

Ge(Li) detectors, with volumes of up to 50 cm<sup>3</sup> [5,21] and 13% relative efficiency [7]. Using these detectors more information on high-energy excited states was obtained and thus the fraction of first-forbidden  $\beta$  decays increased to  $\approx$ 37% [14]. In contrast, our clover detectors have crystal sizes of  $\approx$ 250 cm<sup>3</sup> [13]. Using addback their effective size increased significantly. The use of a total absorption spectrometer would clarify the amount of additional pandemonium effect in the results presented here.

By virtue of their structure, many nuclei in the vicinity of <sup>208</sup>Po will also exhibit a high proportion of forbidden decays. Allowed transitions are hindered by fully occupied orbitals in the daughter nuclei and an almost empty  $\pi f_{7/2}$  in the parent nuclei. First-forbidden decays, however, are not inhibited in this way. Since first-forbidden decays will populate high-energy, excited states, experiments with a high detection efficiency which mitigate the pandemonium effect would show that such decays are more prevalent than previously thought. The number of observed first-forbidden  $\beta$  decays relative to all decays for the region is indicated in Fig. 5. The nuclei <sup>207,208</sup>Bi and <sup>208,209</sup>Po have low Q<sub>EC</sub> values such that their daughters have few excited states within the available  $Q_{\rm EC}$  window. They therefore decay via the lowest degree(s) of forbiddeness, which is at least first forbidden (as in <sup>207</sup>Bi and <sup>208</sup>Bi), since allowed  $\beta$  decay cannot take place due to the lack of excited states with the required spin parity in the daughter nuclei. In the decay of <sup>208</sup>Po and <sup>209</sup>Po not even first-forbidden  $\beta$  decay can take place, for the same reason. The  $\beta$  decay of <sup>206</sup>Po is also peculiar. There are no negative-parity states in the daughter nucleus below the  $Q_{\rm EC}$  value, consequently all decay proceeds via allowed transitions. For the <sup>210</sup>Rn decay, the negative-parity state(s) is(are) just below the  $Q_{EC}$  value, making them energetically very unfavorable.

For all other nuclei in the region, first-forbidden decay competes with allowed transitions. In many nuclei the highest-energy observed excited states populated in  $\beta$  decay

are far below the  $Q_{\rm EC}$  value, which, in the cases of  $^{205}$ At,  $^{206}$ At, and  $^{207}$ At decay, is a clear indication of the pandemonium effect. The situation is similar in the  $^{206-209}$ Rn nuclei, for which  $\beta$ -decay data are very scarce.

Understanding competition between allowed and firstforbidden  $\beta$  decay is important for nucleosynthesis [39–41]. Specifically, this is the case for the production of heavy elements in the A  $\approx$  195 r-process abundance peak. For N =126 r-process-path nuclides the first-forbidden decays successfully compete with allowed ones. Since these nuclei are far from stability, there is no experimental information, and the abundance calculations rely on theoretical nuclear properties, However, fundamental properties such as half-lives are difficult to predict, and the predictions that have been made vary significantly [39,40,42–47]. Several global calculations covering the regions of interest for the r-process have been published [39,42,47]. Since shell model calculations are not feasible far from closed shells, all global calculations use mean-field approaches, and all recent studies include firstforbidden decays. Here we suggest that the N < 126, Z > 82region provides a good testing ground for such calculations. First-forbidden and allowed transitions compete, and experiments with high yields can be performed in this region, as shown in this example for the  $\beta$  decay of <sup>208</sup>At.

# VI. CONCLUSIONS

The structure of  $^{208}$ Po was investigated via its population through EC/ $\beta^+$  decay from the  $J^\pi=6^+$ ,  $Q_{EC}=5000(9)$  keV [1] ground state of  $^{208}$ At. The  $^{208}$ Po level scheme has been significantly extended. Forty-three previously unreported transitions and 27 new levels have been placed in an expanded level scheme alongside preexisting and (re)assigned transitions and levels. Spin-parity assignments are based on decay patterns, previously measured conversion electron coefficients, and  $\log ft$  values. Comparison with shell model calculations showed a good agreement for non-core-excited states.

First-forbidden decays populate predominantly states at high excitation energies, qualitatively explained by shell model considerations. First-forbidden and allowed  $\beta$  decays have similar yields, which is consistent with other nuclei in the region. The observation of many of the first-forbidden  $\beta$ -decay branches relied on the high detection efficiency for high-energy  $\gamma$  rays. Observations of the  $\beta$ -decay properties of nuclei in the N < 126, Z > 82 region suggest that <sup>208</sup>Po and its neighboring nuclei provide a good testing ground for first-forbidden  $\beta$ -decay calculations, the understanding of which is important for r-process nucleosynthesis.

#### ACKNOWLEDGMENTS

The authors would like to thank the operators of the ISOLDE facility for providing the beam for this experiment. The research leading to these results received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 654002. Support from the European Union Seventh Framework through ENSAR Contract No. 262010, as well as the Science and Technology Facilities Council (U.K.) through Grants No. ST/P005314/1, No. ST/L005743/1, No. ST/J000051/1, No. ST/L005670/1, and No. ST/P004598/1, the German BMBF under Contract No. 05P18PKCIA and "Verbundprojekt 05P2018" as well as Spanish MINECO Grants No. FPA2015-65035-P and No. FPA2017-87568-P, FWOVlaanderen (Belgium), GOA/2015/010 (BOF KU Leuven), the Excellence of Science Programme (EOS-FWO), the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), the Polish National Science Centre under Contracts No. UMO-2015/18/M/ST2/00523 and No. UMO-2019/33/N/ST2/03023, National Science Foundation (U.S.) Grant No. PHY1811855, and the Romanian IFA project CERN-RO/ISOLDE is acknowledged. P.H.R. acknowledges support from the U.K. Department for Business, Energy and Industrial Strategy via the National Measurement Office.

<sup>[1]</sup> M. Wang et al., Chin. Phys. C 41, 030003 (2017).

<sup>[2]</sup> I. Bergstrom et al., Z. Phys. A287, 219 (1978).

<sup>[3]</sup> T. Yamazaki, Phys. Rev. C 1, 290 (1970).

<sup>[4]</sup> A. R. Poletti et al., Nucl. Phys. A 615, 95 (1997).

<sup>[5]</sup> V. M. Vakhtel *et al.*, Izv. Akad. Nauk SSSR, Ser. Fiz. **45**, 1841 (1981) [Bull. Acad. Sci. USSR, Phys. Ser. **45** (10), 29 (1981)].

<sup>[6]</sup> B. S. Dzhelepov et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 2 (1983) [Bull. Acad. Sci. USSR, Phys. Ser. 47(1), 1 (1983)].

<sup>[7]</sup> V. Rahkonen and T. Lonnroth, Z. Phys. A. 322, 333 (1985).

<sup>[8]</sup> W. J. Treytl, E. K. Hyde, and T. Yamazaki, Nucl. Phys. A 117, 481 (1968).

<sup>[9]</sup> E. W. A. Lingeman, Ph.D. thesis, University of Amsterdam,

<sup>[10]</sup> R. J. Carroll et al., Phys. Rev. Lett. 125, 192501 (2020).

<sup>[11]</sup> T. Stora, Nucl. Instrum. Methods Phys. Res., Sect. B 317, 402 2013).

<sup>[12]</sup> M. J. G. Borge and B. Jonson, J. Phys. G: Nucl. Particle Phys. 44, 044011 (2017).

<sup>[13]</sup> H. C. Scraggs et al., Nucl. Instrum. Methods Phys. Res. Sec. A 543, 431 (2005).

<sup>[14]</sup> M. J. Martin, Nucl. Data Sheets 108, 1583 (2007).

<sup>[15]</sup> I. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001).

<sup>[16]</sup> T. A. Berry, Ph.D. thesis, University of Surrey, 2019.

<sup>[17]</sup> M. Brunet, Ph.D. thesis, University of Surrey, 2021.

<sup>[18]</sup> M. Brunet et al., J. Phys. Conf. Ser. 1643, 012116 (2020).

<sup>[19]</sup> G. R. Gilmore, *Practical*  $\gamma$ -*Ray Spectrometry* (John Wiley & Sons, Chichester, UK, 2008), p. 361.

<sup>[20]</sup> F. G. Kondev and S. Lalkovski, Nucl. Data Sheets 112, 707 (2011).

<sup>[21]</sup> B. S. Dzhelepov *et al.*, Program and Thesis in *33rd Annual Conf. Nucl. Spectrosc. Struct. At. Nuclei* (Moscow, 1983), p. 152.

<sup>[22]</sup> B. Singh et al., Nucl. Data Sheets 84, 487 (1998).

<sup>[23]</sup> T. Kibédi, T. Burrows *et al.*, Nucl. Instrum. Methods Phys. Res. Sec. A **589**, 202 (2008).

<sup>[24]</sup> B. A. Brown and W. D. M. Rae, Nucl. Data Sheets **120**, 115 (2014).

- [25] E. K. Warburton and B. A. Brown, Phys. Rev. C 43, 602 (1991).
- [26] W. G. Love, *The* (p, n) Reaction and the Nucleon-Nucleon Force (Plenum, New York, 1980), p. 23.
- [27] G. Bertsch et al., Nucl. Phys. A 284, 399 (1977).
- [28] B. A. Brown, Phys. Rev. C 58, 220 (1998).
- [29] G. Astner et al., Nucl. Phys. A 182, 219 (1972).
- [30] M. Brunet et al. (Unpublished) (2021).
- [31] J. C. Hardy et al., Phys. Lett. B 71, 307 (1977).
- [32] F. G. Kondev, Nucl. Data Sheets 105, 1 (2005).
- [33] C. J. Chiara and F. G. Kondev, Nucl. Data Sheets 111, 141 (2010).
- [34] F. G. Kondev, Nucl. Data Sheets 166, 1 (2020).
- [35] F. G. Kondev, Nucl. Data Sheets 109, 1527 (2008).
- [36] J. Chen and F. G. Kondev, Nucl. Data Sheets 126, 373 (2015).
- [37] M. Shamsuzzoha Basunia, Nucl. Data Sheets 121, 561 (2014).
- [38] B. Singh et al., Nucl. Data Sheets 114, 661 (2013).

- [39] P. Möller, B. Pfeiffer, and K. L. Kratz, Phys. Rev. C 67, 055802 (2003).
- [40] D. L. Fang, B. A. Brown, and T. Suzuki, Phys. Rev. C 88, 034304 (2013).
- [41] N. Nishimura et al., Phys. Lett. B 756, 273 (2016).
- [42] E. M. Ney, J. Engel, T. Li, and N. Schunck, Phys. Rev. C 102, 034326 (2020).
- [43] H. Koura et al., Prog. Theor. Phys. 113, 305 (2005).
- [44] I. N. Borzov, Nucl. Phys. A 777, 645 (2006).
- [45] T. Suzuki, T. Yoshida, T. Kajino, and T. Otsuka, Phys. Rev. C 85, 015802 (2012).
- [46] Q. Zhi, E. Caurier, J. J. Cuenca-Garcia, K. Langanke, G. Martinez-Pinedo, and K. Sieja, Phys. Rev. C 87, 025803 (2013).
- [47] T. Marketin, L. Huther, and G. Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016).
- [48] O. Dragoun et al., Czech. J. Phys. **B32**, 711 (1982).
- [49] O. Dragoun et al., Nucl. Phys. A 391, 29 (1982).