

This is a repository copy of Quantum many-body scars and weak breaking of ergodicity.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/174677/

Version: Accepted Version

Article:

Serbyn, M, Abanin, DA and Papić, Z (2021) Quantum many-body scars and weak breaking of ergodicity. Nature Physics, 17 (6). pp. 675-685. ISSN 1745-2473

https://doi.org/10.1038/s41567-021-01230-2

© Springer Nature Limited 2021. This is an author produced version of a journal article published in Nature Physics. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Quantum Many-Body Scars and Weak Breaking of Ergodicity

Maksym Serbyn¹, Dmitry A. Abanin², and Zlatko Papić³

¹IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

²Department of Theoretical Physics, University of Geneva,
24 quai Ernest-Ansermet, 1211 Geneva, Switzerland and

³School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: February 17, 2021)

Thermalization is the inevitable fate of many complex quantum systems, whose dynamics allows them to fully explore the vast configuration space regardless of the initial state – the behavior known as quantum ergodicity. In a quest for experimental realizations of coherent long-time dynamics, much effort has focused on ergodicity-breaking mechanisms, such as integrability and localization. Recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of behavior where the system rapidly relaxes for most of the initial conditions, while certain initial states give rise to non-ergodic dynamics. This novel collective effect has been named *quantum many-body scars* by analogy with weak ergodicity breaking of a single particle inside a stadium billiard. In this overview, we provide a pedagogical introduction to quantum many-body scars and highlight the newly emerged connections with the semiclassical quantization of many-body systems. We discuss the relation between scars and more general routes towards weak violations of ergodicity due to "embedded" algebras and non-thermal eigenstates, and highlight possible applications of scars in quantum technology.

A fundamental challenge in physics is to predict how systems evolve in time when taken out of their equilibrium state. The behavior of familiar classical systems, e.g., the clock pendulum, is perfectly periodic and thus possible to predict at late times. This is an example of *integrable* behavior. Integrable systems, however, are special; under perturbations, their periodic behavior gradually disappears and ultimately gives way to *chaos*. The microscopic chaotic motion allows an ensemble of coupled systems to reach the state of thermal equilibrium, which can be effectively described using the textbook methods of statistical mechanics.

While many open questions remain in the field of classical chaotic systems, non-equilibrium quantum matter is another frontier of modern research. The intense focus on understanding routes to thermal equilibrium in isolated quantum systems with many degrees of freedom is partly due to the advent of synthetic systems based on atoms, ions, or superconducting circuits as elementary building blocks [1, 2]. The relaxation times of these systems are long compared to, e.g., those of electrons in solids, and experiments allow to monitor quantum dynamics at the single-atom level, thus opening a window to non-equilibrium quantum phenomena. These capabilities have renewed the interest in foundational questions of quantum physics, such as the emergence of statistical-mechanics description in an isolated many-body system. Provided parts of the system are able to act as heat reservoirs for its other parts, an initial non-equilibrium state relaxes to thermal equilibrium, with a well-defined effective temperature. Such systems are called thermal or quantum-ergodic.

Surprisingly, not all quantum systems are ergodic. For example, finely tuned one-dimensional systems [3] may fail to thermalize due to their rich symmetry structure known as quantum integrability. However, when such systems are weakly perturbed, ergodicity is restored. On the other hand, disorder in an interacting system may induce many-body localization (MBL) [4, 5], a close relative of the celebrated Anderson localization for non-interacting particles. Similar to

integrable systems, MBL systems have a macroscopic number of conservation laws, which prevent thermalization. These conservation laws, however, are robust with respect to perturbations, and MBL is an example of a phase of matter which embodies strong ergodicity breaking.

The behavior of quantum-ergodic systems is governed by the so-called Eigenstate Thermalization Hypothesis (ETH) [6, 7], a powerful conjecture which explains the process of thermalization at the level of the system's energy eigenstates. The ETH states that individual eigenstates of quantum-ergodic systems act as thermal ensembles, thus the system's relaxation does not depend strongly on the initial conditions. However, in 2018, an experiment on a new family of Rydberg-atom quantum simulators revealed an unforeseen dynamical behavior [8]. The experiment observed significant qualitative differences in the dynamics, depending on the choice of the initial state: while certain initial states showed relaxation to thermal ensembles, as expected in an ergodic system, other states exhibited periodic revivals. Such revivals were surprising given that the system did not have any conserved quantities other than total energy and it was free of disorder, thus ruling out integrability and localization as possible explanations. What made a particular initial state find its way back in a Hilbert space with dimension in excess of 4×10^{10} , for the experimental system of 51 Rydberg atoms?

A flurry of subsequent theoretical works have addressed the puzzle posed by the experiment: the nature and origin of this new regime of ergodicity breaking, intermediate between thermalization and strong ergodicity breaking. The key to understanding this new behavior was the discovery of anomalous, non-thermal eigenstates in the highly excited energy spectrum of the Rydberg atom system [9]. These eigenstates provide an example of what we will refer to as *weak* violation of ETH: despite being strongly non-thermal, the anomalous eigenstates comprise a vanishing fraction of the Hilbert space and they are immersed in a much larger sea of thermal eigenstates.

One may be puzzled as to why non-thermal eigenstates in

the highly-excited spectrum would bear any importance. After all, the energy level spacing between highly-excited eigenstates in a many-body system decreases exponentially with the number of atoms, and preparing the system in a particular eigenstate is challenging, if not impossible. Therefore, such eigenstates might be expected to remain "invisible" to any experiment performed in the lab. Nevertheless, it was shown that these non-thermal eigenstates indeed underpin the realtime dynamics observed in experiment, inspiring new connections between quantum many-body dynamics and studies of classical chaos [10]. By analogy with chaotic stadium billiards, which also host non-thermal eigenstates whose ergodicity breaking has been visualized as "scars" of classical periodic orbits [11], the non-thermal eigenstates in the Rydberg atom chains have been dubbed "quantum many-body scars' (QMBSs).

The discovery of QMBSs has triggered broader investigations of weak ergodicity breaking in a variety of quantum systems, as opposed to the strong ergodicity breaking by integrability and disorder. These studies have unearthed a rich landscape of many-body scarred models with universal algebraic structures, shedding new light on a number of well-known condensed matter models. In particular, the independently discovered non-thermal eigenstates in the Hubbard model and the Affleck-Kennedy-Lieb-Tasaki (AKLT) model were a posteriori realized to be examples of the same QMBS phenomena. In this review, we survey recent progress in weak ergodicity breaking phenomena by highlighting relations between different realizations of non-thermal dynamics, schematically illustrated in Fig. 1. As we explain in detail below, known scarred models are characterized by a subspace which is decoupled from the rest of the energy spectrum and cannot be attributed to a symmetry of the system. The origin of this subspace can vary depending on the model, and a few common mechanisms, highlighted in Fig. 1, will be presented below. Furthermore, we discuss novel theoretical approaches that aim to bridge quantum and classical chaos in many-body systems, and the representation of scarred dynamics in terms of tensor networks. Finally, we outline promising future directions, putting an emphasis on emerging connections between weak ergodicity breaking and other fields. We mention other routes to weak ergodicity breaking, such as mesons in theories with confinement, the effects of additional conservation laws that fracture the Hilbert space, and frustration-driven glassy behavior, whose relation to QMBS yet remains to be fully understood. We conclude with a brief discussion of potential applications of QMBS in quantum sensing and metrology.

I. PHENOMENOLOGY OF QUANTUM SCARRING

In experiment, quantum thermalization is conveniently probed by quenching the system: one prepares a non-equilibrium initial state $|\psi_0\rangle$, which is typically short-range correlated (e.g., a product state of particles), and monitors its fate after time t. For cold atoms and trapped ions, which are well-isolated from any thermal bath, the system can be assumed to evolve according to the Schrödinger equation for

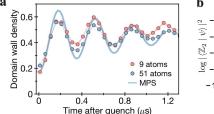
Many-body scars and weak ETH breakdown Spectrum generating algebra AKLT model, PXP model, spin-1 XY magnets, extended Hubbard model Krylov restricted Projector embedding thermalization topological lattice models, 1D limit of FQHE, frustrated magnets, fracton models. lattice supersymmetry bosons in optical lattices Quantum-classical Quantum technology correspondence Rvdberg atom quantum many-body chaos quantum simulators, quantum metrology & control quantum KAM theorem

FIG. 1. Top: Examples of physical systems where weak ergodicity breakdown has recently been discovered. These systems can be classified according to three main mechanisms of many-body scarring, reviewed below. Bottom: Studies of many-body scarring have sparked interest in fundamental problems in the field of quantum many-body chaos and potential applications in quantum technology.

the system's Hamiltonian H. The process of thermalization is monitored by measuring the time evolution of local observables as the dynamics explores progressively larger parts of the system's energy spectrum. The results of such measurements are remarkably different in typical quantum-ergodic systems compared to non-ergodic localized systems. In ergodic systems, following a brief initial transient, local observables relax to their thermal value and stay near that value at later times. This behavior is reminiscent of classical chaotic systems, which effectively "forget" their initial condition. In contrast, in MBL systems local observables reach a stationary value which is non-thermal, retaining the memory of the initial state — a hallmark of broken ergodicity.

It is important to emphasize that the dynamical behavior of ergodic or non-ergodic systems mentioned above has been verified to hold for quenches from any physical initial states. This typicality was recently found to break down in experiments on arrays of Rydberg atoms [8]. The building block of these experiments is an individual Rydberg atom, which may be viewed as an effective two level system, where the two states $|\circ\rangle$, $|\bullet\rangle$ correspond, respectively, to an atom in the ground state and an atom in the so-called Rydberg state. When exposed to a microwave field, each atom undergoes Rabi oscillations, $|\circ\rangle \leftrightarrow |\bullet\rangle$, freely flipping between its two states. However, when assembled in an array, the atoms in $|\bullet\rangle$ states interact via repulsive van der Waals force, whose strength is strongly dependent on the distance between the atoms. By tuning the inter-atom distance one can achieve the regime of the Rydberg blockade [12] where the excitations of neighboring atoms, e.g., $|\cdots \bullet \bullet \cdots\rangle$, are energetically prohibited. This makes the system kinetically constrained as each atom is only allowed to flip if all of its neighbors are in $|\circ\rangle$ state.

The dynamics of large one-dimensional arrays of Rydberg



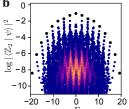


FIG. 2. Weak breakdown of thermalization. a: Observation of persistent revivals in the domain-wall density when Rydberg-atom quantum simulators are quenched from $|\mathbb{Z}_2\rangle$ initial state [8]. The oscillations were found to persist in large chains up to 51 atoms, and they were reproduced in the dynamical simulations using matrix product state (MPS) methods. b: Weak breakdown of thermalization in Rydberg atom arrays was theoretically attributed to atypical eigenstates – quantum many-body scars – which are distinguished by their anomalously enhanced overlaps with $|\mathbb{Z}_2\rangle$ state [9]. Each dot represents an eigenstate of energy E in the PXP model in Eq. (1) with L=32 atoms. Color scheme illustrates the density of points.

atoms has been probed by studying quenches from a period-2 density wave initial state, $|\mathbb{Z}_2\rangle \equiv |\bullet \circ \bullet \circ ...\rangle$, which is the state containing the maximal possible number of Rydberg excitations allowed by the blockade. The dynamics of domain wall density, where domain walls are defined as adjacent $|\circ\circ\rangle$ or $|\bullet\bullet\rangle$ configurations (the latter is excluded in the regime of perfect blockade), revealed long-time oscillations shown in Fig. 2a. Such robust oscillations were surprising, given that the state $|\mathbb{Z}_2\rangle$ is not a low-energy state, but rather corresponds to an infinite-temperature ensemble for the atoms in the Rydberg blockade. Thus the quench dynamics is not a priori limited to a small part of the energy spectrum, and cannot be attributed to weakly interacting low-energy excitations in the system. Moreover, the oscillations could not be explained by any known conservation law in the system, and their frequency did not coincide with the bare Rabi frequency, signalling the importance of many-body effects.

The experimental findings have been corroborated by theoretical studies of the idealized model of atoms in the Rydberg blockade – the so-called "PXP" model [13],

$$H_{\text{PXP}} = \sum_{i} P_{i-1} \sigma_i^x P_{i+1}. \tag{1}$$

Here $\sigma_i^x = |\circ\rangle_i \langle \bullet|_i + |\bullet\rangle_i \langle \circ|_i$ denotes the Pauli x matrix responsible for Rabi oscillations of an individual atom on site i, and projectors onto the ground state, $P_i = |\circ\rangle_i \langle \circ|_i$, enforce the Rydberg blockade and make the model interacting. Numerical studies have observed that the PXP energy levels repel, thus confirming that the model is non-integrable [9]. Further, simulations of the quench dynamics have demonstrated revivals of the wave function and local observables when the system is quenched from $|\mathbb{Z}_2\rangle$ state [14, 15] as well as the period-3 density wave state, $|\mathbb{Z}_3\rangle \equiv |\bullet \circ \bullet \bullet \circ \ldots\rangle$. In contrast, other initial states, such as $|0\rangle = |\circ \circ \circ \ldots\rangle$ state and period-4 density wave state, showed fast relaxation without revivals [16]. Similar phenomenology has also been identified in the two-dimensional PXP model [17, 18], and in re-

lated models of transverse Ising ladders [19] and the periodically driven PXP model [20–22]. This special behavior of the PXP model was found to be in general destroyed by perturbations which can make this model integrable [23], frustration-free [24] or thermalizing [16], although a certain degree of robustness was demonstrated with respect to disorder [25]. Moreover, it was argued that for weak perturbations the dynamical signatures of scars survive for parametrically long times [26].

An important step in understanding the origin of the observed oscillations was made by theoretical studies of manybody eigenstates of the PXP model. Fig. 2b reveals a number of "atypical" eigenstates in the spectrum of the PXP model, which are distinguished by their high overlap with the same $|\mathbb{Z}_2\rangle$ state used for initiating the quench in Fig. 2a. For a quantum-ergodic system, the ETH stipulates that these overlaps should be a smooth function of energy; by contrast, the strong enhancement of overlaps of certain eigenstates compared to others at the same energy E, seen in Fig. 2b, signals a breakdown of the ETH. This is a weak violation of the ETH since the number of special eigenstates was found to scale linearly with the number of atoms, in contrast to an exponentially larger number of thermalizing eigenstates. Moreover, the special eigenstates are "embedded" at roughly equidistant energies in an otherwise thermalizing spectrum of the PXP model, thus accounting for the dynamical revivals in Fig. 2a with a single dominant frequency. We note that various schemes for constructing some of these atypical eigenstates in the PXP model, both exact [27] and approximate [16, 28], have been devised.

The core phenomenology of the PXP model - the small number of ETH-violating eigenstates within the thermalizing spectrum and the presence of many-body revivals and slow relaxation in quenches from specific initial states - bears parallels with the physics of a single particle confined to a stadiumshaped billiard. In the latter case, the dynamics of a quantum wave packet is known to be sensitive to the initial conditions, which was attributed to the existence of unstable periodic orbits when the billiard is made classical by sending $\hbar \to 0$ (see Box 1). Initialization of a quantum wave packet on or near such an orbit leads to dynamical recurrences where the particle tends to cluster around the orbit, a phenomenon called quantum scarring [11]. Moreover, the periodic orbit leaves an imprint on the eigenfunctions of a particle, which exhibit anomalous concentration in the vicinity of the periodic orbit, rather than being spread uniformly across the billiard.

While the analogy between revivals in the PXP model and scars in billiards is indeed suggestive, making it more precise has required new theoretical insights. As we discuss below, these approaches have followed two complementary strands. The first approach, discussed in Section II, focuses on constructing non-thermal eigenstates in many-body quantum systems. This approach has been particularly fruitful in identifying a large family of scarred many-body systems, some of which were highlighted in Fig. 1. An alternative perspective, which focuses on parallels between quantum many-body dynamics and classical dynamical systems, will be discussed in Section III.

Box 1 | Scars in quantum billiards

What can we learn about the behavior of a quantum system by looking at its classical counterpart? The Bohr-Sommerfeld quantization demonstrates that classical integrable systems, such as harmonic oscillator or hydrogen atom, have very special quantum spectrum and eigenstates. For classically chaotic systems, such as the Bunimovich stadium in Fig. B1 below, this quantization method does not work. Typically, quantum counterparts of classically chaotic systems display level repulsion in their spectrum and their eigenstates look random. However, short periodic orbits may leave a strong imprint on the system's quantum dynamics and eigenstate properties – this effect is called "quantum scarring" [29]: A quantum eigenstate of a classically chaotic system has a 'scar' of a periodic orbit if its density on the classical invariant manifolds near the periodic orbit is enhanced over the statistically expected density. An example of such an orbit is the marginally stable, "bouncing ball" trajectory in Fig. B1b for which scarring can be rigorously proven; more strikingly, there is numerical evidence of scarring in certain unstable periodic orbits [11]. Scarring is a weak form of ergodicity breaking since the individual eigenstates of the billiard are "almost always" ergodic as the phase space area affected by scarring vanishes in the limit $\hbar \to 0$, shrinking around the orbit.

How does one detect scars? Most simply, by visualizing the wave function probability density, as in the case of Bunimovich stadium in Fig. B1c-d. The probability density can be directly compared with the corresponding classical orbits in Fig. B1a-b. Moreover, scars leave an imprint on the dynamics: a wave packet launched in the vicinity of a periodic orbit will tend to cluster around the orbit at later times, displaying larger return probability than a wave packet launched elsewhere in phase space. This is seen in the autocorrelation function in Fig. B1e. Furthermore, such a wave packet can be expanded over a small number of eigenstates that have approximately similar energy spacing – see Fig. B1f – in contrast to an arbitrary wave packet.

What is the significance of quantum scars? First, scars provide a counterexample to the intuitive expectation that every eigenstate of a classically chaotic system should locally look like random superposition of plane waves [30]. Second, also counterintuitively, a scarred quantum system appears more "regular" than its classical counterpart, since in the latter case there is no enhancement of density along the periodic orbit in the long-time limit. Finally, scars play a role in many experiments, including microwave cavities [31], semiconductor quantum wells [32], and the hydrogen atom in a magnetic field [33].

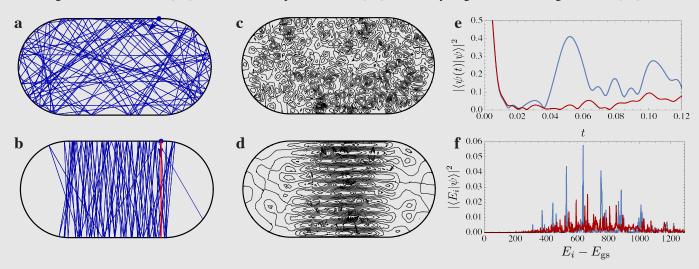


Figure B1 | **Scars in a stadium billiard. a:** Classical particle initialized away from a periodic trajectory displays chaotic motion. **b:** In contrast, when launched near a "bouncing ball" trajectory shown in red, the particle spends a long time in its vicinity before escaping. **c:** The probability density of a typical highly excited eigenstate of the billiard resembles a collection of random plane waves. **d:** Probability density of a quantum-scarred eigenstate looks very different from a collection of plane waves, instead being strongly concentrated near the periodic trajectory. The eigenstates of the billiard are obtained by solving the Schrödinger equation with the wave function vanishing at the boundary. **e-f:** Autocorrelation function of a Gaussian wave packet launched vertically at the center of billiard shows pronounced revivals (blue line) and the expansion of the initial state over the billiard eigenstates reveals a periodic sequence of peaks. In contrast, the wave packet launched at 45° angle does not revive and features a continuum of frequencies (red lines).

II. MECHANISMS OF WEAK ERGODICITY BREAKING

In recent works, non-thermal eigenstates have been theoretically identified in a plethora of non-integrable quantum models. A common trait of all these models is the emergence of a decoupled subspace within the many-body Hilbert space,

in general without any underlying symmetry, spanned by the non-thermal eigenstates. Formally, the Hamiltonian of such systems effectively decomposes into a block-diagonal form

$$H \approx H_{\rm scar} \bigoplus H_{\rm thermal},$$
 (2)

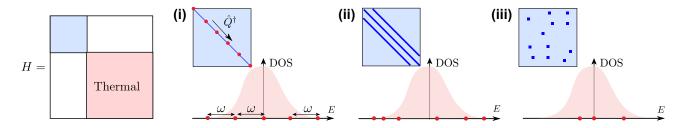


FIG. 3. Embeddings of scarred eigenstates in a many-body system. The Hamiltonian matrix H, acting on the full Hilbert space, is schematically split into the non-ergodic subspace (blue box) and the remaining thermal subspace (red box). Panels (i)-(iii) illustrate possible mechanisms underlying the emergence of the decoupled subspace. Density of states (DOS) schematically shows the positions of scarred eigenstates (red dots) within the continuum of thermalizing states. (i) Exact scars due to a spectrum generating algebra and the resulting eigenstates which are equidistant in energy. (ii) Exact Krylov subspace represented by a tridiagonal matrix. (iii) General subspace resulting from projector embedding. In any of these cases, the scarred subspace need not be *exactly* decoupled from the thermalizing bulk, like in the PXP model.

where $H_{\rm scar}$ is the block of the Hamiltonian acting on a scarred subspace which is (approximately, or even exactly) decoupled from the thermalizing subspace. The eigenstates that inhabit the scarred subspace where $H_{\rm scar}$ operates violate the ETH and have different properties compared to the much larger number of thermal eigenstates of $H_{\rm thermal}$. Below we elucidate and contrast three mechanisms (i)-(iii) that lead to such a decoupled subspace, whose summary is given in Fig. 3. These mechanisms are realized by diverse physical systems illustrated in Fig. 4.

(i) Spectrum-generating algebra. Highly-excited non-thermal eigenstates can be constructed systematically using the "spectrum generating algebras", originally introduced in the context of high energy physics [34] and subsequently applied to the Hubbard model [35, 36]. The first exact construction of many-body scarred eigenstates using this method has been achieved in the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [37], extending earlier work in Ref. [38].

Spectrum generating algebra is defined by a local operator \hat{Q}^{\dagger} which obeys $([H,\hat{Q}^{\dagger}]-\omega\hat{Q}^{\dagger})W=0$, where ω is some energy scale and W is a linear subspace of the full Hilbert space and invariant under Q^{\dagger} . Many-body scarring occurs when W is a *subset* of the entire Hilbert space and Q^{\dagger} is not associated with a symmetry of the Hamiltonian. Then, starting from some eigenstate $|\psi_0\rangle$ of H that belongs to the subspace W, the tower of states, $(\hat{Q}^{\dagger})^n|\psi_0\rangle$, are all eigenstates of H with energies $E_0+n\omega$. The eigenstates $(\hat{Q}^{\dagger})^n|\psi_0\rangle$ are many-body scars because their properties can be strongly non-thermal, assuming $|\psi_0\rangle$ is sufficiently "simple" (e.g., the ground state of H if the latter is gapped) and \hat{Q}^{\dagger} is a local operator (e.g., a sum of on-site spin flips in quantum spin chain models).

In many cases, \hat{Q}^{\dagger} has a physical interpretation of creating a quasiparticle excitation (e.g., a magnon), and repeated applications of \hat{Q}^{\dagger} create a condensate of such quasiparticles. In a class of frustration-free models which includes the AKLT [39], the quasiparticle condensates are exact eigenstates with finite energy density, thus violating the ETH. A convenient diagnostic for the ETH violation and identifying scarred eigenstates is the entanglement entropy S, i.e., the von Neumann entropy of the reduced density matrix describing a

subsystem of the full system in a given eigenstate. In ETH systems, the entanglement entropy of eigenstates scales extensively with the size of the subsystem. By contrast, scarred eigenstates have entanglement that increases only logarithmically with system size, thus they can be detected as entropyoutliers among the majority of eigenstates with volume-law entanglement, as seen in Fig. 4a for the AKLT model. Another important clue when looking for scarred eigenstates is that they appear at energies which are rational multiples of ω .

In related approaches, a tower of scarred eigenstates can be "engineered" starting with Q^{\dagger} which defines a symmetry of H and the subspace W coincides with the full Hilbert space. Adding a suitable perturbation which breaks this symmetry, at the same time annihilating the tower $(Q^{\dagger})^n |\psi_0\rangle$ leaves the latter states as true many-body scars in the perturbed model [45]. For example, in the Hubbard model Q^{\dagger} plays the role of an SU(2) "eta-pairing" symmetry [46], which is broken in the extended Hubbard model and gives way to many-body scars [47, 48]. A similar construction holds in a spin-1 XY magnet [40], which also hosts perfect wave function revivals from certain easily preparable initial states, as illustrated by its quantum fidelity, $|\langle \psi_0 | \psi(t) \rangle|^2$, in Fig. 4b. Further variations of the algebraic construction have been given for spin-1 magnets [49], a spin-1/2 model with emergent kinetic constraints [50], a spin chain with the dynamical Onsager algebra [51], and a two-dimensional frustrated spin-1/2 kagome antiferromagnet [52]. Recent works have provided a more general framework for the construction of nonthermalizing subspaces using group theory [53–55]. It has also been pointed out that spectrum generating algebra can arise in open quantum systems, e.g., in the presence of dissipation or periodic driving [56, 57].

Finally, the PXP model in Eq. (1) also realizes an embedded algebra, in this case an approximate su(2) spin algebra [58]. The spin raising operator H^+ creates a Rydberg excitation anywhere on the even sublattice and removes an excitation anywhere on the odd sublattice, while respecting the Rydberg constraint. Similarly, the spin lowering operator H^- performs the same process with the sublattices exchanged. The reason for this choice of H^\pm is that their commutator defines the z-projection of spin, $H^z\equiv \frac{1}{2}[H^+,H^-]$, for which $|\mathbb{Z}_2\rangle$

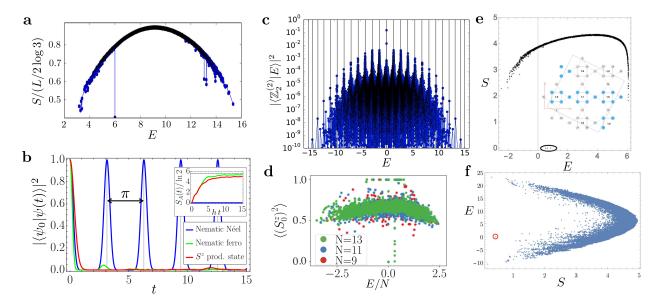


FIG. 4. **Mechanisms and physical realizations of weak ergodicity breaking. a-b**: Many-body scars due to spectrum generating algebras. **a:** Exact scars in the AKLT model distinguished by their low entanglement entropy S [37]. **b:** Perfect fidelity revival due to exact scars in a spin-1 XY magnet [40]. **c-d**: Krylov subspaces in fracton-like models. The model of the fractional quantum Hall effect on a thin cylinder [41] supports scarred eigenstates and revivals from a product state (**c**), while local observables in a spin-1 model with dipole conservation symmetry [42] weakly violate the ETH (**d**). **e-f**: Projector embedding of scarred states into thermalizing spectra. **e**: Geometrical frustration on a 2D square-kagome network (inset) allows to embed weakly-entangled states of localized magnons (circled) [43]. **f**: Stochastic deformations of topological models, such as the 1D cluster model, allows to embed scarred states (circled) [44]. The same method applies to 2D toric code and 3D X-cube models.

plays the role of the extremal weight state. In principle, using this construction, one could form the Casimir operator for the su(2) algebra and obtain the tower of non-thermal eigenstates by acting repeatedly with H^+ on the ground state of the Casimir, mirroring the general procedure outlined previously. However, this procedure is not analytically tractable due to the fact that the ground state of the Casimir operator is not known and the algebra of the PXP model is only approximate (recent works, however, have shown that weak deformations of the PXP model make the algebra and dynamical revivals progressively more accurate [58–60]). Instead, different schemes have been used to approximate scarred eigenstates in the PXP model starting from $|\mathbb{Z}_2\rangle$ product state [16, 61].

(ii) Krylov restricted thermalization. Spectrum generating algebra relies on the tower operator Q^{\dagger} to construct the non-thermalizing subspace. In practice, finding such operators is likely to be limited to cases where they can be expressed in a simple local form. We next describe a related mechanism for producing exactly embedded subspaces, which does not require a priori knowledge of Q^{\dagger} .

For a Hamiltonian H and some arbitrary vector in the Hilbert space, $|\psi_0\rangle$, the Krylov subspace, \mathcal{K} , is defined as a set of all vectors obtained by repeated action of H on $|\psi_0\rangle$, i.e., $\mathcal{K} = \mathrm{span}\{|\psi_0\rangle, H|\psi_0\rangle, H^2|\psi_0\rangle, \ldots\}$. In numerical linear algebra, subspace \mathcal{K} is routinely used in iterative methods for finding extremal eigenvalues of a large matrix H, such as the Arnoldi and Lanczos algorithms. A special case of particular interest is when \mathcal{K} happens to be finite, i.e., the sequence of Krylov vectors terminates after n+1 steps: $H^{n+1}|\psi_0\rangle=0$. This causes a dynamical "fracture" of the Hilbert space in the

sense that the Schrödinger dynamics initialized in any state $|\psi\rangle\in\mathcal{K}$ must remain within the same subspace at any later time, $\exp(-\frac{i}{\hbar}tH)|\psi\rangle\in\mathcal{K}$, hence the name "Krylov restricted thermalization" [62]. Note that \mathcal{K} can be as small as one-dimensional or exponentially large in system size, and it can be either integrable or thermalizing. By performing a Gram-Schmidt orthogonalization, we can transform \mathcal{K} into a tridiagonal matrix, which will be perfectly decoupled from the rest of the spectrum of H.

We distinguish the case of the Krylov subspace from the previous case of the algebra subspace because, in general, it can be difficult to analytically diagonalize the tridiagonal matrix and construct the corresponding \hat{Q}^{\dagger} . Note that a tridiagonal Krylov subspace does not guarantee revivals, even if the root state $|\psi_0\rangle$ is experimentally preparable. This is because general tridiagonal matrices do not support revivals, unless their matrix elements are tuned to special values. Moreover, depending on the model, the Krylov subspace may only be approximately decoupled, i.e., there may exist small matrix elements that connect it with the thermalizing bulk.

Realizations of Krylov subspaces occur in models of the fractional quantum Hall effect in a quasi one-dimensional limit [41] and in models of bosons with constrained hopping on optical lattices [63, 64]. In the former case, shown in Fig. 4c, \mathcal{K} is thermalizing but also supports scarred eigenstates and revivals from a particular density-wave product state. Scarred towers in overlaps with a density-wave state in Fig. 4c signal a weak ETH violation due to anomalous concentration of eigenstates in the Hilbert space, analogous to the case of PXP model in Fig. 2b.

More generally, the Krylov fracture was shown to be present in both Hamiltonian models [42] and random-circuits [65, 66] which feature a conservation of dipole moment – a symmetry characteristic of the so-called fracton topological phases. An example of weak breaking of the ETH in a one-dimensional fracton-like model [42] is shown in Fig. 4d, which shows the matrix elements of a local spin observable in the system's eigenstates. Once again, the large spread of these matrix elements and their nonmonotonic behavior as a function of energy indicate a weak violation of the ETH.

(iii) **Projector embedding.** At the highest level of abstraction, we can ask if one could embed an arbitrary subspace into the spectrum of a thermalizing system? This question had been independently explored by Shiraishi and Mori [67] in the context of systematic violations of strong ETH. More recently, the same "projector embedding" approach has turned out to be a fruitful method for constructing many-body scarred states in diverse models ranging from lattice supersymmetry [68] to flat bands [69].

For concreteness, assume we are given a certain set of states $|\psi_i\rangle$ that span our target scar subspace $H_{\rm scar} = {\rm span}\{|\psi_i\rangle\},$ which we wish to embed into a thermalizing Hamiltonian H as in Eq. (2). Projector embedding assumes that our target states $|\psi_i\rangle$, being non-thermal, are annihilated by local projectors, $P_i|\psi_i\rangle = 0$, for any i ranging over lattice sites 1, 2, ..., L. Next, consider a lattice Hamiltonian of the form $H = \sum_{i=1}^{L} P_i h_i P_i + H'$, where h_i are arbitrary operators that are have support on a finite number of sites around i, and $[H', P_i] = 0$ for all i. It follows that $P_i H |\psi_i\rangle = P_i H' |\psi_i\rangle =$ $H'P_i|\psi_i\rangle = 0$, such that subspace spanned by $|\psi_i\rangle$ is closed under the action of H. Therefore, H takes the desired block diagonal form in Eq. (2). The target eigenstates can in principle be embedded at arbitrarily high energies for a suitably chosen h_i and H', which also ensures that the model is overall non-integrable [67]. However, there is no guarantee that the embedded states must be equidistant in energy and they may even be degenerate, such that this scheme could produce models which do not exhibit wavefunction revivals.

Physical mechanisms such as geometrical frustration in correlated materials can implement the projector embedding. Fig. 4e shows an example of a 2D square-kagome lattice model, where scarred states representing localized magnons can be embedded into the highly-excited energy spectrum [43]. Moreover, projector embedding naturally lends itself to physical realization in various topologically-ordered lattice models [70], which are themselves defined in terms of projectors. Stochastic deformations of such models [44], which include the 2D toric code model and 3D X-cube model, can be used to embed scarred states, as shown in Fig. 4f.

In summary, we have presented three mechanisms (i)-(iii) that can give rise to non-thermal eigenstates in the spectrum of an otherwise thermalizing model. We emphasize that these mechanisms are not mutually exclusive, they rather underscore how weak ergodicity breaking is manifested in various models. The connections between different mechanisms are most saliently illustrated by the PXP model. The PXP model, with its generalizations to higher spins [10] and quan-

tum clock models [71], falls into category (i), yet its algebra is only *approximate*, and the subspace has weak couplings to the thermal bulk. In addition, the PXP model also realizes an *approximate* Krylov subspace built upon $|\mathbb{Z}_2\rangle$ state (the subspace becomes exact when generated by H^+). Finally, a single PXP eigenstate at zero energy in the middle of the spectrum can be viewed as projector-embedded AKLT ground state [72]. While similar connections between scarring mechanisms may be anticipated in other models mentioned above, their demonstration remains an open problem.

III. SCARS AND PERIODIC ORBITS IN MANY-BODY SYSTEMS

The term "quantum many-body scar" is nowadays commonly used to denote general non-thermal eigenstates embedded in the spectra of non-integrable systems like the ones we surveyed above. However, in order to justify the analogy with scars in quantum billiards, there should exist some notion of a classical trajectory underlying the non-thermal eigenstates. Finding such a trajectory, and more generally the classical counterpart of a many-body quantum system, is indeed one of the central goals of the field of quantum chaos. However, two commonly used methods - mean-field theory and large-N limit – are not expected to work for the majority of quantum models discussed in Section II, as these models have a small on-site Hilbert space, thus they are far away from the mean-field limit. Progress on this question has recently been achieved using a variational framework based on states that allow to incorporate entanglement, thus going beyond meanfield approaches. Below we briefly outline this method and discuss the new physical insights it allowed to obtain into the PXP model - the only available example at this stage. Afterwards we discuss the prospects of finding periodic trajectories in other scarred models and broader applications of the method beyond many-body scars.

Optimal projection of quantum dynamics onto a given variational manifold can be achieved by the time-dependent variational principle (TDVP) pioneered by Dirac [73]. The variational principle determines the best direction of evolution within the manifold, such that the difference between exact and projected dynamics is minimal – see Box 2 for details. TDVP has played an important role in studies of semiclassical dynamics [74], while in recent years it has been turned into a powerful computational tool for many-body systems by parametrizing the manifold via a family of the so-called matrix product states (MPS) [75]. The advantage of MPS parametrization is that it naturally extends mean field-like product states by incorporating non-trivial but finite range correlations. In particular, the results of unitary time evolution from the initial product state can be efficiently represented as an MPS state. This MPS framework has recently been extended into a path integral over "entanglement"-based degrees of freedom [76], and it has been used to calculate the diffusion coefficient in quantum many-body systems [77].

The ability of MPS states to incorporate entanglement made it an ideal tool to explore semiclassical dynamics of the PXP

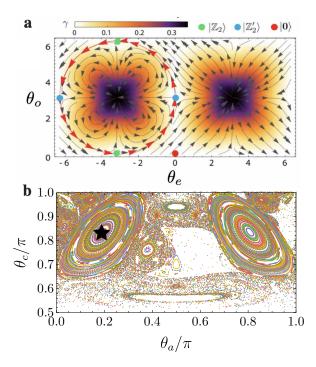


FIG. 5. Many-body scarring and periodic orbits in the semiclassical dynamics. a: Phase diagram obtained from the variational ansatz with two degrees of freedom reveals an unstable periodic trajectory, which is responsible for the revivals in the PXP model from $|\mathbb{Z}_2\rangle$ state [10]. Color scale shows quantum leakage which quantifies the instantaneous discrepancy between quantum and variational dynamics. b: Dynamical system with three angles $\theta_{a,b,c}$ results in a Poincaré section with many stable periodic trajectories (one of them denoted by the star) in centers of regular regions surrounded by the chaotic sea [78]. This classical dynamical system describes, e.g., quantum revivals from $|\mathbb{Z}_3\rangle$ initial state in the PXP model.

model, which involves non-local correlations due to the Rydberg blockade. The variational MPS approach is tailored to capture dynamics from the initial $|\mathbb{Z}_2\rangle$ state [10]. This state is a period-2 density wave, which can be described using a 2atom unit cell. The variational MPS state is parametrized by two angles, θ_o and θ_e that describe the state of Rydberg atoms on odd and even sites, respectively, so that $(\theta_o, \theta_e) = (0, \pi)$ and $(\theta_o, \theta_e) = (\pi, 0)$ correspond to $|\mathbb{Z}_2\rangle = |\bullet \circ \bullet \circ \ldots\rangle$ product state and its partner shifted by one lattice site, $|\mathbb{Z}_2'\rangle =$ | ○ ● ○ ● . . . \rangle. TDVP projection of dynamics on such MPS manifolds, discussed in Box 2, results in a system of classical non-linear equations which govern the evolution of the angles, $\partial_t \theta_{o,e} = f_{a,b}(\theta_o, \theta_e)$. The resulting phase portrait in Fig. 5a reveals a periodic trajectory which passes through $|\mathbb{Z}_2\rangle$ and $|\mathbb{Z}_2'\rangle$ states, thereby explaining the revivals in the PXP model from a period-2 density wave state. The so-called quantum leakage (see Box 2), quantifies the discrepancy between quantum and variational dynamics and remains low in the vicinity of the classical trajectory in Fig. 5a, thus justifying the existence of revivals in the quantum evolution.

Finding the classical trajectory behind quantum revivals from $|\mathbb{Z}_2\rangle$ state provided a complementary picture behind weak ergodicity breaking by eigenstates of the PXP model.

This variational approach was also extended to capture quantum dynamics for PXP model from more complicated initial states or in higher dimensions [78]. In particular, an MPS variational ansatz with three angles θ_a , a = 1, 2, 3, was used to study dynamics from period-3 density wave state, $|\mathbb{Z}_3\rangle =$ | • ○ ○ . . . \rangle. TDVP projection of quantum dynamics onto such an MPS manifold gave rise to a three-dimensional dynamical system, whose Poincaré sections are shown in Fig. 5b. A prominent feature of this dynamical system was the existence of mixed phase space - the coexistence of classical chaotic regions with regions of stable motion, the so-called Kolmogorov-Arnold-Moser (KAM) tori [79]. The KAM tori host stable periodic orbits in their centers (one such orbit is shown by the star in Fig. 5b). This provides a practical way of finding the most non-ergodic initial state with period-3 translation invariance. Furthermore, one may expect that the robustness of classical KAM tori to weak deformations may be used to infer the stability of the corresponding quantum model to local perturbations. The mapping of quantum dynamics onto a classical dynamical system via TDVP suggests an intriguing direction for extending the KAM theorem to quantum systems, in a way that complements other recent attempts based on weakly-broken quantum integrability [80].

The existence of classical periodic trajectories underlying quantum revivals in the PXP model calls for exploration of semiclassical dynamics in other scarred models discussed in Section II. While the projector-based embedding scenario (iii) is, in general, unlikely to have underlying periodic trajectories, for models with the spectrum generating algebra (i) one could imagine constructing a variational subspace using properties of Q^{\dagger} -operator. Such a construction of classical periodic trajectories in a broader family of models could in principle be used as a finer classification scheme for models displaying weak ETH violation in their eigenstate properties.

Box 2 | Variational method for quantum many-body scars

Optimal projection of quantum dynamics onto a given variational manifold \mathcal{M} , parametrized as $|\psi(z)\rangle$, can be achieved by the time-dependent variational principle (TDVP). The variational principle determines the best direction of evolution within the manifold, $\dot{z}\partial_z|\psi\rangle$, such that the difference between exact and projected dynamics is minimal, $\gamma^2=|\dot{z}\partial_z|\psi\rangle+iH|\psi\rangle|^2$. Quantity γ^2 is called quantum leakage and quantifies the instantaneous disagreement between quantum dynamics and its projection. In order to capture quantum many-body dynamics, the manifold can be parametrized by matrix product states (MPS), whose bond dimension controls the amount of entanglement generated during time evolution [75]. The semiclassical dynamics emerges naturally in this approach by keeping the bond dimension of the MPS to be small, allowing to systematically go beyond the mean-field description.

While the TDVP approach can be applied to any quantum system, its application to the PXP model with MPS of bond dimension 2 results in a particularly elegant and analytically-tractable classical dynamical system [10]. In order to describe coherent many-body oscillations in the PXP model, inspired

by the mean-field picture, one may attempt to use the manifold of product states, ... $(\cos \theta_e | \circ \rangle + \sin \theta_e | \bullet \rangle)(\cos \theta_o | \circ \rangle +$ $\sin \theta_o | \bullet \rangle$)..., parametrized by two degrees of freedom – the angles, θ_e and θ_o . These angles describe the state of atoms on even and odd sites in the chain. However, such a state violates the Rydberg blockade condition. Instead, the Rydberg constraint can be satisfied in the MPS manifold where one assigns the tensor $A^{|\bullet\rangle} = \sigma^+$ to the $|\bullet\rangle$ state. Property $A^{|\bullet\rangle} \cdot A^{|\bullet\rangle} = (\sigma^+)^2 = 0$ of Pauli raising operators $\sigma^{+}=(\sigma^{x}+i\sigma^{y})/2$ guarantees that the weight of configurations with any two adjacent states $|\bullet \bullet\rangle$ vanishes. Application of TDVP to such states results in the system of classical nonlinear differential equations for $\theta_{e,o}$. Such a mapping of quantum dynamics onto a classical dynamical system provides an alternative perspective on QMBS and establishes close analogy to their classical counterparts, see Box 1, in essence providing an alternative notion of a semiclassical limit. Finding suitable manifolds and extending this approach to dynamics in other models that have non-thermal eigenstates remains an outstanding open problem.

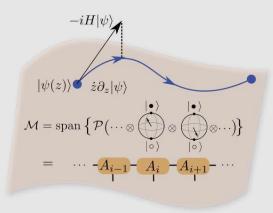


Figure B2 | Variational method for quantum many-body scars. Time-dependent variational principle captures the optimal projection of quantum dynamics onto a given variational manifold. The studies of PXP model use matrix product states (MPS) as a variational manifold, where each atom is described by a single angle. The presence of the Rydberg blockade, implemented by projector \mathcal{P} , results in entanglement, which requires a bond dimension 2 of MPS tensors, A_i .

IV. PERSPECTIVE

Recent studies of quantum many-body scars and related phenomena, described in this article, have revealed a new kind of dynamical behavior in many-body systems – weak ergodicity breaking. The defining feature of weak ergodicity breaking is strong dependence of relaxation dynamics on the system's initial configuration. In contrast to conventional ergodic systems, certain many-body states are long-lived, exhibiting parametrically slow relaxation, as opposed to other initial configurations that thermalize quickly. These findings

have pointed out that ETH, in its strong form, does not apply to a large class of systems that host anomalous, non-thermal eigenstates, and exhibit long-time coherent dynamics.

The discovery of quantum many-body scars serves as a reminder that the understanding of thermalization and chaos in quantum many-body systems is far from complete and requires building a more elaborate theory and the accompanying methodological toolbox. The eigenstate description of quantum many-body scars revealed a common pattern in different families of scarred systems – an emergent decoupled subspace within the full many-body Hilbert space. While we presented a few mechanisms that could underlie the existence of such a non-thermal subspace, it is desirable to build their complete classification and find robust diagnostics of QMBS beyond entanglement entropy. In particular, more work is needed to understand the precise connection between many-body scarring and two broad classes of weak ergodicity breaking phenomena: theories with confinement [81-85] and lattice gauge theories [86–88]. The latter, in particular the one-dimensional quantum link model, which has recently been realized in a Bose-Hubbard quantum simulator [89], have intriguing connections with the PXP model [90], and it would be interesting to explore possible connections in higher dimensions [91]. If accomplished, the classification of non-thermal subspaces could shed light on the physical mechanisms that lead to quantum many-body scars. Empirically, kinetically-constrained systems appear to be especially likely to host quantum manybody scars, hence it would be important to understand the role of dynamical constraints which can lead to glassy-like dynamics [92-96].

More generally, the variational approach to scarred dynamics complements recent efforts in understanding parallels between classical chaos measures, on the one hand, and thermalizing quantum dynamics and its underlying transport coefficients on the other hand [77, 97]. While many-body scarred models are quantum chaotic, their properties deviate from other chaotic models such as the Sachdev-Ye-Kitaev (SYK) model [98, 99], which has attracted much attention as the fastest scrambler of quantum information [100]. Such deviations could be identified and studied more systematically using the variational approach and its resulting mixed phase portraits, which appear to be a generic feature of local Hamiltonians. Armed with a better understanding of quantum leakage from the variational manifold, this method could be used to detect atypical behavior and absence of maximal scrambling in general models that do not have an obvious large-Nlimit. One of the ultimate future challenges is to bring together this approach to real-time dynamics with approaches targeting directly the properties of many-body eigenstates. This challenge may be attacked using quantum information techniques, which, for example, allow one to link revivals and eigenstate properties [101]. Related techniques, as well those used to bound relaxation times from below in prethermal systems, may give crucial insights into the response of QMBS to perturbations, and their dynamics at long times.

Finally, there is strong experimental and practical interest in quantum many-body scars. Many-body scarred revivals provide a mechanism for maintaining coherence, despite the presence of interactions which normally scramble local quantum information. In particular, scars in Rydberg chains - so far the main experimental realization of the phenomenon have already been utilized for the preparation of specific entangled states [102]. This application made use of quantum control based on the variational TDVP approach and its identification of entangled periodic trajectories that simultaneously have small quantum leakage. This suggests that scars may have wider range of applications, for example in protected state transfer on quantum networks or in quantum sensing. Such applications require deeper theoretical understanding of the effects that protect the coherence of scars, as well as the development of general experimental techniques for creating them on demand, e.g., using periodic driving in Rydberg arrays [103], pumping protocols in dipolar Bose gases [104] or by tilting the Fermi-Hubbard model [105]. Looking back at the field of single-particle scars, which have been realized in a multitude of experimental settings, one may also expect many-body quantum scars to be relevant to a much broader family of quantum simulators beyond Rydberg atoms and perhaps even in solid state materials. In all these platforms, quantum many-body scars may serve as a vehicle for controlling and manipulating many-body states, which may prove useful in a range of quantum technology applications. At this stage, the new field of weakly broken ergodicity is still at its infancy, and experimental progress will undoubtedly yield more surprises in the near future.

V. ACKNOWLEDGEMENTS

We are grateful to our collaborators Kieran Bull, Soonwon Choi, Jean-Yves Desaules, Wen Wei Ho, Ana Hudomal, Misha Lukin, Ivar Martin, Hannes Pichler, Nicolas Regnault, Ivana Vasić, and in particular Alexios Michailidis and Christopher Turner, without whom this work would not have been possible. Moreover, we benefited from useful discussions with Ehud Altman, B. Andrei Bernevig, Anushya Chandran, Paul Fendley, Vedika Khemani, and Lesik Motrunich. M.S. was supported by European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 850899). D.A. was supported by the Swiss National Science Foundation and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program. Z.P. acknowledges support by the Leverhulme Trust Research Leadership Award RL-2019-015.

VI. COMPETING INTERESTS

The authors declare no competing interests.

- [1] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène, "Quantum simulations with ultracold quantum gases," Nature Physics **8**, 267–276 (2012).
- [2] I. M. Georgescu, S. Ashhab, and Franco Nori, "Quantum simulation," Rev. Mod. Phys. **86**, 153–185 (2014).
- [3] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss, "A quantum Newton's cradle," Nature 440, 900–903 (2006).
- [4] Rahul Nandkishore and David A. Huse, "Many-body localization and thermalization in quantum statistical mechanics," Annual Review of Condensed Matter Physics 6, 15–38 (2015).
- [5] Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn, "Colloquium: Many-body localization, thermalization, and entanglement," Rev. Mod. Phys. 91, 021001 (2019).
- [6] J. M. Deutsch, "Quantum statistical mechanics in a closed system," Phys. Rev. A 43, 2046–2049 (1991).
- [7] Mark Srednicki, "Chaos and quantum thermalization," Phys. Rev. E 50, 888–901 (1994).
- [8] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, "Probing many-body dynamics on a 51-atom quantum simulator," Nature 551, 579–584 (2017)
- [9] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, "Weak ergodicity breaking from quantum manybody scars," Nature Physics 14, 745–749 (2018).
- [10] Wen Wei Ho, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin, "Periodic orbits, entanglement, and quantum manybody scars in constrained models: Matrix product state approach," Phys. Rev. Lett. 122, 040603 (2019).

- [11] Eric J. Heller, "Bound-state eigenfunctions of classically chaotic hamiltonian systems: Scars of periodic orbits," Phys. Rev. Lett. 53, 1515–1518 (1984).
- [12] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain de Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys, "Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models," Nature 534, 667–670 (2016).
- [13] Igor Lesanovsky and Hosho Katsura, "Interacting Fibonacci anyons in a Rydberg gas," Phys. Rev. A 86, 041601 (2012).
- [14] B. Sun and F. Robicheaux, "Numerical study of two-body correlation in a 1d lattice with perfect blockade," New Journal of Physics 10, 045032 (2008).
- [15] B. Olmos, M. Müller, and I. Lesanovsky, "Thermalization of a strongly interacting 1d Rydberg lattice gas," New Journal of Physics 12, 013024 (2010).
- [16] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, "Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations," Phys. Rev. B 98, 155134 (2018).
- [17] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, "Stabilizing two-dimensional quantum scars by deformation and synchronization," Phys. Rev. Research 2, 022065 (2020).
- [18] Cheng-Ju Lin, Vladimir Calvera, and Timothy H. Hsieh, "Quantum many-body scar states in two-dimensional Rydberg atom arrays," Phys. Rev. B 101, 220304 (2020).
- [19] Bart van Voorden, Jiří Minář, and Kareljan Schoutens, "Quantum many-body scars in transverse field Ising ladders and beyond," Phys. Rev. B 101, 220305 (2020).

- [20] Sho Sugiura, Tomotaka Kuwahara, and Keiji Saito, "Many-body scar state intrinsic to periodically driven system," Phys. Rev. Research 3, L012010 (2021).
- [21] Kaoru Mizuta, Kazuaki Takasan, and Norio Kawakami, "Exact Floquet quantum many-body scars under Rydberg blockade," Phys. Rev. Research 2, 033284 (2020).
- [22] Bhaskar Mukherjee, Sourav Nandy, Arnab Sen, Diptiman Sen, and K. Sengupta, "Collapse and revival of quantum many-body scars via Floquet engineering," Phys. Rev. B 101, 245107 (2020).
- [23] Paul Fendley, K. Sengupta, and Subir Sachdev, "Competing density-wave orders in a one-dimensional hard-boson model," Phys. Rev. B 69, 075106 (2004).
- [24] Igor Lesanovsky, "Liquid ground state, gap, and excited states of a strongly correlated spin chain," Phys. Rev. Lett. 108, 105301 (2012).
- [25] Ian Mondragon-Shem, Maxim G. Vavilov, and Ivar Martin, "The fate of quantum many-body scars in the presence of disorder," (2020), arXiv:2010.10535 [cond-mat.quant-gas].
- [26] Cheng-Ju Lin, Anushya Chandran, and Olexei I. Motrunich, "Slow thermalization of exact quantum many-body scar states under perturbations," Phys. Rev. Research 2, 033044 (2020).
- [27] Cheng-Ju Lin and Olexei I. Motrunich, "Exact quantum manybody scar states in the Rydberg-blockaded atom chain," Phys. Rev. Lett. 122, 173401 (2019).
- [28] Thomas Iadecola, Michael Schecter, and Shenglong Xu, "Quantum many-body scars from magnon condensation," Phys. Rev. B 100, 184312 (2019).
- [29] E. J. Heller, "Wavepacket dynamics and quantum chaology," in *Chaos and quantum physics*, Vol. 52 (North-Holland: Amsterdam, 1991).
- [30] M. V. Berry, in *Chaotic Behaviour of Deterministic Systems*, Vol. 36, edited by Alain Chenciner, Anthony Patera, Daniel D Joseph, Robert McCredie May, Sheldon E Newhouse, Joseph Albert Libchaber, Jean-Pierre Eckmann, Jerry P Gollub, Michel Hénon, Michał Misiurewicz, *et al.* (North-Holland, 1983).
- [31] S. Sridhar, "Experimental observation of scarred eigenfunctions of chaotic microwave cavities," Phys. Rev. Lett. 67, 785–788 (1991).
- [32] P. B. Wilkinson, T. M. Fromhold, L. Eaves, F. W. Sheard, N. Miura, and T. Takamasu, "Observation of 'scarred' wavefunctions in a quantum well with chaotic electron dynamics," Nature 380, 608–610 (1996).
- [33] D. Wintgen and A. Hönig, "Irregular wave functions of a hydrogen atom in a uniform magnetic field," Phys. Rev. Lett. 63, 1467–1470 (1989).
- [34] Bohm Arno, Asim Orhan Barut, et al., Dynamical groups and spectrum generating algebras, Vol. 1 (World Scientific, 1988).
- [35] Chen Ning Yang, "η pairing and off-diagonal long-range order in a Hubbard model," Phys. Rev. Lett. **63**, 2144–2147 (1989).
- [36] Shoucheng Zhang, "Pseudospin symmetry and new collective modes of the Hubbard model," Phys. Rev. Lett. 65, 120–122 (1990).
- [37] Sanjay Moudgalya, Nicolas Regnault, and B. Andrei Bernevig, "Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis," Phys. Rev. B 98, 235156 (2018).
- [38] Daniel P. Arovas, "Two exact excited states for the s=1 AKLT chain," Physics Letters A 137, 431–433 (1989).
- [39] Sanjay Moudgalya, Edward O'Brien, B. Andrei Bernevig, Paul Fendley, and Nicolas Regnault, "Large classes of quantum scarred Hamiltonians from matrix product states," Phys.

- Rev. B 102, 085120 (2020).
- [40] Michael Schecter and Thomas Iadecola, "Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets," Phys. Rev. Lett. 123, 147201 (2019).
- [41] Sanjay Moudgalya, B. Andrei Bernevig, and Nicolas Regnault, "Quantum many-body scars in a Landau level on a thin torus," Phys. Rev. B **102**, 195150 (2020).
- [42] Pablo Sala, Tibor Rakovszky, Ruben Verresen, Michael Knap, and Frank Pollmann, "Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians," Phys. Rev. X 10, 011047 (2020).
- [43] Paul A. McClarty, Masudul Haque, Arnab Sen, and Johannes Richter, "Disorder-free localization and many-body quantum scars from magnetic frustration," Phys. Rev. B 102, 224303 (2020).
- [44] Seulgi Ok, Kenny Choo, Christopher Mudry, Claudio Castelnovo, Claudio Chamon, and Titus Neupert, "Topological many-body scar states in dimensions one, two, and three," Phys. Rev. Research 1, 033144 (2019).
- [45] Daniel K. Mark, Cheng-Ju Lin, and Olexei I. Motrunich, "Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models," Phys. Rev. B 101, 195131 (2020).
- [46] Oskar Vafek, Nicolas Regnault, and B. Andrei Bernevig, "Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension," SciPost Phys. 3, 043 (2017).
- [47] Sanjay Moudgalya, Nicolas Regnault, and B. Andrei Bernevig, "η-pairing in Hubbard models: From spectrum generating algebras to quantum many-body scars," Phys. Rev. B **102**, 085140 (2020).
- [48] Daniel K. Mark and Olexei I. Motrunich, "η-pairing states as true scars in an extended Hubbard model," Phys. Rev. B 102, 075132 (2020).
- [49] Sambuddha Chattopadhyay, Hannes Pichler, Mikhail D. Lukin, and Wen Wei Ho, "Quantum many-body scars from virtual entangled pairs," Phys. Rev. B 101, 174308 (2020).
- [50] Thomas Iadecola and Michael Schecter, "Quantum manybody scar states with emergent kinetic constraints and finiteentanglement revivals," Phys. Rev. B 101, 024306 (2020).
- [51] Naoyuki Shibata, Nobuyuki Yoshioka, and Hosho Katsura, "Onsager's scars in disordered spin chains," Phys. Rev. Lett. 124, 180604 (2020).
- [52] Kyungmin Lee, Ronald Melendrez, Arijeet Pal, and Hitesh J. Changlani, "Exact three-colored quantum scars from geometric frustration," Phys. Rev. B 101, 241111 (2020).
- [53] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov, "Many-body scars as a group invariant sector of Hilbert space," Phys. Rev. Lett. 125, 230602 (2020).
- [54] Jie Ren, Chenguang Liang, and Chen Fang, "Quasisymmetry groups and many-body scar dynamics," arXiv preprint arXiv:2007.10380 (2020).
- [55] Nicholas O'Dea, Fiona Burnell, Anushya Chandran, and Vedika Khemani, "From tunnels to towers: Quantum scars from Lie algebras and *q*-deformed Lie algebras," Phys. Rev. Research **2**, 043305 (2020).
- [56] Berislav Buča, Joseph Tindall, and Dieter Jaksch, "Nonstationary coherent quantum many-body dynamics through dissipation," Nature Communications 10, 1730 (2019).
- [57] J. Tindall, B. Buča, J. R. Coulthard, and D. Jaksch, "Heating-induced long-range η pairing in the Hubbard model," Phys. Rev. Lett. **123**, 030603 (2019).
- [58] Soonwon Choi, Christopher J. Turner, Hannes Pichler, Wen Wei Ho, Alexios A. Michailidis, Zlatko Papić, Maksym Serbyn, Mikhail D. Lukin, and Dmitry A. Abanin, "Emergent

- su(2) dynamics and perfect quantum many-body scars," Phys. Rev. Lett. **122**, 220603 (2019).
- [59] Vedika Khemani, Chris R. Laumann, and Anushya Chandran, "Signatures of integrability in the dynamics of Rydberg-blockaded chains," Phys. Rev. B 99, 161101 (2019).
- [60] Kieran Bull, Jean-Yves Desaules, and Zlatko Papić, "Quantum scars as embeddings of weakly broken Lie algebra representations," Phys. Rev. B 101, 165139 (2020).
- [61] Christopher J. Turner, Jean-Yves Desaules, Kieran Bull, and Zlatko Papić, "Correspondence principle for many-body scars in ultracold Rydberg atoms," (2020), arXiv:2006.13207 [quant-ph].
- [62] Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, and B Andrei Bernevig, "Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian," arXiv e-prints (2019), arXiv:1910.14048 [cond-mat.strel].
- [63] Ana Hudomal, Ivana Vasić, Nicolas Regnault, and Zlatko Papić, "Quantum scars of bosons with correlated hopping," Communications Physics 3, 99 (2020).
- [64] Hongzheng Zhao, Joseph Vovrosh, Florian Mintert, and Johannes Knolle, "Quantum many-body scars in optical lattices," Phys. Rev. Lett. 124, 160604 (2020).
- [65] Shriya Pai and Michael Pretko, "Dynamical scar states in driven fracton systems," Phys. Rev. Lett. 123, 136401 (2019).
- [66] Vedika Khemani, Michael Hermele, and Rahul Nandkishore, "Localization from Hilbert space shattering: From theory to physical realizations," Phys. Rev. B 101, 174204 (2020).
- [67] Naoto Shiraishi and Takashi Mori, "Systematic construction of counterexamples to the eigenstate thermalization hypothesis," Phys. Rev. Lett. 119, 030601 (2017).
- [68] Federica Maria Surace, Giuliano Giudici, and Marcello Dalmonte, "Weak-ergodicity-breaking via lattice supersymmetry," Quantum 4, 339 (2020).
- [69] Yoshihito Kuno, Tomonari Mizoguchi, and Yasuhiro Hatsugai, "Flat band quantum scar," Phys. Rev. B 102, 241115 (2020).
- [70] Julia Wildeboer, Alexander Seidel, N. S. Srivatsa, Anne E. B. Nielsen, and Onur Erten, "Topological quantum manybody scars in quantum dimer models on the kagome lattice," (2020), arXiv:2009.00022 [cond-mat.str-el].
- [71] Kieran Bull, Ivar Martin, and Z. Papić, "Systematic construction of scarred many-body dynamics in 1d lattice models," Phys. Rev. Lett. **123**, 030601 (2019).
- [72] Naoto Shiraishi, "Connection between quantum-many-body scars and the Affleck-Kennedy-Lieb-Tasaki model from the viewpoint of embedded Hamiltonians," Journal of Statistical Mechanics: Theory and Experiment 2019, 083103 (2019).
- [73] P. A. M. Dirac, "Note on exchange phenomena in the Thomas atom," Mathematical Proceedings of the Cambridge Philosophical Society 26, 376–385 (1930).
- [74] Eric J. Heller, "Time dependent variational approach to semiclassical dynamics," The Journal of Chemical Physics **64**, 63– 73 (1976).
- [75] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete, "Time-dependent variational principle for quantum lattices," Phys. Rev. Lett. 107, 070601 (2011).
- [76] A. G. Green, C. A. Hooley, J. Keeling, and S. H. Si-mon, "Feynman path integrals over entangled states," (2016), arXiv:1607.01778 [cond-mat.str-el].
- [77] Eyal Leviatan, Frank Pollmann, Jens H. Bardarson, David A. Huse, and Ehud Altman, "Quantum thermalization dynamics with matrix-product states," (2017), arXiv:1702.08894 [cond-

- mat.stat-mech].
- [78] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, "Slow quantum thermalization and many-body revivals from mixed phase space," Phys. Rev. X 10, 011055 (2020).
- [79] Vladimir Igorevich Arnol'd, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
- [80] G. P. Brandino, J.-S. Caux, and R. M. Konik, "Glimmers of a quantum KAM theorem: Insights from quantum quenches in one-dimensional Bose gases," Phys. Rev. X 5, 041043 (2015).
- [81] Rahul M. Nandkishore and S. L. Sondhi, "Many-body localization with long-range interactions," Phys. Rev. X 7, 041021 (2017).
- [82] Marton Kormos, Mario Collura, Gabor Takács, and Pasquale Calabrese, "Real-time confinement following a quantum quench to a non-integrable model," Nature Physics 13, 246– 249 (2017).
- [83] Neil J. Robinson, Andrew J. A. James, and Robert M. Konik, "Signatures of rare states and thermalization in a theory with confinement," Phys. Rev. B 99, 195108 (2019).
- [84] Zhi-Cheng Yang, Fangli Liu, Alexey V. Gorshkov, and Thomas Iadecola, "Hilbert-space fragmentation from strict confinement," Phys. Rev. Lett. 124, 207602 (2020).
- [85] Olalla A. Castro-Alvaredo, Máté Lencsés, István M. Szécsényi, and Jacopo Viti, "Entanglement oscillations near a quantum critical point," Phys. Rev. Lett. 124, 230601 (2020).
- [86] Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe, and Elisa Ercolessi, "Real Time Dynamics and Confinement in the \mathbb{Z}_n Schwinger-Weyl lattice model for 1+1 QED," Quantum 4, 281 (2020).
- [87] Titas Chanda, Jakub Zakrzewski, Maciej Lewenstein, and Luca Tagliacozzo, "Confinement and lack of thermalization after quenches in the bosonic Schwinger model," Phys. Rev. Lett. 124, 180602 (2020).
- [88] Umberto Borla, Ruben Verresen, Fabian Grusdt, and Sergej Moroz, "Confined phases of one-dimensional spinless fermions coupled to Z_2 gauge theory," Phys. Rev. Lett. **124**, 120503 (2020).
- [89] Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan, "Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator," Nature 587, 392–396 (2020).
- [90] Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte, "Lattice gauge theories and string dynamics in Rydberg atom quantum simulators," Phys. Rev. X 10, 021041 (2020).
- [91] Alessio Celi, Benoît Vermersch, Oscar Viyuela, Hannes Pichler, Mikhail D. Lukin, and Peter Zoller, "Emerging two-dimensional gauge theories in Rydberg configurable arrays," Phys. Rev. X 10, 021057 (2020).
- [92] Nicola Pancotti, Giacomo Giudice, J. Ignacio Cirac, Juan P. Garrahan, and Mari Carmen Bañuls, "Quantum East model: Localization, nonthermal eigenstates, and slow dynamics," Phys. Rev. X 10, 021051 (2020).
- [93] Sthitadhi Roy and Achilleas Lazarides, "Strong ergodicity breaking due to local constraints in a quantum system," Phys. Rev. Research 2, 023159 (2020).
- [94] Zhihao Lan, Merlijn van Horssen, Stephen Powell, and Juan P. Garrahan, "Quantum slow relaxation and metastability due to dynamical constraints," Phys. Rev. Lett. 121, 040603 (2018).
- [95] Johannes Feldmeier, Frank Pollmann, and Michael Knap, "Emergent glassy dynamics in a quantum dimer model," Phys.

- Rev. Lett. 123, 040601 (2019).
- [96] Oliver Hart, Giuseppe De Tomasi, and Claudio Castelnovo, "From compact localized states to many-body scars in the random quantum comb," Phys. Rev. Research 2, 043267 (2020).
- [97] A. Hallam, J. G. Morley, and A. G. Green, "The Lyapunov spectra of quantum thermalisation," Nature Communications 10, 2708 (2019).
- [98] Subir Sachdev and Jinwu Ye, "Gapless spin-fluid ground state in a random quantum Heisenberg magnet," Phys. Rev. Lett. 70, 3339–3342 (1993).
- [99] A Kitaev, "A simple model of quantum holography, talk at KITP," University of California, Santa Barbara USA 7 (2015).
- [100] Juan Maldacena, Stephen H. Shenker, and Douglas Stanford, "A bound on chaos," Journal of High Energy Physics 2016, 106 (2016).
- [101] Álvaro M. Alhambra, Anurag Anshu, and Henrik Wilming, "Revivals imply quantum many-body scars," Phys. Rev. B 101, 205107 (2020).
- [102] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco,

- M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, "Generation and manipulation of Schrödinger cat states in Rydberg atom arrays," Science **365**, 570–574 (2019).
- [103] Dolev Bluvstein, Ahmed Omran, Harry Levine, Alexander Keesling, Giulia Semeghini, Sepehr Ebadi, Tout T. Wang, Alexios A. Michailidis, Nishad Maskara, Wen Wei Ho, Soonwon Choi, Maksym Serbyn, Markus Greiner, Vladan Vuletic, and Mikhail D. Lukin, "Controlling many-body dynamics with driven quantum scars in Rydberg atom arrays," arXiv eprints, arXiv:2012.12276 (2020), arXiv:2012.12276 [quantph].
- [104] Wil Kao, Kuan-Yu Li, Kuan-Yu Lin, Sarang Gopalakrishnan, and Benjamin L. Lev, "Creating quantum many-body scars through topological pumping of a 1d dipolar gas," (2020), arXiv:2002.10475 [cond-mat.quant-gas].
- [105] Sebastian Scherg, Thomas Kohlert, Pablo Sala, Frank Pollmann, Bharath H. M., Immanuel Bloch, and Monika Aidelsburger, "Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains," (2020), arXiv:2010.12965 [cond-mat.quant-gas].