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Abstract  

Background: Various prognostic models for mortality prediction following ST-segment elevation 

myocardial infarction (STEMI) have been developed over the past two decades. Our group has 

previously demonstrated that machine learning (ML)-based models can outperform known risk 

scores for 30-day mortality post-STEMI. The study aimed to redevelop an ML-based random 

forest prediction model for 30-day mortality post-STEMI and externally validate it on a large 

cohort.  

Methods: This was a retrospective, supervised learning, data mining study developed on the 

Acute Coronary Syndrome Israeli Survey (ACSIS) registry and the Myocardial Ischemia 

National Audit Project (MINAP) for external validation. Patients included received reperfusion 

therapy for STEMI between 2006 and 2016. Discrimination and calibration performances were 

assessed for two developed models and compared with the Global Registry of Acute Cardiac 

Events (GRACE) score. 

Results: The ACSIS cohort (2,782 included /15,212 total) and MINAP cohort (22,693 

included/735,000 total) were significantly different in most variables, yet similar in 30-day 

mortality rate (4.3-4.4%). Random forest models were developed on the ACSIS cohort with a 

full model including all 32 variables and a simple model including the 10 most important ones. 

Features’ importance was calculated using the varImp function measuring how much each 

feature contributes to the data's homogeneity. Applying the optimized models on the MINAP 

validation cohort showed high discrimination of area under the curve (AUC)=0.804 (0.786-
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0.822) for the full model, and AUC=0.787 (0.748-0.780) using the simple model, compared with 

the GRACE risk score discrimination of AUC=0.764 (0.748-0.780). All models were not well 

calibrated for the MINAP data. Following Platt scaling on 20% of the MINAP data, the random 

forest models calibration improved while the GRACE calibration did not change. 

Conclusions: The random forest predictive model for 30-day mortality post STEMI, developed 

on the ACSIS national registry, has been validated in the MINAP large external cohort and can 

be applied early at admission for risk stratification. The model performed better than the 

commonly used GRACE score. Furthermore, to the best of our knowledge, this is the first 

externally validated ML-based model for STEMI.  
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1. Introduction 

The treatment of acute ST-segment elevation myocardial infarction (STEMI) has undergone 

significant advances in recent years [1-5]. Rates of 30-day mortality following STEMI range 

between 2.7% and 8% [6]. Most patients benefit from early hospital discharge. However, some 

may suffer considerable morbidity and mortality [7-9].  

Various prognostic models for mortality prediction following STEMI have been developed over 

the past two decades. The Thrombolysis in Myocardial Infarction (TIMI) risk score was 

originally focused on the 30-day mortality after thrombolysis [10]. Subsequently, it was 

validated for STEMI patients treated by primary PCI [11]. The Zwolle score was created to 

predict 30-day mortality to identify low-risk patients suitable for an early discharge from hospital 

[12]. The Controlled Abciximab and Device Investigation to Lower Late Angioplasty 

Complications (CADILLAC) risk score is used to predict one-year mortality [13]. The 

Evaluation of Methods of Management of Acute Coronary Events (EMMACE) was developed as 

a simple model for 30-day mortality [14]. The Global Registry of Acute Cardiac Events 

(GRACE) score, which is based on a multinational acute coronary syndrome (ACS) registry has 

been the most widely used [10,15-17] and recommended for routine use in the European Society 

of Cardiology STEMI guidelines [18]. Such scores, including  GRACE and TIMI, are based on a 

conventional statistical approach that carries inherent limitations, including fixed assumptions on 

data behavior and the need for variables selection [19,20]. 

Studying the Acute Coronary Syndrome Israeli Survey (ACSIS) registry, our group has 

demonstrated that machine learning (ML)-based models performed similarly to the GRACE 



 

 

6 

 

score and outperformed the TIMI score in predicting 30-day mortality post STEMI [21]. Among 

the algorithms studied, random forest (RF) had the highest discrimination [area under the 

receiver operating characteristic curve (AUC) = 0.91]. In the current study, we sought to 

redevelop an RF-based model for prediction of 30-day mortality post-STEMI on a cohort from 

ACSIS and to externally validate it on the British national registry [Myocardial Ischemia 

National Audit Project (MINAP)].  

2. Methods 

2.1 Study population 

This was a retrospective, supervised learning (i.e. a ML task of inferring a function from labeled 

training data), data mining study based on the ACSIS registry and the MINAP.  

ACSIS is a biennial prospective observational national survey of all patients with acute coronary 

syndrome (ACS) hospitalized in Israel since 2000 [22,23]. In every survey during a two-month 

period, data are prospectively collected from all ACS admissions in each of the 25 cardiology 

wards operating in Israel [22-25]. All patients with STEMI are included in the survey and 

followed for one month. The number of patients who refused to participate was small (20 

individuals in the 2006-2016 period, corresponding to 0.1% of the cohort). The ACSIS was 

approved by each medical center's institutional review board. Clinical data were recorded on pre-

specified forms for all patients. Case report form definitions were centrally determined. The 

attending physicians determined admission and discharge diagnosis based on clinical, 

electrocardiographic, and biochemical criteria. Patients’ management was at the discretion of the 

attending physicians.  

The MINAP is a national registry of patients admitted to hospitals in England and Wales with 

ACS [26]. Data collection began in October 2000. MINAP accrues approximately 85,000 
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episodes of care per year for patients with ACS admitted to all acute National Health Service 

(NHS) hospitals in England and Wales. The MINAP dataset comprises 123 separate fields under 

the following groups: patient demographics, admission method, clinical features and 

investigations, medical history, drug treatment before admission, detail of primary reperfusion 

treatment, drug treatment in hospital, clinical complications, interventional treatments, hospital 

outcome, discharge diagnosis, and discharge (secondary prevention) treatment. The dataset is 

revised every two years to meet the requirements of users and to respond to developments in 

management of ACS. Care is taken to maintain continuity of fields when new options are added, 

and redundant fields are archived. Both national cohorts are audited regularly by designated data 

committees. Both national registries datasets were pulled and underwent preprocessing. 

All patients (or surrogates) gave written informed consent for inclusion in the registries. The 

study follows the TRIPOD (Transparent Reporting of a Multivariable prediction model for 

Individual Prognosis or Diagnosis) recommendations for the reporting of studies prediction 

scores [27]. 

2.2 Study Objectives 

The primary objective was to develop a RF-based model for 30-day mortality post-STEMI on the 

ACSIS registry and validate it on a MINAP cohort. The secondary objective was to compare the 

newly developed model with the GRACE risk score.   

2.3 Study Design 

Missing values on both datasets were replaced using the mean and mode values of the ACSIS 

dataset for numeric and nominal variables, respectively. Prediction models for overall mortality 

30 days after STEMI were developed on the ACSIS dataset using RF algorithm (parameters 

detailed in Table 1) on all 32 variables, for the full model, and an additional RF algorithm 
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developed on the 10 most important variables, for the simplified model. Models were 

redeveloped in order to fit MINAP available variables. The predictive performance of the two 

RF models was evaluated in the MINAP dataset.  

2.4 Model development 

The current analysis included patients from both datasets (ACSIS and MINAP) who received 

reperfusion (fibrinolysis, primary PCI, angiography demonstrating spontaneous reperfusion), for 

STEMI between 2006 and 2016. STEMI was defined as typical symptoms associated with ST 

segments elevation >2 mm in V2-V3 or 1 mm in all other leads or presumably new left bundle 

branch block present on the admission electrocardiogram (ECG). Thirty-two variables available 

on both ACSIS and MINAP databases describing procedural (e.g. reperfusion) and pre-

procedural information (e.g. demographics, prior medical history, prior chronic drugs, clinical 

presentation, basic laboratory data with admission, and angiography) were evaluated. Variables 

with more than 15% missing values were not included in model development, similarly to our 

model developed previously on the ACSIS with the same methodology [21]. In order to develop 

a second, simpler model, the ten most important variables in the full model were included, as 

known cardiology risk scores include 7-10 features [10, 28]. The 10 most important variables 

were selected by a feature selection algorithm (using the VIMP package, see Fig. 1). By 

changing the variables and calculating the difference in prediction error with each change, the 

variables are ranked according to their impact on prediction performance [29].  

The 30-day mortality time frame in ACSIS and MINAP was defined as 30 days from admission 

day.  

RF is a learning method consisting of many individual decision trees that operate as an ensemble. 

In a classification task, each  tree in the RF produces a class prediction and the class with the most 

https://en.wikipedia.org/wiki/Ensemble_learning
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votes (mode) becomes the overall model prediction [30]. Each decision tree node uses a subset of 

features randomly selected from the entire list of features. The number of trees within the forest 

are increased aiming to seek out for the number from which there is no more significant 

performance gain.  The number of random features to consider in each tree is called mtrys. 

Lower values of mtry lead to more different, less correlated trees, yielding better stability. In 

addition, low mtry also tends to better exploit variables with moderate effect on the response 

variable. However, lower values of mtry also lead to trees that perform on average worse, since 

they are built based on suboptimal variables. Lastly, the minimal size of terminal nodes (number 

of patients classified at that node) is called node size. Setting this number larger causes smaller 

trees to be grown. All the models’ hyperparameters (mtrys, nodesize, number of trees) were tuned 

using the grid search method, in which all possible combinations were evaluated (Table 2).  

2.5 Performance and calibration 

The TRIPOD statement [27] provides reporting recommendations for articles that describe the 

development and external validation of prediction models, aiming to enhance reporting 

transparency and hence interpretability, reproducibility, and clinical usability of these models. 

Thus, both performance (discrimination) and calibration analysis were performed. 

Discrimination is the ability of a predictive model to separate data into classes 

(dead/alive). Calibration is a measure of the closeness of model probability to the underlying 

probability of the population under study [31].  

The RF models’ performance was evaluated using the means of the area under the receiver 

operating characteristic (ROC) curve (AUC).   

Thus, calibration plots were evaluated for all models. Calibration refers to the agreement between 

observed outcomes and predictions [32]. The predictions binned to deciles are plotted on x-axis 
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and the outcome on the y-axis, enabling visual assessment. Perfect predictions would be on the 

45 degrees line [33].  

Calibration is important, as the model should communicate an accurate absolute risk to 

physicians. A predicted risk that is too high or too low may result in incorrect treatment 

decisions. Thus, in case of non-calibrated predictions on the new external data, each model 

predictions were re-calibrated, i.e. rescaled so their values will better match the distribution of 

the external data. The MINAP dataset was split to 80% validation set and 20% calibration set. 

Both RF and GRACE models' calibrations were re-calibrated on 20% of the MINAP data using 

the Platt scaling method [31]. In short, model's predictions on the 20% calibration data trained a 

logistic regression classifier with the outcomes on those data. The model's predictions on the 

80% MINAP data were transformed with the new classifier to produce new calibrated 

predictions. The goal of recalibration is to produce accurate predictions suitable for the external 

dataset (rather than the trained dataset alone). Notably, re-calibration improves calibration but 

not discrimination performance.  

As single imputation may underestimate the population variability and depend on specific 

assumptions (mean, mode), multiple imputation confirmation was used. Using multiple 

imputation with the Multiple Imputation by Chained Equations (MICE) package [34], we 

performed sensitivity analysis on 10 imputed datasets for both full and simple models. The 

MICE algorithm is broken down into four general steps [34]: 

1. A simple imputation, such as imputing the mean, is performed for every missing value in 

the dataset. These mean imputations can be thought of as “place holders.” 

2. The “place holder” mean imputations for one variable (“X”) are reversed back to missing. 
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3. The observed values from the variable “X” are regressed on the other variables in the 

imputation model, which may or may not consist of all the variables in the dataset, i.e. 

that specific feature serves as the dependent variable and all the other variables are 

independent variables in the regression model 

4. The missing values for variable “X” are then replaced with predictions (imputations) 

from the regression model.  

Steps 2–4 are then repeated for each variable that has missing data. At the end of one cycle 

all the missing values have been replaced with predictions from regressions that reflect the 

relationships observed in the data. 

2.5 Comparison to GRACE score 

The GRACE score was calculated, as described previously [10,15] on the entire MINAP dataset 

without missing values, and its performance (AUC) and calibration were compared with the 

developed RF models [35,36]. DeLong test was performed to compare models’ performance 

[37]. 

Sensitivity analysis for the GRACE score was  performed similarly on the 10 imputed datasets. 

 

2.6 Statistical analysis 

The normal distribution for all variables was tested using the Kolmogorov-Smirnov test. Results 

were expressed as mean and standard-deviation (SD) for continuous variables and as 

frequencies/percentages for categorical variables. Univariate analysis was performed using chi-

square test to identify significant variables and two-sided independent Student t-test (p<0.05).  

Confidence intervals of 95% are shown in brackets []. 
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The analysis was performed using R (v.3.6.1; R Foundation, Vienna, Austria) with packages mlr, 

imputeMissings, RF, ROCR, vimp, rms, MICE. 

3. Results 

3.1 Patient characteristics 

Of the 15,212 patients in the ACSIS registry, 2,782 fulfilled inclusion criteria (out of 3941 

STEMI patients between 2006 and 2016), while in the validation MINAP registry, 22,963 out of 

213,880 STEMI patients from the corresponding time frame underwent reperfusion and had 30-

day mortality data. The time frame was selected to represent current treatment guidelines and 

modalities. The two cohorts were significantly different in most variables, yet similar in 30-day 

mortality rate (4.3-4.4%). Table 1 compares the characteristics of the two cohorts. In general, the 

validation cohort patients were significantly older, had fewer cardiovascular risk factors, 

previously underwent less revascularization, less history of myocardial infarction or stroke, and 

had lower glucose, creatinine, and hemoglobin levels at admission.  

3.1 Models development 

The full RF model included all variables on the imputed and processed data. The model 

hyperparameters were tuned using the grid search method until optimized (Table 2).  

Variable importance for predictions was evaluated for construction of the simple model (Fig. 1). 

Creatinine level at admission was the most important variable. In addition to the Killip class at 

admission, all the continuous parameters were included in the simple model: age, creatinine, 

heart rate, mean arterial pressure, hemoglobin, glucose, total cholesterol, body mass index, and 

time from onset of symptoms to PCI. The simple model hyperparameters were tuned using the 

grid search method (Table 2). 
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3.2 External validation - Discrimination 

The RF models were developed and optimized on the entire ACSIS cohort. Using all variables, 

the full model had  high predictive discrimination of AUC=0.908 (0.889-0.931). Including only 

the 10 most important variables, the simple model provided similar high discrimination of 0.897 

(0.871-0.918) on the ACSIS data.  

 

Applying the optimized models on the MINAP validation cohort showed high discrimination of 

AUC=0.804 (0.786-0.822) for the full model, and AUC=0.787 (0.771-0.804) using the simple 

model (Table 2, Fig. 3A[Author: Please cite Figure 2 before Figure 3 or renumber]). The 

GRACE risk score discrimination with AUC=0.764 (0.748-0.780) was significantly lower than 

the full model (p=0.008) and the difference from the simple model was not statistically 

significant (p=0.085) (Table 2, Fig. 4A). Sensitivity analysis demonstrated similar discrimination 

values on 10 imputed datasets for both full, simple, and GRACE models (see Online Table S1). 

 

3.3 External validation - Calibration 

The calibration plots of both full and simple models revealed poor calibration, especially in the 

high-risk probabilities which were overestimated (Fig. 2B, C). The GRACE risk score showed 

similarly poor calibration in the high-risk probabilities and goodness of fit (p<0.001, Fig. 4B). 

Sensitivity analysis demonstrated similar calibration curves for both full, simple, and GRACE 

models on the 10 imputed datasets (see Online Figs S1,S2, S3). 

Due to the poor calibration of all models on the MINAP data, recalibration was performed. The 

goal of recalibration was to rescale predictions to fit the external dataset. Using a 20% random 

sample of the MINAP validation set, all models were re-calibrated using  Platt's scaling. Tested 
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on the remaining 80% of the MINAP cohort, both RF models showed better calibration (Fig. 3). 

However, goodness of fit remained poor (p<0.001). Re-calibration of the GRACE risk score did 

not change the calibration plot (Fig. 4C). 

Sensitivity analysis demonstrated similar re-calibration curves for both full, simple, and GRACE 

models on the 10 imputed datasets (see Online Figs S4,S5, S6). 

 

 

4. Discussion 

In the current study, we have validated the ML-based RF prediction models for 30-day mortality 

post-STEMI. Both the full model, including 32 variables, and the simple model, which includes 

10 variables, showed high discrimination on an external validation set, comprised a large 

registry. The full model outperformed the GRACE risk score which was developed using the 

conventional statistical approach. However, calibration of the models was poor and required re-

calibration using a subsample of the external data. Recalibration has provided improved 

calibration plots in the RF models. Following recalibration, models enable physicians much more 

accurate predictions (the chance of a STEMI patient to die within 30 days). Sensitivity analysis 

using multiple imputation confirmed our findings. From a clinical perspective, the RF simple 

model could be used upon admission of a STEMI patient for risk stratification. From a 

methodological perspective, we reconfirm the value of applying ML predictions, which can be 

easily incorporated with the electronic medical records’ digitalization. 

We have developed several ML-based models for 30-day mortality prediction in our previous 

work, which performed similarly to the GRACE risk score, and significantly better than the 

TIMI risk score [21]. The RF model had the highest discrimination, which improved as more 
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features were included in the model. In the current study, we confirmed the validity of this model 

for real-world data using the MINAP dataset. As before, the full model performed better than the 

selected features simple model. 

Cardiology literature offers a plethora of proposed models, with little evidence about which are 

reliable and under what circumstances. The majority of models are developed using classic 

statistical methods (such as Cox regressions / logistic regressions), without further validation or 

with a validation study on a small and specific sample (100-1000 patients [13,38,39]). In the past 

few years, ML-based models have originated however most did not get externally validated 

[40,41]. External validation uses new patient data, external to those used for model development, 

to examine whether the model’s predictions are reliable in individuals for clinical use. The 

current study uses one of the largest cohorts in the setting of ACS for external validation. 

Moreover, the British population’s external validation was significantly different to the model's 

development cohort (ACSIS) of the Israeli population, reaffirming the necessity of these studies 

as well as the validity of the models.  

The GRACE risk score is a known validated tool for risk stratification, developed on one of the 

largest databases in the field of ACS of over 240 hospitals in 30 countries. The GRACE score 

was originally developed for predicting mortality at six months for the entire spectrum of ACS 

[10,15-17] and later validated for 30-day mortality. Mendez-Eirin et al. found a discrimination c-

statistic of 0.9 for 30-day mortality in 1500 STEMI patients [42]. Abelin et al. found a c-statistic 

of 0.84 in a 501-patient cohort [43], and recently Hizoh et al. showed a c-statistic of 0.87 in 5203 

STEMI patients [44]. Interestingly, the GRACE score performed significantly worse in the 

MINAP validation data. In a previous study assessing different risk scores on previous MINAP 

data (years 2003-2005), the discrimination performance for 30-day mortality was 0.78 [45]. The 



 

 

16 

 

GRACE risk score includes 8 predictors: age, medical history, vital signs at admission, 

creatinine, cardiac markers, and ECG finding. The RF full model includes all of these and the 

simple model includes 5 out of them. Both RF models outperformed the GRACE risk score 

(0.78-0.80). 

In a recent study on a large prospective cohort, a different ML-based model utilizing deep 

learning has shown superior discrimination performance over the GRACE model in post STEMI 

mortality prediction [46]. However, this study has not been validated externally and did not 

report the model calibration.   

Both RF models and the GRACE risk score had poor calibration on the MINAP cohort, 

especially overestimating high-risk patients. RF models have an inherent difficulty making 

predictions that are near to 0 and 1,and are biased away from these values. Re-calibration usually 

mitigates this known problem [47]. Indeed, following re-calibration, the RF models’ calibrations 

improved while we observed no change for the GRACE score. The validated and calibrated 

simple model was saved and developed as an interactive online calculator app using the Shiny 

package. 

In addition to the clinical value of the validated model, the current study has several 

methodological implications. First, it reconfirms the feasibility of a data mining approach in 

predicting outcomes in STEMI patients and cardiology in general. Second, as opposed to 

Cox/logistic regression-based models, non-parametric ML-based models such as RF can perform 

better with a higher number of features. With the growing development of electronic medical 

records, where information on ACS patients is accumulating in unprecedented quantities, models 

accounting for the very high amount of features are warranted [48].  



 

 

17 

 

Contemporary focus in STEMI is reducing the extent of injury in the reperfused STEMI beyond 

timely reperfusion. The ischemic/reperfusion syndrome following STEMI reperfusion can induce 

significant morbidity and mortality. There is a great need to select patients who most likely will 

benefit from cardioprotective interventions [49]. Therefore, our models included patients who 

underwent reperfusion therapy to represent standard of care. The present study has several 

limitations. First, it is a retrospective analysis susceptible to data selection and measurement 

biases. Yet, the large MINAP registry analyzed reflects prospectively collected, real-world data, 

hence conveying more recent practice [48]. Second, we focus on a short-term outcome, i.e. 30-

day mortality. Third, we have adopted a simplistic approach for missing data imputation, subject 

to potential bias [50]. However, missing values were imputed as constants based on the ACSIS 

cohort which reduces this bias. In addition, we used multiple imputation for sensitivity analysis 

to confirm our models and findings. Fourth, variables with a fraction of missing values higher 

than 15% were dropped, similarly to our original model, to avoid bias in a relatively small data 

set (~2700) [21]. Notably, cases were not dropped due to missing values. Lastly, the type of 

reperfusion was not included in the model due to missing values.  

 

Clinical implications  

Once classified as having STEMI, the contemporary patient management follows an algorithmic 

approach without a pre-reperfusion risk assessment. Ideally every eligible STEMI patient should 

undergo reperfusion therapy as soon as possible with preference to primary PCI. However, at the 

early stages of ICU stay, risk assessment scores proved to be useful for prediction of ICU length 

of stay, early discharge safe planning, effective secondary prevention medications prescription, 

and referral to cardiac rehabilitation (where higher-risk patients can gain significantly more than 
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lower-risk patients) [46,51-53]. RF score which performs better than the guideline-recommended 

GRACE score in our derivation and external validation cohorts even with different baseline 

characteristics may serve as a more precise tool for risk prediction. Although our full model has 

a significant improvement over the GRACE model, further prospective validation and additional 

external validations should be performed. 

5. Conclusions 

The RF predictive model for 30-day mortality post STEMI, developed on the ACSIS national 

registry, has been validated in the MINAP large external cohort. The model can be applied early 

at admission for risk stratification. The model performed better than the commonly used GRACE 

score. Additionally, to the best of our knowledge, this is the first externally validated ML-based 

model in ACS.  

The simple model is available at: https://amirhad.shinyapps.io/30-Days-Mortality-Post-STEMI-

Calculator/   
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Figure Legends 

 

Figure 1 Variable importance grading for RF model. Variable importance is the difference 

between prediction error when feature values are altered randomly (adding noise) to the prediction 

error when using its original values. The higher the difference, the importance of the feature is 

higher. The 10 features with the highest feature importance value were selected for the simple 

models. 

[Author: Please define all abbreviations] 

Figure 2 Full and simple models' performance and calibration on the MINAP data. (A) ROC 

curves. (B) Full model calibration plot on the MINAP data. (C) Simple model calibration plot on 

the MINAP data. 

[Author: Please define all abbreviations] 

 

 

Figure 3 Full and simple re-calibration plots. Following calibration on 20% of the MINAP data, 

calibration plots on the other 80% of the MINAP data. 

[Author: Please define all abbreviations] 

 

 

Figure 4 GRACE risk score predictive performance and calibration. (A) ROC curve, AUC=0.76 

on both 80% and 100% of the MINAP data. (B) Calibration plot of GRACE on the entire 

MINAP data. (C) Re-calibration plot of the GRACE risk score on 80% of MINAP following 

calibration on the remainder 20%.[Author: Please define all abbreviations] 
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Tables 

 

Table 1 Comparison of ACSIS and MINAP cohorts  

    ACSIS Imputed   MINAP Imputed   Sig. 

N  2476   22963     

           

Age (years)  60.8±12.7 0.0%  63.5±13.1 0.0%   <0.001 

           

Males  82.30% 0.0%  73.1% 0.0%  <0.001  

           

Heart Rate (bmp)  78.4±19.7 1.4%  76.7 ±18.3 8.2%   <0.001  

           

MAP (mmHg)  98.9±20.5 1.2%  100.4±19.1 8.2%   <0.001  

           

BMI  27.5±4.3 8.9%  27.5±4.2 12.5%   0.5 

           

Total Cholesterol (mg/dL)  179.2±41.9 10.0%  192.9±47.2 15.8%   <0.001 

           

Glucose (mmol/L)  156.4±82.1 4.6%  150.9±70.0 8.7%   0.001  

           

Hemoglobin (g/dL)  14.4±6.6 1.4%  13.7±1.8 7.2%   0.001 
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Creatinine (mg/dL)  1.11±0.77 2.9%  1.01±0.47 10.9%  <0.001   

           

Time from Onset to PCI (minutes)  292.8±401 13.7%  308.5±440.8 8.5%   0.033 

           

Past MI  526 (21.2%) 0.2%  2417 (10.5%) 0.2%   <0.001  

           

Chronic heart failure  68 (2.7%) 0.2%  298 (1.3%) 0.3%   <0.001  

           

Past Revascularization  560 (22.6%) 0.0%  1890 (8.2%) 0.2%   <0.001  

           

Past Stroke  148 (6%) 0.1%  1039 (4.5%) 0.2%  0.002  

           

Family history of MI  730 (29.5%) 8.1%  7626 (33.2%) 7.7%   0.007 

           

Chronic renal failure  135 (5.5%) 0.2%  462 (2.0%) 0.1%  <0.001  

           

PVD  125 (5%) 0.2%  653 (2.8%) 0.3%   <0.001 

           

Diabetes Mellitus  712 (28.8%) 0.3%  3129 (13.6%) 0.4%  <0.001  

           

Hypertension  

1273 

(51.4%) 0.5%  9538 (41.5%) 
0.4% 

 <0.001  

           

Killip class at admission   1.3%   0.0%  0.098  

  I 

2166 

(87.5%)   19767 (86.1%) 
 

   

  II 162 (6.5%)   1772 (7.7%)     

  III 68 (2.7%)   732 (3.2%)     

  IV 80 (3.2%)   692 (3.0%)     

           

Chronic beta blockers  559 (22.6%) 2.9%  4589 (20.0%) 0.0%  0.684  

           

Chronic antiplatelet drugs  881 (35.6%) 0.0%  2681 (11.7%) 0.0%  <0.001  

           

Any smoking  

1680 
(67.8%) 0.1%  15325 (66.7%) 

0.1% 
  0.631 

           

           

Chronic ACE-I/ARBB  697 (28.2%) 0.2%  6340 (27.6%) 1.7%  0.683  

           

Typical angina presenting 

symptom  

2191 

(88.5%) 0.0%  21962 (95.6%) 
0.0% 

 0.012  
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Normal Sinus Rhythm  

2133 

(86.1%) 0.0%  19704 (85.8%) 
0.0% 

 0.911  

           

CPR/DCS  129 (5.2%) 17.8%  859 (3.7%) 0.4%   0.001 

           

Aspirin before admission  

2088 

(84.3%) 0.0%  17273 (75.2%) 
0.0% 

  <0.001 

           

Clopidogrel before admission  411 (11.6%) 0.0%  3406 (14.8%) 0.9%  0.049  

           

Chronic Hyperlipidemia drugs  910 (36.8%) 0.0%  6950 (30.3%) 0.0%   <0.001 

           

Anterior MI  

1169 
(46.9%) 0.0%  8663 (37.7%) 

5.7% 
  <0.001 

           

30-day mortality   110 (4.4%) 0.0%   989 (4.3%) 0.0%    0.803 

 

MAP, mean arterial pressure; PCI, percutaneous coronary intervention; MI, myocardial 

infarction; PVD, peripheral vascular disease; ACE-I, angiotensin-converting enzyme inhibitors; 

ARBB, angiotensin II receptor blockers; CPR/DCS, resuscitation or electric shock. [Author: 

Please define all abbreviations] 
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Table 2 Models’ parameters and predictive performance on both ACSIS and MINAP cohorts. 

  mtry nodesize trees ACSIS AUC MINAP AUC Significance 

1.RandomForest  3 4 1000 0.908 [0.889-0.931] 0.804 [0.786-0.822] 0.008 

2.RandomForest-Simple  1 9 1000 0.897 [0.871-0.918] 0.787 [0.771-0.804] 0.085 

3.GRACE  - - - 0.881 [0.872-0.899] 0.764 [0.748-0.780] Reference 

 

Confidence intervals of 95% are shown in brackets []. 

[Author: Please define all abbreviations] 
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