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A Gaussian Process Iterative Learning Control for

Aircraft Trajectory Tracking
Almudena Buelta, Alberto Olivares, Ernesto Staffetti, Waqas Aftab, and Lyudmila Mihaylova, Senior

Member, IEEE

Abstract—This paper proposes a recursive Gaussian process
regression with a joint optimization-based iterative learning
control algorithm to estimate and predict disturbances and
model uncertainties affecting a flight. The algorithm proactively
compensates for the predicted disturbances, improving precision
in aircraft trajectory tracking. Higher precision in trajectory
tracking implies an improvement of the aircraft trajectory
predictability and therefore of the air traffic management system
efficiency. Airlines can also benefit from this higher predictability
by reducing the number of alterations when following their
designed trajectories, which entails a reduction of costs and
emissions. The iterative learning control algorithm is divided
into two steps: first, a recursive Gaussian process regression
estimates and predicts perturbations and model errors with no
need for prior knowledge about their dynamics and with low
computational cost, and second, this information is used to update
the control inputs so that the subsequent aircraft intending
to fly the same planned trajectory will follow it with greater
precision than the previous ones. This method is tested on a
simulated commercial aircraft performing a continuous climb
operation and compared to an iterative learning algorithm using
a Kalman filter estimator in a similar scenario. The results show
that the proposed approach provides 62% and 42% precision
improvement in tracking the desired trajectory, as compared
to the Kalman filter approach, in two experiments where no
prior knowledge of the unmodeled dynamics was available, also
achieving it in less iterations.

Index Terms—Aircraft Trajectory Tracking, Gaussian Process
Regression, Iterative Learning Control.

I. INTRODUCTION

THE increasing importance that precise trajectory tracking

will have in the implementation of Trajectory-Based

Operations (TBO), which are one of the key aspects in the

modernization of Air Traffic Management (ATM), makes it

necessary to explore new approaches in aircraft control to

achieve the precision required. The TBO concept is based on

Four-Dimensional (4D) aircraft trajectories, which consist in

a precise description of an aircraft path in space and time, in

which delays are considered deviations as much as horizontal

or vertical position errors. In TBO, aircraft trajectories are

planned according to the preferences of airlines, and after

conflict detection and resolution, they have to be followed

with precision. Trajectory predictability, that is to say the
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correspondence between the planned and flown trajectories,

is key to the implementation of TBO. Higher trajectory pre-

dictability implies better traffic synchronisation, which results

in an improvement in the safety, efficiency, and capacity of

the ATM system. Moreover, higher trajectory predictability,

by reducing the number of alterations when following the

planned trajectories, entails a reduction of costs and emissions.

However, random factors, such as weather conditions, affect

the precision, which result in deviations from the reference

trajectory that can neither be predicted nor corrected by stan-

dard trajectory tracking controllers, which react to disturbances

only after they occur, usually employing feedback control

techniques. Another control strategy is needed which is able

to compensate for disturbances before they occur. The method

presented in this paper meets this demand by combining Itera-

tive Learning Control (ILC) and Gaussian Process Regression

(GPR) to use data gathered during operation to estimate

model uncertainties and external disturbances affecting a flight

and predict their values. The control inputs are corrected so

that these predicted values are compensated in the following

execution of a similar operation. This method has been tested

on simulated flights of commercial aircraft which intend to

follow a planned trajectory precisely under the assumption that

both the aircraft dynamic model and the trajectory to follow

are the same at each iteration.

A. Previous approaches

ILC is a widely used control method which has proven

its effectiveness in improving a system’s performance of a

repetitive process. It is based on the idea that the system can

learn from data measured in past executions to update the

control input iteratively, leading the output to converge to a

given desired trajectory.

The ILC methodology is introduced in [1] as a prominent

research field in control systems with applications in robotics,

including connections to other control approaches such as ILC

based on neural networks, nonlinear ILC, adaptive schemes

in ILC, and robustness (see Section 2 of [2] and references

therein). The surveys [3] and [4], which discuss the key results

in ILC design and analysis, as well as various textbooks such

as [5], which deals with ILC for both linear and nonlinear

systems, and [6], which is mostly concerned with real-time

applications, are among the main literature related to ILC.

The scope of applications has also widened beyond indus-

trial robotics. Variants of the ILC method have been applied to

trajectory tracking for Unmanned Aerial Vehicles (UAV). See
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for example [7] and references therein. In [8], an ILC approach

is applied to precise quadrocopter trajectory tracking under

the presence of model errors and other recurrent disturbances.

This approach, applied to aircraft trajectory tracking in [9] and

[10], divides the ILC algorithm into two steps: estimation and

control update, where the estimation of the modeling errors is

calculated from past measurements and serves as the input for

the update step to determine a more adequate control input in

the following iteration.

Most ILC approaches rely on the system model as a basis of

the learning algorithm, making its performance very sensitive

to model uncertainties. In [8], [9], and [10], the estimation

step is performed using a Kalman filter [11]. The Kalman

filter approach to recursive estimation has seen extensive

use in aerospace applications since its introduction in this

area [12] and continues to form the basis for many new

filtering approaches to the state estimation problem [13], [14].

However, the underlying model dynamics must be known

for it to be possible to tune the Kalman filter, and it is

suitable only for slight linear changes in the unmodeled

dynamics. Enhanced variants of the Kalman filter, such as

the extended Kalman filter, would allow nonlinear changing

dynamics of the disturbances to be estimated, but would also

require some knowledge of its behavior. In the new approach

presented in this paper, the Kalman filter is replaced with a

recursive GPR method, aiming to provide an alternative ILC

approach in which no prior knowledge of the disturbances is

needed, meaning that no prior tuning is required, and which

is capable of estimating the disturbances even if they vary

between iterations, despite not knowing the dynamics of their

variations.

Gaussian processes provide a nonparametric statistical

learning of nonlinear dynamic systems from noisy data, which

are characterized by covariance functions that usually have

a set of hyperparameters [15]. Regression methods based on

Gaussian processes are used in many areas of application, such

as machine learning [16], [17], signal processing [18], and

control engineering [19], [20].

The main drawback of Gaussian processes is the consider-

able computational cost when working with large data sets.

Multiple approaches have been proposed in order to reduce

the computational burden, for example in [21], [22], and [23],

where the training data is reduced to a number of so-called

inducing points. Another difficulty is the determination of the

hyperparameters, which are usually learned by optimizing the

marginal likelihood [24].

In [25], an online procedure for updating Gaussian process

parameters is proposed, in which the regression is performed

on a set of basis vectors with low computational and memory

demands, simultaneously learning the hyperparameters. This

approach has been adapted in this paper to be included in the

estimation and prediction steps of the ILC algorithm. To do

so, the sequential nature of ILC has been taken into account

in the time series prediction of the disturbances affecting the

flight, assuming that the behavior of these disturbances is

more correlated to the recent past observations than to the

distant past ones. Therefore, the location of the basis vectors

is updated at each iteration replacing the oldest one with the

new data estimation.

As already mentioned, the method described in this paper

has been applied to commercial aircraft trajectory tracking in

the context of TBO, which allow for optimized trajectories

improving efficiency, predictability, and airspace capacity. As

in [9], the trajectory chosen to test the method is a Continuous

Climb Operation (CCO), an aircraft operating technique in

which the airspace and the departing procedures are designed

in such a way that aircraft, after take-off, are allowed to con-

tinuously climb following trajectories optimized based on their

performance, until the cruise level is reached. This technique,

in which level-off segments of flight are eliminated, leads to

significant reductions of fuel consumption and emissions [26].

The feasible CCO aircraft trajectory has been generated here

using a pseudospectral optimal control approach [27].

The experiments were carried out in a realistic, simu-

lated scenario built in MATLAB/Simulink, a proprietary pro-

gramming platform developed by MathWorks1 for numerical

computation, in which dynamical systems can be modeled,

simulated and analyzed. In this scenario, a flight simulator

has been included, which has been built using commercial

aircraft data retrieved from the Base of Aircraft Data (BADA)

developed by EUROCONTROL2. BADA is an aircraft perfor-

mance model intended for aircraft trajectory simulation and

prediction in ATM research and development. It provides both

model specifications, in which the theoretical aircraft dynamic

models are described, and data sets, in which the aircraft-

specific parameters are given [28].

B. Contributions of the paper.

The main contributions of this work are threefold:

1) A novel framework for precise aircraft trajectory tracking

is introduced. It includes a GPR within an ILC scheme.

2) This learning GPR estimates its hyperparameters on-

line. The disturbances and model uncertainties affecting

a flight are also estimated without the need for any prior

knowledge about them.

3) The developed framework is validated and tested over a

range of examples with different uncertainties.

The proposed framework is flexible and has significant advan-

tages compared to the Kalman filters used as an estimator

in earlier ILC works [8], since it learns from the data. In

contrast, Kalman filters need to be correctly tuned using a

priori knowledge of the dynamics to be estimated, and it is

assumed that they remain unchanged between iterations in the

prediction step. The computational costs required by the GPR

are significantly reduced by using a recursive approach, which

is updated at each iteration dismissing the oldest data and

incorporating the newest observations. This makes it appealing

for real-time control.

C. Organization of the paper.

The paper is organized as follows: the ILC paradigm is

summarized in Section II. The problem formulation of the

1https://es.mathworks.com/
2https://www-test.eurocontrol.int/services/bada
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GPR is described in Section III. The implementation of the

recursive GPR with learning of the hyperparameters into the

ILC algorithm is presented in Section IV, and the experiments

and numerical results are described in Section V. Finally,

Section VI contains the conclusions.

II. ITERATIVE LEARNING CONTROL

In this paper, GPR is implemented for estimation and

prediction of the disturbances in an ILC algorithm. The ILC

approach used is the one presented in [8], which is an effective

and computationally efficient learning strategy that has proven

to improve precision in trajectory tracking by pure feedforward

adaptation of the control input. A detailed explanation of

the ILC approach considered in this paper can be found in

[8] and its application and adaptation to aircraft trajectory

tracking can be found in [9] and [10]. In all three references,

the estimation is performed using a Kalman filter. This ILC

scheme explicitly takes into consideration input and state

constraints of a nominal model and determines an updated

control by using optimal filtering for disturbance estimation

and convex optimization for trajectory update.

The system dynamics are captured by a time-varying non-

linear model

ẋ(t) = f(x(t),u(t), t),

y(t) = h(x(t),u(t), t),
(1)

where x(t) ∈ R
nx and ẋ(t) ∈ R

nx are the state and the

state’s derivative, respectiveley, u(t) ∈ R
nu is the control

input, y(t) ∈ R
ny is the output, and f and h are assumed

to be continuously differentiable in x and u.

Constraints on the state x(t), the input u(t), and their time

derivatives are represented by

Zq(t) � qmax, (2)

where

q(t) =
[
xT (t),uT (t), ẋT (t), u̇T (t),

. . . ,
dm

dtm
xT (t),

dm

dtm
uT (t)

]T
,

(3)

Z is a constant matrix of appropriate dimensions, and qmax ∈
R

nq , being nq the total number of constraints. The inequality

denoted by the symbol � is defined component-wise.

The purpose of the learning algorithm is to track a feasi-

ble predefined output trajectory, the desired trajectory ŷ(t),
precisely over a finite time interval.

A. Lifted system representation

A linearized and time-discretized version of this model is

represented in the lifted domain, in which the state, input,

and output vectors are the stacked vectors of all discretization

time-steps of the trajectory (see [29], [30]), that is,

uj =
[
ũT
j (0), ũ

T
j (1), . . . , ũ

T
j (N − 1)

]T
∈ R

Nnu , 3

xj =
[
x̃T
j (1), x̃

T
j (2), . . . , x̃

T
j (N)

]T
∈ R

Nnx ,

yj =
[
ỹT
j (1), ỹ

T
j (2), . . . , ỹ

T
j (N)

]T
∈ R

Nny ,

(4)

with
ũj(k) = uj(k)− û(k),

x̃j(k) = xj(k)− x̂(k),

ỹj(k) = yj(k)− ŷ(k),

where the subscript j represents the j−th execution of the

desired task, and k ∈ K = {0, 1, ..., N}, with N < ∞,

represents the discrete-time index. For each iteration j, the

triplet (xj ,uj ,yj) indicates the lifted vectors describing small

deviations from the desired trajectory and its corresponding

state, control input, and output, denoted by (x̂, û, ŷ). The

lifted representation characterizes the actual system dynamics

by a static map in which a given discrete-time input signal

is mapped to the corresponding lifted states through a con-

stant matrix. The output is similarly represented in the lifted

domain. Using this notation, the system (1) can be described

as

xj = Fuj + dj + ξj ,

yj = Gxj +Huj + ǫj ,
(5)

where the lifted matrices F , G, and H account for the

model nominal dynamics. Vector dj captures the repetitive

disturbances along the reference trajectory, including model

errors and the free response of the system to the initial

deviation. ξj and ǫj account for the trial-uncorrelated process

and measurement noise, respectively.

Based on this notation, the ILC algorithm is divided into

two steps: estimation and control.

B. Disturbance estimation

As previously mentioned, in [8], [9], and [10], the esti-

mation step is performed by a time-varying Kalman filter

[11] in which only slight changes of the disturbance dj

between iterations are considered and captured in a zero-mean

Gaussian white noise variable. The Kalman filter provides

an estimation of the current error d̂j taking into account the

output signals from previous trials. This estimated error is used

as the predictive disturbance for the following iteration, that

is, d
p
j+1

= d̂j .

In this paper, the Kalman filter is substituted by a GPR

estimation and prediction of the disturbance affecting the sys-

tem. The incorporation of this method into the ILC algorithm

is explained in Section IV.

C. Input update

The update step consists in deriving a model-based update

rule to compute a new control input uj+1, which, in response

to the predicted disturbance d
p
j+1

, minimizes the deviation

from the nominal trajectory in the following iteration.

Figures 1 and 2 show the control inputs generated in

five iterations of the ILC using a Kalman estimator and the

evolution of the path described by the aircraft, which intends

to fly a CCO (dashed black line in Fig. 2). The path followed

3Note that the notation R
Nnu refers to the real vector space which

dimension is the scalar product N · nu. It is defined analogously in all the
vectors where this notation appears throughout this article.
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Fig. 2. Evolution of the path xe−h described by the aircraft over iterations.

by the aircraft in the first iteration remains below the desired

one because of modeling and disturbance errors. These errors

are estimated and the inputs are updated in accordance with

the estimations, achieving more precision at each iteration.

III. GAUSSIAN PROCESS REGRESSION

A. Problem formulation

For GPR, it is assumed that a set of data

D = {(v1, y1), . . . , (vn, yn)} is drawn from the noisy

process

yi = g(vi) + ǫ,

where the column vectors vi ∈ R
nv are the inputs, yi ∈ R are

the observations or outputs, and ǫ ∼ N (0, σ2) is a zero-mean

Gaussian noise with variance σ2. A Gaussian Process (GP)

is used to infer the latent function g from the set of n past

observations D, also called training data. For vi and vj being

either the training or the testing input data vectors, the GP

is completely defined by a mean function µ(vi) ≡ E [g(vi)],

which specifies the expected output value, with E[·] being

the mathematical expectation operation, and a positive semi-

definite covariance function k(vi,vj) ≡ cov {g(vi), g(vj)},

which specifies the covariance between pairs of inputs vi and

vj and is often called a kernel. Typical examples are the zero-

mean function µ(vi) = 0 and the Squared Exponential (SE)

kernel

k(vi,vj) = α2exp

(
−
1

2
(vi − vj)

TΛ−1(vi − vj)

)
,

where Λ is a diagonal matrix of the characteristic length-

scales for each input dimension, which determine the length

of the “wiggles” in the function, and α2 is the variance

of the latent function g. Such parameters of the mean and

covariance functions together with the noise variance σ2 are

called the hyperparameters of the GP and are here grouped in

the vector η.

B. Prediction

The GP framework described above can be used to predict

the function values g∗ = [g(vn+1), . . . , g(vn+m)]
T

at the

arbitrary inputs v∗ = [vn+1, . . . ,vn+m]
T

, based on the

training data D = {(v1, y1), . . . , (vn, yn)}. Given this obser-

vations, the collection of functions g = [g(v1), . . . , g(vn)]
T

at the training inputs v = [v1, . . . ,vn]
T

follows a multi-

variate Gaussian distribution with mean function µ(v) =
[µ(v1), . . . , µ(vn)]

T
and covariance matrix K(v,v) ∈ R

n×n,

the (i, j)−th element of which is Kij = k(vi,vj).

The joint distribution of the observed data y and the

predicted function values g∗ is given by

[
y

g∗

]
∼ N

([
µ(v)
µ(v∗)

]
,

[
K(v,v) + σ2I K(v∗,v)

T

K(v∗,v) K(v∗,v∗)

])
,

(6)

where µ(v∗) = [µ(vn+1), . . . , µ(vn+m)]
T

,

K(v∗,v) ∈ R
m×n has the (i, j)−th element defined as

K(v∗,v)ij = k(vn+i,vj), and K(v∗,v∗) ∈ R
m×m has the

(i, j)−th element defined as K(v∗,v∗)ij = k(vn+i,vn+j).

Thus, the predictive distribution conditioned by the data set

D is given by a Gaussian distribution with mean and variance

µg(v∗) = µ(v∗) +K(v∗,v)
T (K(v,v) + σ2I)−1(y − µ(v)),

σ2
g(v∗) = K(v∗,v∗)−K(v∗,v)

T (K(v,v) + σ2I)−1K(v∗,v).
(7)

C. Recursive Gaussian Process with learning

The GP prediction depends on the inverse of K(v,v),
which scales with O(n3). For large data sets this is com-

putationally unfeasible. The recursive GPR proposed in [25]

aims to perform all calculations on a sparse representation of

the GP formed by a set of ℓ ≪ n so-called basis vectors,

relying on the basis vectors for estimating the latent function

and learning the hyperparameters on-line from data.
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1) On-line regression: The basis vectors are located at

v ≡ [v1,v2, . . . ,vℓ]
T , and store local estimates g ≡ g(v)

of the latent function, and are updated on-line with nt new

observations, yt, at inputs v̄t ≡ [vt,1, . . . ,vt,nt
]T and time

steps t = 0, 1, . . .. The basis vectors are fixed in number and

location for each time step. Assuming known hyperparameters,

the goal is to calculate recursively the posterior distribution

p(g|y1:t), with y1:t ≡ [y1, . . . ,yt]
T , by updating the prior

distribution of g from the distribution on the previous step

t− 1, p(g|y1:t−1).
For deriving a recursive algorithm, the desired posterior

distribution is expanded according to

p(g|y1:t) =

∫
ct · p(yt|g, ḡt) · p(ḡt|g) · p(g|y1:t−1)dḡt, (8)

where ḡt = [g(vt,1), . . . , g(vt,nt
)]T , and ct is a normalization

constant.

2) Learning: If the hyperparameters, η, are unknown, they

are estimated simultaneously with the values of the latent

function at the basis vectors. This is done calculating a joint

posterior distribution p(zt|y1:t), where zT
t ≡ [gT ,ηT

t ] is the

joint hidden state.

A detailed explanation of the recursive GP with the learning

algorithm can be found in [25].

IV. RECURSIVE GPR ESTIMATION AND PREDICTION IN

ILC

The goal is to estimate the disturbances, dj , affecting the

aircraft at each iteration of the task, that is to say at each intent

of flying the planned trajectory, and, ultimately, to predict the

disturbances in the following iteration, dj+1.

The Kalman filter estimation proposed in [8] assumes that

the disturbances are almost constant, that is to say

dj = dj−1 + ωj−1, (9)

where ωj is a stochastic zero-mean Gaussian white noise

variable.

GP regression allows for non-linear changes in the distur-

bances between iterations. The system dynamics is separated

into two components, a known function of the state and

control input, f(xj ,uj), and an unknown function, g, which

represents an unknown, deterministic dynamics that is not

captured by the a priori model f(xj ,uj). The function g

depends on τj , which is the time elapsed between the first

and the j−th iteration, to capture the evolution of the unknown

dynamics along time. The state and output at each iteration are

therefore modeled as

xj = f(xj ,uj) + g(τj),

yj = h(xj ,uj) + ǫj ,
(10)

where, using the lifted representation described in Section

II, f(xj ,uj) = Fuj , the disturbances are captured in the

unknown function g(τj), and h(xj ,uj) = Gxj + Huj . In

this paper, it is assumed that full-state information is available

and, without loss of generality, yj = xj + ǫj .

We finally get the disturbance in the format

dj = yj − Fuj = g(τj) + ǫj . (11)

The recursive GPR is applied separately to each single

element dij = gi(τj) + ǫij of the lifted vector dj , with

i = 1, 2, . . . , N · nx, where N is the number of time-steps in

which the system dynamics is discretized and nx is the number

of state variables, i.e., each state variable at each time-step of

the discretization of the trajectory is treated as an independent

output and assumed uncorrelated to any other state variable,

or the same one at any other time-step. On the other hand, for

each output, the cross-covariance between the basis vectors

and the new observations is taken into account.

For the sake of clarity, the superindex i indicating the

i−th element of vectors dj and yj will be omitted in the

remainder of this section. The unknown function value, gi,

corresponding to dij , will be denoted by g. Analogously, the

standard deviation of ǫij will be denoted by σ.

The approach presented in [25] is adapted here to the ILC

algorithm and modified to incorporate the new observations

to the basis vectors. Therefore, the basis vectors are fixed in

number, but their location changes at each iteration, replacing

the first one with the new data estimation. Since the function

g depends solely on the time between the first and the current

iterations, the basis vectors at the j−th iteration are the values

of τ corresponding to the ℓ prior iterations, that is to say

adding the subindex j to the notation in Section III-C, vj =
[τj−ℓ, . . . , τj−1]

T . Similarly, gj = [g(τj−ℓ), . . . , g(τj−1)]
T is

the vector of local estimates of the latent function at the ℓ

basis vectors vj .

Although the observations are made on the output data,

yj , the estimated and predicted values are the unmodeled dy-

namics and disturbances dj affecting the system. The indirect

observation of each element dj becomes explicit in (11), as

the corresponding element of dj = yj − Fuj .

1) Estimation: As explained in Section III-C, the algorithm

recursively estimates the values of the latent function and

simultaneously learns the hyperparamenters. As such, no prior

knowledge of the disturbances is needed. This is effected by

calculating a joint posterior Gaussian distribution p(zj |y1:j),
where zT

j ≡ [gT
j ,η

T
j ] is the joint hidden state with mean and

covariance

µz
j ≡

[
µ

g
j

µ
η
j

]
, Cz

j ≡

[
C

g
j C

gη
j

C
ηg
j C

η
j

]
, (12)

µ
g
j and C

g
j being the mean and covariance of gj , µ

η
j and C

η
j

the mean and covariance of the hyperparameters, and C
gη
j and

C
ηg
j the cross-covariance matrices at iteration j.

The starting point for this calculation is a joint prior distribu-

tion p(zj−1|d1:j−1) at iteration j−1, which is updated with the

new observation dj . To incorporate the new input at iteration

j, it is necessary to infer the latent function ḡj = g(τj). The

state-space model incorporating the hyperparameters is given

by

[
zj−1

ḡj

]
= Aj(ηj − 1)zj−1 +wj , (13)
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where

Aj(ηj−1) =




I 0

0 I

Jj(ηj−1) 0




and the noise wj is Gaussian with mean and covariance

µw
j ≡




0

0

b(ηj−1)


 , Cw

j ≡



0 0 0

0 0 0

0 0 B(ηj−1)


 . (14)

The kernel functions in Jj(ηj−1) ≡ K(τj ,v)K(v,v)−1,

B(ηj−1) ≡ K(τj , τj) − Jjk(v, τj), and in the vector

b(ηj−1) ≡ µ(τj) − Jjµ(v) are calculated using the hyper-

parameters ηj−1.

The model (13) is nonlinear with respect to the hyperpa-

rameters ηj−1 but, for a given hyperparameter, the model

is linear and the prediction inducing the desired joint dis-

tribution p(zj−1, ḡj |d1:j−1) can be performed exactly using

a Kalman predictor. Here, a collection of s sigma points

η̂i have been selected and given weights ωi, i = 1, . . . , s,

using the unscented transform [31] constrained so that the

hyperparameters are positive [32]. A Kalman predictor is

applied to each sigma point obtaining the joint Gaussian

distribution p(zj−1, ḡj |d1:j−1) with mean and covariance

µ
p
j =

s∑

i=1

ωiµ
p
i ,

C
p
j =

s∑

i=1

((µp
i − µ

p
j )(µ

p
i − µ

p
j )

T +C
p
i ),

(15)

where

µ
p
i ≡ Aj(η̂i)

[
µ

g
j−1

+C
gη
j−1

(Cη
j−1

)−1(η̂i − µ
η
j−1

)

η̂i

]

+ µw
j (η̂i),

C
p
i ≡ Aj(η̂i)

[
C

g
j−1

−C
gη
j−1

(Cη
j−1

)−1C
ηg
j−1

0

0 0

]
Aj(η̂i)

T

+Cw
t (η̂i).

(16)

The incorporation of the new observation, dj , is performed

in two steps, in which the joint distribution is decomposed

into an observed and an unobserved part

p(zj |d1:j) =

∫
p(gj ,η

−

j |σ, ḡj) · p(σ, ḡj |d1:j)dḡj ,

where η−

j is the vector of all the hyperparameters except σ.

As such, µ
p
j and C

p
j can be expressed as

µ
p
j ≡

[
µu

j−1

µo
j

]
, Cz

j ≡

[
Cu

j−1 Cuo
j

Cou
j Co

j

]
, (17)

where oT = [σ, ḡTj ] is the observable state with mean µo
g and

covariance Co
j , uT

j−1 = [gT
j , [η

−

j ]
T ] is the unobservable state

with mean µu
j−1 and covariance Cu

j−1, and Cuo
j and Cou

j

are the cross-covariance matrices between the observable and

unobservable states.

The observable state can be directly updated and, assuming

that the observed state and the observations are jointly Gaus-

sian, the conditional distribution p(σ, ḡj |d1:j) will have mean

and covariance

µe
j = µo

j +Cod
j (Cd

j )
−1(dj − µd

j ),

Ce
j = Co

j −Cod
j

[
Cod

j (Cd
j )

−1
]T

,
(18)

where µd
j = E[ḡj ], C

d
j = cov[ḡj ]+var[σ]+E[σ]2, and Cod

j =
cov[oj , ḡj ] are elements of µo

j and Co
j . The unobservable part

is then updated as a Gaussian distribution p(gj ,η
−

j |σ, ḡj) with

mean and covariance

µu
j = µu

j−1 +Cuo
j (Co

j )
−1(µe

j − µo
j),

Cu
j = Cu

j−1 +Cuo
j (Co

j )
−1(Ce

j −Co
j )

[
Cuo

j (Co
j )

−1
]T

.
(19)

Finally, the mean and covariance of the the joint poste-

rior distribution p(zj |d1:j) with updated basis vectors and

hyperparameters is obtained combining and rearranging (18)

and (19) as zT
j = [[g−

j ]
T , ḡTj ,η

T
j ], where g−

j indicates the

latent function at the basis vectors except the basis vector

corresponding to the iteration j−ℓ. This is done to incorporate

the latent function estimation of the new observations, ḡj , into

the basis vectors while keeping a fixed number of them, since

the most recent data will become more significant than the

oldest in the following iterations. The updated basis vectors

will be then vj+1 = [τj−ℓ+1, . . . , τj ].
2) Prediction: To predict the latent function at iteration

j + 1, the process is repeated to calculate µ
p
j+1

as in (15),

using the joint posterior distribution, p(zj |d1:j), obtained in

the previous steps. The predicted disturbance will be then

d
p
j+1

= E[ḡj+1], (20)

where E[ḡj+1] can be extracted from µ
p
j+1

.

3) Input update: Repeating the previous process for each

element of dj , the vector d
p
j+1

is built, which contains the

predicted values of the disturbances affecting all the state

variables at every time-step in which the trajectory has been

discretized. Following [8], a new control input uj+1 is calcu-

lated optimally compensating for the predicted disturbance by

solving the constrained optimization problem

min
uj+1

‖Fuj+1 + d
p
j+1

‖+ α‖Duj+1‖

subject to Luj+1 ≤ qmax,
(21)

where the system’s constraints (2) are explicitly taken into

account. The additional term α ≥ 0 and the matrix D are

introduced to penalize the input or approximations of its

derivatives pursuing smoothness of the optimal solution. The

update law in (21) can be expressed as a standard convex

optimization problem.

V. NUMERICAL RESULTS

To show the effectiveness of the GPR for estimation in ILC,

it has been tested in a simulated experiment consisting of the

precise trajectory tracking of an aircraft in a CCO.



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. 00, NO. 0, AUGUST 2020 7

A. Aircraft dynamics and trajectory generation

A common three-degrees-of-freedom dynamic model has

been used, considering that trajectories of commercial aircraft

only involve small aircraft rotations. This model describes the

point variable-mass motion of the aircraft over a non-rotating

flat Earth model with International Standard Atmosphere (ISA)

[33]. In particular, a symmetric, leveled-wing flight has been

considered on the vertical plane. It has therefore been assumed

that there is a constant heading angle, no sideslip and bank

angle, and all forces lie in the plane of symmetry of the

aircraft. The effects of wake vortices have not been included

in the model because it is assumed that the time and distance

separations between aircraft executing successive CCO fulfill

the separation minima specified in the wake turbulence regula-

tion, which ensures that the wake turbulence generated by the

previous aircraft has no effect on the following aircraft. The

following equations of motion describe the aircraft’s dynamics:

V̇ (t) =
T (t)−D(he(t), V (t), CL(t))−m(t) · g · sin γ(t)

m(t)
,

γ̇(t) =
L(he(t), V (t), CL(t))−m(t) · g · cos γ(t)

m(t) · V (t)
,

ẋe(t) = V (t) · cos γ(t), (22)

ḣe(t) = V (t) · sin γ(t),

ṁ(t) = −T (t) · η(V (t)).

The kinematic equations in (22) are expressed in a

ground-based reference frame, whereas the dynamic equa-

tions are expressed in an aircraft-attached reference frame.

The state variables are captured in the state vector x(t) =
(V (t), γ(t), xe(t), he(t),m(t)), where V is the true airspeed,

γ is the flight path angle, xe is the horizontal position, he is the

altitude, and m is the mass of the aircraft. The control vector is

u(t) = (T (t), CL(t)), where T is the engine thrust, and CL is

the lift coefficient. Drag, D = CDSw q̂, and lift, L = CLSw q̂,

are the components of the aerodynamic force, with q̂ = 1

2
ρV 2

being the dynamic pressure, and Sw the reference wing surface

area. A parabolic drag polar CD = CD0 +KC2
L is assumed.

The lift coefficient, CL, is a known function of the angle of

attack and the Mach number. Parameter η is the fuel efficiency.

The flight envelope constraints are those derived from the

aerodynamic and structural characteristics of the aircraft and

the engine power.

0 ≤ he(t) ≤ min[hM0
, hu(t)], γmin ≤ γ(t) ≤ γmax,

M(t) ≤ MM0
, mmin ≤ m(t) ≤ mmax,

V̇ (t) ≤ al, CvVs(t) ≤ V (t) ≤ VM0
,

(23)

γ̇(t)V (t) ≤ an, 0 ≤ CL(t) ≤ CLmax
,

Tmin(t) ≤ T (t) ≤ Tmax(t), µ(t) ≤ µ̄.

The parameters in (23), as well as the performance lim-

itations model, have been obtained from BADA. These pa-

rameters are the maximum operational altitude, hM0
, the

maximum operative altitude at a given mass, hu(t), the

Mach number, M(t), the maximum operating Mach number,

MM0
, the maximum normal and longitudinal accelerations

for civilian aircraft, an and al, respectively, the minimum

speed coefficient, Cv , the stall speed, Vs(t), and the maximum

operating Calibrated Airspeed (CAS), VM0
. Finally, Tmin(t)

and Tmax(t) are the minimum and maximum available thrust,

respectively, and µ̄ is the maximum bank angle due to struc-

tural limitations. In the experiments, the chosen lower and

upper bounds for the flight path angle are γmin = −0.05◦

and γmax = 11.5◦, respectively.

The optimal trajectory to be followed by the simulated

aircraft has been generated using a pseudospectral optimal

control method minimizing fuel consumption [27]. It is a

CCO associated with the Standard Instrument Departure (SID)

Madrid Barajas PINAR1U. The definition of the SID can

be found in the Spanish Aeronautical Information Publication

(AIP) service4, managed by ENAIRE. The path to be followed

starts at the altitude of 1000 m after takeoff and ends at

10000 m, when the aircraft reaches the cruise level. The initial

velocity and path angle are 130 m/s and 7.3◦, respectively. The

initial mass of the aircraft has been set to 60000 kg.

The experiments have been carried out in a simulated

environment structured in the following main blocks:

• a realistic flight simulator, which includes the aircraft

model and perturbations affecting the flight such as

weather disturbances, model uncertainties, and measure-

ment errors, and
• an ILC controller, composed of the GPR estimator and

predictor of the disturbances affecting the aircraft and a

nonlinear programming solver that calculates the updated

control input for the following iteration.

The weather disturbances considered in the trajectory track-

ing experiments are the wind and the non-standard atmosphere.

The wind model includes the combined effect of the mean

horizontal wind speed and Dryden turbulence, which have

been generated using built-in MATLAB functions5. The mean

horizontal wind model has been simulated using the U.S.

Naval Research Laboratory Horizontal Wind Model routine

[34]. The mathematical representation of the Dryden wind

turbulence model described in the Military Specification MIL-

F-8785C [35] has been used. The vertical component of

the wind has been neglected. Fig. 3 shows a realization of

the wind speed observed by the aircraft when following the

trajectory described above. The atmosphere model described

in the military climatic standard MIL-STD-210C [36] has been

employed in the trajectory tracking experiments, whereas the

ISA model has been used for the generation of the trajectory

to be followed.

The flight simulator has been developed in Simulink, a

widely used software in aircraft simulation [37]. A 3-DOF

longitudinal model of an Airbus A320 aircraft has been

used, where the state, output, and control variables are those

described in the previous sections.

4https://ais.enaire.es/AIP
5https://es.mathworks.com/help/aeroblks/wind.html
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Fig. 3. Horizontal wind speed model.

B. Results

The experiments have been conducted using the GPR and

the Kalman filter methods for the estimation and prediction

steps of the ILC in similar conditions and with different

parameters to compare their performance.

Ten experiments have been performed consisting of 30 it-

erations each. At each iteration, the same aircraft intends to

fly the CCO trajectory described above. The time between

iterations is one hour. The figures show the median of the ten

experiments of:

• the Root Mean Square Error (RMSE) of the scaled

disturbance estimation at each iteration,

• the RMSE of the scaled disturbance prediction at each

iteration for the following one, and

• the weighted state error, which is calculated as ew,j =
||Syj ||2, where S is the weighted scaling matrix of the

output variables and yj is the measured output vector at

each iteration.

The black dashed horizontal line in Figures 4 to 9 is the

output error standard deviation, which characterizes the system

noise level. It is obtained from the variations in the trajectory

when applying the same input to the aircraft several times.

1) Comparison between GPR methods: A comparison be-

tween the GPR method using all the available data, GPR

using only data from last 10 iterations, and recursive GPR

using 10 basis vectors is shown in Figures 4, 5, and 6. The

training data used to define the basis vectors is obtained

from the first 10 iterations as well as the initial guess of the

hyperparameters. The non-recursive GPR methods have been

implemented using MATLAB’s embedded function for Gaus-

sian process regression. As shown in the figures, after some

iterations, the recursive GPR achieves, both in estimation

and prediction, an RMSE similar to, and in some iterations

even lower than the non-recursive GPR approach. All three

methods exhibit a similar behavior when implemented into the

ILC algorithm in terms of the weighted state error. The peaks

observed at iterations 12 and 16 are caused by a change in

the trend of the mean horizontal wind speed. Moreover, the
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Fig. 4. Comparison of RMSE of estimation with different GPR approaches.
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Fig. 6. Comparison of weighted state error with different GPR approaches.
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difference between the wind speed values at these iterations

and the previous ones is greater than in any other pair of

consecutive iterations.

Table I shows the mean execution times of the Kalman

filter and the non-recursive and recursive GPR approaches,

observed on a standard laptop computer with a 1.6 GHz Intel

Core i5 processor and 16 GB RAM. In the same table, the

corresponding mean weighted state error after three iterations

is also reported, showing that the non-recursive GPR approach

is faster than the recursive GPR in reducing the tracking

error when the training data is obtained from the previous

5 or 10 iterations. In both approaches, the weighted state

error converges to its minimum value when using training

data from more than 20 past iterations. The execution time of

the recursive GPR, although higher than that of the Kalman

filter, is significantly lower than the execution time of the non-

recursive GPR method. Note that the computational effort

increases as the iterations take place and more data is available.

Training data
Mean

computation
time (s)

Mean ew after
3 iterations

Non-recursive GPR

5 iterations 1.5316 0.8840
10 iterations 2.2788 0.9615
20 iterations 3.0928 0.7063
50 iterations 3.3923 0.7005

Recursive GPR

5 iterations 0.1186 1.0891
10 iterations 0.1284 1.0162
20 iterations 0.1633 0.7551
50 iterations 0.7150 0.7697

Kalman filter 0.0003 1.3606

TABLE I
MEAN COMPUTATION TIMES PER ITERATION AND WEIGHTED STATE

ERROR OBSERVED USING A STANDARD LAPTOP COMPUTER.

2) Comparison between GPR and Kalman filter: As ex-

plained above, one of the advantages of using GPR is that

no previous knowledge about the system dynamics is needed,

in contrast to the Kalman filter, which requires the noise

and measurement covariance matrices to be set. The recursive

GPR for estimation and prediction has been compared here

to the Kalman filter’s performance in the ILC method in three

different cases: with Ω = 0.1M , with Ω = M , and with

Ω = 10M , where Ω is the covariance matrix of the process

noise and M is the covariance matrix of the measurement

noise.

Figures 7 and 8 show that the recursive GPR approach

achieves better estimations and prediction of the disturbances

than any of the Kalman filters. In the first iterations, recursive

GPR and the Kalman filter with Ω = 10M are comparable

and much faster than the Kalman filter with Ω = M and

Ω = 0.1M . In terms of the weighted state error, Fig. 9 shows

that recursive GPR and the Kalman filter with Ω = 10M
are comparable and that only after 20 iterations do all three

methods return similar results.

Fig. 10 shows an enlarged view of the last part of the path

described by the aircraft in the first iterations using GPR and a

Kalman filter with Ω = M . In the first iteration, the inputs fed

to the aircraft are the nominal ones obtained in the trajectory

generation where disturbances are not taken into account, and

the resulting path is clearly deviated from the desired one.
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Fig. 7. RMSE of estimation with recursive GPR and Kalman filter.
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In the following iterations, the ILC method amends these

deviations. Fig. 10 shows that with GPR estimation and

prediction, the convergence to the desired path is faster than

with the Kalman estimator until reaching the best achievable

accuracy, which is represented by the path that corresponds to

iteration 25. It can be seen that the error between the actual

and the desired paths is significantly reduced, but is not zero

due to the aircraft’s operational limits and the system’s noise,

which cannot be accurately predicted.
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Fig. 10. Enlarged view of the path xe − h described by the aircraft using
GPR and Kalman predictions of the disturbances.

Finally, Fig. 11 shows the control inputs generated by

the ILC method when the estimation and prediction steps

are performed using GPR and the Kalman filter. It can be

observed that, as in Fig. 10, with GPR, the control inputs

converge faster to the ones that drive the aircraft to the most

precise achievable tracking of the trajectory (iteration 25) than

those generated when using the Kalman filter.
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Fig. 11. Evolution of the thrust and lift coefficient over iterations using GPR

and Kalman predictions of the disturbances.

VI. CONCLUSION

Estimation and prediction are key for precision and fast

convergence of ILC, since the update of the inputs given

to the aircraft is based on the predicted perturbations and

the estimated model errors that cause deviations from the

planned trajectory. In this paper, GPR has been implemented

as the estimation and prediction step of an optimization-based

ILC method to compensate for the disturbances affecting a

sequence of identical aircraft performing the same trajectory.

In order to reduce the high computational effort required by

GPR, a recursive approach has been used, which performs the

regression on a set of points that are updated at each iteration

to dismiss old data in favor of the most recent measurements,

simultaneously learning the hyperparameters.

With no prior knowledge of the behavior of the distur-

bances, the experiments show that recursive GPR provides

much better estimations and predictions in the first iterations

compared to the Kalman filter with Ω = 0.1M and Ω = M ,

reaching a mean improvement of 80% and 67%, respectively,

in the weighted state error along the first 5 iterations, therefore

achieving faster and more precise tracking of the aircraft

trajectory. The mean improvement across all 30 iterations is

62% and 42%, respectively. The results obtained by both

methods are comparable only when the Kalman filter is

correctly tuned, with Ω = 10M , which means collecting some

prior knowledge about the dynamics of the disturbances. Ad-

ditionally, recursive GPR allows for estimation and prediction

of nonlinear dynamics.
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