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Automatic Detection and Classification System of

Domestic Waste via Multi-model Cascaded

Convolutional Neural Network

Abstract—Domestic waste classification was incorporated into
legal provisions recently in China. However, relying on manpower
to detect and classify domestic waste is highly inefficient. To
that end, we propose a Multi-model Cascaded Convolutional
Neural Network (MCCNN) for domestic waste image detection
and classification. MCCNN combined three subnetworks (DSSD,
YOLOv4, and Faster-RCNN) to obtain the detections. Moreover,
to suppress the false-positive predicts, we utilized a classification
model cascaded with the detection part to judge whether the
detection results are correct. To train and evaluate MCCNN, we
designed a large-scale waste image dataset (LSWID), containing
30,000 domestic waste multi-labeled images with 52 categories.
To the best of our knowledge, the LSWID is the largest dataset on
domestic waste images. Furthermore, a smart trash can (STC) is
designed and applied to a Shanghai community, which helped to
make waste recycling more efficient. Experimental results showed
a state-of-the-art performance, with an average improvement of
10% in detection precision.

Index Terms—Domestic waste detection and classification,
multi-model cascaded convolutional neural network, detection
precision, smart trash can.

I. INTRODUCTION

THE World Bank report shows nearly 4 billion tons of

waste is produced in the world every year. It is estimated

that by 2025, waste will increase by 70% [1]. In 2018,

large and medium-sized cities generated 1.55 billion tons of

general industrial solid waste, 46.43 million tons of industrial

hazardous waste, and 817 thousand tons of medical waste in

China. Apart from those, the amount of urban domestic waste

generated was 211.47 million tons. Among the components

of urban domestic waste, kitchen waste accounts for more

than 50% [2]. According to the survey, the main treatment

methods of kitchen waste are organic compost and landfill.

Furthermore, once the kitchen waste that needs to be treated is

mixed with a large amount of other waste, such as plastic bags,

the environment will be heavily polluted. Therefore, domestic

waste classification is critical, to ensure that a certain type of

waste contains as little as possible other waste

The main obstacles to waste classification include (1)

Government planning and budget: insufficient government

regulations and budgets for waste management; (2) Family

education: families do not understand the importance of self-

classification of waste; (3) Technology: lack of adequate waste

classification technology; and (4) Management cost: the high

cost of manual waste classification[3].

With the development of waste classification technology and

the government’s strong support, many scholars have studied

several smart devices and applications with specific sensors[4],

[5]. However, the domestic waste thrown by residents is com-

plicated and challenging to identify with only specific sensors.

Therefore, some methods based on machine vision are pro-

posed to simplify the detection process [6], [7], [8], [9], [10],

[11], [12], [13]. These methods generally utilize deep learning

theory to classify waste through convolutional neural networks

(CNN), of which Faster-RCNN[14], DSSD[15], YOLOv3[16],

and YOLOv4[17] with different advantages in accuracy, speed,

and sizes are the most common models. Unlike general object

recognition, waste owns different shapes, sizes, and sometimes

overlaps. So relying on a single model (Faster-RCNN, DSSD,

or YOLOv3/v4) with limited feature extraction capabilities

to remove false-positive predictions is not adequate to solve

these related obstacles. So, we propose an automatic detection

and classification system of domestic waste based on deep

learning with high precision and practicality and combining

the advantages of different algorithms. Our method uses three

subnetworks (DSSD, YOLOv4, and Faster-RCNN) to obtain

the detection results of waste images. Moreover, to suppress

the false-positive predicts, we utilized a classification model

cascaded with the detection part to judge whether the detection

results are correct. And our goal is described in Fig. 1. The

key contributions are listed as follows.

• We propose a domestic waste detection and classification

system based on a convolutional neural network model,

which has the advantage of covering more detection

types (52 categories) and achieving higher precision

(more than 90%) compared with other waste classification

systems[6], [7], [8], [9], [10], [11], [12], [13], and it is the

first work that can effectively distinguish between kitchen

waste and non-kitchen waste.

• To decrease the false-positive predictions caused by waste

shape, size, and even overlap, we propose a deep convolu-

tional neural network based on the Multi-model Cascaded

method named MCCNN for domestic waste image de-

tection and classification. MCCNN fuses the advantages

of various detection models with different sensitivities to

target shape, size, and even overlap while improving the

precision of detection by cascading a classification model

behind the detection model.

• By verifying a large amount of data (LSWID), this

method (MCCNN) achieves an average increase of 10%

in detection precision. Moreover, the smart trash can

(STC) with MCCNN model has been applied to commu-

nities and assists residents in waste classification, which

achieved beneficial performance.
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Fig. 1. Goal of our study. Starting from the distinction between kitchen
waste and non-kitchen waste, we integrated automation and machine vision
technologies to make waste classification more convenient. Not only can the
residents’ awareness of waste classification be improved, but also the recycling
of waste can be made more efficient.

II. RELATED WORK

Research on waste classification spans multiple fields, from

traditional industries to the automation industry to deep learn-

ing. In this article, we focus on the detection and classification

of domestic waste based on image detection methods.

In 2016, JayDonovan[8] created “AutoTrash” which is an

automatically sorting trash can that can use Raspberry Pi-

driven modules and cameras to identify compost and recycling.

It should be pointed out that this project can only distinguish

whether the target is recycling or compost, and the function is

relatively simple. In the same year, TrashNet[7] was proposed

by Yang and Thung, and they created a dataset contain-

ing around 2500 images and six classes, which was hand-

collected. Their models used were support vector machines

(SVM) with scale-invariant feature transform (SIFT) features

and a convolutional neural network (CNN), and the two

models achieved an accuracy of 63% and 87%, respectively.

TrashNet became a public benchmark for waste classification;

however, this dataset has not been public so far. Besides Trash-

Net, a few waste datasets, such as TACO[10], AquaTrash[9],

and VN-trash, were established, and they have some short-

comings, such as the relatively small amount of waste in a

specific environment. Also, the dataset was not open source.

Adedeji, Olugboja, and Wang, Zenghui[11] continued Yand

and Thung’s work. To simplify the process, they proposed

an intelligent waste material classification system, which is

developed by using the 50-layer residual net pre-train (ResNet-

50) Convolutional Neural Network model and Support Vector

Machine (SVM), which is used to classify the waste into

different groups/types such as glass, metal, paper, and plastic,

etc. The proposed system is tested on the trash image dataset,

which was developed by Gary Thung and Mindy Yang[7], and

is able to achieve an accuracy of 87% on the dataset.

Some of the tasks mentioned above are designed from the

perspective of intelligent hardware and have been applied to

actual engineering. However, the structure of these algorithms

is based on the existing models, and there is no design

change for the characteristics of waste images. In the waste

image, the size and shape of waste are different, and there is

overlap. Therefore, it is challenging to solve all the problems

with a single model. We are thinking about whether we

can obtain the advantages of multiple models by cascading

while improving the recognition frame’s accuracy. In 2017,

Zhaowei Cai and Nuno Vasconcelos[18] proposed Cascade R-

CNN, which consists of a sequence of detectors trained with

increasing IoU thresholds, to be sequentially more selective

against close false positives. Inspired by the multi-stage object

detection framework, we proposed a deep convolutional neural

network based on the Multi-model Cascaded method named

MCCNN.

In this task, CNN plays an important role, but deep neural

networks are like a black box. Although they can provide ex-

cellent performance, they lack decomposability and cannot be

intuitively understood, making it difficult to explain. To make

the network more visible, Bolei Zhou et al [19]. described

the procedure for generating class activation maps (CAM)

using global average pooling (GAP) in CNNs. Through CAM,

we can clearly understand which part of the image has

a more significant impact on the result. This technique is

beneficial but has some flaws. First of all, we must change the

network structure, such as changing the fully connected layer

to a global average pooling layer, which is not conducive to

training. The second is that this is a visualization technique

based on classification problems, which may not have such a

good effect on regression problems. To solve the first problem,

an improved technology called Grad-CAM [20] appeared in

2017. Grad-CAM can visualize without changing the network

structure and is applied in multiple scenarios. To get better

results (especially when there is more than one object in a

specific category in the image), Chattopadhyay et al [21].

further proposed Grad-CAM++. The main change is in the

weight of the feature map corresponding to a specific category.

ReLU and weight gradient are added to the representation, and

the gradient can be calculated with only one backpropagation.

III. METHODOLOGY

A. Datasets and Augmentation

This article uses deep learning to identify the waste thrown

by residents, but there is currently no unified dataset for do-

mestic waste. The datasets about waste images that we can find

are as follows: AutoTrash, TrashNet, TACO and AquaTrash.

Among them, AutoTrash has 50 categories, and each category

has 100 photos, which is only using for image classification.

TrashNet was proposed by Yang and Thung,who created

a dataset containing around 2527 images and six classes,

which was hand-collected. TACO includes 28 categories, 1500

pictures, and 4784 annotations, which is applied to waste

image segmentation. AquaTrash consists of 369 images from

4 different categories related to various litter items, including

glass, metal, paper and plastic. However, our large-scale waste

image dataset (LSWID) contains 30,000 domestic waste multi-

labeled images with 52 categories, which surpasses other

datasets far in scale and quality. And our dataset is collected in

the scene of actual waste disposal by residents, which has very

important practical significance. We collected 30,000 waste

images and marked each image to form a large-scale waste

image dataset (LSWID). And in our dataset the images cover

one annotation target to multiple annotation targets. In our
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dataset, each image corresponds to a file in txt. The format of

each line in tx files is “classid, xcenter, ycenter, width, height”,

which corresponds to the categories and locations data of the

bounding boxes.

It is observed that the non-kitchen waste contained in the

kitchen waste mainly includes paper, plastic, shell, large bone,

and cigarette(more than 80%), so we will train and test these

five types of waste during the experiment.

In order to improve the generalization performance of the

actual project, we consider preprocessing the training for data

augmentation[22], subjecting the training source image to

random brightness conversion, stretch conversion, and mirror

conversion before inputting it into the networks.

B. Architecture

In the entire waste classification system, target detection

plays a critical role. The system uses target detection to

determine whether the domestic waste released by residents

contains other types of waste to ensure the purity of vari-

ous waste types to reduce the pressure of later steps. Ob-

ject detection is a fundamental visual detection problem in

computer vision and has been widely studied in the past

decades. Object detection techniques using deep learning have

been actively studied in recent years. All the methods here

can be divided into two categories: two-stage detectors and

one-stage detectors. Two-stage detectors split the detection

task into two stages: (i) proposal generation; and (ii) mak-

ing predictions for these proposals, like RCNN[23], SPP-

Net[24], Fast RCNN[25], Faster-RCNN[14] and R-FCN[26],

while one-stage detectors do not have a separate stage for

proposal generation, like Over-Feat[27], YOLO[28], SSD[29],

YOLOv2[30], RetinaNet[31], DSSD[15], YOLOv3[16], and

YOLOv4[17]. In the past ten years, the algorithms for im-

age classification mainly include VGG16[32], Xception[33],

MobileNet[34], ResNet50 and ResNet101[35].

There are two significant challenges, first includes different

shapes, sizes, and sometimes overlaps of waste. So, relying on

a single model (Faster-RCNN, DSSD, or YOLOv3/v4) with

limited feature extraction capabilities to solve these related

obstacles is not adequate. Secondly, in waste image detection

task, we noticed that compared to the target recall rate, the

precision of target detection is more crucial, which means

that we should remove as many false-positive predictions as

possible. To overcome the above-mentioned challenges, we

proposed the MCCNN method, which uses three subnetworks

(DSSD, YOLOv4, and Faster-RCNN) to obtain the detection

results of waste images. Moreover, to suppress the false-

positive predicts, we exploited a classification model cascaded

with the detection part to determine whether the detection

results are accurate.

The combination of these three sub-networks has their own

advantages which helped to solve mentioned challenges. The

feature extraction layers of YOLOv4 use a feature pyramid

down-sampling structure and a Mosaic data enhancement

method during training, so it has a good effect on small target

detection. Faster-RCNN is a two-stage detection algorithm.

The first stage is to generate candidate regions, and the second

stage is to adjust and classify the position of the candidate

regions. And the recognition error rate is low. DSSD adds

contextual information in the model. It can more capture

the information of deep and shallow feature maps, which is

conducive to solving the overlap problem.

The target detection model’s final prediction results are the

position and category of the target in the image, and the image

classification is to predict the category of a single target.

In the actual application process, we know that the criteria

for measuring the target detection model are recall rate and

precision[36]. The methods for calculating the recall rate and

precision are shown in Eq. (1) and Eq. (2), respectively.

recall =
tp

tp+ fn
(1)

precision =
tp

tp+ fp
(2)

where tp: the number of correct detection frames. fp:

the number of frames that detect background as targets. fn:

the number of frames that detect targets as background. In

layman’s terms, the recall rate indicates the degree of missed

detection for the target. The higher recall rate performs the

less missed detection, and the precision presents the correct

rate of the detected bounding boxes. In the scenario of waste

detection and classification, the precision should be as high as

possible, allowing a certain degree of missed detection.

To balance recall rate and precision, we need to change

the ratio of difficult cases in RPN[14], or the parameters

of the anchors, and also need to adjust the threshold of the

NMS[37], which may lose the number of output target frames

of the original model. So we thought that we could cascade a

classification model behind the detection model. At the same

time, the training dataset of the classification model consists of

the result of cutting out the multi-label dataset of the detection

model. This means that the classification model can perform

more data augmentation and has more features in a single

classification task. Reliability, the secondary verification can

greatly improve the accuracy of target frame detection.

According to Eq. (2), reducing the fp is necessary to

improve precision. Based on the detection model mentioned

above, the position and category information of each bounding

box in the image can be obtained. If the detection result

could be judged again, the precision of detection can be

increased. The final output model can significantly improve

the detection precision based on ensuring the recall rate

as much as possible. Therefore, we proposed an algorithm

via Multi-model Cascaded Convolutional Neural Network for

asynchronously checking the detection model results and the

classification model, as shown in Fig. 2. Due to the different

detection accuracy, detection speed, and sensitivity to large

and small objects, we select three detection networks (DSSD,

YOLOv4, and Faster-RCNN) with distinctive characteristics as

sub-networks of the detection model. Moreover, ResNet101 is

to be used as a classification network to verify the detection

results.

The calculation process related to MCCNN is shown in

Algorithm 1. In Algorithm 1, I represents the input picture,

Rec modeli represents the ith detection network, Cla model
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Fig. 2. The architecture of MCCNN. It consists of two parts, the detection model and the classification model. The detection model includes three sub-networks
(DSSD, YOLOv4, and Faster-RCNN), and the results of each sub-network are combined and then passed through the NMS algorithm, finally obtaining the
results of the detection model, including categories and bounding boxes. We crop the waste image into patches using the bounding boxes. The classification
model(ResNet101) takes the predicted image patch as input and predicts the category of the patch. We keep the bounding box if the predicted category and
input category are consistent.

represents the classification model, BBoxes 〈i, j〉 represents

the jth detection frame of the ith detection network. There

are six parameters [x1, y1, x2, y2, Conf, Class], which rep-

resent the upper left corner coordinates, lower right corner

coordinates, confidence level, and category information of the

detection frame in I . Res Cla 〈i, j〉 represents the output

category after the jth detection frame of the ith detection

network that passes the classification model. Firstly, resize the

waste image to a fixed size, and send it to the detection model.

The three sub-networks of the detection model separately

forward the waste image, and the results of each sub-network

are combined and then passed through the non-maximum sup-

pression algorithm, finally obtaining the results of the detection

model, which includes the position of the bounding boxes and

the category information of the corresponding bounding boxes.

Then, images cropped according to the bounding box change

to a fixed size, and next, they are loaded into the classification

model, which can output the category value of each of them,

and finally verify the output category result of the detection

model. If they are consistent, then retain the corresponding

bounding box; if not, delete the corresponding bounding box.

C. Loss Function

According to the architecture of MCCNN, it can be seen

that its loss is composed of four parts, three losses of detection

sub-networks and the loss of a classification model. There are

two options for the loss function. The simplest method is to

splice these networks and train them together with weighted

loss functions. As shown in Eq. (3), LFaster−RCNN : the

loss of Faster-RCNN sub-network. LDSSD: the loss of DSSD

sub-network. LY OLOv4: the loss of YOLOv4 sub-network.

LResNet101: the loss of the classification model. α, β, λ, µ are

the weight coefficients of these four losses, which ensure that

each loss value is within an order of magnitude.

Loss = αLFaster−RCNN + βLDSSD+

λLY OLOv4 + µLResNet101

(3)

However, in MCCNN, the three detection sub-networks’

loss functions are well constructed, mainly including regres-

sion loss and classification loss, but it is complicated to define

the loss function of the MCCNN classification model.

For the following reasons: 1. The detection model and clas-

sification model in our task have different dataset structures.

In this task, the classification model’s final output needs to

be selected according to the results of the detection model, so

its loss function cannot be defined directly. 2. After the four

networks are spliced, the memory occupied during training is

enormous, and the convergence speed is plodding. 3. Besides,

for the detection sub-network, the batch is easy to define,

but according to the architecture of MCCNN, the input of

the classification model needs to intercept the target area

of each picture in the current batch, so the batch of the

classification model cannot be determined. 4. The architecture

we proposed focuses on each network’s optimal results, rather

than balancing the weight ratio of each network, and separate

training increases the data enhancement, making the model

more generalized. Finally, we decided to train these four

networks separately to achieve the best results and then spliced

all the networks for detection and classification.

smoothL1
(x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise.

}

(4)

For the loss functions of Faster-RCNN and DSSD, we did

not make more changes. We made some improvements to

YOLOv4. This article adjusts the loss function, mainly to

change the L2 loss function in the positioning to Smooth L1
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Algorithm 1 Waste Image Detection and Classification via

Multi-model Cascaded Convolutional Neural Network

Input: input single image: I ∈ RC×W×H , input detection

models: Rec model ∈ {DSSD, Y OLOv4, Faster −
RCNN}, input classification model: Cls model ∈
{ResNet101}, and Res Cla 〈i, j〉, Class ∈
{paper, plastic, shell, bargebone, cigarette}, input

result list: Results = []
Output: Return new detection Results

1: Initialize the system and configuration;

2: Input image I;

3: According to the longest side, pad I and then resize I to

a fixed size (512× 512);

4: for each i in Rec model do

5: BBoxes = Rec modeli(I);
6: Add BBoxes to Results;

7: end for

8: Results = NMS(Results);
9: for each i in Results do

10: for each j in i do

11: Res Cla 〈i, j〉 = Cls model(I[, Results 〈i, j〉 [0]
12: to Results 〈i, j〉 [2], Results 〈i, j〉 [1]
13: to Results 〈i, j〉 [3]]);
14: if Res Cla 〈i, j〉 is the same as Results 〈i, j〉 [−1]

then

15: Keep Results 〈i, j〉;
16: end if

17: end for

18: end for

loss function, such as Eq. (4). Smooth L1 loss is less sensitive

to outliers than L2 loss and is more robust because when |x| is

greater than 1, the form of L1 loss (linear loss) is used to avoid

the problem of gradient explosion. It can be seen from the form

of the derivative of the loss function in backpropagation that

when |x| is greater than 1, the derivative of L2 loss increases

linearly, while the derivative of Smooth L1 loss is constant. It

can be said that Smooth L1 loss combines the excellent points

of L1 loss and L2 loss. When the error between the prediction

box and the actual box is too large, the gradient value is not

too large, and when the error between the prediction box and

the actual box is small, the gradient value is also small enough.

This makes positioning regression converge fast. It is also

more stable and helps to increase the training speed of the

network. So the definition of its loss function is shown in Eq.

(5).

Where, I
obj
ij : the jth prediction box of the ith grid unit,

which is responsible for predicting the non-kitchen waste.

I
noobj
ij : the jth prediction box of the ith grid unit, which is

not responsible for predicting the non-kitchen waste. Ĉ
j
i : the

same as I
obj
ij . C

j
i : the probability that the algorithm estimates

there is non-kitchen waste in the prediction frame. x̂
j
i : the

lateral offset of the GT (Ground Truth) center relative to the

upper-left corner of the grid unit. x
j
i : the lateral offset of the

prediction box center relative to the upper-left corner of the

grid unit. ŷ
j
i : the longitudinal offset of the GT center relative

to the upper-left corner of the grid unit. y
j
i : the longitudinal

offset of the prediction box center relative to the grid unit’s

upper-left corner. ŵ
j
i : the width ratio of GT to the image.

w
j
i : the width ratio of the prediction box to the image. ĥ

j
i :

the height ratio of GT to the image. h
j
i : the height ratio of

the prediction box to the image. P̂
j
i : the probability that GT

belongs to category c, which is 0 or 1. P
j
i : the probability that

the prediction box belongs to category c.

It should be pointed out that because the position error is not

equally important as the classification error[38], it is necessary

to add a weight λcoord to the position error, the value is 5.

Moreover, the number of backgrounds is much larger than the

number of detected objects, so the weight λnoobj is added, and

the value is 0.5. In order to make it easier to detect the small

volumes of non-kitchen waste, adding (2− ŵ
j
i ∗ ĥ

j
i ) can make

the weight of small volumes of non-kitchen waste in the loss

function larger. This is a value that can be fine-tuned according

to the actual dataset characteristics. If a small volume of non-

kitchen waste in a data set accounts for a large proportion, it

can be appropriately increased λnoobj is added, and the value

is 0.5. In order to make easier detect the small volumes of

non-kitchen waste, adding (2− ŵ
j
i ∗ ĥ

j
i ), and vice versa.

Loss = λcoord

S2

∑

i=0

B
∑

j=0

I
obj
ij (2− ŵ

j
i ĥ

j
i )[smoothL1(x

j
i − x̂

j
i )

+smoothL1(y
j
i − ŷ

j
i )]

+λcoord

S2

∑

i=0

B
∑

j=0

I
obj
ij (2− ŵ

j
i ĥ

j
i )[smoothL1(w

j
i − ŵ

j
i )

+smoothL1(h
j
i − ĥ

j
i )]

−
S2

∑

i=0

B
∑

j=0

I
obj
ij [Ĉj

i log(C
j
i ) + (1− Ĉ

j
i )log(1− C

j
i )]

−λnoobj

S2

∑

i=0

B
∑

j=0

I
noobj
ij [Ĉj

i log(C
j
i ) + (1− Ĉ

j
i )log(1− C

j
i )]

−

S2

∑

i=0

I
obj
ij

∑

c∈classes

[P̂ j
i log(P

j
i ) + (1− P̂

j
i )log(1− P

j
i )]

(5)

The other two parameters for adjusting the specific gravity

can also be adjusted according to the actual situation. The

ultimate goal is to make the model’s actual detection more

effective in identifying non-kitchen waste and the loss func-

tion definition of the Faster-RCNN and classification model,

referring to [14], [35] will not be repeated here.

D. STC System Based on MCCNN

We have designed the entire waste disposal process, shown

in Fig. 3. First of all, in urban communities, public places,

there are areas dedicated to waste disposal and this is where

most domestic waste is concentrated. As the most an essential

part of the entire system, STC system integrates various types

of sensors and components that identify the types, weight,

and impurity ratios of waste discarded by residents. Then, it
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Fig. 3. Pipeline of our proposed waste disposal process. The essential steps, such as clearing trucks, transfer stations, and processing centers, are integrated
with artificial intelligence-related technologies and equipment based on the existing decentralized processes. The full link from generation to disposal of
domestic waste can be observed and traced.

is the waste transferring process, when the collection volume

of the waste reaches a certain level, the waste truck with

intelligent equipment collects the waste and transports it to

large waste transfer stations. In the end, the domestic waste

will be transported to large transfer centers and processing

centers, and sorted again to ensure that the purity of each

type of waste is maximized before final processing.

In this article, we mainly introduce one of the subsystems,

the STC system. To verify the MCCNN model in waste

detection and classification, we deployed an STC system with

MCCNN in a Shanghai community. The STC system serves as

a front-end part of the entire waste disposal process. After the

identity recognition is successful, residents can put waste on

the tray of STC. The system takes an image of waste through

the camera and uses the MCCNN model to recognize the

image. The recognition results will be displayed on the screen,

and the category of non-kitchen waste will be marked. The

residents need to put the marked waste into the corresponding

tray. After that, the system automatically opens the trays, and

the waste falls into the trash can.

In the whole process, the system records the weight in-

formation of the waste, the residents’ putting information,

identification records, the effect of waste classification. All

the statistical data will be transmitted to the community

management department by the network.

IV. EXPERIMENTS AND DISCUSSIONS

A. Model Training

MCCNN is composed of a detection model and a classi-

fication model. The simplest training method is to splice the

two networks and train them together by weighting the loss

function. However, the training of such a huge compound

model is extremely cumbersome, and because the detection

results of inconsistent prediction categories are eventually

discarded, the definition of the loss function is also not easy.

Therefore, we use the strategy that two models are trained

separately, and the trained networks are stitched together for

deployment. We selected the DSSD, YOLOv4, and Faster-

RCNN networks for the sub-network of the detection model

and trained them separately. For the classification model, we

chose the ResNet101 network with better performance.

1) Detection Model: We chose three sub-networks as the

detection model of MCCNN, YOLOv4, and DSSD are one-

stage detection networks, Faster-RCNN is a two-stage detec-

tion network. Simultaneously, these three networks belong to

the anchor-based algorithm, the calculation method of anchor

boxes, as described in[14].

We selected 5804 waste images in the dataset, which

included five categories: paper, plastic, shell, barge bone,

and cigarette. The dataset is divided into the training set

and the testing set according to the ratio of 9:1. For the

classification model, the corresponding part of the bounding

box is cropped through the label file and saved into the

corresponding category folder, which constitutes the dataset

for classification, and is also divided into a training set and

testing set according to 9:1.

All of our detection sub-networks are based on the anchor

mechanism, which is the most important RPN structure. How-

ever, the strategy for generating anchors for each sub-network

is different. In YOLOv4, we clustered the bounding boxes of

labels using K-means in the dataset to generate nine anchors

of different sizes as a priori boxes. The anchors in our dataset

are listed as (43,36), (48,54), (71,71), (100,85), (121,122),

(142,174), (182,119), (206,204), (342,387). In Faster-RCNN

and DSSD, we utilize different scales and aspect ratios to

generate anchors. The scale is {322, 642, 1282, 3202}, the

aspect ratio is {1 : 1, 1 : 2, 2 : 1, 1 : 3}. They group each

other to produce 16 anchors.

We used pre-trained models for each sub-network. For the

Faster-RCNN and DSSD networks,we used an pre-trained

model on Pascal VOC dataset with ResNet-101 backbone.

YOLOv4 is pre-trained on MC COCO dataset using CSP-
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Darknet53 backbone. We choose the Resnet101 as classifi-

cation model pre-trained on ImageNet dataset. The hardware

environment includes 64G memory, 20 cores, and a 2080Ti

GPU. Before the training of the detection model, the relevant

configuration is shown in Table I. After starting the training,

the system will save the loss value of a model once each

step. And every 2000 steps, we save the model weight value

once. Simultaneously we test the model on the testing set and

calculate the AP [36] value of various categories and final

mAP value [36]. The loss change of each detection model

TABLE I
RELATED CONFIGURATION OF EACH DETECTION NETWORK

DSSD[15] YOLOv4[17] Faster-RCNN[14]

Backbone Network ResNet101 CSPDarknet53 ResNet101

Input Size 512x512 608x608 600x800

Has RPN False False True(align)

Optimizer SGD SGD SGD

Learning Rate 0.001 0.001 0.001

Max Step 40000 40000 40000

Gamma 0.1 0.1 0.1

Batch Size 8 8 8

Lr Steps [15000,30000] [15000,30000] [15000,30000]

Decay 0.0005 0.0005 0.0001

Momentum 0.9 0.9 0.9

Num Workers 10 10 10

during the training process is shown in Fig. 4 below. The

three sub-figures show the convergence process of the three

networks. Due to each network’s different loss functions and

structure, the difference of the loss is obvious, but the three

networks have gradually converged after 20,000 steps. When

training to 40,000 steps, the DSSD network’s loss value is

between 1 and 2, the YOLOv4 network’s loss value drops

faster, it is close to 0 finally, and the Faster-RCNN network’s

loss value declines fastest, and the final loss value is also close

to 0.

Fig. 5 shows the precision, recall rate, and mAP changes in

the testing set during training. As the training deepens, they

all gradually increase. After about 20,000 steps, it tends to

stabilize. Faster-RCNN has the highest mAP, above 60%, and

the mAPs of other networks are around 50%. For comparison,

we chose the weight at step 40,000 for testing; each category’s

AP and mAP values are shown in Table II. Table III and Table

IV show the recall rate and the precision of various networks

on the testing set, respectively. After the training, the size of

the three detection networks is 931MB, 235MB, and 360MB.

2) Classification Model: In MCCNN, the classification

model is a highly important part. As mentioned above, al-

though the detection model can obtain the location and cate-

gory information of the detection target, due to the complex

characteristics of the waste, the wrong target for category

detection often appears (non-kitchen waste is detected as

kitchen waste). In the actual process, we pay more attention

to the model’s precision than the recall rate. Therefore, the

system should try to avoid false detection. In order to au-

TABLE II
THE AP AND MAP OF VARIOUS METHODS ON THE TESTING SET(%)

Network
AP on the waste dataset

mAP

paper plastic shell large bone cigarette

DSSD[15] 64.2 71.6 40 53.9 20 49.9

YOLOv4[17] 56.7 68.3 15.2 58.1 41.6 48

Faster-RCNN[14] 75.4 77.6 50.1 84.6 36.3 64.9

TABLE III
THE RECALL RATE OF VARIOUS NETWORKS ON THE TESTING SET(%)

Network
Recall Rate on the waste dataset

paper plastic shell large bone cigarette

DSSD[15] 60 58.5 40 61.9 20

YOLOv4[17] 64.4 71.9 24 61.5 50

Faster-RCNN[14] 81.6 84.6 58 92.8 40

TABLE IV
THE PRECISION OF VARIOUS NETWORKS ON THE TESTING SET(%)

Network
Precision on the waste dataset

paper plastic shell large bone cigarette

DSSD[15] 81.6 58.5 95.2 70.2 100

YOLOv4[17] 67.8 79.3 44.4 92.3 50

Faster-RCNN[14] 56.9 57.2 34.1 59.1 22.2

tomatically discard the wrong target of category detection,

another classification network is needed. We use a mature

ResNet101 network, and the flow can be described as the

following: identifying the location and type of non-kitchen

waste by detection model, cutting out the detected non-kitchen

waste from the picture and inputting it into the ResNet101

classification network; the output of the detection model is

compared with the category output by ResNet101. If the

category is different, the detection box is discarded. When

the training reaches 40,000 steps, the model has converged,

and the accuracy on the testing set has reached 85%. After

training, the size of the classification network is 162MB.

B. System Evaluation

After the detection model and classification model training

is completed, the feedforward detection model is constructed

according to the algorithm of MCCNN. DSSD, YOLOv4

and Faster-RCNN are used as the detection sub-networks

of MCCNN. While ResNet101, is used as the classification

network. In order to design comparative experiments, we

separately tested the MCCNN model composed of a detection

subnetwork (DSSD, YOLOv4 or Faster-RCNN) and a classifi-

cation model (ResNet101), and MCCNN with three detection

sub-networks were also tested. For all detection subnetworks,

the IOU threshold for non-maximum suppression is 0.5, and

the object confidence threshold uses 0.5, and the IOU threshold
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(a) (b) (c)

Fig. 4. The loss of each detection network. (a) DSSD loss(Detection network). (b) YOLOv4 loss(Detection network). (c) Faster-RCNN loss(Detection network).

(a) (b) (c)

Fig. 5. (a) Precision in various networks of training. (b) Recall Rate in various networks of training. (c) mAP in various networks of training.

required to qualify as detected defines 0.5. Based on the

above settings, the testing results are shown in Table V, Table

VI, and Table VII. In these tables, MCCNN-DSSD means

that MCCNN’s detection model only includes a detection

sub-network (DSSD), and MCCNN’s classification model is

ResNet101. MCCNN-YOLOv4 and MCCNN-Faster-RCNN

have similar explanations. “Lift” indicates that compared with

only one detection model in the entire process, MCCNN has

a lift percentage. “MCCNN-Fully” represents the complete

model of MCCNN, as shown in Fig. 2.

The core idea of MCCNN is to cascade a classification

model based on the detection model, which combines three

have higher detection ability. MCCNN aims to increase the

value of precision based on less impact on the recall rate. It

can be seen from Table V that the AP values of the paper,

plastic, shell, and large bone have all been reduced based

on MCCNN model with the single detection sub-network.

For the MCCNN-YOLOv4 model, the AP value drops the

least. However, MCCNN-fully has a better performance on

the AP and mAP. Table VI shows the relevant changes in

the recall rate. The MCCNN-YOLOv4 and MCCNN-DSSD

models have a small decrease. MCCNN-Fully still has the

highest recall rate. ‘d‘ Although MCCNN-Fully has the highest

accuracy, its size is more than 1.5G, and it is difficult to

deploy on small embedded devices. Considering the model’s

size and detection effect, we finally chose the MCCNN-

YOLOv4 model for testing in the STC system. The model

size is 397MB, including 235MB of detection sub-network

and 162MB of the classification network. We deployed the

STC system model with an i5 processor, 8G memory, and no

GPU. The loading of the model can be completed within 10s,

and the detection time of each picture is completed within

500ms, which fully meets the daily needs of residents. The

detection result of the waste picture is shown in Fig. 6.

TABLE V
THE AP AND MAP OF MCCNN ON THE TESTING SET(%)

Method
AP on the waste dataset

mAP

paper plastic shell large bone cigarette

MCCNN-DSSD 58 58.1 26 44.2 20 41.3

Lift ↓6.2 ↓13.5 ↓14 ↓9.7 ↑0 ↓8.6

MCCNN-YOLOv4 55.3 61.2 15.2 44.5 50 45.2

Lift ↓1.4 ↓7.1 ↓0 ↓13.6 ↑8.4 ↓2.8

MCCNN-Faster-RCNN 67.2 62.2 37 52.5 39.4 51.7

Lift ↓8.2 ↓15.4 ↓13.1 ↓32.1 ↑3.1 ↓13.2

MCCNN-Fully 77.1 80.4 53 88.5 44.1 68.6
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TABLE VI
THE RECALL RATE OF MCCNN ON THE TESTING SET(%)

Method
Recall rate on the waste dataset

Ave

paper plastic shell large bone cigarette

MCCNN-DSSD 60 58.4 26 45.2 20

Lift ↑0 ↑0.1 ↓14 ↓16.7 ↑0 ↓6.16

MCCNN-YOLOv4 57.6 62.5 20 46.1 50

Lift ↓6.8 ↓9.4 ↓4 ↓15.4 ↑0 ↓7.12

MCCNN-Faster-RCNN 71.6 67.7 40 54.7 40

Lift ↓10 ↓16.9 ↓18 ↓38.1 ↑0 ↓16.6

MCCNN-Fully 76.3 73.8 51.6 58.6 50

TABLE VII
THE PRECISION OF MCCNN ON THE TESTING SET(%)

Method
Precision on the waste dataset

Ave

paper plastic shell large bone cigarette

MCCNN-DSSD 83.7 88.4 92 90.5 100

Lift ↑2.1 ↑29.9 ↓3.2 ↑20.3 ↑0 ↑9.82

MCCNN-YOLOv4 79 90.9 47.6 94.7 100

Lift ↑11.2 ↑11.6 ↑3.2 ↑2.4 ↑50 ↑15.68

MCCNN-Faster-RCNN 62.3 66.7 37 82.1 33.3

Lift ↑5.4 ↑9.5 ↑2.9 ↑23 ↑11.1 ↑10.38

MCCNN-Fully 85.7 91.2 93 96.5 100

V. CONCLUSION

In this article, a novel deep convolutional neural network

based on the Multi-model Cascaded method is proposed to

detect and classify domestic waste, capable of increasing

detection precision as much as possible while ensuring the

high detection recall. We developed a smart trash bin(STC)

system as the front-end carrier of domestic waste disposal,

directly interacting with residents, providing data support for

the entire platform. Additionally, we collected 30,000 waste

images posted by residents as a data set for model training

and labeled 52 types of waste. Simultaneously, MCCNN, a

multi-target detection model for waste images, is introduced

to maximize the detection precision. To the best of our

knowledge, it is the first work to apply deep learning and other

technologies to domestic waste treatment so systematically

based on the mandatory waste classification. Our research aims

to improve the data connection in the waste disposal link,

and at the same time, improve the consciousness of residents’

waste classification. The experiments show that our proposed

method can improve detection precision performance with an

average increase of more than 10%, and it also has good

performance in model size and detection time. Recently our

system has been applied to a community in Shanghai in China,

which helped save time and make the waste recycling more

efficient. With the gradual accumulation of garbage images,

the model accuracy will be further improved in the next stage.

We will also pay attention to waste detection and automatic

sorting.

Fig. 6. Results of Testing. These are the waste images collected from the
residents through the STC system. The STC system uses the MCCNN model
to identify waste images. The non-kitchen waste in the image is marked by
some rectangular frames, and there are five kinds, including shell, large bone,
cigarette, paper, and plastic. The remaining waste unmarked is kitchen waste.
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