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Metastable monotectic Cu — 50 at. % Co alloy produced by arc melting has been processed under
micro gravity condition using a drop tube and subjected to differential thermal analysis (DTA).
Microstructural evidence from the as solidified sample revealed that rapid cooling of the arc melt
process was enough to incite liquid phase separation in the alloy. In the drop tube samples, the
melting temperature of the - phase (Cu — rich) was determined to be 1294.8 K while that of the

a- phase (Co — rich) was found to vary with cobalt content.
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1 INTRODUCTION

There has been significant research on the equi — atomic Cu — Co alloy (CusoCosp) due to the
symmetrical metastable miscibility gap (MG) said to exist in the alloy system [1-3]. Nakagawa
[1], Robinson et al. [2] and Elder et al. [3] all observed a metastable MG whose highest point
(critical point) corresponds to the equi — atomic composition. Different values have been cited
for the critical undercooling necessary to bring about liquid phase separation (LPS) in the alloy;
the value was placed at 96 K below its equilibrium liquidus by Yamauchi et al. [4], 90 K was
reported by Nakagawa [1] while Robinson et al. [2] reported 80 K. The peritectic reaction of the
system has been said to occur at the temperature (Tp) of 1385 K. However, the accepted MG of
the system is that determined by Cao et al. [5] using DTA and glass fluxing on alloys of
composition 16 — 87.2 at. % Co. This slightly symmetrical MG had critical composition of 53 at.
% Cu and a binodal boundary with composition range of 16 — 89.3 at. % Cu. Liquid phase
separation was found to occur at this critical composition at temperature of 1547 K which was
108 K below its equilibrium liquidus. Palumbo et al. [6] however stated that the critical point of

the MG occurred at 58.5 at. % Cu with a temperature of 1556 K.

Generally, LPS occurs in the Cu — Co alloy system into L; (Co —rich) and L, (Cu — rich) phases
when the parent melt is undercooled into the MG beyond a certain temperature limit (Tsep)
which is composition dependant [4,7,8]. The solidification path of the demixed liquids differ to
each other and to the initial homogeneous melt when traced on the metastable phase diagram due
to each liquid having different undercooling. Also, secondary liquid phase separation of one

liquid phase inside another has been said to occur at high undercooling due to truncated diffusion

[7].



Different microstructures have been reported in this alloy [2,4,7-11]. Liquid phase separated
structures have been reported at varying degree of undercooling. Yamauchi et al. [4] observed
liquid phase separated features at undercooling of 123 K while in the long drop tube experiment
(105 m), LPS was said to occur at undercooling of 300 K a value which exceeds the metastable
phase diagram estimate for an alloy of such bulk composition [8]. In electro magnetic levitation
(EML) studies carried out by Zhang et al. [10] and Davidoff et al. [11]on the alloy, liquid phase
separated features were also reported. Davidoff et al. [11] using a combination of EML and splat
quenching, observed that in splat quenched samples at estimated cooling rates of 10’ Ks™ an
undercooling of 220 K is achieved and the microstructural morphology consisted of large
coagulated Co — rich phase that showed evidence of secondary liquid phase separation a
conclusion based on the presence of dispersed L, — rich particles in it. At higher cooling rates
(magnitude of 10°to 10" Ks™); spinodal decomposition was observed [11]. In their EML sample
on the other hand, the microstructural morphology at undercooling above 120 K consisted of
large distorted / spherical particles with very high copper content (96 at. % Cu) in a L; - rich
matrix (84 at. % Co). The interface between the two liquids had dendrites extending from the L;
—rich phase into the L, — rich phase an indication they were likely formed post solidification of
the Co —rich phase [11]. However, in the EML study of Munitz and Abbaschian [7] they
undercooled the alloy to above 110 K and did not observe any evidence of LPS but rather zones
of fine and coarse dendrites whose distinctive boundaries were observed to fade with increasing
undercooling. They also observed that at 200 K, the elements of the coarse dendrites were found
within the fine dendritic zones. The existence of distorted spherulites in other compositions was
cited as evidence of LPS in those alloys. This is a probability as the distorted nature of the

spherulites is thought to be as a result of the convective flow induced by the electromagnetic



stirring during the EML process. This is however not expected to be observed in drop tube
experiments one of which reported the presence of core shell microstructures in the alloy [12].
The core shell microstructures resulted from the interplay of interfacial energies and temperature
and or composition gradient leading to Marangoni motion of dispersed particles of the minority
phase formed close to the surface of the parent droplets to the center of the parent droplet where
they converge to form a core. Mechanism of formation and characteristics of these
microstructures in drop tube processed 50 at. % Co alloy is available in literature [12,13]. Other
researchers have also reported that the alloy is dendritic and that LPS is only feasible in the alloy
at higher degree of undercooling [2,8,9]. Even though the alloy has been extensively researched
there has been little report of phase separation in the alloy which is contrary to the calculations of
the metastable phase diagram reported in [12] which states that the alloy should be able to phase
separate both spinodally and by binodal phase separation after the critical alloy because of the
minimal undercooling estimated to get the alloy into the miscibility gap. Undercooling is
difficult to determine in drop tube experiments however, it can be inferred from the cooling rate
which can be estimated from the diameter of droplets obtained in drop tube experiments using

balance of heat fluxes within the falling droplet as described in [14].

In this article, differential thermal analysis (DTA) is used to gain insights into the accuracy of the
calculated metastable phase diagram of the Co — Cu alloy system described in [12] as well as to

understand the solidification transformations in drop tube processed Cu — 50 at. % Co alloy.

2 EXPERIMENTAL METHODS



The Cu — 50 at. % Co alloy was produced by alloying pure Co (99.998 %) and Cu (99.999 %) in
an arc melting furnace with a protective argon atmosphere. The arc melting process was repeated
nine times to ensure homogeneity of the ingot. Slices from the arc melt ingot were then
processed in a 6.5 m drop tube under a nitrogen environment. The drop tube was evacuated to
10* Pa and back filled with nitrogen gas to 40 kPa. The alloy sample inductively heated was
super-heated to 200 K above its equilibrium liquidus and injected into the drop tube and a
dispersion of droplets of varying size solidified during their free fall down the tube. The
collected droplets were sieved into standard sieve size fractions. Due to the limited amount of
sample retrieved from the drop tube, samples from the sieve size fraction with the most amount
of powder available were selected for DTA measurements (i.e. 850" and < 38 pm). 31.4 mg and
9.7 mg of powder from the 850" and < 38 um size fractions respectively were measured out and
melted in Al,O3 crucibles using a PerkinElmer™ STA 8000 simultaneous thermal analyser at
heating and cooling rates of 15 Kmin™. Only the first heating and cooling cycle curves were
considered in this study as the samples showed signs of Cu oxide contamination (samples had
black appearance) and this is thought to be the origin of some of the peaks observed in the
second process cycle. Also, that DTA curves from the second process cycle upwards are not
likely to be representative of the starting alloy composition. Baseline artefacts identified on the
curves were not discussed as they are not part of the transformation details of the alloy but of the

reference sample hence they were subtracted from all DTA curves.

All the samples were then metallographic processed and their microstructure examined with a
BX51 Olympus optical microscope fitted with a Zeiss AxioCam™ MRc5 camera and a Carl
Zeiss Evo MA 15 SEM fitted with energy dispersive X-ray spectrometer (EDS). Backscattered

electron imaging (BSE) mode was employed.



3 RESULTS AND DISCUSSION

The metastable phase diagram in [12] (figure 1) had critical composition of 58.7 at. % Cu and
liquidus temperature of 1636 K. The estimated undercooling for LPS to occur in this critical
alloy either by nucleation in the binode region or spinodally within the spinode was placed at 13
K. The Cu — 50 at. % Co alloy was estimated to undergo binodal LPS at undercooling of 41 K

and spinodal decomposition at 52 K. The liquidus temperature of the alloy was determined to be

1639 K.
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Figure 1: Metastable phase diagram of the Cu — Co system with super imposed miscibility
gap [12]. Black vertical line shows the solidification path of the Cu — 50 at. % Co alloy.

Slices from the arc melt ingot showed two regions, one having a homogeneous appearance and

the other which appeared unmixed contained a huge region of un-melted cobalt surrounded by



Co — rich coarse dendrites which decreased in size away from it towards the bottom of the
sample. In the homogeneous section, shown by the optical micrograph in figure 2, dark
structures dispersed in a light matrix in regions close to the copper hearth of the arc melt furnace
are observed (figure 2a). These particles appear clustered in some areas. The appearance of the
un-clustered particles looked like columnar structures and these were initially thought to be
dendrites similar to the zones of fine and coarse dendrites observed by Munitz and Abbaschian
[7] in the alloy but these were revealed to be spherical and spheroidised at higher magnification
(figure 2b). EDS analysis (figure 3) gave the average composition of the dark particles as 87.6 at.
9% Co while the light matrix was observed to be Cu — rich. The microstructure also revealed
considerate particle free zones indicating the volume fraction of the dispersed Co — rich particles
in the matrix was low. These images seem to suggest the arc melted Cu — 50 at. % Co alloy had

undergone LPS.

Figure 2: Optical microscopy images of slices of arc melt ingot of Cu — 50 at. % Co alloy,
(a) shows dark cobalt rich structures in a copper rich matrix, (b) magnified view of the
dispersed spherical particles.
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Figure 3: EDS readings of the matrix and of the dark inclusions respectively.

Extensive classification of structures observed in undercooled drop tube processed Cu- Co alloys

have been given in literature [12]. These structures are basically of two categories; liquid phase

separated structures and non — liquid phase separated structures. Figure 4a — d shows some of the

reported microstructures.
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Figure 4: Back scattered SEM images of reported microstructures in undercooled drop-
tube processed Co-Cu alloys, dark phase is Co — rich while the lighter phase is Cu — rich.
(a) and (b) are evolving core shell structures of diameters 250 pm and 410 pm respectively,
(c) 60 um fully evolved core shell structure and (d) 72 um dendritic structure [12].

The microstructure of the arc melt sample of the alloy presented in figure 2 establishes the
occurrence of LPS in the alloy. This is evidenced by the dispersion of minority Co — rich
spherical particles in a majority Cu — rich matrix. The appearance of these nucleated spherical
particles indicates the alloy was successfully undercooled into the binodal region of the MG
since nucleation is not known to occur under the spinodal curve. The migration and growth of
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these particles in the binodal region occurs by diffusion and this could explain the clustering
nature of the spherical particles which could be an indication of high rate of transport and this in
turn is expected to lead to coarsening effect but the particles appeared to be of uniform size. No
microstructural evidence was found to suggest concentration gradient in any of the arc melt
slices; it is therefore likely the migration of these particles was due to temperature variation. At
close proximity to the copper hearth, thermal gradient is higher and as such Marangoni
convection move the particles away from the cooler end however, this may have been
overwhelmed by flow induced by the arc’s electric current which would also explain the
spheroidised / rod — like appearance of some of the Co — rich particles. At the extreme end away
from the copper hearth, the temperature difference is not as high but due to minute density
difference between cobalt and copper, Stokes effect which should be prominent is rather

negligible. This would explain why most of the particles are clustered at this side of the particle.

The arc melt sample was not used for DTA due to its majorly inhomogeneous appearance and
apparent difficulty in extracting the homogeneous section. However, in the 850+ drop tube
powder the first cycle heating curve (figure 5) had two endothermic peaks at 1385.5 K and
1645.6 K with onset temperatures of 1294.8 K and 1522 K respectively. Due to the fact that the
microstructure in figure 6a revealed no evidence of metastable phase transformation these
temperatures are analyzed using the equilibrium phase diagram. The first onset (1294.8 K) falls
within a + B region with the a — phase (i.e. Co — rich) having volume fraction of 50.7 at. %.
Since the alloy has equal atomic volume at this temperature, the observed peak is assumed to be
due to release of heat of fusion on melting of the f — phase which is Cu — rich. Hence melting

temperature (Ty,) of the Cu — rich  — phase is taken as 1294.8 K (melting point of pure copper is
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1358 K). The second endothermic onset falls within L + a region. There is however, more o —
phase in this region than the liquid phase with a — phase having a volume fraction of 53 %. The o
- Co rich phase contained 83.8 at. % Co while the composition of the liquid phase is shown to
contain 12.5 at. % Co. The melting temperature of o — phase is taken as 1522 K (melting point of

pure cobalt is 1768 K).

On the cooling curve two prominent exothermic events can also be observed. The first event had
an onset temperature of 1589 K which is a shift of 67 K to its corresponding endothermic event.
This temperature is also traced to the L + a region on the equilibrium phase diagram however,
the composition of the liquid had increased to 19.4 at. % Co. The compositional increase is
thought to be the reason for the shift between the endothermic and exothermic peaks as during
solidification the composition is constantly being adjusted. The volume fraction of a — Co phase
was determined to be 48.9 %. The nucleation temperature (Ty) of o — Co phase is therefore taken
as 1589 K. The second exothermic onset corresponded to the solidification temperature (Ts) of

the Cu — rich phase.
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Figure 5: DTA plots of the 850+ pm drop tube powder of the Cu — 50 at. % Co alloy.
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Figure 6: SEM images of DTA processed drop tube powder of the Cu — 50 at. % Co alloy:
(a) 850+ pm powder size, (b) < 38 pm powder size.
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In the < 38 pm drop tube powder size, two endothermic events were also observed on its heating
curve (figure 7). The microstructure of the sample shown in figure 6b also displayed no signs of
metastable transformation hence the equilibrium phase diagram is also used in analysing its DTA
plot. The first onset temperature (1374 K) corresponds to the Ty, of the Cu — rich phase having a
composition of 94.3 at. % Cu. A second endothermic event signified by a broad peak had an
onset temperature of 1621 K which is also traced to the L + a region however, the liquid
composition (71.6 at. % Cu) is lesser than that of the 850+ pm powder. Volume fraction of o —
Co phase is calculated to be 40.6 %. On the cooling curve, alloy at the onset temperature of the
first exothermic peak (1613 K) has composition of 74.8 at. % Cu which is observed lower than
that in the larger powder size. This is thought to be the temperature at which o — Co starts to
nucleate (Tx). Volume fraction of the Co — rich phase had however reduced to 49.9 %. Onset
temperature of the second exothermic peak (1383 K) which corresponds to the T of the Cu —
rich phase is higher than that observed for the 850+ powder size. The volume fraction of a — Co

phase was also observed to have increased to 53 %.
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Figure 7: DTA plots of the < 38 pm drop tube powder of the Cu — 50 at. % Co alloy.

The value quoted for the liquidus temperature in the phase diagram in figure 1 is lower than that
quoted by Davidoff et al. [11] who quoted 1655 K as the liquidus of the alloy and an estimated
undercooling of 106 K to get into the binode. However, their values seem not supported by their
phase diagram. According to their calculations, the critical composition of their MG was 52.7 at.
% Cu with corresponding temperature of 1547 K, they also stated that their miscibility gap was
symmetrical. If that is the case, the Cu — 50 at. % Co alloy is very close to their critical
composition and as such expected to contact the binode curve very close to the temperature of

their critical alloy.
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4 CONCLUSION

The occurrence of LPS in the arc melt sample is contrary to previous cited works which
concludes that the alloy is dendritic unless when subjected to high undercooling into the MG.
Although the temperature and cooling rate of the arc melt processing is unknown, the fact that
rapid cooling of the process was able to cause LPS to occur in the alloy is an indication that the
undercooling required to cool into the MG is not as large as indicated in those literature but in

line with the predictions of the calculated metastable phase diagram in figure 1.

Denderitic structures consistent with equilibrium phase diagram predictions were observed in the
DTA samples of the drop tube processed powders. The melting temperature of the Cu — rich and
Co —rich liquids was found to vary with droplet size which is also in line with phase diagram
prediction. There is increased undercooling in smaller droplets which in turn favours the
enrichment with the Co — rich phase. The higher the cobalt content, the higher the melting point

of the two phases.
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