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ABSTRACT: The well-known Shear Stress Transport (SST k−ω) turbulence model was modified and examined. Two industrially
relevant problems with curved and rotating channels have been selected to assess the modification potential: a rotating lid in a
confined cylinder and swirling flow through a three-dimensional abrupt expansion pipe. The postulated amendment simplified the
rotation and curvature correction term that was suggested earlier by Smirnov and Menter [J. Turbomach. 2009, 131 (4) 041010].
The new formulation avoids the calculation of the complex Lagrangian derivatives by implementing the Richardson number (Ri) in
the applied rotation function. The numerical computations were performed using OpenFOAM-2.4.x. The results show the expected
capability of the Shear Stress Transport model with Curvature Correction Modification (SSTCCM) to handle the curvature effects
and system rotation. The paper compares the SSTCCM model with the conventional eddy viscosity models (EVMs): standard k−ϵ;
Re-Normalization Group (RNG) k−ϵ, and the original SST k−ω.

■ INTRODUCTION

One of the most remarkable drawbacks of the eddy viscosity
models (EVMs) is their inability to capture the flow behavior in
a rotating system and streamline curvature. For example, for
complex cases of fluidic devices without moving parts where the
flow demonstrates a high level of rotational motion, EVMs fail to
predict these effects accurately. The main reason for this
deficiency is due to the use of the Boussinesq hypothesis, which
assumes the eddy viscosity as an isotropic scalar, which is
incorrect for complex flows with a rotating system. Since 1980,
various attempts of modifications and improvements on
different EVMs have been proposed to enhance these models
(see refs 1−3). However, these models are still inadequate to
address three-dimensional (3D) flows. Later, in 1997, Spalart
and Shur4 proposed an empirical approach on the sensitization
of the Spalart−Allmaras turbulence model to rotation and
curvature effects. This model demonstrated its valuable ability to
capture a high level of turbulence. Unlike the approach proposed

by Knight and Saffman,5 Spalart and Shur’s model is more
efficient, because it measures the extra influence of the invariant
contributor to the turbulence. By 2009, Smirnov and Menter6

had adapted the rotation−curvature correction function
proposed earlier in Spalart and Shur4 to the shear stress
transport k−ω model (SST k−ω). The correction function was
applied to the production term in both the k and ω transport
equations. As a result, the corrected model, denoted as the
SSTCC, is more accurate, computationally efficient, and robust
than its predecessor.
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In this work, the Richardson number (Ri) has been
implemented to avoid the need to calculate the Lagrangian
derivatives term (DSij/Dt), which appears in the nondimen-
sional argument r.̃ This leads to a simpler version of the SSTCC,
which is realized by implementing the Ri number. As a result, the
obtained numerical code requires lower computational cost and
is also competitive, in terms of accuracy, when compared to the
conventional EVMs. The new formula for r ̃ is applied into the
rotation function developed in Smirnov andMenter.6 The initial
attempt to investigate the performance and accuracy of the
developed SSTCCMmodel has been discussed in the report by
Alahmadi and Nowakowski.7 The work of Alahmadi and
Nowakowski was predominantly focused on a specific case of
cyclone operation and therefore was restricted, with regard to
thorough analyses of the model. The objective of this
contribution is to investigate the performance of the SSTCCM
model in a range of different physical scenarios that include a
vortex breakdown and to compare it with other available models.
This paper is organized as follows. The formulation of the

proposed SSTCCM model is presented first. Then, it is applied
to the simulation of two cases: (1) a rotating lid in a confined
cylinder and (2) turbulent swirling flow through an abrupt
expansion. For each test case, a description of the problem,
numerical methods, and the simulation results are presented and
discussed in details. Finally, major findings and conclusions of
the paper are summarized.

■ MODEL FORMULATION

The Navier−Stokes equations describe the physics of fluid
motion. The continuity and momentum equation respectively
represent the mass conservation equation and incompressible
form of Navier−Stokes equations as follows:
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where u and p represent the velocity and pressure. The term sij is
the strain-rate tensor, which is written as
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The flow variables in eqs 1 and 2 are decomposed into mean
and fluctuating quantities. The time average process then is
applied, which yields the final form of the Reynolds-averaged
Navier−Stokes equations, which can be written as follows:
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The term Sij is the time-averaged quantity of the strain-rate
tensor. The appearance of the additional term τij (which is

defined as u uij i jτ ρ= − ′ ′) is known as the Reynolds stress tensor.
In order to find a solution to the mathematical problem, the
system of equations must be closed by evaluating a specific term
of τij. This is the main principle that must be followed when
designing any turbulence model.

Menter SST Turbulence Model. In 1994, Menter8

introduced the shear stress transport (SST) model, which is
an improved version of the two-equation k−ω model. The SST
model combines the two turbulence models (k−ω and k−ϵ).
The k−ω model is used in the inner part of the boundary layer
and switches to the k−ϵ model in the free streamflow. The SST
model employs the Boussinesq hypothesis to relate the Reynolds
stresses to the mean rate of deformation as follows:
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The conservation form of the transport equations for both the
turbulence kinetic energy (k) and the turbulent frequency (ω)
can be written as
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The production term Pk is defined as
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where the turbulent viscosity is defined as follows:
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The blinding function F1 in the free stream is zero (k−ϵ
model) and, in the boundary layer, is equal to one (k−ωmodel),
given by
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The constant closure coefficients of the SST model are given
in Table 1.

Spalart−Allmaras Rotation Curvature (SARC) Turbu-
lence Model. The standard Spalart−Allmaras (SA) turbulence
model does not account for the effects of system rotation and
streamline curvature. Spalart and Shur4 proposed an empirical
alteration to the original standard SA model. As a result, the
production term of turbulence viscosity equation is multiplied
by a rotation function f r1, which is given by
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The formula contains the dimensionless quantities r* and r,̃
which are defined as

r
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The term DSij/Dt in eq 18 represents the components of the
Lagrangian derivatives of the strain tensor, and εimn is the Levi−
Civita symbol. The empirical constants cr1, cr2, and cr3 that appear
in eq 16 are given the values 1.0, 2.0, and 1.0, respectively.
The function ( f r1) enhances the performance of the SA

model.9 However, it is rather complex and increases the
computational cost. This is due to the factor accounting for the
rotation-curvature correction that contains Lagrangian deriva-
tive DSij/Dt and a higher-order derivative of the strain-rate
tensor term D4 in eq 18.
SSTCCM Model. The model presented in this paper builds

on the shear stress transport model (SST k−ω) and also on the
rotation function that was proposed in the work of Smirnov and
Menter.6 The Richardson number Ri, which was defined by
Hellsten,10 is used to avoid calculating the terms D4 and the
complex Lagrangian derivatives in eq 18. To control the
production term Pk that appears in the transport equations, the
modified rotation function is used. The incompressible form of
the transport equations of the turbulent kinetic energy and its
specific dissipation for the SSTCCM model can be cast in
differential form:
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The production term Pk and the blinding function F1 are given
in eqs 9 and 11, respectively. The rotation function ( f rot) is
defined as

f fmax min( , 1.25), 0.0
rrot 1

= { } (21)

The term f r1 is the rotation function presented in eq 16 and
has been defined by Spalart and Shur.4The production term that
appears in the SA model is based on the vorticity tensor (Ω),
which characterizes the rotation, while the production term Pk is
based on the strain-tensor rate S, which characterizes the total
deformation. Therefore, Pk is greater than S̃, which justifies the
use of the limiter in the rotating function f rot.

6 The
dimensionless quantities r,̃ which exactly represents the
Richardson number Ri, as defined by Hellsten,10 and r* are
then given as follows:
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The Ri term includes the effects of rotation and the
significance of the streamline curvature effect by accounting
for the mean flow deformation. The direct reference to Ri avoids
computing thre Lagrangian derivative DSij/Dt and a higher-
order derivative of the strain-rate tensor term D4 in eq 18. Here,
the strain-tensor rate S and the vorticity tensor Ω represent the
following expressions:
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Numerical Implementation and Simulation Results.
The described model has been implemented using the open
source codeOpenFOAM-2.4.x with flexible and extendable C++
libraries.11 Finite volume grids have been used to calculate the
results for all near-wall flows, resolving the viscous sublayer with
y+ < 1. To avoid any grid resolution uncertainties, highly refined
grids have been created for all two-dimensional (2D) and three-
dimensional (3D) simulations. The model was first tested for a
confined cylinder with a rotating lid and verified with respect to
experimental data using different numerical schemes. After that,
the 3D swirling flow through a sudden expansion pipe was
examined using the proposed model and compared with the
classical SST model8 and various conventional EVMs.

Rotating Lid in a Confined Cylinder. Case Geometry and
Numerical Settings. The first test case that was chosen to
validate the proposedmodel and compared to experimental data
is a confined cylinder with a rotating lid, which has been studied
by Fujimura et al.12 This case constituted a criterion for the
choice of the discretization scheme for the momentum equation
convective term. The computational domain is shown in Figure
1a, which can be described as a confined cylinder, where the
swirling flow is generated by a rotating lid at the top end-wall of
the pipe. Because of the shear forces, the flow in contact with the
rotating lid acquires a spinning motion. Consequently, the fluid
particles are propelled radially outward, while near the sidewall,
the fluid spirals down. As it reaches the bottom end-wall, the
fluid reverses its direction and moves from the sidewall toward
the central axis before spiraling upward.

Table 1. SST k−ω Closure Constants

closure coefficient value

κ 0.4187

σk 0.85

σω 0.5

σω2 0.856

β1 0.0785

β2 0.0828

β* 0.09

a1 0.31
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The characteristics of the flow pattern of this swirling motion
are mainly dependent on two dimensionless parameters, i.e., the
Reynolds number Re (which is defined as Re = R2

Ω/ν) and the
cylinder aspect ratio Ar (which is defined as Ar =H/R), where R
is the radius of the cylinder, Ω is the angular velocity of the lid,
and H is the height of the cylinder. An axisymmetric 2D
simulation is performed in order to facilitate the computational
effort. The 2D axisymmetric computational domain is shown in
Figure 1b. The numerical results are presented for aspect ratios
of 1.5 and 2.5 with the corresponding Re values of 1010, 1290,
and 2200, respectively. The relevant meshes are presented in

Figure 2. The mesh is refined according to the Re value with a y+

value less than unity for all cases:

y Re
y u

R

1
2

=
Δ

Ω
τ+ ikjjjjj y{zzzzz (25)

whereΔy1 is the height of the first cell adjacent to the wall and uτ
is the frictional velocity.
The relationship between the parameters (Re and Ar) and

vortex breakdown observations were reported by Escudier.13 In
this case study, three different regimes are considered. These
area, which have been labeled Cases A, B, and C, correspond to
the following values: Re = 1290 and Ar = 1.5, Re = 2200 and Ar =
2.5, and Re = 1010 and Ar = 2.5, respectively. The equations of
the turbulence quantity variables (k and ω) are both discretized
using the second-order linear upwind scheme (LU). The
equations residuals for the investigated first- and second-order
schemes were set to fall below a predetermined residual
tolerance value over a successive number of iterations. For the

pressure equation, the residual value was 10−8, whereas, for all
other variables, a value of 10−6 was considered sufficient.

■ RESULTS AND DISCUSSION

Figure 3 shows that the upwind scheme provides an erroneous
streamlines for cases A and B. On the other hand, the second-
order schemes (Self Filtered Central Differencing Scheme
(SFCD) and LU) are both qualitatively in good agreement with
the experimental measurements. Unlike the upwind scheme, the
location and the number of the vortex breakdowns are accurately
predicted by the second-order schemes.
Figure 4 shows that the SSTCCM model provides good

predictions of the axial velocity profile along the longitudinal
centerline, when compared to experimental data. In terms of
accuracy and reliability, the second-order schemes are superior
to the simple first-order scheme. For example, Table 2 shows
that the upwind scheme for the fine mesh underestimates the
maximum velocity by ∼10% for case A and by <1% for cases B
and C. Although the upwind scheme seems to provide accurate
predictions of the velocity profile, it cannot capture the
formation of the vortex breakdown, as shown in Figure 3. The
results of the second-order schemes demonstrate that the SFCD
scheme provides insignificant improvement, in terms of the grid
refinement. In contrast, the accuracy of the LU scheme is closely
related to the grid refinement (see Tables 3 and 4). Therefore,
the second-order LU scheme will be adopted for the sudden
expansion case.
The 3D computations should resolve other flow features as

geometry induces more intricate dynamics and the flow field is
influenced by the stretching of vortical structures. The
mechanism of vortex stretching is absent in 2D flows; therefore,
the results could be qualitatively different from 3D results. There
are also restrictions related to k−ω turbulence models. Simpson
and Ranade14 highlighted excessive predictions of turbulence
kinetic energy in the vicinity of stagnation points, as well as the
differences between 2D axisymmetric models and fully 3D
approaches.

Swirling Flow through a 3D Sudden Expansion Pipe.
Turbulent swirling flow through a 3D abrupt expansion can be
found in various fluidic devices without moving parts. Examples
are hydrocylones,15−17 cyclone separators,18 jet ejectors,19 or
spray dryers.20 The flow field is complex. It includes various
dynamic phenomena that are manifested by extremely high
levels of turbulence, recirculation, separation and reattachment
as well as vortex breakdown. The initiation and determination of
the location of the vortex breakdown and the flow instabilities
can be construed because of the diverging nature of the
expansion flow. Therefore, in order to predict this flow behavior
correctly, particular attention must be paid to the choice of the
turbulence closure. Despite of the numerous studies that have
investigated vortex breakdown through the sudden expansion
pipe, including refs 21−25, this type of flow is still not fully
understood, particularly for high swirling flow with swirl
numbers near unity.
The present work evaluates the capability of the new

formulation by comparing its performance with different
EVMs: standard k−ϵ; RNG k−ϵ, and SST k−ω. It then
validates the results, using the experimental measurements of
Dellenback et al.21

Case Geometry and Numerical Settings. The numerical
configuration was based on the experiment of Dellenback et al.21

The experiment was designed to investigate the turbulent
swirling flow through an abrupt expansion with an aspect ratio of

Figure 1. (a) Diagram of a confined cylinder with a rotating upper lid,
showing the dimensions and the boundaries. (b) Axisymmetric 2D
configuration.

Figure 2. Fine-structured hexahedral mesh with y+ less than unity. From
left to right: case A, case B, and case C.
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1:1.94, using the laser Doppler anemometer LDA method.
Figure 5 and Table 5 depict the computational domains used in
the present study. The structured grid consists of hexahedral
elements. A high-resolution discretization is applied close to the
wall with a y+ value of less than unity. The simulation was
performed first on a course mesh, then on refined mesh that was
obtained by doubling the number of grid points in each
direction. This resulted in a negligible difference for all of the
primitive variables. The final mesh that was implemented, which
is depicted in Figure 6, consisted of 1 567 954 cells.

The Reynolds number, based on the upstream diameter D, is
Re = 3 × 104. The inlet section of the flow is placed at x = −2D,
and an axisymmetric sudden expansion downstream is
encountered at x = 0. Two cases for the inlet velocity has been
set: either a pure axial velocity of (0.473), as stated in Table 6, or
a swirling inlet boundary condition that is adjusted as an
axisymmetric profile. The axial and tangential components of the
inlet velocity profile are adapted from the experimental work of
Dellenback et al.,21 while the radial velocity is set to zero. The

Figure 3.Contour plot of the streamlines, from top to bottom, Case A (Re = 1290, Ar = 1.5), Case B (Re = 2200, Ar = 2.5), and Case C (Re = 1010, Ar =
2.5); from left to right, upwind, SFCD, LU, and experimental visualizations. [Experimental results reprinted with permission from ref 12. Copyright
2001, American Society for Mechanical Engineers.]
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computed mean axial and tangential velocity profiles identify the
input parameters at the flow inlet.
The swirl number S (eq 26) represents the ratio of the axial

flux of the tangential momentum to the axial flux of the axial
momentum multiplied by the radius,

S
R

r r

r

1 d

d

R

t z

R

z r

0

2

0

2

∫

∫

υ υ

υ
=

(26)

For the swirling case, the swirl number is ∼0.6, based on the
inlet radius (R = D/2); υt and υz indicate the time-averaged
tangential and axial velocities, respectively. Figure 7 shows the
applied velocity profiles at the inlet for the swirling case (S =
0.6).
The transient PisoFOAM solver is employed to handle the

pressure−velocity coupling. For the temporal differentiation,
the second-order backward scheme is applied. All simulations
were run with a constant time step of (2 × 10−4). The minimum
required time step was calculated using the Courant−Friedrichs-
Lewy (CFL) stability condition. The considered EVMs were

Figure 4. Axial velocity along the centerline. (From top to bottom: case A, case B, and case C. From left to right: coarse, medium, and fine grid.)

Table 2. Upwind Scheme

case Ar Re
grid
size

max
velocity error (%)

vortex
breakdowns

Exp1 2.5 1010 − 0.103385 − non

A1 2.5 1010 1320 0.092695 10.3 non

A2 2.5 1010 2352 0.092827 10.21 non

A3 2.5 1010 4176 0.093279 9.78 non

Exp2 1.5 1290 − 0.065676 − 1

B1 1.5 1290 2204 0.070203 6.89 non

B2 1.5 1290 2640 0.068319 4.02 non

B3 1.5 1290 5104 0.065987 0.47 non

Exp3 2.5 2200 − 0.076415 − 2

C1 2.5 2200 2352 0.064115 16.096 non

C2 2.5 2200 4640 0.074994 1.8595 non

C3 2.5 2200 7800 0.076175 0.3140 non

Table 3. SFCD Scheme

case Ar Re
grid
size

max
velocity

error
(%)

vortex
breakdowns

Exp1 2.5 1010 − 0.103385 − non

A1 2.5 1010 1320 0.1012 2.54 non

A2 2.5 1010 2352 0.10076 2.51 non

A3 2.5 1010 4176 0.10079 2.11 non

Exp2 1.5 1290 − 0.065676 − 1

B1 1.5 1290 2204 0.070737 7.71 1

B2 1.5 1290 2640 0.070666 7.60 1

B3 1.5 1290 5104 0.070635 7.55 1

Exp3 2.5 2200 − 0.076415 − 2

C1 2.5 2200 2352 0.082251 7.64 2

C2 2.5 2200 4640 0.082196 7.57 2

C3 2.5 2200 7800 0.081964 7.26 2
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evaluated for the final mesh size, which was obtained after
performing grid independence tests. The characteristic final
mesh size was fixed and kept constant for all comparison studies.
The time step was adjusted in order not to exceed the maximum
Courant number of 1 for any considered simulations. The
equations residuals were set to fall below a predetermined
residual tolerance value over a successive number of iterations.
For the pressure equation, the residual value was 10−8, whereas,
for all other variables, a value of 10−6 was considered to be
sufficient. Characteristic profiles representing primitive variables
values were also monitored, to ensure that these are converged.

■ RESULTS AND DISCUSSION

The first case study is the no-swirling flow at S = 0. Figure 8
compares the axial velocity contours predicted by the standard
k−ϵ, RNG k−ϵ, and the SST k−ω models with the new
SSTCCM model.
It can be seen that the standard k−ϵ model predicts a very

weak recirculation zone, with a percentage error of 63.9% in
predicting the reattachment position, compared to the
experimental value (Xr/h = 9.3). This could be attributed to
the isotropic nature of this model. The RNG k−ϵ model
performs better than the former, generating 39.3% error, but still
not as required. The congruence between the results of both the
SST k−ω and SSTCCM models and the experimental data was
manifested by a smaller percentage error of 25.8%. Figure 9
shows that the SSTCCM model performs well, with regard to
predicting axial mean velocity profiles along the longitudinal axis
when validating it against the experimental results of Dellenback
et al.21

At a moderate to a high level of swirling strengths, the flow
field starts exhibiting an indistinct and complex phenomenon of
an unsteady asymmetry that is usually observed in swirling flows.

This feature is initiated with the on-axis recirculation and the
vortex breakdown phenomenon.
Figures 10 and 11 show the extent of the recirculation zone at

(S = 0.6) through contours of axial velocity and static pressure.
As the swirling level increases to moderate values, the flow has a
tendency toward asymmetrical form with central recirculation,
signaling the start of vortex breakdown. This is due to the viscous
dissipation of the tangential velocity component, which
produces an adverse pressure gradient on the centerline of the
tube.
Figure 12 reassures that the SSTCCM model performs well

with regard to predicting axial and tangential mean velocity
profiles along the longitudinal axis, when validating it against the
experimental results of Dellenback et al.21

There is a significant challenge in precisely predicting the
unsteady characteristics of the swirling flow with vortex
breakdown utilizing the conventional EVMs. This weakness is
clearly observed in Figure 10, where the standard k−ϵ, RNG
k−ϵ, and the SST k−ωmodels were unable to capture the vortex
breakdown phenomenon. The SSTCCM model is better-suited
to capture the location and extent of the central recirculation
zone in the swirling flow immediately after expansion.

Table 4. Linear-Upwind Scheme

case Ar Re
grid
size

max
velocity

error
(%)

vortex
breakdowns

Exp1 2.5 1010 − 0.103385 − non

A1 2.5 1010 1320 0.10196 1.38 non

A2 2.5 1010 2352 0.10251 0.846 non

A3 2.5 1010 4176 0.10416 0.75 non

Exp2 1.5 1290 − 0.065676 − 1

B1 1.5 1290 2204 0.071912 9.50 1

B2 1.5 1290 2640 0.071178 8.38 1

B3 1.5 1290 5104 0.07086 7.89 1

Exp3 2.5 2200 − 0.076415 − 2

C1 2.5 2200 2352 0.062078 18.76 2

C2 2.5 2200 4640 0.082545 8.02 2

C3 2.5 2200 7800 0.079308 3.79 2

Figure 5. Schematic diagram of the sudden expansion geometry.

Table 5. Geometric Parameters for the Sudden Expansion
Case

parameter dimension (m)

inlet diameter, D 0.05078

inlet length, L 2D

outer diameter, D2 1.94D

outer length, L2 10D

expansion ratio, D2/D 1.94

Figure 6. Computational domain for the sudden expansion geometry.
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Figure 13 presents the slices in the z-plane of the swirling flow
case at (S = 0.6) visualized by instantaneous velocity magnitude
contours from the inlet to the outlet, which clearly show the
unsteadiness and vortex breakdown phenomenon. This
contrasts with Figure 14 at S = 0 for the nonswirling flow case,
where the flow is developing uniformly without showing any
vortex breakdown.
About 11 h of computation time were required for the

simulation with the standard k−ϵ model. The RNG k−ϵ model
simulations consumed 13.5 h, the SST k−ω took 21 h, and the
SSTCCM simulations required 23.5 h. All simulation were
performed on four 2.50 GHz Intel i5−3200 M processors.

The Reynolds Stress Model (RSM) could be treated as an
alternative approach for the simulations presented in this study.
The model accounts for anisotropic Reynolds stresses in the
flow, contrary to the EVMs models, which do not provide the
directional dependence of the turbulent stresses. The model
explicitly accounts for the effects of streamline curvature and
rotation. Although the RSM approach is superior to any EVM
approaches and has been successfully used for computing
swirling flows26,27 (for example, to resolve secondary flows in gas
vortex units),28 it has been found that the model is incapable of
resolving all of the deficiencies of the two-equation models for
simulating turbulent swirling flows. Tsai et al.29 compared the
RSM simulations with measurements and reported that, for
weakly swirling flows (S = 0.3), the strength of the decay of swirl-
induced deceleration of the axial velocity is not reproduced
correctly. Lu and Semiao30 reported that, for this flow regime,
the RSM model does not resolve the intensity of turbulence
along the center line correctly. The RSM model also carries
significant computations overhead, because the additional
equations for the Reynolds stresses must be solved in three
dimensions and, therefore, the model was not considered in the
present study. On the other hand, the common deficiency of the
closure model modifications is related to the fact that a scalar
formula does not distinguish directional components of the
covariance tensor of Reynolds stresses. To elevate this problem,
various other modifications of a closure model have been
applied. The turbulent production limiters meant to avoid
excessive turbulent kinetic energy prediction in stagnation
regions were proposed by Menter8 and by Kato and Launder.31

The production limiters replace the quadratic strain contribu-
tion with the strain rate multiplied by the vorticity rate. In other
methods, the original Kato−Launder approach was replaced
with a linear combination of the unmodified production term
and the Kato−Launder modified production term. Reboud et
al.32 have proposed the introduction of a production limiting
term, which is a simple arbitrary multiplier acting on the
turbulence viscosity term.

■ CONCLUSIONS

The numerical simulation have been performed using the
developed shear stress transport model with curvature
correction modification. The results were compared with
other popular turbulence closure models in flow regimes that
are subject to directional forces, such as those due to system
rotation. The model was successfully validated against
experimental data representing the flow in a confined cylinder
with a rotating lid and the 3D swirling flow through a sudden
expansion pipe. The model that was designed for practical
simulations of complex cases requiring a quick turnaround time
to complete calculations proved to reproduce the flow profiles
with better accuracy than the conventional EVMs. The proposed
approach allowed capturing the location of the vortex break-
down phenomenon in the swirling flow.

Table 6. Setup of the Sudden Expansion Geometry Boundary Conditions

boundary U (m/s) p (m2/s2) k (m2/s2) ϵ (m2/s3) ω (1/s)

inlet (0 0 0.473) zero gradient I U( )
3

2

2× k

I Ri

3/2

×
k

C I Ri

1/2

× ×μ

outlet zero gradient fixed value (0) zero gradient zero gradient zero gradient

walls fixed (0 0 0) zero gradient kqR wall function ϵ wall function ω wall function

Figure 7. Inlet velocity profiles of the computational domain for the
swirl case at S = 0.6.

Figure 8. Contour plots of axial velocity for no-swirling case (S = 0)
flow through the sudden expansion 3D pipe. From left to right: k−ϵ,
RNG k−ϵ, SST k−ω, and SSTCCM.
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Figure 9. Axial mean velocity profiles upstream the sudden expansion pipe, no-swirling flow case (S = 0); comparison between the k−ϵ, RNG, SST,
SSTCCM, and the LDA measurements. [Experimental results reprinted in part with permission from ref 21. Copyright 1988, AIAA.]

Figure 10. Contours of axial velocity for S = 0.6 swirling flow through
the sudden expansion 3D pipe. From left to right:S = 0.6 k−ϵ, RNG
k−ϵ, SST k−ω, and SSTCCM.

Figure 11. Contours of static pressure [m2/s2] for S = 0.6 swirling flow
through the sudden expansion 3D pipe. From left to right: k−ϵ, RNG
k−ϵ, SST k−ω, and SSTCCM.
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Figure 12.Mean axial (left) and tangential (right) velocity profiles upstream the sudden expansion pipe for (S = 0.6) swirling flow case at z/D = 0.5, 1,
and 3; comparison between the SST model with and without rotation corrections and the LDAmeasurements. [Experimental results reprinted in part
with permission from ref 21. Copyright 1988, AIAA.]

Figure 13. Slices in the z-plane of the swirling flow visualized by
instantaneous velocity magnitude contours from the inlet to the outlet
at Re = 30 000 and S = 0.6, using SSTCCM.

Figure 14. Slices in the z-plane of the no-swirling flow visualized by
instantaneous velocity magnitude contours from the inlet to the outlet
at Re = 30 000 and S = 0, using SSTCCM.
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