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ABSTRACT

The early phases of the observed evolution of the supernovae (SNe) are expected to be dominated by the shock breakout and

‘flash’ ionization of the surrounding circumstellar medium. This material arises from the last stages of the evolution of the

progenitor, such that photometry and spectroscopy of SNe at early times can place vital constraints on the latest and fastest

evolutionary phases leading up to stellar death. These signatures are erased by the expansion of the ejecta within ∼5 d after

explosion. Here we present the earliest constraints, to date, on the polarization of 10 transients discovered by the Zwicky

Transient Facility (ZTF), between 2018 June and 2019 August. Rapid polarimetric follow-up was conducted using the Liverpool

Telescope RINGO3 instrument, including three SNe observed within <1 d of detection by the ZTF. The limits on the polarization

within the first 5 d of explosion, for all SN types, is generally < 2 per cent, implying early asymmetries are limited to axial ratios

>0.65 (assuming an oblate spheroidal configuration). We also present polarimetric observations of the Type I Superluminous

SN 2018bsz and Type II SN 2018hna, observed around and after maximum light.

Key words: techniques: polarimetric – supernovae: general.

1 IN T RO D U C T I O N

With the advent of deep, wide-field, and high-cadence surveys, it

has been possible to discover new supernovae (SNe) within hours of

explosion. Rapid follow-up observations of these SNe has provided

a new insight into the stellar origins of these explosion. Early

photometric observations of the emergence of the explosion shock

has, in a number of cases (e.g. Soderberg et al. 2008; Ofek et al.

2010; Garnavich et al. 2016; Rubin & Gal-Yam 2017; Bersten et al.

2018), revealed a behaviour that cannot be explained by just the

shock breaking out of the stellar surface (Waxman & Katz 2017).

Instead, the early, rapid rise in brightness can be greatly affected by

the presence of circumstellar material (CSM).

For a subset of Type Ia SNe, early photometric observations have

revealed an ultraviolet excess that has been interpreted as the shock

interaction between the ejecta and a companion star (Cao et al.

2015; Hosseinzadeh et al. 2017). Early spectroscopy has revealed

the presence of ‘flash ionized’ species, such as He II and N IV, which

correspond to the very quick ionization of the surrounding CSM

⋆ E-mail: j.maund@sheffield.ac.uk

(Khazov et al. 2016; Kochanek 2019). In the case of SN 2013cu,

early observations by Gal-Yam et al. (2014) were able to reveal

the presence of a Wolf–Rayet-like wind immediately around the

progenitor (Crowther 2007). Using flash spectroscopy, Yaron et al.

(2017) showed that some SN progenitors may exhibit enhanced

levels of mass loss as pre-supernova instabilities become important

in the final years before explosion. Bruch et al. (2020) report that

at least 30 per cent of hydrogen-rich SNe exhibit such features in

very early observations, consistent with elevated mass loss just prior

to explosion. Despite the power of early-time observations to place

important constraints on the nature of the progenitor system, the

observable signatures disappear by ∼5 d, after the ejecta overrun the

immediately surrounding dense CSM (Gal-Yam et al. 2014). Early-

time observations are therefore very sensitive to the very last phases

of stellar evolution.

The early-time optical observations of very young SNe have,

predominantly, been in the form of photometry and spectroscopy.

Polarimetry has been established as a sensitive probe of the presence

of departures from spherical symmetry in SN explosions (Wang &

Wheeler 2008). Observations around maximum light and at later

epochs, as the photosphere recedes into the ejecta with time, have

revealed important clues to the physics of the explosions responsible

C© 2021 The Author(s)
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Polarimetry of young ZTF supernovae 313

through their imprint on the geometry of the ejecta. In general, core-

collapse (CC) SNe show increasing degrees of polarization with

time indicating the ejecta becoming more asymmetric the closer

to the origin of the explosion. On the other hand, Type Ia SNe

exhibit the opposite behaviour appearing to become progressively

more spherical closer to origin of the explosion (Wang & Wheeler

2008).

The application of polarimetry to SNe at very early times, however,

has been limited, with the earliest spectropolarimetric observation of

a Type Ia SN published to date, occurring at only ∼5 d after explosion

(Yang et al. 2020). Given the power of polarimetry to probe the 3D

structures of these events, at early times it has the potential to probe

the shape of the progenitor system, including the nature of the mass

loss prior to explosion. Indeed, as shown by Mauerhan et al. (2014)

and Reilly et al. (2017), in the context of SN 2009ip, polarimetry

can provide constraints on both the 3D physical characteristics of the

explosions and their interaction with the CSM that are not accessible

with ordinary photometric and spectroscopic observations.

A major difficulty with conducting rapid polarimetric follow-up

of young supernovae is establishing the connection between the

discovery surveys and facilities with an appropriate polarimetric

observing capability. Here, we report a pathfinder campaign, using

the 2.0 m Liverpool Telescope (Steele et al. 2004) and the RINGO3

polarimeter (Arnold et al. 2012), to acquire early-time observations

of explosive transients; in particular, those discovered by the Zwicky

Transient Facility (ZTF; Bellm et al. 2019; Graham et al. 2019; Gal-

Yam 2019b). The RINGO3 instrument and its predecessors (Steele

et al. 2006, 2010) were designed for the rapid follow-up of the

Gamma Ray Burst afterglows (Mundell et al. 2007; Steele et al. 2009;

Mundell et al. 2013), exploiting the flexibility to rapidly observe new

targets afforded by the robotic nature of the Liverpool Telescope.

Given the location of ZTF at Palomar Observatory, California, USA,

it is possible to trigger polarimetric follow-up observations with the

Liverpool Telescope (La Palma, Canary Islands, Spain) within <24 h

of discovery.

2 O BSERVATIONS

2.1 Data acquisition & reductions

All observations of the target SNe were conducted with the RINGO3

instrument1 mounted on the Liverpool Telescope. RINGO3 operates

with three separate channels, each with its own camera, with the

light split by wavelength using two dichroics. The three channels

are: ‘d’ covering 7700 − 10 000Å,‘e’ covering 3500 − 6400Å, and

‘f’ covering 6500 − 7600Å; following the nomenclature of Jermak

(2017), we will refer to these band passes as r∗, b∗, and g∗,

respectively. Each camera has a slightly different plate scale: 0.43,

0.44, and 0.49 arcsec for the b∗, g∗, and r∗ bands, respectively. Each

RINGO3 channel has its own 512 × 512 px electron multiplying

CCD which have, for the type of observations considered here,

negligible noise associated with readout.

RINGO3 uses a rotating polaroid (∼0.4 Hz) to sample all of

the components of the Stokes parameters at eight separate polaroid

position angles. Each camera produces, therefore, eight exposures in

2.3 s (i.e. 24 exposures total for the three cameras). The RINGO Data

Reduction Pipeline (Arnold 2017)2 creates a series of mean stacked

images: one for the entire duration of the observation and a series

1https://telescope.livjm.ac.uk/TelInst/Inst/RINGO3/
2https://telescope.livjm.ac.uk/TelInst/Inst/RINGO3/#pipeline

of mean stacked images for each minute of the observation. For this

study, we only consider the mean stacked image constructed from all

exposures acquired at a given epoch.

The reduced images of the science targets and the zero-polarization

and highly-polarized standard calibration stars were retrieved from

the Liverpool Telescope Archive.3

2.2 Data analysis workflow

In order to analyse the data, we created a bespoke package to

process all the observations and, ultimately, derive the linear Stokes

parameters for the science targets. The approach to the analysis

follows those presented by Jermak (2017) and Maund et al. (2019).

The data were first sorted into discrete data sets, containing all

24 files corresponding to one individual observation. For each data

set and for each camera, source detection was conducted on the

image at the first rotor position. These positions were then used to

conduct photometry on the images at all eight rotor positions. Due

to extreme vignetting for all three cameras, source detection was

not conducted in the four corners of the images (corresponding to

areas of 128 × 128 px). Aperture photometry was conducted using

the PYTHON PHOTUTILS4 package. For the bright standards, we used a

fixed aperture of radius 8 pixels. For the science targets, aperture sizes

were selected to match the full width at half-maximum to balance

possible contamination from nearby stars or enhanced background

(e.g. host galaxy), but maximize the signal-to-noise. In the event

that it was not possible for the Liverpool Telescope Data Reduction

Pipeline to confidently establish the World Coordinate System for

each image, the target (or targets) of interest in each image were

selected by hand. For all targets, the intensity (I) and the normalized

linear Stokes parameters (q and u) were calculated from the measured

fluxes fi at each rotor position i. Following the prescription of

Clarke & Neumayer (2002), the intensities corresponding to each

of the three Stokes parameters is given by

SI =

8
∑

i=1

fi

Sq = f2 + f3 + f6 + f7

Su = f1 + f2 + f5 + f6 (1)

for which the normalized, instrumental Stokes parameters are

qinst = π

(

1

2
−

Sq

SI

)

uinst = π

(

Su

SI

−
1

2

)

. (2)

In order to correctly propagate the photometric uncertainties, we

used Monte Carlo sampling to create N = 10000 samples from

the distribution N(fi, (�fi)
2) and carried these distributions through

equations (1) and (2), to derive the corresponding distributions for

qinst and uinst. Observations of zero and highly-polarized standards

were used to remove any instrumental polarization signature. The

standard stars observed as part of the Liverpool Telescope RINGO3

standard calibration plan are derived from Schmidt, Elston & Lupie

(1992). The instrumental polarization offset (q0, u0) was calculated

using the observations of the zero-polarization standard stars, such

3https://telescope.livjm.ac.uk/cgi-bin/lt search
4https://pypi.org/project/photutils/
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314 J. R. Maund et al.

Table 1. Polarized standards from Schmidt et al. (1992) in the RINGO3

channels.

Standard b∗/‘e’ g∗/‘f’ r∗/‘d’

p(per cent) θ (◦) p(per cent) θ (◦) p(per cent) θ (◦)

BD +25 727 5.99 31.2 6.13 31.5 5.22 31.7

BD +59 389 6.40 98.2 6.27 98.2 5.45 98.2

BD +64 106 5.48 96.9 5.00 96.8 4.89 96.7

HD 155528 4.80 91.9 4.80 91.9 4.80 91.8

HD 215806 1.80 66.6 1.74 69.0 1.40 70.8

Hiltner 960 5.61 55.2 4.98 54.3 4.19 53.5

VI Cyg 12 8.42 115.6 8.42 115.6 8.42 115.6

that

q ′ = 1.14(qinst − q0)

u′ = uinst − u0, (3)

where the factor 1.14 corrects for elliptical distortion of the polariza-

tion circle of a constant polarization source in the qu plane (Arnold

2017).

The polarization properties of the highly-polarized standards in the

appropriate RINGO3 wavelength channels are given in Table 1, as

previously used by Maund et al. (2019). We used reported polariza-

tion values for seven standards from the ultraviolet to the infrared (in

the UBVRIJHK passbands Schmidt et al. 1992), employing a fourth

order polynomial to calculate the brightness-weighted polarization

over the wavelength ranges corresponding to the three RINGO3

channels.

For highly-polarized stars, the observed polarization angle, in the

instrument coordinate frame, is given as

θobs =
1

2
arctan

(

u′

q ′

)

(4)

from which the rotation offset of the instrument can be determined

by

K = θ0 − (ROT SKYPA − θobs), (5)

where θ0 is the previously determined polarization angle for the

standard star in the reference catalogue and ROTSKYPA is the

instrument rotation angle. K is therefore the relative offset of

the polaroid positions, with respect to the standard astronomical

definition of the Stokes parameter coordinate system (+q aligned

with North and a polarizaton angle of 0◦), without any rotation of the

instrument. The total degree of observed polarization was calculated

as

pobs =
√

q ′ 2 + u′ 2. (6)

Through comparison with previously catalogued values of the po-

larization for the highly-polarized standard stars (p0), the degree of

instrumental ‘depolarization’ was derived as

D =
p0

pobs

. (7)

We note that this definition of the instrumental depolarization is the

inverse to that used by Słowikowska et al. (2016); however, the two

approaches are otherwise equivalent. For the science targets, q
′

and

u
′

were used to calculate the intrinsic polarization angle

θ0 = K + ROT SKYPA −
1

2
arctan

(

u′

q ′

)

(8)

and the intrinsic degree of polarization

p0 = D × pobs. (9)

Figure 1. The instrumental polarization parameters derived from each zero-

and high-polarization standard observed over the survey period. The points

are colour-coded according to wavelength channel (blue = b∗, green = g∗,

and red = r∗). Horizontal lines in each panel indicate the mean derived

instrumental parameter (as summarized in Table 2).

The degree of polarization was further corrected for bias using the

Modified ASymptotic (MAS) estimator of true polarization pMAS

(Plaszczynski et al. 2014). We follow Higgins et al. (2019) by

characterizing polarization measurements with pMAS/σ p < 3 as non-

detections, and quote the 95 per cent upper limit.

2.3 The stability of the RINGO3 instrument

To establish a baseline calibration for each science observation we

utilized the zero- and high-polarization standards, observed as part

of the standard RINGO3 calibration plan, from the night of and the

nights before and after the science observation. As a single-beam

polarimeter (Arnold et al. 2012), in which orthogonal polarization

components are measured in series, instrumental and background

effects may be additive and not completely removed through the

calculations presented in equations (1) and (2). The determination

of the instrumental polarization calibration parameters q0, u0, D,

and K may also be limited by the level of the sky background, the

seeing, and the throughput of each individual channel (Słowikowska

et al. 2016). RINGO3 also uses two dichroics (to separate the three

separate wavelength channels) and a depolarizing Lyot prism, for

which it is estimated the minimum total systematic uncertainty is

∼ 0.5 per cent (Jermak 2017).

The measured instrumental polarization parameters, for each

polarization standard star observed, are shown in Fig. 1. The mean

and standard deviation of the instrumental polarization parameters

of RINGO3, for the survey period, are summarized in Table 2. We

also calculated the intra-night standard deviation of the instrumental

MNRAS 503, 312–323 (2021)
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Polarimetry of young ZTF supernovae 315

Table 2. Average properties of the RINGO3 instrumental polarization between 2018 June and 2019 August.

Channel q0 σ (q0) σN (q0) u0 σ (u0) σN (u0) D σ (D) σN (D) K σ (K) σN (K)

b∗ e −0.58 0.24 0.10 −2.02 0.39 0.15 0.97 0.11 0.07 125.92 3.55 2.19

g∗ f −1.18 0.28 0.14 −3.44 0.38 0.11 1.03 0.10 0.05 125.62 2.70 1.16

r∗ d −1.22 0.40 0.15 −3.28 0.44 0.19 1.06 0.20 0.11 126.38 2.14 1.17

σ = scatter (standard deviation) of the observed parameter across all observations.

σN = average scatter of the observed parameter measured on individual nights.

Table 3. Science targets for RINGO3 observations.

Target Original αJ2000 δJ2000 Discovery Redshift Type Discoverer

Name date

SN 2018bsz ASASSN-18km 16:09:39.1 -32:03:45.6 2018-05-17 0.027 SLSN-I (Anderson et al. 2018b) ASASSN1 (Stanek 2018)

SN 2018cnw ZTF 18abauprj 16:59:05.0 + 47:14:11.2 2018-06-15 0.028 SN Ia-91T-like (Miller 2018) ZTF2 (Fremling 2018a)

SN 2018cyg ZTF 18abdbysy 15:34:08.5 + 56:41:48.7 2018-06-30 0.011 SN II (Fremling & Sharma 2018) LOSS 3(Jeffers, Zheng & Filippenko 2018)

SN 2018dfi ZTF 18abffyqp 16:50:50.1 + 45:23:52.5 2018-07-10 0.031 SN IIb (Bruch et al. 2020) POSS4 (Gagliano et al. 2018)

SN 2018eay ZTF 18abgmcmv 18:16:13.1 + 55:35:27.2 2018-07-15 0.018 SN Ia-91T-like (Yin et al. 2018) ZTF2 (Fremling 2018b)

SN 2018gep ZTF 18abukavn 16:43:48.2 + 41:02:43.4 2018-09-09 0.032 SN Ic-BL (Burke et al. 2018) ZTF2(Ho et al. 2018)

SN 2018gvi ZTF 18abyxwrf 02:55:36.0 + 43:03:27.3 2018-09-24 0.021 SN Ia (Fremling, Dugas & Sharma 2018) ZTF2 (Fremling 2018c)

SN 2018hna ··· 12:26:12.1 + 58:18:50.8 2018-10-22 0.002 SN II (Leadbeater 2018) K. Itagaki (Itagaki 2018)

SN 2019np ZTF 19aacgslb 10:29:22.0 + 29:30:38.3 2019-01-09 0.004 SN Ia (Burke et al. 2019a) K. Itagaki (Itagaki 2019)

SN 2019ein ATLAS19ieo 13:53:29.1 + 40:16:31.3 2019-05-01 0.008 SN Ia (Burke et al. 2019b) ATLAS5 (Tonry et al. 2019)

AT 2019hgp ZTF 19aayejww 15:36:12.9 + 39:44:00.6 2019-06-08 ··· ··· ZTF2 (Bruch et al. 2019b)

SN 2019nvm ZTF 19abqhobb 17:25:38.7 + 59:26:48.3 2019-08-19 0.019 SN II (Hiramatsu et al. 2019) ZTF 2(Nordin et al. 2019)

1All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014); 2Zwicky Transient Facility (ZTF; Bellm et al. 2019); 3Lick Observatory Supernova Search (LOSS; Li et al. 2000); 4Puckett

Observatory Supernova Search (POSS); 5Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry et al. 2018)

polarization parameters σ N (and in Table 2 we report the average over

all nights). In general, we find that the limiting systematic precision

of RINGO3 is consistent with previous estimates (Słowikowska

et al. 2016; Jermak 2017). Although the calibration of RINGO3 is

relatively stable over the period of the survey, there is some structure

present in Fig. 1 [e.g. around Modified Julian Date (MJD) 58300,

which coincided with the cleaning of a mirror in the optical path] that

requires applying calibrations derived over short time-scales (rather

than an average derived over the entire length of the survey).

2.4 Science targets and observations

Science targets were observed as part of programmes PQ18A02,

PL18A10, PL18B01, and PL19A16. Targets were selected, primarily

from ZTF, for their brightness and location in the sky to be suitable

for RINGO3 observations. The sample is composed of four Type

II SNe, three Type Ia SNe, two 1991T-like Type Ia SNe, one

Type Ic SN, one Type I superluminous SN (SLSN), and a single

transient (AT2019hgp) of unknown classification. Details of the

formal discovery and classification of these transients are shown

in Table 3. We note, however, that in a number of cases the objects

had ZTF observations prior to the date and time given in the formal

discovery announcement.

During the ZTF observations, difference images are generated

based on the image subtraction algorithm by Zackay, Ofek & Gal-

Yam (2016) implemented in the real-time reduction pipeline (Masci

et al. 2019). Only ZTF alert streams that are above a 5σ threshold will

generate alerts. Using the IPAC ZTF difference imaging pipeline,

we performed forced point-spread function (PSF) photometry at

the location of SNe discovered by ZTF following the procedure

described in Yao et al. (2019). We applied a 4σ threshold and

inspected both the last non-detection limit and the first detection in

both g and r bandpasses. To establish the phase of our observations,

for each transient, we consider the time of explosion texp to be midway

between the last ZTF non-detection and the first ZTF detection of the

candidate (see Table 4). The estimated explosion time of the Type II

SNe 2018cyg and 2018dfi are consistent with Bruch et al. (2020). The

discovery time of SN 2018gep agrees with the first r-band detection

reported by Ho et al. (2019).

A log of the science observations is presented in Table 5 and

the locations of the SNe, with respect to their host galaxies, are

shown on Fig. 2. It was not possible to observe two of the science

targets (SN 2018bsz and 2018hna) at early times, and these constitute

outliers from the main targets of the early-time polarimetry survey.

As these were observed alongside our other targets, and using the

same Liverpool Telescope programmes, we include them here for

completeness.

3 R ESULTS & A NA LY SIS

3.1 SN 2018bsz

Discovered by ASAS-SN on 2018 May 17 (Stanek 2018), it was

temporarily classified as a young Type II SN (Hiramatsu et al.

2018a). It was later reclassified as a superluminous supernova (for

a review see Gal-Yam 2019a), albeit a lower luminosity example

(Anderson et al. 2018a). Our observations commenced 4 d after the

photometric light curve maximum or 69 d after the explosion date

proposed by Anderson et al. (2018a). The polarization measurements

for SN 2018bsz are presented in Table 6 and the time evolution, with

respect to the photometric light curve, is shown on Fig. 3. We derive

limits on the polarization, strictest in the blue, at the general level

of < 1 − 2 per cent. We do, however, make one single detection of

p(b∗) = 2 ± 0.5 per cent at 11.4 d after maximum (or MJD58 267.5).

3.2 SN 2018cnw

Miller (2018) classified SN 2018cnw as being a ‘91T-like’ Type

Ia SN. Five sets of observations were acquired in the course of a

single night (around MJD 58 287.0). The observation of the SN was

subject to poor seeing of ∼3.2 arcsec, with the point spread function

appearing obviously elongated. We note that it was not possible,

under these conditions, to detect the SN in the r∗ observations. For

the other filters, we derived upper limits on the polarization of b∗ <

2.0 per cent and g∗ < 0.9 per cent.

MNRAS 503, 312–323 (2021)
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316 J. R. Maund et al.

Table 4. Non-detection limits and first detection epochs for the observed SNe.

Target Filter Last ZTF non-detection First ZTF detection

(MJDa [S/N]b) (MJDa [S/N]b)

SN 2018bsz/ASASSN-18km ··· ··· ···

SN 2018cnw/ZTF18abauprj g 58 282.385 [<0] 58 283.283 [5.1]

r 58 283.329 [3.2] 58 284.280 [19]

SN 2018cyg/ZTF18abdbysy g 58 294.223 [<0] 58 295.205 [5.2]

r 58 294.242 [2.1] 58 294.257 [4.0]

SN 2018dfi/ZTF18abffyqp g 58 306.307 [<0] 58 307.214 [63]

r 58 306.201 [<0] 58 307.186 [44]

SN 2018eay/ZTF18abgmcmv g 58 311.345 [3.7]d 58 312.350 [11]

r 58 311.198 [2.5] 58 311.222 [5.5]

SN 2018gep/ZTF18abukavn g 58 369.254 [3.9]d 58 370.186 [19]

r 58 370.141 [4.0]d 58 370.163 [7.3]

SN 2018gvi/ZTF18abyxwrf g 58 384.319 [2.3] 58 385.413 [6.3]

r 58 386.328 [<0] 58 388.485 [21]

SN 2018hna/ZTF18acbwaxk ··· ··· ···

SN 2019np/ZTF19aacgslb g 58 491.454 [<0] 58 494.483 [179]

r 58 491.530 [1.2] 58 492.445 [18]

SN 2019ein/ATLAS19ieo cyan-ATLAS 58 602.267 58 604.474c

AT 2019hgp/ZTF19aayejww g 58 640.362 [<0] 58 641.201 [3.5]d

r 58 640.291 [<0] 58 641.289 [4.9]

SN 2019nvm/ZTF19abqhobb g 58 713.218 [<0] 58 714.163 [71]

r 58 713.242 [1.2] 58 714.185 [55]

aModified Julian Date; bSignal-to-noise ratio for the forced difference image PSF-fit flux measurement;
cDiscovered by ATLAS (Tonry et al. 2019); dTarget was marginally detected;

3.3 SN 2018cyg

SN 2018cyg was observed three times in a single night (MJD

58 296.0). The SN was marginally detected (S/N = 4.0) in ZTF

r-band observation on MJD 58294.257, followed by the g- and r-

band detections at MJD 58 295.205 (S/N = 5.2) and MJD 58 295.246

(S/N = 16.0), respectively. We consider the RINGO3 observation

was therefore conducted at ∼0.8–1.8 d after the first detection with

ZTF, or ≈2 d after the explosion. (see Table 4). Fremling & Sharma

(2018) later classified it as a Type II SN, with a short plateau. Given

the faintness of the SN at this epoch and poor observing conditions,

we could not establish a photometric detection of SN 2018cyg in

the b∗-band and were only able to place limits on the degree of

polarization of g∗ < 15 per cent and r∗ < 22.0 per cent.

3.4 SN 2018dfi

Two sets of observations of SN 2018dfi, consisting of two separate

exposures each, were conducted on a single night (MJD 58 308.0).

The RINGO3 observations commenced 0.7 d after the first detection

by ZTF, which we estimate to correspond to 1.2 d post-explosion.

The SN was classified (at 4.5 d post-explosion) as a Type II SN

(Hiramatsu et al. 2018b), which was further refined to being Type IIb

(Bruch et al. 2020). Combining the Stokes parameters determined

for all four exposures, we derive limits on the degree of polarization

of SN 2018dfi of p(b∗) < 2.3 per cent, p(g∗) < 6.8 per cent, and

p(r∗) < 4 per cent.

3.5 SN 2018eay

Forced PSF photometry of ZTF images at the location of SN 2018eay

shows that the S/N measured in both g- (S/N = 3.7 at MJD

58 311.345) and r- (S/N = 5.5 at MJD 58 311.222) bands are

obviously higher compared to the previous non-detections. The

S/N derived based on an r-band image obtained earlier during the

same night (MJD 58 311.198) yields 2.5. Therefore, we adopt an

explosion epoch at MJD 58 311.2 for SN 2018eay, indicating that the

first RINGO3 imaging polarimetry was acquired 7.7 d post the SN

explosion (the night of MJD 58 319.0). Similarly to SN 2018cnw,

SN 2018eay was classified as a ‘91T-like’ Type Ia SN (Yin et al.

2018). In both sets of observations, the SN was only weakly detected

in all three channels and it was only possible to derive limits on the

degree of polarization of p(b∗) < 2.5 per cent, p(g∗) < 6.1 per cent,

and p(r∗) < 7.5 per cent.

3.6 SN 2018gep

Two sets of observations of SN 2018gep were conducted, in se-

quence, on the night of MJD 58 385.0, corresponding to 14.8 d

post-explosion. We note that SN 2018gep was discovered very

close to the moment of explosion, with the last ZTF non-detection

of the transient occurring only 0.02 d before the first detec-

tion (Ho et al. 2018). They conducted a second-order polyno-

mial fit to the first 3 d of the g-band flux and defined t0 at

58 370.146 as the time at which the flux of SN 2018gep is zero.

In fact, the transient exhibits pre-explosion emission extended ≈

1 week prior to the rapid rise in the light curve (see Fig. 7

of Ho et al. 2019). An observation of SN 2018gep at 10.1 d

yielded a classification for SN 2018gep as a broad-lined Type

Ic supernova at around maximum light (Burke et al. 2018); al-

though Pritchard et al. (2020) suggest the fast rise-time (< 6.2 d)

may imply that SN2018gep may be more closely related to

the family of Fast Blue Optical Transients (Drout et al. 2014).

From our RINGO3 observations, we do not detect any significant

polarization for SN 2018gep, instead deriving polarization lim-

its of p(b∗) < 1.6 per cent and p(g∗) < 7.0 per cent and p(r∗) <

5.1 per cent.
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Polarimetry of young ZTF supernovae 317

Table 5. RINGO3 observations of the target SNe. The exposure time is the total spent on the target across all eight

polaroid rotator positions. The same exposure time is used for each of the three (b∗/g∗/r∗) RINGO3 channels.

Date (UT) MJD Phase Data set Target Exposure

(d)† Time(s)

2018-06-02 23:02 58 271.96 69.5 e 20180602 2 0 SN 2018bsz 598

2018-06-05 22:53 58 274.95 72.4 e 20180605 8 0 SN 2018bsz 598

2018-06-10 22:37 58 279.94 77.4 e 20180610 4 0 SN 2018bsz 895

2018-06-13 22:58 58 282.96 80.5 e 20180613 4 0 SN 2018bsz 895

2018-06-17 22:05 58 286.92 84.4 e 20180617 3 0 SN 2018bsz 1196

2018-06-20 22:01 58 289.92 87.4 e 20180620 4 0 SN 2018bsz 1197

2018-06-24 21:35 58 293.90 91.4 e 20180624 1 0 SN 2018bsz 1196

2018-06-28 21:33 58 297.90 95.4 e 20180628 3 0 SN 2018bsz 1198

2018-06-18 02:00 58 287.08 4.2 e 20180617 10 0 SN 2018cnw 948

2018-06-18 02:16 58 287.09 4.3 e 20180617 11 0 SN 2018cnw 948

2018-06-18 02:32 58 287.11 4.3 e 20180617 12 0 SN 2018cnw 948

2018-06-18 02:48 58 287.12 4.3 e 20180617 13 0 SN 2018cnw 945

2018-06-18 03:04 58 287.13 4.3 e 20180617 14 0 SN 2018cnw 945

2018-06-26 23:00 58295.96 1.7 e 20180626 3 0 SN 2018cyg 1799

2018-06-26 23:30 58 295.98 1.7 e 20180626 4 0 SN 2018cyg 1796

2018-06-27 00:01 58 296.00 1.8 e 20180626 5 0 SN 2018cyg. 1796

2018-07-08 22:12 58 307.93 1.2 e 20180708 5 0 SN 2018dfi 1196

2018-07-08 22:32 58 307.94 1.2 e 20180708 6 0 SN 2018dfi 1196

2018-07-09 01:37 58 308.07 1.3 e 20180708 7 0 SN 2018dfi 1196

2018-07-09 01:58 58 308.08 1.3 e 20180708 8 0 SN 2018dfi 1196

2018-07-19 22:12 58 318.93 7.7 e 20180719 5 0 SN 2018eay 996

2018-07-19 22:29 58 318.94 7.7 e 20180719 6 0 SN 2018eay 999

2018-09-23 22:15 58 384.93 14.8 e 20180923 16 0 SN 2018gep 446

2018-09-23 22:23 58 384.93 14.8 e 20180923 17 0 SN 2018gep 446

2018-10-02 02:39 58 393.11 8.2 e 20181001 10 0 SN 2018gvi 1199

2019-01-10 05:07 58 493.21 82.4 e 20190109 4 0 SN 2018hna 476

2019-01-14 02:09 58 497.09 86.3 e 20190113 9 0 SN 2018hna 478

2019-01-20 01:44 58 503.07 92.3 e 20190119 7 0 SN 2018hna 537

2019-01-30 03:35 58 513.15 102.3 e 20190129 5 0 SN 2018hna 715

2019-02-04 02:54 58 518.12 107.3 e 20190203 5 0 SN 2018hna 957

2019-02-12 01:45 58 526.07 115.3 e 20190211 7 0 SN 2018hna 997

2019-01-11 03:46 58 494.16 2.2 e 20190110 4 0 SN 2019np 898

2019-01-12 03:48 58 495.16 3.2 e 20190111 4 0 SN 2019np 1197

2019-01-12 04:35 58 495.19 3.2 e 20190111 5 0 SN 2019np 1197

2019-01-13 01:13 58 496.05 4.1 e 20190112 9 0 SN 2019np 1198

2019-01-14 01:50 58 497.08 5.1 e 20190113 8 0 SN 2019np 998

2019-01-15 02:34 58 498.11 6.1 e 20190114 20 0 SN 2019np 717

2019-01-16 06:40 58 499.28 7.3 e 20190115 10 0 SN 2019np 598

2019-01-20 01:35 58 503.07 11.1 e 20190119 6 0 SN 2019np 417

2019-01-21 01:40 58 504.07 12.1 e 20190120 3 0 SN 2019np 417

2019-01-23 01:33 58 506.06 14.1 e 20190122 9 0 SN 2019np 717

2019-01-26 04:55 58 509.21 17.2 e 20190125 3 0 SN 2019np 717

2019-02-07 01:15 58 521.05 29.1 e 20190206 9 0 SN 2019np 996

2019-02-25 00:11 58 539.01 47.0 e 20190224 3 0 SN 2019np 1196

2019-05-03 21:27 58 606.89 3.5 e 20190503 3 0 SN 2019ein 1499

2019-05-04 21:46 58 607.91 4.5 e 20190504 3 0 SN 2019ein 1497

2019-05-04 22:13 58 607.93 4.6 e 20190504 4 0 SN 2019ein 1497

2019-05-05 21:32 58 608.90 5.5 e 20190505 3 0 SN 2019ein 1497

2019-05-06 21:56 58 609.91 6.5 e 20190506 3 0 SN 2019ein 1496

2019-05-07 22:47 58 610.95 7.6 e 20190507 3 0 SN 2019ein 896

2019-05-09 22:47 58 612.95 9.6 e 20190509 3 0 SN 2019ein 599

2019-05-11 00:04 58 614.00 10.6 e 20190510 3 0 SN 2019ein 598

2019-05-11 23:03 58 614.96 11.6 e 20190511 5 0 SN 2019ein 598

2019-05-14 00:45 58 617.03 13.7 e 20190513 26 0 SN 2019ein 598

2019-05-16 23:03 58 619.96 16.6 e 20190516 4 0 SN 2019ein 599

2019-05-19 21:40 58 622.90 19.5 e 20190519 1 0 SN 2019ein 598

2019-05-22 22:30 58 625.94 22.6 e 20190522 1 0 SN 2019ein 598

2019-05-27 22:20 58 630.93 27.6 e 20190527 3 0 SN 2019ein 596

2019-06-04 23:10 58 638.97 35.6 e 20190604 3 0 SN 2019ein 598

2019-06-24 23:24 58 658.98 55.6 e 20190624 8 0 SN 2019ein 1196

2019-07-05 22:23 58 669.93 66.6 e 20190705 3 0 SN 2019ein 1797

MNRAS 503, 312–323 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
3
/1

/3
1
2
/6

1
3
4
7
4
4
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

5
 M

a
y
 2

0
2
1



318 J. R. Maund et al.

Table 5 – continued

Date (UT) MJD Phase Data set Target Exposure

(d)† Time(s)

2019-07-26 21:09 58 690.88 87.5 e 20190726 3 0 SN 2019ein 1798

2019-06-09 22:56 58 643.96 3.2 e 20190609 3 0 AT 2019hgp 1797

2019-08-19 21:32 58 714.90 1.2 e 20190819 4 0 SN 2019nvm 1797

† Relative to calculated explosion epoch (see Section 2.4 and Table 4).

Figure 2. RINGO3 g∗ images of the science targets. All images are centred on the science target, have dimensions of 1
′
× 1

′
, and oriented with North up and

East to the left.

Table 6. RINGO3 polarization measurements of SN 2018bsz.

Epoch Phase p(b∗) p(g∗) p(r∗)

(MJD) (d) (per cent) (per cent) (per cent)

58 271.96 69.5 <1.56 <2.56 <5.07

58 274.95 72.4 <1.08 <1.60 <4.59

58 279.94 77.4 <2.46 <1.86 <4.54

58 282.96 80.5 <2.49 <1.08 <2.23

58 286.92 84.4 2.02 ± 0.53 <1.53 <4.83

58 289.92 87.4 <1.85 <1.23 <2.56

3.7 SN 2018gvi

We acquired a single observation of SN 2018gvi at 8.2 d post-

explosion, or 7.7 d after the first detection by ZTF. The SN had

earlier been classified by Fremling et al. (2018) as a Type Ia SN.

We derive upper limits on the polarization of SN 2018gvi in all three

channels to levels of p(b∗) < 1.6 per cent, p(g∗) < 2.0 per cent, and

p(r∗) < 5.0 per cent.

MNRAS 503, 312–323 (2021)
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Polarimetry of young ZTF supernovae 319

Figure 3. The evolution of the polarization of SN 2018bsz. The measure-

ments are colour coded according to the RINGO3 channels b∗ (blue), g∗

(green), and r∗ (red) and are composed of detections (•) and upper limits

(�). Also shown is the ATLAS o-band photometry (×) reported by Anderson

et al. (2018a).

Figure 4. The evolution of the polarization of SN 2018hna (see Table 7)

using the same plotting scheme as Fig. 3. Also shown is ZTF g
′

(+) and r
′

(×) photometry.

Table 7. RINGO3 polarization measurements of SN 2018hna.

Epoch Phase p(b∗) p(g∗) p(r∗)

(MJD) (d) (per cent) (per cent) (per cent)

58 493.21 82.4 0.83+0.12
−0.13 <0.81 <1.01

58 497.09 86.3 <0.39 0.68 ± 0.18 <1.50

58 503.07 92.3 <0.89 <0.91 <1.09

58 513.15 102.3 <0.37 0.69 ± 0.18 1.29+0.28
−0.29

58 518.12 107.3 0.72 ± 0.17 <0.50 <0.74

58 526.07 115.3 <0.39 <0.73 <0.89

3.8 SN 2018hna

SN 2018hna was observed with RINGO3 at six separate epochs, be-

ginning ∼5 d before the V-band maximum. Given the long rise time to

maximum light, the observations commenced ∼82 d post-explosion

as shown in Fig. 45 (Singh et al. 2019). The polarization measure-

ments at each of the six epochs are listed in Table 7. Overall, we

constrain the polarization of SN 2018hna at around maximum light

to be < 1.5 per cent. In the b∗- and g∗-bands, we make four separate

detections of significant polarization p ∼ 0.5 − 1.0 per cent, whilst

at a single epoch we find p(r∗) = 1.3 ± 0.3 per cent. From Fig. 4, it

5https://lasair.roe.ac.uk/object/ZTF18acbwaxk/

Table 8. RINGO3 polarization measurements of SN 2019np.

Epoch Phase p(b∗) p(g∗) p(r∗)

(MJD) (d) (per cent) (per cent) (per cent)

58 494.16 2.2 <1.40 <3.01 <4.70

58 495.16 3.2 <0.34 <1.12 <1.98

58 495.19 3.2 <0.60 <0.61 <1.41

58 496.05 4.1 <0.59 <0.97 <1.60

58 497.08 5.1 <0.19 <0.57 <1.41

58 498.11 6.1 <0.42 <0.44 <1.46

58 499.28 7.3 <0.65 <0.84 <3.87

58 503.07 11.1 <0.63 <0.54 <1.19

58 504.07 12.1 <2.40 <0.63 <1.62

58 506.06 14.1 <0.87 <1.68 <2.40

58 509.21 17.2 <0.23 <0.27 <1.01

58 521.05 29.1 0.26 ± 0.07 0.67 ± 0.16 <0.48

58 539.01 47.0 <0.49 <0.60 <0.46

Figure 5. The evolution of the polarization of SN 2019np (see Table 8) using

the same plotting scheme as Fig. 3. Also shown is ZTF g
′

(+) and r
′

(×)

photometry.

is clear that any polarization associated with SN 2018hna, despite its

brightness (mmax(r) ∼ 14.0 mags), is close to the systematic floor of

the RINGO3 instrument.

3.9 SN 2019np

Polarimetric follow-up of SN 2019np commenced 2.2 d after

explosion, or 1.7 d after the first detection by ZTF. In total there

were 13 separate observations of the SN up to 47 d post-explosion.

The polarization measurements for SN 2019np are presented in

Table 8 and shown in Fig. 5 (alongside ZTF photometry6). The

SN was discovered on the rise up to maximum light and polarization

constraints, in particular in the blue, limit the polarization across

the optical wavelength range to < 2.0 per cent. At a later epoch,

28 d after discovery and 10 d after maximum, we detect signifi-

cant polarization at the level of p(b∗) = 0.26 ± 0.07 per cent and

p(g∗) = 0.67 ± 0.16 per cent consistent with the earlier limits on the

polarization and the general level of polarization of this SN being low.

3.10 SN 2019ein

RINGO3 observations of SN 2019ein started 3.5 d post-explosion

or 2.4 d after the first ZTF detection. The Type Ia SN (Burke et al.

2019b) was heavily observed in the rise to maximum, and in general

6https://lasair.roe.ac.uk/object/ZTF19aacgslb/
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320 J. R. Maund et al.

Table 9. RINGO3 polarization measurements of SN 2019ein.

Epoch Phase p(b∗) p(g∗) p(r∗)

(MJD) (d) (per cent) (per cent) (%)

58 606.89 3.5 <1.68 <2.61 <8.55

58 607.91 4.5 <0.90 <1.74 <5.31

58 607.93 4.6 <0.68 <1.63 <3.99

58 608.90 5.5 <0.98 <0.93 <1.50

58 609.91 6.5 <0.67 <0.62 <1.72

58 610.95 7.6 <0.40 <0.85 <1.64

58 612.95 9.6 0.64 ± 0.15 <0.39 <2.33

58 614.00 10.6 <0.21 <0.84 <2.54

58 614.96 11.6 <0.48 <0.64 <1.27

58 617.03 13.7 <0.46 <0.85 <1.92

58 619.96 16.6 0.70 ± 0.15 <0.58 <1.77

58 622.90 19.5 0.42 ± 0.12 <1.23 <0.94

58 625.94 22.6 0.93 ± 0.18 <3.15 <6.83

58 630.93 27.6 1.12 ± 0.25 <2.33 <4.64

58 638.97 35.6 0.99 ± 0.22 <0.50 <8.31

58 658.98 55.6 <1.72 <1.20 <1.80

58 669.93 66.6 <1.44 <1.10 <2.75

58 690.88 87.5 <2.29 <2.74 <11.17

Figure 6. The evolution of the polarization of SN 2019ein (see Table 9)

using the same plotting scheme as Fig. 3. Also shown is the ZTF g
′

(+) and

r
′

(×) photometry.

we were only able to assess upper limits on the degree of polarization;

however, we did measure significant levels of polarization in the b∗-

band (see Table 9) that appear to increase with time around the period

of the second light curve maximum that was observable at redder

wavelengths (see Fig. 6; in conjunction with ZTF photometry7).

3.11 AT 2019hgp

AT2019hgp was discovered as a young transient at MJD 58 642.242

(Bruch et al. 2019a). An r-band detection at MJD 58 641.289

(S/N=4.9) and a g-band signal at MJD 58 641.201 (S/N=3.5) were

recovered by forced PSF photometry. An early spectrum obtained

at MJD 58 642.43 revealed emission lines of highly ionized species

(Bruch et al. 2019a), suggesting that the candidate was a young and

hot transient. We note, however, that no further specific classification

of this transient has been recorded. Our RINGO3 observation was

conducted 2.8 d after discovery or ∼3.2 d post-explosion. The

transient was only photometrically detected at significant levels in the

7https://lasair.roe.ac.uk/object/ZTF19aatlmbo/

b∗ observation, for which we derive an upper limit on the polarization

of p(b∗) < 5.8 per cent.

3.12 SN 2019nvm

The single RINGO3 observation of SN 2019nvm commenced 0.7 d

after the SN was first detected by ZTF, or ∼1.2 d post-explosion. A

spectrum, acquired ∼16 h after the RINGO3 observation revealed

a young Type II SN showing ‘flash features’ (Yaron et al. 2017)

of He II λ4686 and N IV λ4537 (Hiramatsu et al. 2019). This

suggests that SN 2019nvm was discovered very soon after explosion,

potentially making this RINGO3 polarimetric observation the earliest

ever acquired for a Type II SN. The observations were, however,

conducted under poor seeing conditions (≈2.7 arcsec), with an

elongated point spread function possibly indicating the effect of

wind on the telescope. SN 2019nvm is located close to the nucleus

in the edge-on galaxy UGC 10858 and, given the seeing conditions,

it was not possible to accurately separate the SN and the host galaxy.

For all three channels, we do not significantly detect a polarization

signal, with upper limits on the degree of polarization of p(b∗) <

1.5 per cent, p(g∗) < 2.7 per cent, and p(r∗) < 2.2 per cent.

4 D I SCUSSI ON & C ONCLUSI ONS

For the SNe observed at early times we have, in general, only been

able to place upper limits on the possible polarization. The evolution

of the polarization constraints for all the early time observations,

within 20 d of explosion, are shown in Fig. 7. The degree of the

constraint on the early-time polarization is limited by two key factors:

the brightness of the SN and the relatively high level of the systematic

floor of the RINGO3 instrument (Słowikowska et al. 2016). In

general, from our observations, the limits on the instrumental polar-

ization means that the upper limits on the polarization are relatively

high ∼ 1 per cent. As time progresses, we note that the polarization

limits do become better, and this is correlated with increased levels of

signal-to-noise as the target SNe rise to maximum light. In addition,

we find that the throughput in the b∗ channel is the best of the three

RINGO3 channels and, from Fig. 7, the systematic floor for RINGO3

does increase towards the red. The r∗-band polarization limits are less

constraining by a factor of ∼2.

The constraints on the level of polarization in the b∗- and g∗-bands

are around < 1 per cent for Type Ia SNe. From Höflich (1991),

we can place a constraint on the axial symmetry of the ejecta of

Type Ia SNe at early times (assuming a spheroidal configuration)

of >0.9 at t ∼ 3 d. These limits are consistent with the earliest

spectropolarimetric observation for a Type Ia SN (2018gv) that

exhibited a low level of continuum polarization (� 0.2 per cent) at

∼5 d post-explosion (Yang et al. 2020). These limits imply that

Type Ia SNe generally appear almost, if not completely, spherically

symmetric at the earliest times. For the small number of CC SNe

in this sample, the earliest constraints available could allow for the

presence of significant asymmetries in the first few days; however,

for these SNe the lack of subsequent follow-up observations at later

epochs (see Fig. 7), as the SNe get brighter, means it is not possible

to establish a baseline level of polarization [and some measure of

the constant interstellar polarization (ISP) components] at maximum

light as was done, for example, with SN 2019ein. For the Type II SNe,

the early limits, in particular in the b∗-band, constrain the axial ratio

to be >0.65 within ∼1 d of explosion. We note that these figures do

not include corrections for the ISP, a constant source of polarization,

across all epochs, arising from intervening dust along the line of sight

that is independent of the evolution of the polarization of the SNe
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Figure 7. All polarization measurements for all 10 transients with early-time observations for the first 20 d after the assumed epoch of explosion. Detections

and limits on the polarization are colour-coded according to the type of the transient (according to the legend in the left-hand panel).

themselves (Serkowski 1973). We would expect, more generally,

that the constraints on the intrinsic polarization of the SNe would be

lower, if a correction of the ISP could be applied.

Given the limited number of significant detections of polarization

across the whole sample, the Type Ia SN 2019ein stands out as having

a series of detections in the b∗-band with a possible increasing degree

of polarization (see Fig. 6), reaching a maximum at around the second

light curve peak observed in the ZTF r
′

-band. SN 2019ein has the

highest recorded expansion velocities for a Type Ia SN at early times

(Kawabata et al. 2020; Pellegrino et al. 2020). SN 2019ein also

exhibited blue-shifted line profiles in early spectra (at -14 d relative

to B-band maximum light), in particular for the strong Si II feature.

The expansion velocities decreased as the SN approached the B-

band light-curve maximum. Pellegrino et al. (2020) interpreted the

peculiar high expansion velocities as indicative of an asymmetric off-

centre explosion, in which intermediate mass elements were mixed

into the highest velocity portions of the ejecta. The largest measured

polarization of p(b∗) = 1.12 ± 0.25 per cent occurred ∼11 d after

the B-band light-curve maximum. This measurement supports the

presence of significant asymmetries in SN 2019ein, as suspected from

the earlier spectroscopic observations; however, the time delay may

indicate that the peculiar expansion velocities and the polarization are

measuring the asymmetry in different ways. As we are conducting

broad-band polarimetry, however, we are not sensitive to the key di-

agnostic feature of Type Ia SN asymmetries, namely the polarization

profile of the strong Si II line (Wang, Baade & Patat 2007; Maund

et al. 2010; Cikota et al. 2019). The lower polarization detections for

SN 2019np (< 1 per cent; see Fig. 5) are more generally consistent

with the low levels of intrinsic continuum polarization usually seen

for Type Ia SNe (Wang & Wheeler 2008).

SN2018bsz joins a small, but growing collection of SLSNe with

multi-epoch polarimetric observations (Leloudas et al. 2015, 2017;

Inserra et al. 2016; Maund et al. 2019). In general, Type I SLSNe are

noted for having low levels of polarization; however, SN 2015bn ex-

hibited a significant rise in polarization after ∼ 20 d post-maximum

(Leloudas et al. 2017), with the evolution from the pre-maximum to

post-maximum state clearly evident in spectropolarimetric observa-

tions (Inserra et al. 2016). Our detection of significant polarization

for SN 2018bsz also occurs ∼ 20 d (rest-frame) after the time of the

V-band light-curve maximum (Anderson et al. 2018a). Inserra et al.

(2016) and Leloudas et al. (2017) both explained the behaviour of

SN 2015bn as being due to a fundamental change in the asymmetry of

the ejecta, with early-time emission arising from an almost spherical

outer layer, whilst at later times the emission arise from a more

aspherical interior (giving rise to the increase in polarization with

time). Due to the limitations of RINGO3, we were only able to obtain

single detection of polarization at ∼ 2 per cent. At a similar epoch in

the evolution of SN 2015bn, Leloudas et al. measured ∼ 1 per cent

(although the degree of polarization later rose to ∼ 1.54 per cent by

∼ 46 d). It is interesting to note that Inserra et al. and Leloudas et al.

showed that, although the interior of 2015bn was more aspherical

than the outer layers, the orientation of the asymmetry (in the

plane of the sky) was the same at both early (before the light-curve

maximum) and later times (after the light-curve maximum). Future

dense time series of polarimetric observations of Type I SLSNe

will be able to confirm if the rise in polarization, coupled with the

stability of the polarization angle, is a common feature for this class

of SLSN.

SN 2018hna appeared, photometrically and spectroscopically,

similar to SN 1987A, with the light-curve peaks occurring at ∼87.5

and 86 d post-explosion, respectively (Singh et al. 2019). Our

RINGO3 observations straddle the light-curve peak and the level of

polarization observed (∼ 0.7 per cent) is slightly higher than seen

for SN 1987A (∼ 0.4 per cent) at similar epochs (Jeffrey 1991).

Given the brightness of SN 2018hna, if we had been able to conduct

earlier observations of this SN the RINGO3 observation would have

been sufficiently sensitive to detect the presence of a similar peaks

in the polarization that were seen for SN 1987A (Jeffrey 1991), if

they occurred.

The observation of SN 2019nvm is one of the earliest polarimetric

observations of a SN, potentially just beating the first observation by

Cropper et al. (1987) of SN 1987A. Leonard et al. (2000) reported

early spectropolarimetry of the Type IIn SN 1998S 5 d after discovery

(corresponding to ∼5 − 11 d post-explosion), reporting levels of

continuum polarization ∼ 2 per cent. Unlike the early emission-

line features of SN 2013cu (Gal-Yam et al. 2014), the spectrum

of SN1998S persisted for upto 14 d post-discovery, before cooling

and developing the classical P Cygni profiles of a Type II SN (Fassia

et al. 2001; Wang et al. 2001). Although the spectral evolution of

SN 1998S occurred over time-scales of weeks, rather than days

normally associated with ‘flash’ observations (Gal-Yam et al. 2014;

Yaron et al. 2017; Soumagnac et al. 2019), it does demonstrate that

large levels of polarization, due to presence of an aspherical CSM,

could be observed at very early epochs.

This RINGO3 survey has crucially demonstrated the feasibility

of employing polarimeters on robotic telescopes and, coupled with

the appropriate feeder survey, the potential for ‘flash polarimetry’.

While it is expected that the CSM signature at early times would

be erased by the expansion of the ejecta, in seven cases we have

been able to successfully observe targets within this 5-d window.
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On two occasions, we have been able to trigger Liverpool Telescope

observations within a day of discovery by ZTF.

The quality of the data presented in this paper has been limited by

instrumental errors caused by the single-beam design of RINGO3

making the cancellation of systematic errors difficult. RINGO3 was

decommissioned on the Liverpool Telescope in 2020 January and re-

placed with a prototype of a new dual beam polarimeter (MOPTOP).

This uses a dual sCMOS imaging system to record the ordinary

and extra-ordinary rays from a polarizing beam-splitter (Jermak,

Steele & Smith 2016, 2018). It therefore has higher throughput

than the polaroid-based RINGO3 as well as allowing differential

cancellation of polarization errors. Commissioning observations with

MOPTOP (Shrestha et al. 2020) show uncorrected systematic errors

reduced to <0.2 per cent and the sensitivity increased by a factor

∼4× compared to RINGO3. These combined improvements mean

that MOPTOP has a polarization accuracy of <0.3 per cent for a

source with R = 17 in a 600-s exposure. From our sample, five

targets would be observable to this polarization precision, given that

exposure time, at the earliest epochs; including SNe 2018hna and

2019ein. MOPTOP will make tighter constraints or even detections

of the polarization feasible for the types of targets we have observed

so far with RINGO3.

The improved sensitivity of the MOPTOP instrument and the

capability to observe in four wavelength bands, from the optical

to the near-infrared, will potentially provide a better handle on

the ISP. As demonstrated for SN 2019ein, changes in the level

of polarization are perceptible, and relative changes in intrinsic

polarization can be directly measured. A complete correction for the

ISP could be derived, including inferring the wavelength dependence,

if observations continued into later phases when a SN might be

considered intrinsically unpolarized (see e.g. Jeffrey 1991) when,

despite its faintness, it would still be accessible to MOPTOP.

Despite the constraints placed on the early-time explosion ge-

ometries with this RINGO3 programme, the limited sample size

and only a limited number of detections of significant polarization

means that ‘flash polarimetry’ is still terra incognita. This survey

has demonstrated it is possible to conduct these types of observations

with very fast turnaround times and, with the advent of MOPTOP

on the Liverpool Telescope, it will soon be possible to directly and

systematically measure the polarization of SNe at the earliest times.
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