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Abstract: Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM)
and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests
metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations
of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin
during gestation are at increased risk of being born small for gestational age (SGA) and show signs of
‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic
diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of
the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency
and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which
is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin
B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression,
thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby
inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR)
activity for cellular nutrient transport. Vitamin supplementation, before or during metformin
treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate
levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and
screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies
in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and
child development. As rates of diabetes in pregnancy continue to escalate, more women are likely
to be prescribed metformin; thus, it is of paramount importance to improve our understanding of
metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse
fetal outcomes.

Keywords: metformin; diabetes; placenta; folate; vitamin B12; one carbon metabolism; fetal growth;
LGA; SGA; fetal programming

1. Introduction

Diabetes and its effect on fetal health are significant to the developmental origins of
health and disease (DOHaD) hypothesis. Globally, around 223 million women currently
live with diabetes, 60 million of whom are of reproductive age [1]. In addition to pre-
existing diabetes, gestational diabetes mellitus (GDM), a form of maternal diabetes typically
first diagnosed during weeks 24–28 of pregnancy, currently affects around 1 in 6 births
worldwide, equating to approximately 16.8 million pregnancies [1–3]. The diagnostic
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criteria for GDM vary widely in different countries and in turn have led to heterogeneity
in screening and trial designs, making it difficult for comparative judgement and unified
consensus on its effect on maternal and fetal health [4]. If maternal hyperglycaemia is
poorly controlled, this accelerates intrauterine growth and increases the risk of macrosomia,
in which birth weight is > 4 kg, or the fetus being born large for gestational age (LGA), in
which birth weight is above the 90th percentile. This may cause birth trauma for mother and
baby by increasing the risk of preeclampsia, neonatal hypoglycaemia, shoulder dystocia,
late stillbirth, or the need for caesarean section or neonatal intensive care [5–7]. Although
GDM ceases post-parturition, these women are predisposed to an estimated sevenfold
increased risk of type 2 diabetes mellitus (T2DM) within 5–10 years post-pregnancy [8–10].
Diabetes currently represents 10% of the National Health Service budget and, with the
ever increasing prevalence of diabetic pregnancies, including diabetic risk factors such as
the obesity epidemic and advanced maternal age [11,12], it is now paramount to refine
diagnostic and treatment strategies to improve outcomes for mother and baby.

Insulin therapy is a standard treatment for diabetes to restore glucose homeostasis;
however, this therapy is associated with increased maternal weight gain and hypogly-
caemia. As rates of diabetes continue to rise, the cost, storage, and administration re-
quirements for insulin have proven to be of increasing concern [13,14], particularly in
developing countries where these storage requirements may not be feasible [14]. As such,
metformin has been advanced as an alternative first-line therapy for T2DM and GDM in
many countries [15,16].

2. Metformin in Pregnancy

Metformin is an oral synthetic guanidine analogue known as a ‘glucophage’ due to
its glucose-lowering abilities by reducing gluconeogenesis and insulin resistance [15,16].
Metformin is a mitochondrial complex I (NADH:ubiquinone oxidoreductase) inhibitor
which is transported into the cell to directly influence cellular respiration (Figure 1). Com-
plex I (NADH:ubiquinone oxidoreductase) oxidises NADH synthesised from one carbon
metabolism, glycolysis, fatty acid β-oxidation, and the tricarboxylic acid (TCA) cycle for
adenosine triphosphate (ATP) production via the electron transport chain [17–19]. Thus,
metformin-induced suppression of complex I increases NADH accumulation and ROS
production and reduces ATP synthesis, thereby elevating the AMP:ATP ratio. This acti-
vates AMP-activated protein kinase (AMPK) and leads to inhibition of gluconeogenesis,
therefore maintaining glycaemic control [17]. Metformin can also reduce gluconeogenesis
by inhibiting AMP deaminase, which further contributes to elevated cellular AMP levels,
thus in turn inhibiting adenylate cyclase and cAMP–PKA signalling. Metformin-induced
suppression of mitochondrial glycerol 3 phosphate dehydrogenase (G3PDH) also augments
cytosolic NAD(P)H concentration, leading to reduced pyruvate levels and a suppression of
gluconeogenesis. However, activation of AMPK signalling inhibits mammalian target of
rapamycin (mTOR) activity, a nutrient sensor which regulates amino acid transport and
glucose storage [17,20–23] (Figure 1). This mechanism of action leads to improved insulin
sensitivity by augmenting insulin receptor tyrosine kinase activity, amplifying glycogenesis
and suppressing glycogenolysis, inhibiting lipolysis, enhancing glucose transporter GLUT4
recruitment and activity, and suppressing the activity of hepatic glucose 6 phosphatase.
Metformin also heightens insulin release due to enhanced glucagon-like peptide-1 (GLP-1)
activity [24].
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Figure 1. Putative mechanism of action of metformin on cellular metabolism and mitochondrial aerobic respiration to 
suppress gluconeogenesis. Metformin is an inhibitor of mitochondrial complex I (NADH:ubiquinone oxidoreductase), 
AMP deaminase, and mitochondrial glycerol 3 phosphate dehydrogenase (G3PDH), which all contribute towards sup-
pression of cellular gluconeogenesis to maintain glycaemic control. ROS, reactive oxygen species; NAD(P)H, nicotinamide 
adenine dinucleotide phosphate; ATP, adenosine triphosphate; AMP, adenosine monophosphate; cAMP, cyclic AMP; 
PKA, protein kinase A; mTOR, mammalian target of rapamycin. Black arrows indicate cellular pathway. Orange arrows 
indicate putative effects of metformin. Figure created using Biorender.com. 

Metformin’s glucose-lowering activity certainly demonstrates beneficial outcomes 
for maternal health, as it decreases maternal weight gain, inflammation, atherothrom-
bosis, and cardiovascular disease mortality, all of which are diabetic co-morbidities 
[15,25]. However, studies suggest that its short- and long-term effects on the metabolic 
health of the offspring may not be as favourable.  

Whilst metformin therapy has been shown to significantly reduce the incidence of 
LGA, it has been reported that it may decrease birth weight to the extreme as metformin 
use in pregnancy is associated with an increased rate of small for gestational age (SGA) 
births; that is, those with a birth weight below the 10th percentile or two standard devia-
tions below the mean weight for gestational age [5,7,26]. Notably, SGA offspring exposed 
to metformin in utero have shown signs of ‘catch-up growth’ during childhood. In the 
Metformin in Gestational Diabetes: The Offspring Follow Up (MiG: TOFU) study, at two 
years of age, metformin-exposed offspring demonstrated higher subcutaneous adiposity 
and larger mid-upper arm circumferences and bicep and subscapular skinfolds than in-
sulin-exposed offspring [27]. By nine years of age, they presented with significantly higher 
body mass index (BMI) and larger arm and waist circumferences, triceps skinfolds, and 
abdominal fat volumes compared to insulin-exposed offspring [28]. A follow-up study of 
children exposed to metformin in utero in pregnancy complicated by polycystic ovarian 
syndrome also revealed they had higher BMIs at four years old than placebo-treated preg-
nancies [29]. Another randomised controlled trial showed that infants exposed to metfor-
min during GDM pregnancy were markedly heavier at 12 and 18 months of age compared 
to insulin-exposed infants [30]. A murine study examining the effects of gestational met-
formin exposure from days E0.5 to E17.5 also showed that dams exposed to metformin 
manifested lower fetal weight on E18.5 than untreated dams. When fed a high-fat diet 

Figure 1. Putative mechanism of action of metformin on cellular metabolism and mitochondrial aerobic respiration to
suppress gluconeogenesis. Metformin is an inhibitor of mitochondrial complex I (NADH:ubiquinone oxidoreductase), AMP
deaminase, and mitochondrial glycerol 3 phosphate dehydrogenase (G3PDH), which all contribute towards suppression of
cellular gluconeogenesis to maintain glycaemic control. ROS, reactive oxygen species; NAD(P)H, nicotinamide adenine
dinucleotide phosphate; ATP, adenosine triphosphate; AMP, adenosine monophosphate; cAMP, cyclic AMP; PKA, protein
kinase A; mTOR, mammalian target of rapamycin. Black arrows indicate cellular pathway. Orange arrows indicate putative
effects of metformin. Figure created using Biorender.com.

Metformin’s glucose-lowering activity certainly demonstrates beneficial outcomes for
maternal health, as it decreases maternal weight gain, inflammation, atherothrombosis, and
cardiovascular disease mortality, all of which are diabetic co-morbidities [15,25]. However,
studies suggest that its short- and long-term effects on the metabolic health of the offspring
may not be as favourable.

Whilst metformin therapy has been shown to significantly reduce the incidence of
LGA, it has been reported that it may decrease birth weight to the extreme as metformin
use in pregnancy is associated with an increased rate of small for gestational age (SGA)
births; that is, those with a birth weight below the 10th percentile or two standard devia-
tions below the mean weight for gestational age [5,7,26]. Notably, SGA offspring exposed
to metformin in utero have shown signs of ‘catch-up growth’ during childhood. In the
Metformin in Gestational Diabetes: The Offspring Follow Up (MiG: TOFU) study, at two
years of age, metformin-exposed offspring demonstrated higher subcutaneous adipos-
ity and larger mid-upper arm circumferences and bicep and subscapular skinfolds than
insulin-exposed offspring [27]. By nine years of age, they presented with significantly
higher body mass index (BMI) and larger arm and waist circumferences, triceps skinfolds,
and abdominal fat volumes compared to insulin-exposed offspring [28]. A follow-up study
of children exposed to metformin in utero in pregnancy complicated by polycystic ovar-
ian syndrome also revealed they had higher BMIs at four years old than placebo-treated
pregnancies [29]. Another randomised controlled trial showed that infants exposed to
metformin during GDM pregnancy were markedly heavier at 12 and 18 months of age com-
pared to insulin-exposed infants [30]. A murine study examining the effects of gestational
metformin exposure from days E0.5 to E17.5 also showed that dams exposed to metformin

Biorender.com
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manifested lower fetal weight on E18.5 than untreated dams. When fed a high-fat diet
later in development, metformin-exposed fetuses were heavier than untreated fetuses
and demonstrated increased mesenteric fat and liver weight. These findings, combined
with gene set enrichment analysis of differentially expressed genes in the metformin and
untreated murine offspring, reveal that metformin may induce transgenerational effects
by way of fetal programming [31]. Accordingly, these studies suggest that metformin
therapy in pregnancy may increase the risk of childhood obesity and thus is likely to
predispose offspring to cardiometabolic diseases during adulthood. It is therefore crucial
to develop our understanding of metformin’s mechanistic activity and its effects on the
balance between maternal health and adverse fetal outcomes.

Studies from the literature around the effects of metformin treatment on the placenta
suggest that metformin alters placental gene expression and function (Table 1), although
the mechanisms remain unclear.

Table 1. Current literature on the impact of metformin on placental gene expression and function [32–43].

Reference Model Effects Demonstrated by
Metformin Significance

Clinical studies
Jamal et al. 2012

[32]
Pregnant women with PCOS

treated with metformin
-⇔ on birth weight

- ↓ uterine artery pulsatility index
Metformin adversely affected

uteroplacental circulation
Ex vivo or in vitro human placental studies

Jiang et al. 2020
[33]

Human GDM and T2DM
placental explants cultured
and treated with metformin

(ex vivo)

Male human placental explants:
- AMPK activation

- ↑ H3K27 acetylation
- ↓ DNMT1 protein abundance

- ↓ PGC-1α promoter methylation
and ↑ PGC-1α mRNA expression

Effects of metformin may be
fetal sex-dependent

Metformin may improve
placental efficiency by
facilitating placental

mitochondrial biogenesis

Brownfoot et al. 2020
[34]

Cluver et al. 2019
[35]

Kaitu’u-Lino 2018
[36]

Brownfoot et al. 2016
[37]

Human primary tissues
exposed to metformin;

placental explants, endothelial
cells and placental villous
explants, whole maternal
vessels, maternal omental

vessel explants (in vitro and ex
vivo)

- ↓ sFlt-1 and sEng secretion from
primary endothelial cells, preterm

preeclamptic placental villous
explants and villous
cytotrophoblast cells

- ↓ VCAM-1 mRNA expression in
endothelial cells

- ↑ whole maternal blood vessel
angiogenesis

- ↓ sFlt mRNA expression
- ↓ TNFα-mediated endothelial

cell dysfunction

Metformin enhances placental
angiogenesis and reduces

endothelial dysfunction by
decreasing endothelial and

trophoblastic antiangiogenic
factor secretion via

mitochondrial electron
transport chain inhibition

Metformin is being trialled as a
medication for preeclampsia

(trial number
PACTR201608001752102)

Szukiewicz et al. 2018
[38]

Human placental lobules
perfused with metformin
under normoglycemic or

hyperglycaemic conditions
(ex vivo)

- ↓ CX3CL1 and TNFα secretion
- ↑ placental CX3CR1 protein

expression
- ↓ placental NFκB p65 protein

Metformin has
anti-inflammatory effects in the

placenta

Correia-Branco et al.
2018
[39]

HTR-8/SVneo extravillous
trophoblast cell line exposed

to metformin
(in vitro)

- ↓ proliferation
- ↑ apoptosis

- Inhibited folic acid uptake
- Inhibited glucose uptake
- Effects of metformin were

prevented by inhibition of mTOR,
JNK, and PI3K pathways

Metformin impairs placental
development and nutrient

transport via PI3K, mTOR, JNK,
and PI3K pathways
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Table 1. Cont.

Reference Model Effects Demonstrated by
Metformin Significance

Arshad et al. 2016
[40]

Human placental explants;
from healthy pregnancy,

non-treated diet-controlled
GDM pregnancy, and

metformin-treated GDM
pregnancy (ex vivo)

- ↓ similar morphology in
metformin-treated GDM placenta
and non-treated healthy placenta,
except for increased cord width

- ↓ placental width in
metformin-treated GDM placenta

compared to non-treated GDM
placenta

- ↓ chorangiosis, placental
thickness, and syncytial knots in

metformin-treated placenta
compared to non-treated GDM

placenta

Metformin may improve
placental morphology by

restoring diabetic placental
hallmarks to characteristics
similar to healthy placenta

Han et al. 2015
[41]

Human first trimester
trophoblasts treated with or
without metformin (in vitro)

- ↓ trophoblast cytokine and
chemokine release in normal and

high glucose culture
concentrations

- No antiangiogenic or
antimigratory effects

Metformin may potentially
decrease placental

glucose-induced inflammatory
response

In vivo rodent studies

Jiang et al. 2020
[33]

Mice treated with maternal
metformin and high-fat diet

Improved placental efficiency in
males:

- ↓ PGC-1α promoter methylation
and ↑ PGC-1α expression

- ↑ TFAM expression
Improved glucose homeostasis in

male offspring

Metformin may improve
placental efficiency by
facilitating placental

mitochondrial biogenesis
Metformin may be protective to

the offspring by suppressing
epigenetic changes evoked by

maternal diabetes

Wang et al. 2019
[42]

Pregnant mice fed an
isocaloric diet (control),

high-fat diet, or high-fat diet
plus metformin

(in vivo)

- ↓ placental weight compared to
control

- Partially rescued high-fat diet
induced ↓ in placental and fetal

weight
- ↑ VEGF and MMP-2 protein

expression

Metformin improves high fat
diet-induced reduction in
placental and fetal growth,
potentially by modulating

placental vasculature

Alzamendi et al. 2012
[43]

Pregnant rats fed a normal or
high-fructose diet, treated

with metformin
(in vivo)

- ↓ fetal weight
-⇔ on placental weight or blood

vessel area
- Improved fructose diet induced

↓ blood vessel area

Metformin reduces fetal weight
in mice fed a normal diet

Metformin prevents high
fructose diet-induced placental

dysfunction

Dark grey is table heading; pale grey titles demonstrate whether the study was clinical, ex-vivo or in vitro human placental, or in-vivo
rodent studies. ⇔ no change; ↓reduction; ↑ increase. AMPK, AMP-activated protein kinase; DNMT, DNA methyltransferase; PGC-1α,
peroxisome proliferator-activated receptor-gamma coactivator 1α; TFAM, mitochondrial transcription factor A; sFlt-1, soluble fms-like
tyrosine kinase-1; sEng, soluble endoglin; VCAM-1, vascular cell adhesion molecule 1; TNFα, tumour necrosis factor alpha; VEGF, vascular
endothelial growth factor; MMP-2, matrix metalloproteinase-2; NF-κB, nuclear factor kappa B; mTOR, mammalian target of rapamycin;
JNK, c-Jun N-terminal kinase; PI3K, hosphatidylinositol-3-kinase.

2.1. Transplacental Transport of Metformin

As the interface between maternal and fetal circulations, the placenta transports nutri-
ents to the developing fetus. There is also evidence that metformin is transported across the
placenta to the fetal circulation. In metformin-exposed pregnancies, serum samples from
umbilical cord, placental, and fetal tissues have demonstrated metformin concentrations to
be equal or greater than maternal levels, suggesting active transport of metformin from
the maternal circulation across the placenta and into fetal tissue [44–46]. Metformin is a
hydrophilic cation, has a half-life of 5 h, and is not metabolised in humans, but recent
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evidence suggests that metformin bioavailability, volume of distribution, and clearance
may be significantly increased in pregnancy, dependent on dose [47,48]. The mechanisms of
how pregnancy alters metformin clearance remain to be established. Although metformin
can cross the placenta, it is undetermined how metformin influences placental metabolism
to influence gene expression and whether fetal tissues handle metformin in the same way.

The transporter responsible for metformin uptake from the maternal circulation into
the placenta is yet to be determined and requires further research. Studies have reported
norepinephrine transporter (NET), serotonin transporter (SERT), and organic cation trans-
porter novel type 2 (OCTN2) to be localised on the maternal interface of the placenta at the
syncytiotrophoblast apical membrane, which could be responsible [19,49–51]. OCT3 has
been demonstrated to be the key transporter for fetal metformin uptake and distribution,
localised on the fetal interface of the placenta at the syncytiotrophoblast basal membrane
and fetal capillaries. Indeed, OCT3-/- pregnant mice show attenuated fetal metformin
exposure [19]. However, it is apparent that placental OCT3 expression increases with
gestational age, as a murine study demonstrated that placental OCT3 mRNA and protein
expression increased by 37-fold and 56-fold, respectively, at day 15 of gestation, and by
46-fold and 128-fold, respectively, at day 19 [52]. Thus, it is possible that metformin may
not be reaching fetal tissues with significant concentration until late gestation. Moreover,
these findings suggest that, unlike insulin [13], metformin can cross the placenta [21,28]
and reach fetal tissue, which could potentially influence fetal growth and programming.

2.2. Impact of Metformin on Placental Nutrient Transport and Nutrient Bioavailabilty

It has been demonstrated that metformin influences fetal growth and nutrient bioavail-
ability by inhibiting mitochondrial complex I, leading to activated AMPK signalling and
inhibition of placental mTOR signalling (Figure 1). Attenuated placental mTOR signalling
is associated with restricted fetal growth [53]. This mechanism of action may potentially ex-
plain the significant relationship between SGA births and metformin exposure in pregnancy.
mTOR is highly expressed in the human placenta syncytiotrophoblast layer and mTOR
complex 1 (mTORC1) signalling plays a major role in placental nutrient sensing, thus
significantly influencing fetal nutrient availability and metabolism. Trophoblast mTORC1
regulates System A and System L amino acid transporters for amino acid uptake, essential
for fetal metabolism [54,55]. Preliminary in vitro models of human trophoblast cells with
silenced mTORC1 have also demonstrated that placental mTORC1 may regulate a circu-
lating factor or factors, which could influence fetal growth [55,56]. mTORC1 signalling is
regulated by placental insulin and IGF I, and fetal glucose, amino acid, and oxygen levels.
Diabetes may increase mTORC1 activation due to elevated maternal nutrient and ATP
concentrations [54,55]. During early gestation, the embryo mainly expresses immature
mitochondria. As gestation develops, the placenta and fetus increase their expression of
mature mitochondria, which are more susceptible to metformin inhibition. With this in
mind, it is possible metformin may not adversely affect offspring growth until after the
first trimester [21].

Transplacental metformin exposure may restrict placental and fetal growth by reduc-
ing nutrient bioavailability which could influence fetal programming. Evidence suggests
metformin can influence the status of several vitamins and micronutrients, including vita-
mins B1, B12, and D, folic acid, and magnesium [15,20,57–62]. Whilst all of these nutrients
are important for fetal growth and development, folate and vitamin B12 are co-factors of
one carbon metabolism, essential for cell growth, metabolism, and production of the methyl
donor S-adenosyl-methionine (SAM). Furthermore, exposure to metformin and maternal
deficiency of both folate and vitamin B12, during pregnancy, lead to similar changes to
placental and fetal growth and offspring health [63–67]. We therefore postulated that
a potential mechanism by which metformin influences placental and fetal growth and
offspring risk of cardiometabolic complications is by affecting the balance between folate
and vitamin B12 levels and, therefore, perturbing one carbon metabolism. This review now
focuses on this and discusses the evidence that supports this hypothesis.
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3. One Carbon Metabolism

Vitamin B12 and folate work synergistically as co-factors for one carbon metabolism,
a biochemical network of methylating reactions and one carbon atom transfer vital for
biosynthesis of DNA, RNA, lipids, amino acids, and neurotransmitters [63,68]. One car-
bon metabolism is also key for histone protein methylation to regulate gene expression
and methionine and purine/pyrimidine synthesis to regulate cell growth, proliferation,
and differentiation [63,68–71]. As such, one carbon metabolism is essential for in utero
fetal development. One carbon metabolism is particularly important in mitochondrial
redox homeostasis, as folate-mediated NADPH production plays a role in redox defence,
thereby protective against oxidative stress [72]. In the cell cytoplasm, the folate cycle and
methylation cycle work synergistically for purine/pyrimidine, methionine amino acid, and
SAM synthesis. SAM is the primary DNA methyl donor synthesised from methionine via
methionine adenosyl transferase (MAT) in the methylation cycle and DNA methylation
is a crucial regulatory modification that regulates gene expression. SAM is converted to
S adenosyl homocysteine (SAH) and then homocysteine (Hcy), which is then followed
by regeneration of methionine, which completes the cycle. Hcy conversion to methionine
requires synergism with the folate cycle, as 5 methyl tetrahydrofolate (5-methyl-THF)
donates its methyl group to Hcy. The folate cycle intersects methionine synthesis via THF
production from 5-methyl-THF. THF is then converted to 5-10-methyl-THF, followed by
5-methyl-THF regeneration via methylenetetrahydrofolate reductase (MTHFR) [63,70,71]
(Figure 2).

Folate is found in the diet from fruit and vegetables and can be supplemented with its
synthetic form, known as folic acid [68,69]. Folate deficiency elevates Hcy levels. High Hcy
concentration is strongly associated with cardiovascular disease and may promote aberrant
placental development, as in vitro trophoblast exposure to high Hcy leads to increased
apoptosis and decreased human chorionic gonadotropin secretion [73,74]. Vitamin B12 is
also a co-factor in one carbon metabolism [63,75]. Vitamin B12 is found in animal-derived
foods and is essential for genomic stability and cellular metabolism, key for neurological
and haematological developments, which have high cellular turnover rates [76]. Vitamin
B12 deficiency inhibits methionine regeneration in one carbon metabolism and leads to Hcy
and 5-methyl-THF accumulation [63,75] (Figure 2).
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reductase; DNMTs, DNA methyltransferase; MAT, methionine adenosyltransferase; MTHFD1, methylenetetrahydro-
folate dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTRR, methyltransferase reductase; SAH, S ade-
nosyl L homocysteine; SAHH, adenosylhomocysteinase; SAM, S-adenosyl methionine; THF, tetrahydrofolate. Figure cre-
ated using Biorender.com. 
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ever, most laboratories tend to use the following definitions of total serum B12 levels: nor-
mal (≥250 pmol/L), low (150–249 pmol/L), and acute deficiency (<149 pmol/L) [77]. 

Vitamin B12 deficiency has been associated with pernicious anaemia, neural tube de-
fects, aberrant neurological development, insulin resistance, and, paradoxically, an in-
creased risk of GDM [76,78–82]. Deficiency in utero, a crucial developmental window, in-
creases the risk of intrauterine growth restriction and has been associated with increased 
risk of pre-term birth, a key driver of neonatal death and low birth weight or SGA 
[67,82,83]. This preventable risk is of particular concern in Asian women among whom 
SGA births are common, as diet is predominantly vegetarian and therefore low in vitamin 
B12 [84]. 

Figure 2. One carbon metabolism. Vitamin B12 and folate are co-factors of the methylation and folate cycles which interlink
to complete the one carbon metabolism, essential for cell proliferation, differentiation, and growth. DHFR, dihydrofolate
reductase; DNMTs, DNA methyltransferase; MAT, methionine adenosyltransferase; MTHFD1, methylenetetrahydrofolate
dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTRR, methyltransferase reductase; SAH, S adenosyl L
homocysteine; SAHH, adenosylhomocysteinase; SAM, S-adenosyl methionine; THF, tetrahydrofolate. Figure created using
Biorender.com.

4. One Carbon Metabolism in Pregnancy

The one carbon metabolism cycle is critical for normal growth and development; hence,
vitamin B12 and folate are essential micronutrients required for a successful pregnancy.

4.1. Vitamin B12

Heterogeneity exists in the reference ranges used by clinical studies for what is defined
as ‘normal’, ‘low’, and ‘deficient’ levels of vitamin B12, as there is no gold standard criteria,
thereby making direct comparisons between study results challenging [57]. However,
most laboratories tend to use the following definitions of total serum B12 levels: normal
(≥250 pmol/L), low (150–249 pmol/L), and acute deficiency (<149 pmol/L) [77].

Vitamin B12 deficiency has been associated with pernicious anaemia, neural tube
defects, aberrant neurological development, insulin resistance, and, paradoxically, an
increased risk of GDM [76,78–82]. Deficiency in utero, a crucial developmental window,
increases the risk of intrauterine growth restriction and has been associated with increased
risk of pre-term birth, a key driver of neonatal death and low birth weight or SGA [67,82,83].
This preventable risk is of particular concern in Asian women among whom SGA births
are common, as diet is predominantly vegetarian and therefore low in vitamin B12 [84].

Biorender.com
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4.2. Folate

As defined by the World Health Organisation (WHO), folate deficiency is predicated
on Hcy levels and marked as <10 nmol/L serum folate or <340nmol/L RBC folate [85].
Although plasma folate levels are highly influenced by transient diet and folate digestion
and metabolism, RBC folate measurement is a good indicator of long-term folate status
and has been shown to correlate well with tissue stores [69,86].

Low folate status is significantly associated with cognitive decline [87] and neural
tube defects (NTDs) during gestation [88]. Low folate bioavailability is also associated
with increased risk of spontaneous abortion and stillbirth [89]. A prospective study of
UK pregnant adolescents has revealed that poor folate status is associated with increased
prevalence of SGA births [66]; conversely, a positive relationship between RBC folate
concentration and birth weight is supported by systematic reviews and meta-analyses in
the literature [90,91]. Indeed, poor folate levels in pregnant teenagers have been associated
with impaired placental trophoblast cell turnover and system A amino acid transport,
demonstrating that low folate restricts placental growth and reduces nutrient transport to
the fetus [65].

Low vitamin B12 and folate and perturbed one carbon metabolism have been asso-
ciated with altered placental gene expression (Table 2) and thus may have a role in fetal
programming [92–96]. The adverse impacts of vitamin B12 and folate deficiency on fetal
development and birth weight and the similarities of these effects to in utero metformin
exposure suggests there may be a link between metformin activity and alterations in the
bioavailability or actions of these essential micronutrients.

Table 2. Effects of folate and vitamin B12 status on the placenta [65,73,97–107].

Reference Model Functional Effects/Findings Significance
Clinical studies

Mani et al. 2020
[97]

Maternal first trimester B12
status correlated with term

placental angiogenesis genes

Vitamin B12 deficiency:
↑ placental ENG and VEGF

expression in female births only

Suggests placental adaptation to
low maternal B12 by

upregulating angiogenic
pathways in a sex-specific

manner

Baker et al. 2017
[65]

Prospective study of
folate-deficient pregnant

women

Folate deficiency:
- ↑ trophoblast proliferation and

apoptosis
- ↓ amino acid transport

- ↓ placental hormones (PAPPA,
progesterone, and hPL)

- ↑ placental miR-222-3p,
miR-141-3p, and miR-34b-5p

- ↓ ZEB2, MYC, and CDK6 mRNA
expression in placenta

Folate deficiency adversely
impacts on placental

development and function and
this may be via regulation of

miRNAs in the placenta

Ex vivo or in vitro human placental studies

Moussa et al. 2015
[98]

JEG3 cells exposed to
2nM (low), 20 nM (normal), or
100nM (excess) levels of folic

acid

Low folic acid:
- ↓ proliferation
- ↓ cell invasion
- ↓ cell viability
Excess folic acid:
- ↑ proliferation

Folate deficiency adversely
impacts on placental

development but excess folate
may increase placental growth

Shah et al. 2016
[99]

BeWo and JEG cells exposed
to 20ng/mL (normal) or

2000ng/mL
(supraphysiological) folic acid

Supraphysiological folic acid
- ↓ cell viability

- ↓bhCG secretion (only in JEGs)
- ↑↓EGFR mRNA
- ↑oxidative stress
- ↑TNF-a mRNA

Excess folic acid treatment has
an adverse impact on placental

growth, development, and
function.
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Table 2. Cont.

Reference Model Functional Effects/Findings Significance

Yin et al. 2019
[100]

Carletti et al. 2018
[101]

Ahmed et al. 2016
[102]

HTR-8/SVneo, BeWo cell
lines

exposed to
supraphysiological

(2000ng/mL) or low
(2ng/mL) levels of folic acid

for 48hr

Supraphysiological folic acid:
- ↓ cell viability in BeWo
- ↑ proliferation rate in

HTR-8/SVneo
-⇔ on apoptosis or β-hCG release

- ↑ tert-butylhydroperoxide
(TBH)-induced oxidative stress

Low folic acide:
- ↓ cell viability
- ↓ cell invasion
- ↑ autophagy
- ↓ apoptosis

- ↓ invasiveness

Both low and high levels of
folate adversely impact on

placental development

Rosario et al. 2017
[103]

Di Simone et al. 2004
[73]

Steegers-Theunissen
et al. 2000 [104]

Primary trophoblast (third
trimester) exposed to low

folic acid

Low folic acid:
- ↑ apoptosis

- ↓ hCG secretion
- ↓mTOR signalling

- ↓ activity of key amino acid
transporters

Low folate impacts on
trophoblast viability and may
alter transport of nutrients to

fetus

Ahmed et al. 2016
[102]

Yin et al. 2019
[100]

Human villous explants
(third trimester) exposed to

supraphysiological
(2000ng/mL) or deficient

(2ng/mL) levels of folic acid
for 48 hours

Supraphysiological folic acid:
-⇔ in any assessed functions

Low folic acid:
⇔ in any functional assessments

(Ahmed et al. 2016) [102]
- ↑ apoptosis and autophagy (Yin et al.

2019) [100]

Limited effect observed in
human placental explants

suggests this may not be the
optimal model for studying

high/low folate

In vivo rodent studies

Mahajan et al. 2019
[105]

Mouse dietary
model—effect of the altered

dietary ratio of folate and
B12 on the expression of

transporters, related
miRNAs, and DNA

methylation in
maternal/fetal tissues in F1

and F2 generations

Folate deficiency; folate
over-supplementation; vitamin B12

deficiency; vitamin B12
over-supplementation; combination of

folate/B12 deficiency/over-supplementation:
- Altered placental mRNA for folate

transporters, B12
transporters/proteins, DNMT1,

DNMT3A, and DNMT3B
- Altered placental miR-483, miR-221,

and miR-133 expression
- Placenta global DNA methylation

affected

Demonstrates that altered
dietary ratios of folate and B12
can have more severe effects

than the individual deficiencies

Shah et al. 2017 [106]

Rat dietary model fed
normal (400 µg/day) or

high (5 mg/day) folate +/-
B12 (various forms)

High folate:
- ↓ placental weight

- ↓ offspring birth weight
- ↓miR-16 and 21 expression

- ↑ plasma homocysteine
High folate combined with Vitamin B12

supplementation:
- Restored miR-16 and miR-21

expression
- Prevented ↓ offspring birth weight

High folate reduces placental
and fetal growth, potentially via

altering miRNA levels in
placenta. This is restored by

vitamin B12 supplementation

Yin et al. 2019
[100] Mice on folate-deficient diet

Folate deficiency:
- ↓ placental size

- ↓ endocrine function
- ↓ placental vascularisation

- ↓ trophoblast differentiation
- ↑ oxidative stress
- ↑ resorption rates

Folate deficiency reduces
placental growth and

development
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Table 2. Cont.

Reference Model Functional Effects/Findings Significance

Rosario et al. 2017
[107]

Mouse on folate-deficient
diet before and during

pregnancy

Maternal folate deficiency:
- ↓mTORC1 and mTORC2 signalling

- ↓ trophoblast plasma membrane
systems A and L amino acid

transporter activities
- ↓ trophoblast amino acid transporter

isoform expression

Folate deficiency reduces amino
acid transport to the fetus

Dark grey is table heading; pale grey titles demonstrate whether the study was clinical, ex-vivo or in vitro human placental, or in-vivo
rodent studies. ⇔ no change; ↓reduction; ↑ increase. hCG, human chorionic gonadotropin; TNFα, tumour necrosis factor alpha; EGFR,
epidermal growth factor receptor; TBH, tert-butylhydroperoxide; mTOR, mammalian target of rapamycin; DNMTs, DNA methyltransferase;
ENG, endoglin; VEGF, vascular endothelial growth factor; PAPP-A, pregnancy-associated plasma protein A; hPL, human placental lactogen;
ZEB2, zinc finger E-box binding homeobox 2; CDK6, cell division protein kinase 6.

5. Is Metformin Impacting on Fetal and Placental Development by Perturbing the One
Carbon Metabolism Cycle?
5.1. Vitamin B12

It has been long reported that metformin may promote disturbances in vitamin B12 in-
testinal absorption [108]. Follow-up analysis shows metformin exposure promotes vitamin
B12 malabsorption in 10–30% of people [58] and 30% of people may potentially experience
deficiency [61,109]. Moreover, a meta-analysis review of 29 studies including a total of 8089
participants revealed people taking metformin were at significantly higher risk of devel-
oping vitamin B12 deficiency or insufficiency [110]. Women with GDM taking metformin
have demonstrated low total vitamin B12 stores compared to those taking insulin [111].
Vitamin B12 insufficiency is associated with elevated Hcy levels, a phenomenon observed in
women with polycystic ovarian syndrome who were taking metformin for 6 months, and
also in people at risk of developing T2DM who were taking metformin for 10 years, thus
demonstrating that metformin induces vitamin B12 deficiency at the tissue level [58,112].

The underlying pathophysiology of vitamin B12 malabsorption under metformin
exposure has not yet been determined. Proposed theories suggest metformin promotes
intestinal mobility disorders leading to bacterial overgrowth [113] and/or it may alter
intrinsic factor secretion [114]. However, perhaps the most widely accepted theory is
that metformin displaces calcium in the ileal surface membrane, leading to disruption
in intestinal calcium-dependent vitamin B12 intrinsic factor uptake [115]. Theories on
placental metformin vitamin B12 malabsorption are sparse. Several studies have demon-
strated vitamin B12 receptors to be expressed in the placenta [116–118], which enter the
endosomal lysosomal system upon ligand binding. Vitamin B12 is transported through
the placenta and the fetal circulation by binding to transcobalamin (TC) proteins I, II, and
III in blood [119]. TCs are usually produced in the liver; however, it has been shown that
the placenta itself may produce TCs from early gestation [120,121], further demonstrating
that vitamin B12 is metabolised by the placenta. As metformin therapy is associated with
reduced holoTC levels [59], future studies investigating the effects of metformin on placen-
tal and fetal TC concentration may prove useful to determine whether metformin reduces
placental and fetal vitamin B12 status by downregulating TC proteins. Pregnant rat models
have also demonstrated that transplacental vitamin B12 transport to the fetus increases
throughout gestation and placental vitamin B12 levels are consistently higher than maternal
plasma and fetal tissue levels at every gestational stage [122]. This finding suggests that
vitamin B12 may become increasingly important for fetal and placental growth throughout
gestation and metformin-induced reductions in maternal vitamin B12 levels may have a
more profound effect during late gestation.

It has been proposed that the placenta can adapt to low vitamin B12 status by up-
regulating angiogenesis-related genes to increase surface area for fetoplacental nutrient
transport. This effect has exclusively been associated with female births. Indeed, pla-
cental endoglin (ENG) and vascular endothelial growth factor (VEGF) expression from
female SGA and appropriate for gestational age (AGA) births were significantly nega-
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tively associated with maternal vitamin B12 status measured during the first trimester [97].
Vitamin B12 status may therefore induce fetal gender specific changes in placental gene
expression which could potentially differentially impact fetal programming in male and
female births. Controversy remains as to whether metformin promotes angiogenesis in all
tissues [123–126]; however, evidence suggests that metformin may have pro-angiogenic
effects in the placenta [37]. Future studies are needed to investigate whether metformin
induces similar methylation patterns in placental angiogenesis-related genes as does low
vitamin B12 concentration. By finding homologies between the pathogenesis of vitamin B12
deficiency and metformin, this will provide us with a better understanding of metformin’s
mechanism of action in evoking adverse transgenerational effects on offspring through
fetal programming.

Vitamin B12 deficiency in pregnancy has been associated with increased offspring
and maternal metabolic risk due to altered lipid profile. Genome-wide and targeted DNA
methylation analysis has shown that vitamin B12 deficiency in cultured human adipocytes
leads to hypomethylation of the promoter regions of genes related to cholesterol biosyn-
thesis, low density lipoprotein receptor (LDLR) and sterol regulatory element binding
protein 1 (SREBF1), leading to an increase in their expression [127]. Adaikalakoteswari
et al. 2017 have also reported that human preadipocyte cell lines exposed to insufficient
concentrations of vitamin B12 promotes altered expression of 12 miRNAs associated with
adipocyte function and differentiation. This finding was reflected in blood samples of
pregnant women with low vitamin B12 status, thereby suggesting vitamin B12 deficiency
may increase the risk of maternal insulin resistance and obesity [128]. Perhaps this phe-
nomenon may be reflected in the developing offspring by way of fetal programming.
Indeed, maternal vitamin B12 deficiency in Wistar rat models has shown offspring to have
adipocyte dysfunction, increased adiposity, and altered lipid metabolism, where they dis-
play increased levels of total cholesterol, triglycerides, IL 6, TNF-α, and leptin and reduced
levels of adiponectin and IL-1β [129]. Henderson et al. 2018 also showed murine offspring
of vitamin B12-deficient mothers supplemented with folic acid have higher adiposity and
reduced β cell mass and proliferation. These findings are also demonstrated in children
exposed to vitamin B12 deficiency during gestation [70]. Whether metformin therapy
induces similar changes in lipid profile, promoter methylation, and miRNA expression,
and if these effects extend to the fetus, is currently unknown. Nonetheless, a recent study
including 87 women found no significant associations between vitamin B12 measurements
at second and third trimesters of pregnancy and insulin resistance, infant weight, and
placental weight, respectively [130].

The dose of metformin given to pregnant women varies between 500 and 3000 mg/day [24];
thus, the duration and dose of treatment may significantly influence vitamin B12 status in
metformin users (Table 3). As metformin can cross the placenta [21], offspring exposed to
higher or longer cumulative doses of metformin could be at increased risk of developing
vitamin B12 deficiency, which may lead to pre-term birth and SGA. Routine screening
for vitamin B12 deficiency may therefore need to be considered in metformin-exposed
pregnancies in women with T2DM and GDM.
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Table 3. Rates of vitamin B12 deficiency in patients treated with metformin [57–59,111,131–133].

Reference Study Description Subjects

Definition
of Serum

B12
Deficiency

Rates of
Vitamin B12
Deficiency

Dose of
Metformin
Associated

with B12
Deficiency

Duration
Associated

with B12
Deficiency

Kim et al.
2019
[57]

Investigating B12
deficiency and >6

months of metformin
treatment

1111 T2DM
patients

≤300
pg/mL

Deficiency in
22.2% of

patients, n = 247
>1000 mg/day No association

Aroda et al.
2016
[58]

Investigating
long-term effect of
metformin use on

vitamin B12
deficiency

1800 patients
participating in

the Diabetes
Prevention
Program

(DPP)/DPP
Outcomes

Study (DPPOS)

≤203
pg/mL

4.3% at 1 year
19.1% at 5 years

20.3% at 13
years

Metformin 850
mg twice daily 1 year

Ahmed et al.
2016
[131]

Investigating the
prevalance of vitamin

B12 deficiency in
T2DM patients

treated with
metformin

121 T2DM
patients

<150
pmol/L 28.1% 2.4 ± 0.7

g/day 6 months

Beulens et al.
2015
[59]

Investigating B12
deficiency and

metformin

550 T2DM
patients

<148
pmol/L

Deficiency in
28.1% of
patients

1 mg daily dose
escalation =
0.042 pg/mL
reduction in
serum B12

No association

Ko et al. 2014
[132]

Investigating B12
deficiency and > 3

months of metformin
treatment

799 T2DM
patients

≤300
pg/mL

Deficiency in
9.5% of patients,

n = 76
>1000 mg/d >4 years

Gatford et al.
2013
[111]

Investigating vitamin
B12 deficiency and
metformin during

pregnancy compared
with insulin

treatment

180 GDM
patients:

metformin (n =
89) vs. insulin

(n = 91)

<148 pmol/L No association Treated with up
to 2.5 g/day No association

Tomkin et al.
1971
[133]

Assessment of
vitamin B12 in
patients taking

long-term metformin
therapy

71 patients with
diabetes

<190
pg/mL

29.6% had
vitamin B12

malabsorption
1.97 g/day Not assessed

5.2. Folate

It has been demonstrated that metformin therapy reduces plasma and red blood cell
(RBC) folate concentration and increases Hcy levels (Table 4).

Notably, metabolomic fingerprinting of breast cancer cells has shown that metformin
may have tumour suppressor effects by mimicking antifolate activity. Breast cancer cells ex-
posed to metformin demonstrated accumulation of ‘trapped’ 5-formimino-tetrahydrofolate
(THF), a folate metabolite and intermediate of one carbon metabolism. Folate-dependent
target proteins were also inhibited under metformin exposure, leading to disturbed one
carbon metabolism and reduced de novo purine/pyrimidine synthesis [62]. This suggests
that metformin exposure in utero may impair fetal growth. However, a prospective cohort
study of 336 pregnancies with first trimester metformin exposure revealed no increased
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risk of major birth defects and spontaneous abortions [134]. Regardless, screening of
maternal folate should be considered as part of the therapeutic regimen for metformin-
exposed pregnancies to elucidate any associations between placental development and
fetal outcomes.

In vitro studies of folate deficient human cytotrophoblast cells show reduced mTOR
signalling and amino acid transport, both of which are hallmarks of SGA placentas [103,104,
135]. In vivo murine models have also demonstrated that maternal folate deficiency leads to
lower fetal weight, reduced placental mTOR signalling and reduced systems A and L amino
acid transporter activity [107]. Low folate bioavailability may therefore restrict fetal growth
by reducing mTOR activity and placental nutrient transport. Immunohistological analysis
has demonstrated reduced mTORC1 phosphorylation signalling in human intrauterine
growth restriction (IUGR) placentas compared to appropriate for gestational age (AGA)
placentas [136]. Reduced mTOR signalling and expression have also been observed in
IUGR cytotrophoblast cells compared to normal term pregnancies [137,138]. Although
these studies measured different mTOR phosphorylation targets for signalling activity
analysis, both demonstrated downregulated mTOR signalling in association with IUGR.
As IUGR- and metformin-exposed pregnancies are characterised by low folate status and
similar outcomes as SGA births, these results suggest that metformin may promote aberrant
mTOR signalling and nutrient sensing. mTORC1 signalling is regulated via methionine-
induced activation from one carbon metabolism. A protein known as SAMTOR binds to
SAM in response to methionine levels, which in turn regulates mTORC1 signalling [139].
Whether SAMTOR is affected by folate levels is unknown.

Table 4. Impact of metformin on folate, vitamin B12, and Hcy levels [58,69,112,140–143].

Reference Subjects
Duration of
Metformin
Treatment

Dose of Metformin Effect on Hcy, B12, and
Folate

Esmaeilzadeh et al.
2017
[112]

18 females with PCOS 6 months 500 mg twice daily
Hcy⇔

Serum folic acid⇔
Serum vitamin B12 −20%

Aroda et al. 2016
[58]

1800 patients participating
in the Diabetes Prevention

Program (DPP)/DPP
Outcomes Study (DPPOS)

- 1217 female
- 583 male

3.2 years plus an
additional 9 years in

selected cohort
850 mg twice daily

Vitamin B12: −10% at
year 1;

⇔ at year 9
Hcy: + 5% at year 1;
⇔ at year 9

Malaguarnera et al.
2015
[69]

231 T2DM
- 111 female
- 120 male

8.2 ±4.6 years Not documented
Plasma Hcy + 58.1%

Plasma folic acid − 34.1%
RBC folate − 37.6%

Sahin et al. 2007
[140]

165 T2DM
- 99 female
- 66 male

6 weeks One to two tablets of
850 mg per day

Plasma Hcy + 19.6%
Plasma folic acid − 11%

Pongchaidecha et al.
2004
[141]

152 T2DM 6 months Not documented

Plasma Hcy⇔
Serum folic acid⇔

Serum vitamin B12 −
27%

Wulffele et al. 2003
[142]

353 T2DM
- 186 female
- 167 male

16 weeks
One to finally three

tablets of 850 mg per
day if tolerated

tHcy + 4%
Serum folate − 7%

Carlsen et al. 1997
[143]

60 non-diabetic males with
CVD 12 and 40 weeks

One group received up
to 2000 mg metformin

per day

tHcy: + 7.2% at 12 wks;
+ 13.8% at 40 wks

Serum folate: ⇔ at 12
wks;

− 8% at 40 wks

⇔ no change; ↓reduction; ↑ increase.
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How metformin induces low folate status is yet to be established. Placental folate
transport is mediated through folate receptor α (FRα/FOLR1), reduced folate carrier
(RFC), and the proton-coupled folate transporter (PCFT/HCPI). FRα and PCFT have
been found to be expressed on the syncytiotrophoblast microvillous plasma membrane
(MVM) at both first trimester and term placenta. At first trimester, RFC is localised at
the MVM and cytotrophoblast plasma membrane and, by term, is found on the MVM
and basal plasma membranes of the syncytiotrophoblast [144]. The presence of these
transporters in first trimester placenta, as well as FRα knockout shown to be embryonically
lethal [145], demonstrate that folate transport is essential for fetal growth from early
gestation. Folate transporter protein expression has been shown to be reduced in placentas
of SGA offspring [146]. Thus, future studies investigating the interaction of metformin
with folate transporters would prove interesting to explore whether metformin may be
competing with folate or downregulating transporter expression.

6. Is Metformin Influencing Fetal Programming by Disturbing One Carbon Metabolism?

Maternal folate status has the capacity to influence fetal programming via placen-
tal gene expression, which could potentially lead to transgenerational epigenetic inheri-
tance [147]. miRNA array analysis has revealed that folate-sensitive placental microRNAs
(miRNAs), miR-222 3p, miR-141 3p, and miR-34b 5p, were downregulated with low ma-
ternal folate levels [65]. As metformin induces low maternal folate status, these findings
suggest metformin may potentially be targeting the same miRNAs to reduce placental cell
turnover and cause placental dysfunction, thereby altering fetal nutrient transport and
predisposing offspring to increased disease susceptibility. Indeed, offspring with isolated
NTDs, a condition strongly associated with low folate bioavailability, exhibit low placental
weight, placental hypermaturity, and pathological oedema in terminal villi compared to
offspring without congenital anomalies [148].

In utero development is a critical stage for cell differentiation and proliferation and
requires a high turnover rate for growth. Limited bioavailability of methyl donors such as
folate and vitamin B12 during this period may promote DNA hypomethylation and thus
drive aberrant epigenetic and post-translational regulation by inducing differential gene
and promoter methylation patterns. Post-translational methylation of N6-methyladenosine
(m6A) on mRNA and primary miRNA transcripts plays a role in gene regulation and
may also be altered with limited methyl donor bioavailability [149,150]. m6A methylation
requires SAM as a methyl donor and therefore would be impacted by aberrant one carbon
metabolism. Low maternal folate and vitamin B12 status in one carbon metabolism may
promote genomic instability (Figure 3). Indeed, deficiency of both folate and vitamin B12
results in uracil retention and misincorporation in DNA synthesis rather than thymine, lead-
ing to aberrant base pair bonding with adenine, thereby inducing chromosome breaks [151].
Impaired DNA synthesis in utero may compromise placental and fetal development and
increase the risk of fetal programming and disease susceptibility in offspring. This was
observed by Zheng et al., who demonstrated that a reduction in mitochondrial DNA copy
number was associated with insulin resistance in obese people [152].
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folate dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTRR, methyltransferase reductase; SAH, S ade-
nosyl L homocysteine; SAHH, adenosylhomocysteinase; SAM, S-adenosyl methionine; THF, tetrahydrofolate. Black ar-
rows indicate cellular pathway. Orange arrows indicate putative effects of metformin. Figure created using Biorender.com. 
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cantly decreased in those taking multivitamin supplements. As most multivitamin sup-
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Figure 3. Disturbed one carbon metabolism induced by metformin. Metformin reduces vitamin B12, thus impairing the
methylation cycle and leading to increased Hcy levels, which are cytotoxic, and hypomethylation of proteins and nucleic
acids, which may cause epigenetic changes. The folate cycle is also disturbed by metformin’s antifolate-like activity,
thereby reducing pyrimidine and purine synthesis and disrupting cell growth and proliferation. DHFR, dihydrofolate
reductase; DNMTs, DNA methyltransferase; MAT, methionine adenosyltransferase; MTHFD1, methylenetetrahydrofolate
dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTRR, methyltransferase reductase; SAH, S adenosyl L
homocysteine; SAHH, adenosylhomocysteinase; SAM, S-adenosyl methionine; THF, tetrahydrofolate. Black arrows indicate
cellular pathway. Orange arrows indicate putative effects of metformin. Figure created using Biorender.com.

Nicotinamide N-methyltransferase (NNMT) is an enzyme that ties one carbon metabolism
with the methylation balance and nicotinamide adenine dinucleotide (NAD+) levels of
the cell by catalysing nicotinamide (NAM) methylation via SAM. Elevated NNMT expres-
sion in murine white adipose tissue (WAT) has been associated with obesity and insulin
resistance, whereas WAT NNMT knockout was protective [153,154]. It is already known
that the dose of metformin may differentially affect cellular NAD+ levels [155]; however,
whether metformin impacts NNMT expression requires further investigation.

Fetal programming induced by post-translational mechanisms from early life subop-
timal nutrition has been demonstrated in adipose tissue of prediabetic adult rats and in
human adults who were born SGA. It has been reported that, prior to manifestation of
metabolic disease, miRNA-483-3p in adipose tissue is upregulated by suboptimal early life
nutrition [156]. This miRNA is in intron 2 of the IGF2 gene and represses growth differ-
entiation factor 3 (GDF3) expression, a protein from the transforming growth factor beta
(TGFβ) superfamily that is key for lipid accumulation and adipocyte differentiation. Thus,
downregulation of GDF3 may limit lipid storage and stimulate lipotoxicity and ectopic
triglyceride storage, thereby promoting insulin resistance. Conservation of miRNA-483-3p
upregulation in both SGA adult humans and rat suboptimal early life nutrition raises the
question of whether this miRNA could be a biomarker for future metabolic syndrome
risk [156]. Establishing whether metformin induces hypomethylation of IGF2, which leads
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to upregulated miRNA-483-3p and repressed GDF3, may give further insight into the
possible mechanisms of metformin’s transgenerational programming capacity.

miRNA-483-3p upregulation has also been identified in maternal, placental, and fetal
tissues of C57BL/6 mice deficient in both folate and vitamin B12 [105]. The same findings
were true for miR-221 [105], an miRNA which has been shown to promote cardiovas-
cular intimal thickening in diabetes [157]. Folate and vitamin B12 deficiency also led to
downregulation of miR-133 exclusively in fetal tissues; however, this was tissue- and sex-
specific [105]. Repression of miR-133 is a phenomenon associated with cardiomyopathy in
diabetes; therefore, folate and vitamin B12 insufficiency in early life could be a risk factor
for future disease susceptibility of the offspring. Global DNA methylation was reduced in
maternal tissues with deficient levels of folate and vitamin B12 but was increased in fetal
tissues. DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were also increased
in both maternal and fetal tissues. This strongly represents the significance of folate and
vitamin B12 as methyl donors and their influence on gene regulation. Interestingly, RFC,
PCFT, and FRα mRNA expression were upregulated in maternal, placenta, and fetal tissues
with both folate and vitamin B12 insufficiency [105]. If metformin emulates these changes
in epigenetic regulation, as shown by deficient folate and vitamin B12 levels, this will pro-
vide further evidence of the consequential downstream effects of metformin’s suppressive
activity on methyl donors.

There is a considerable gap in the literature on the potential role of metformin in
causing one carbon metabolism disturbance in the placenta and fetus and its impact on
fetal programming. Future studies are needed to determine exactly how metformin exerts
these disturbances, be it through directly decreasing vitamin B12 and/or folate levels, at
a post translational level through miRNA regulation, or by directly targeting one carbon
metabolism enzymatic action.

7. Vitamin Supplementation

Vitamin B12 and folate/folic acid supplementation may be an effective prophylactic
approach to reduce the adverse effects of metformin on offspring. A cross-sectional study of
people with diabetes taking metformin found that vitamin B12 deficiency was significantly
decreased in those taking multivitamin supplements. As most multivitamin supplements
include 6 to 25 µg of vitamin B12, this dose range may be sufficient for a protective effect
for the fetus [60]. Another cross-sectional study of people with T2DM on metformin found
multivitamin supplementation was associated with a marked decrease in vitamin B12
deficiency and lower risk of borderline deficiency [57]. The 1999–2006 National Health and
Nutrition Examination Survey observed that a daily vitamin B12 dose over 0.6 µg reduced
vitamin B12 deficiency and borderline deficiency by two-thirds in the general population,
but this dose was not protective in people with T2DM who were taking metformin [61].
More clinical trials are needed to evaluate the protective dose of vitamin B12 supplemen-
tation in metformin users, particularly during pregnancy. Follow-up studies of offspring
exposed to metformin during gestation and maternal vitamin B12 supplementation are also
a priority to improve understanding of the long-term effects of vitamin supplementation
on fetal programming. In a rat IUGR model, it has been reported that feeding the first
generation (F1) offspring who have metabolic disease with a methyl donor-rich diet leads
to prevention of metabolic disease being passed down to the F2 generation [158]. This
suggests that postnatal dietary interventions may reverse the epigenetic effects of fetal
programming in IUGR offspring and, therefore, postnatal strategies could also be applied
to metformin-exposed pregnancies. Although not including people taking metformin, there
are two on-going trials currently investigating the effects of vitamin B12 supplementation,
pre-conceptually or during early pregnancy, on child development and the risk of dia-
betes [82,159]; the results of these studies have yet to be published but it will be important
to monitor these to assess the potential beneficial effect of pregnancy supplementation.

Folate or folic acid supplementation should also be considered as part of the ther-
apeutic regimen for all metformin-exposed pregnancies. Currently, women with T2DM
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are advised to take pre-conceptual 5 mg/day of folic acid until 12 weeks gestation, which
is more than the normally recommended peri-conceptual dose of 400 µg/day folic acid
for non-diabetic women [160,161]. Policies of folate fortification in flour and cereal grain
products have already been adopted in many countries to increase the peri-conceptual or
early gestational folate exposure of the population. This has shown a reduction in the rate
of NTDs and improvement in offspring cognitive function and bone mineral content and
density [70,162,163]. This may be of particular importance in early-stage unplanned preg-
nancies. Indeed, high RBC folate concentration at 28 weeks gestation has been associated
with higher birth weight [164], thus suggesting a possible clinical screening time frame and
therapeutic window for intervention and maximum protection. However, as it is hard to
monitor the intake of folate fortification in the general population, with some subjects also
taking additional vitamin supplementation, there is a danger of excess consumption. This
may promote adverse health outcomes, such as childhood insulin resistance, childhood
asthma, aberrant child neurocognitive development, NK cytotoxicity suppression, and
possible progression of premalignant and malignant lesions [162,163,165,166]. Pregnant
mice supplemented with excess folic acid have demonstrated embryonic delay, embryonic
growth retardation, and thinner embryonic ventricular walls [167]. Risks of folate/folic
acid over-supplementation should therefore be considered when treating people with
metformin. It has recently been reported that a high choline concentration in Wistar rat ges-
tational diets may mitigate the negative effects of high folate levels on fetal programming
in male offspring [168]. This finding may represent a potentially promising therapeutic
avenue to be explored in humans who are at risk of folate/folic acid over-supplementation.

Balance and supplementation of both folate and vitamin B12 should be tightly con-
trolled as studies have shown that high maternal folate and low maternal vitamin B12 levels
are associated with offspring insulin resistance [163,169]. A murine study investigating the
effects of maternal vitamin B12 deficiency and folic acid supplementation demonstrated
that offspring from vitamin B12-deficient mothers showed glucose intolerance, fasting
hyperglyceamia, and lower β cell mass. Offspring diet also influenced plasma insulin and
fasting glucose levels [70]. These findings illustrate how offspring lifestyle and diet may
influence disease susceptibility and could be additive ‘hits’ to the fetal reprogramming
already induced by maternal stimuli.

8. Future Considerations

Further research is needed to investigate the interaction between metformin and one
carbon metabolism. Establishing if metformin directly targets one carbon metabolism
enzymatic action or directly targets the cellular levels of both vitamin B12 and folate would
provide insight into the causal relationship between metformin and its suppressive influ-
ence on one carbon metabolism. Deficient folate and vitamin B12 levels have been shown
to promote epigenetic changes in gene methylation patterns and miRNA expression of
placental and metabolic genes, which could lead to fetal programming. As such, future
research would benefit from exploring the role of metformin in fetal programming by
investigating its epigenetic effects in placental, umbilical cord, and fetal tissues. Establish-
ing similarities in gene regulation, demonstrated by both deficient folate and vitamin B12
status, and metformin therapy may provide further insight into metformin’s mechanism of
action, which would aid therapeutic innovation strategies.

Emerging studies suggest that another potential mechanism by which metformin-
induced impairment of one carbon metabolism may influence events in the placenta and
fetus is via regulation of mitochondrial function. Yang et al. 2020 reported a new role for
one carbon metabolism, in which it may be linked to mitochondrial respiration via NADH
production of serine catabolism [18], whilst Boachie et al. 2021 demonstrated that B12 defi-
ciency impaired mitochondrial respiration [170]. These findings, together with evidence of
placental mitochondrial dysfunction in GDM pregnancy [171], suggest that further studies
are needed to elucidate whether metformin-mediated B12/folate deficiency exerts a similar
impact on mitochondrial function in diabetic pregnancy. However, one carbon metabolism
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is compartmentalised in the cell, where the cytosol and mitochondria have their own
independent one carbon machinery. This may be important to consider when investigating
the effects of metformin and whether it predominantly acts at mitochondria [172].

Studying the effects of metformin on placental and fetal growth in women with GDM
or T2DM has its challenges. A lack of standardised diagnostic or screening criteria for GDM
may leave many women undiagnosed and untreated, which could lead to inconsistencies
in clinical trial design [173]. Pregnancy itself carries various contributing factors which
may influence metformin activity and placental and fetal development, such as advanced
age, weight, ethnicity, stage of diabetes, maternal glycaemic control, diet, lifestyle, pre-
conceptual multivitamin intake, and sex of the offspring [174,175]. Metformin can alter
the microbiome and lead to lactic acid accumulation, prompting further heterogeneity in
vitamin B12 and folate absorption between individuals [15]. Better understanding of these
variable factors will improve the efficiency of GDM clinical diagnosis and personalised
therapeutic strategies. The dose and duration of metformin use should also be taken into
consideration for patient screening regimens to facilitate personalised treatment.

As nutrient biomarkers are rapidly metabolised, this only gives us a transient snapshot
of vitamin status and therefore makes it challenging to establish causal relationships
of nutrient deficiency [176]. Heterogeneity in the diagnostic criteria and biomarkers
for vitamin B12 deficiency promotes inconsistencies between clinical trial results [77],
leading to a blurred diagnostic approach and ill-defined nutritional management policy.
It is now suggested that other biomarkers, such as holotranscobalamin (active form of
vitamin B12) and MMA, should be measured concurrently or as second line tests to validate
true B12 deficiency, as serum vitamin B12 may not reflect accurate B12 levels in tissues
or cells [176,177]. Heightened patient awareness of vitamin B12 and folate deficiency
associated with metformin therapy would encourage patients to eat a more vitamin-rich
diet, thus potentially decreasing the risk of adverse fetal health in metformin exposed
pregnancy.

9. Conclusions

Metformin is a first-line therapy for diabetes in many countries which vastly improves
glycaemic control. However, its antifolate-like and vitamin B12-lowering activity may
impose adverse transgenerational effects on offspring in pregnant T2DM and GDM women
by impairing one carbon metabolism and mitochondrial aerobic respiration. This may
restrict placental and fetal growth, thereby promoting SGA births and increasing offspring
susceptibility to cardiometabolic diseases in adulthood (Figure 4). Currently, there are no
gold standard criteria for GDM diagnosis and no routine tests to measure vitamin status
of metformin users during pregnancy, leaving the fetus potentially vulnerable to harmful
stimuli for a large part of gestation. Discovering an optimal therapeutic window for vitamin
replenishment in metformin-exposed pregnancies may potentially improve fetal health
and disease susceptibility. It is paramount that future clinical trials studying the effects of
metformin on fetal outcome should have analogous designs and methodologies to allow
for more comparable end points and improved data comparison and interpretation. Longer
follow-up studies of offspring exposed to metformin are needed to evaluate the long-
term effects of metformin on fetal programming and cardiometabolic health. Ultimately,
discovering how metformin promotes SGA births and fetal cardiometabolic disease will
enable us to design a novel drug that continues to exert the beneficial effects metformin
has on maternal health whilst minimising adverse effects on fetal health.
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