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A Quantifiable Stratification Method for Tidy-up in Service Robotics

Zhi Yan1, Nathan Crombez1, Jocelyn Buisson1, Yassine Ruichek1, Tomas Krajnik2, and Li Sun3

Abstract— This paper addresses the problem of tidying up
a living room in a messy condition with a service robot
(i.e. domestic mobile manipulator). One of the key issues in
completing such a task is how to continuously select the object to
grasp and take it to the delivery area, especially when the robot
works in constrained and partially observable environments.
In this paper, we propose a quantifiable stratification method
that allows the robot to find feasible action plans according to
different configurations of objects-deposits, in order to smoothly
deliver the objects to the target deposits. Specifically, it leverages
a finite-state machine obeying the principle of Occam’s razor
(called O-FSM), which is designed to integrate arbitrary user-
defined action plans typically ranging from simple to complex.
Instead of considering a sophisticated model for the ever-
changing objects-deposits configuration in the tidy-up task, we
empower the robot to make simple yet effective decisions based
on its current faced configuration under a generalized frame-
work. Through scenario planning and simulation experiments
with the explicitly designed test cases based on the real robot
and the real competition scene, the effectiveness of our method
is illustrated.

I. INTRODUCTION

Service robots are highly-demanded in people’s daily life

especially for domestic and healthcare applications. The hu-

man service robots require the capability of both mobility and

manipulation. Tidying-up is a typical task for service robots

(see Fig. 1), in which the robot needs to sort cluttered objects

(either scattered or stacked) as required, usually by category

at specified locations. This task seamlessly integrates the

autonomous navigation with autonomous manipulation hence

is very challenging. Specifically, it covers many aspects

of robotics including semantic mapping, object detection

and manipulation, decision-making, navigation and obstacle

avoidance, and so forth. Admittedly, the complexity of such

integration poses another level of challenge to the robustness

of the robot system.

We contend that, for such a complex problem (system),

an effective way is to use simple methods to minimize the

impact on future uncertainties [1], and this simplicity is

better to be quantifiable. To this end, as an entry point, we

propose a stratification method for decision-making in tidy-

up tasks, based on the finite-state machine incorporating the

principle of Occam’s razor, which we called O-FSM. It’s
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Fig. 1. A Toyota HSR robot is performing tidy-up task at our experimental
site. Full video available here: https://youtu.be/OdHMgBkmVlk

designed to integrate robot action plans (similar to policies in

reinforcement learning) with different levels of complexity,

while these plans are quantified, independent and can switch

from one to another. In contrast to model-based (such as

POMDP [2], [3]) or learning-based (such as reinforcement

learning [4]) methods, our proposal is based on rules which

has the characteristics of process controllable, efficient and

less hypothetical. Motivation for our work can be seen in

World Robot Challenge 2018 - Partner Robot Challenge

(Real Space), where a Toyota HSR robot [5] was asked to

put ten scattered toys in order (five categories) on the toy

shelf in a children room in twelve minutes.

Our approach, based on the well-known philosophical

thought and the classic computer science method, has several

features that make it well-suited for the tidy-up task. First, it

grades the plan by explicitly counting the number of actions

that the robot needs to perform, and holds a priori assumption

that the uncertainty is proportional to this number. Second,

it responds to changes and uncertainties in the environment

through repeatable actions (model-free), i.e. facing many

changes with no change. Third, it is close to human intuition

(i.e. fast) rather than relying on complex models (e.g. for

rational decision-making) to solve the problem, especially

when the environment is constrained and partially observed.

Furthermore, as the motion planning for objects and deposits

is not always guaranteed, we inject the idea of active percep-

tion into the instantiation of the proposed approach, i.e. in

the absence of a feasible plan, the robot can actively move

objects to change the environment, thereby making future

planning possible.

The contributions of this paper are two-fold. On the

one hand, we categorize the tidy-up problem, propose our

method for such task which allows the robot to quickly



make judgments that can advance the task without the

knowledge of the global environment. On the other hand, we

explicitly design the test cases by taking the real competition

scene into account, i.e. a robot in a messy space where

objects are randomly placed, and illustrate the effectiveness

of our method through scenario planning and simulation

experiments. To the best of our knowledge, our work is the

first to propose a system-level method with a theoretical basis

for enhancing the degree of task completion.

II. RELATED WORK

Service robots are expected to perform a wide range

of challenging tasks [6], [7], including cleaning, storing,

monitoring or tidying, to name but a few. These tasks

require numerous combined skills, and as a representative

example, tidying a room is often used as a case study for

robotics competitions1. Towards the full automation of this

human-beneficial application, many scientific contributions

have been proposed.

For example, the use of semantic information is studied

to help the robots with their decision-making process. Abdo

et al. [8] proposed a tidying approach that integrates user

preferences in terms of objects association. A database of

users pairwise object preferences is computed from thou-

sands of collected surveys and based on the user previous

organization habits. When an object is not included in the

created database, a mixture of experts approach is exploited

to provide information about similarities between known

and unknown objects. The sorting of a set of different

objects constrained by the user preference expectations is

modelled and solved by using a spectral clustering approach.

In addition, heuristic approaches [9], [10] were proposed to

sort and segregate deformable objects such as clothes piles

according to the categories. In [11], a method has been

proposed to represent basic human knowledge in order to

improve the performance of tasks such as bringing an object

or tidying a room by a robot. The idea is to structure the

relationships between common activities and daily objects in

a domestic environment. The data structure is automatically

built from multiple sources such as children books. It consists

of multiple layers in which objects and activities are asso-

ciated by weighted connections. In addition to this network,

answers from surveys related to the desired application (e.g.

tidy-up) are used to build ontology rules that are used in the

robot decision algorithm.

Action planning is also being investigated to elaborate

effective tidying strategies. Yamazaki et al. [12] developed

an integrated software system for daily assistive robots.

They proposed to reduce the robot actions to two main

functions including recognition and motion, and to divide the

robot behaviours into three simple states including “check”,

“plan” and “do”. This framework is used to build task

structures to perform different daily assistive duties. In order

1https://worldrobotsummit.org/en/wrs2020/

challenge/service/partner.html

https://www.robocup.org/leagues/34

http://juxi.net/challenge/tidy-up-my-room/

to accomplish a home service task in cooperation with a

human, an adaptive task planner has been proposed [13].

The authors have designed the robot episodic memory as

a temporal sequence of actions to perform a specific task.

When the robot receives an order, it decides how to cooperate

appropriately according to perceived human behaviours and

its episodic memory on the requested task. To perform a

household task, service robots have to deal with a high

quantity of information that may be not relevant or uncertain.

Nebel et al. [14] have formulated a generic planning problem

as an open partially-observable non-deterministic planning

problem within a continual planning loop. To also deal with

uncertainties, a modular approach named Interfaced Belief

Space Planning (IBSP) has been developed [15]. Task and

motion planning are combined in belief space through the

maximum likelihood observation determinization concept.

By investigating the state-of-the-art, we noticed the gap

between it and what would be required for a human-services-

ready robot, that motivated us to develop a concise and robust

system towards completion of the tidy-up task. In reality,

domestic tasks are often accompanied by ever-changing

environments and uncertainties, which are difficult to predict.

In addition, the robot often has only a partial observation of

the environment, and in some cases getting a global view

through exploration is impossible due to non existence of

feasible navigation path. An alternative is that the robot uses

a basket [16] to collect the scattered objects first and then

sort them one by one. However, this requires first solving

the problem of loading and unloading the bucket from the

hardware design level, and second, the grasping of objects

from a self-occluded pile raises another level of challenge.

III. TIDY-UP WITH A MOBILE ROBOT

Multi-deposit multi-category tidy-up task is very challeng-

ing, as the objects can be everywhere in a room and the robot

could not even reach some of them and/or target deposits

smoothly due to obstacles on the ground. In order to clarify

the research problem and elicit our approach, we divide the

problem into four sub-categories from simple to complex

including, fully-observable-fully-reachable, fully-observable-

partially-reachable, partially-observable-fully-reachable and

partially-observable-partially-reachable. For the sake of

system-wide clarity, our prerequisites are as follows:

• The robot has a wheeled moving basis rather than legs

(e.g. humanoid robot), and it is not allowed to move

over any objects on the ground.

• The robot has a pre-built environment map (e.g. occu-

pancy grid map) about the static objects such as walls

and stationary furniture.

• The robot knows the 3D pose of the deposits with the

corresponding categories (e.g. semantic map), and each

object must has a corresponding deposit.

Moreover, the success of the object manipulation by the robot

is not guaranteed, which means the fully-reachable may turn

into partially-reachable, for example, an object dropped from

the robot’s grasper during the manipulation.



A. Fully-Observable-Fully-Reachable (FOFR)

The robot has a full observation of the environment, and

all objects and deposits are reachable. The latter means

that there exists a collision-free path to the deposit with

corresponding category after the robot grasping an object.

This is obviously a P-problem which can be well solved

in polynomial time. For example, using the Hungarian al-

gorithm [17] can find the optimal (e.g. in terms of time)

object-deposit assignment.

B. Fully-Observable-Partially-Reachable (FOPR)

The robot still has a full observation of the environment,

but not all of the objects or deposits are reachable. However,

although this is a NP-hard problem, as the robot has a

global view, it can still be well solved by the state-of-the-

art [8], [18]. For example, the cost matrix of the Hungarian

algorithm can be dynamically changed [18], with the cost

for unreachable objects and deposits set to +∞.

C. Partially-Observable-Fully-Reachable (POFR)

Since all objects and deposits are reachable, partial ob-

servation mainly affects the question of whether an optimal

solution can be found (e.g. minimizing the overall mission

time). An intuitive approach is to actively explore the entire

environment in order to gain a global awareness [19]. How-

ever, this still relies on a strong assumption (prior), i.e. fully

reachable of the objects and deposits.

D. Partially-Observable-Partially-Reachable (POPR)

This is a NP-complete problem, which can be formalized

as a Partially observable Markov decision process (POMDP)

problem [2], [3]. However, practically, difficulties emerge

because of the continuous nature of the underlying state,

action spaces and observation spaces, which are the core

features of the tidy-up tasks. Compare to typical Bayesian-

based estimation which either requires a longer of computing

time or fails to ensure a feasible solution, our O-FSM method

can alleviate the difficulties that exploit the structure of the

elicitation problem to some extent.

IV. METHODOLOGY

A. Theoretical Basis

Different from complex modeling or high-cost reinforce-

ment learning for the POPR problems, we believe that among

competing robot action plans that face known observations

equally well, one should choose the simplest one. Our

approach is based on the theory of Occam’s razor, which is

formulated as follows inspired by the minimum description

length (MDL) principle [20]:

A(O) = min
P∈P

(A(P)+A(O|P)) (1)

where A indicates the number of executable actions, O is the

known observations of the robot, and P represents the motion

plan in a set of considered plans P . Specifically, A(P) is

related to the design of the plan and can be regarded as a

priori, while A(O|P) depends on the current observations of

the robot and can be regarded as a posteriori. The idea is to

Fig. 2. Flowchart of the poposed O-FSM method for robot tidy-up tasks.

find the plan P that requires the minimum number of actions,

which is then considered as the best one, as less complicated

plans are less likely to fail. Moreover, minimizing A also

implies minimizing the impact on the environment, thereby

minimizing the uncertainty of the future environment state.

A deterministic FSM (Mealy type) is then integrated, in

which the output depends on both input and system state (see

Fig. 2). The machine can be formally defined as a sextuple

(S,s0,O,A,T,F), where in the context of tidy-up, S is a finite

set of states which represents the overall mission, s0 ∈ S is

an initial state which can be considered as the state before

the robot entered (explored) the room, O is the input which

includes both known and unknown observations, A is the

output which contains robot actions on the environment, T

is a transition function T : S×O→ S×A, and F is the set

of final states including the completion of the tidy-up task.

B. Instance Plans

For a better illustration, we give three instance plans from

simple to complex in this section. The first plan (denoted

by P1) is based on a greedy algorithm, which empowers the

robot to always grasp the closest object i:

i = min‖pr− pi‖2, i ∈ I (2)

subject to

h(pr, pi)∧h(pi, pd)∧ ci = cd , d ∈ D, c ∈C (3)

where h(x,y) indicates existence of a feasible path from x

to y, pr , pi and pd are the position of the robot, object

and deposit, respectively, in the map reference frame, and

c is the category. Although this is a very intuitive plan, it

does not guarantee global optimality, e.g. minimum overall

mission time. However, it is fast and suitable for a controlled

environment, which is the one we used in the World Robot

Challenge 2018.



In case no solution to Eq. (3) exists, the second plan

(denoted by P2) attempts to find an alternative object to pick

up. This typically occurs when pd is unreachable (sometimes

it also implies that pd is unobservable). Our proposal is

based on the shortest path algorithm, which means that the

robot will pick the object i′ and deliver it to deposit d′ by

obeying the following formula:

(i′,d′) = arg min
i∈I,d∈D

(k(pr, pi)+ k(pi, pd)|ci = cd) (4)

where k(x,y) is the length of a feasible path between x and

y. Eq. (4) reflects the fact that the robot performs a tidy-up

task from its current position pr to the object position pi and

delivers the object to its corresponding deposit pd . Noting

that additional motions are potentially required to obtain a

feasible and collision-free grasping pose for the robot.

The third plan (denoted by P3) is to cope with the obstruc-

tion of the system by actively changing the environment (i.e.

the system state). The plan is triggered if there is no solution

to Eq. (3) and Eq. (4) because no collision-free paths from

pr to pi or pi to pd were found. To cope with that, the

robot is expected to remove one or more objects starting

from the closest one and put them in a suitable place, until

getting a feasible solution. The process for the place finding

is summarized in Algorithm 1. In a word, the robot should

grasp the closest object and take it to the nearest waypoint

and drop it in a free space nearby, while this waypoint needs

to be previously reached and is neither used for grasping nor

for delivery (see Fig. 3). In practice, the best area is typically

near to the entrance of the room, where is designed to have

the least impact on placement of objects based on human

living habits.

Algorithm 1: Waypoint selection for object removal

Data:

W : list of waypoints

pr: position of the robot

Result:

w: waypoint for object removal

if w = NULL then

repeat

w←− f indT heNearestWP(W, pr);
if isForGrasping(w) or isForDelivery(w)
or yetReached(w) then

w←− NULL;

until w 6= NULL;

moveTo(w);

The actions taken into account for our instance plans are

listed as below in order to reflect the observance of the

Occam theory, i.e. the fewer the actions, the simpler the

solution (P1⊂ P2⊂ P3):

• P1 (3 actions): {take ob ject,move,deliver it}.
• P2 (at most 4 actions): {possible ego pose ad justment,

take ob ject,move,deliver it}.

Fig. 3. Selection of waypoint for object removal.

• P3 (at least 7 actions): {take ob ject,move,drop ob ject,

move back, take ob ject,move,deliver it}.

The state-transition table of the instance plans is shown in

Table I.

TABLE I

AN EXAMPLE OF THE STATE-TRANSITION TABLE WITHIN O-FSM

P1 P2 P3

P1 object delivered pd unreachable -

P2 object delivered - pi unreachable

P3 object delivered - -

V. EVALUATION

To illustrate the effectiveness of our method, we explicitly

designed three test cases, with the real robot and the com-

petition scenario kept in mind. As tidy-up is a complex and

multi-module coordination and integration demand task, we

first explain the relevant premises, assumptions, and system

parameters [21], that can be severed for future benchmarking

on the specific module, then conduct scenario planning

and Gazebo-based simulation experiments to evaluate the

proposed method.

A. Settings

The robot has a pre-built 2D occupancy grid map of the

static environment, and maintains it dynamically according

to the position of the objects detected by a built-in RGB-D

camera (see Fig. 4). It knows the position of the deposits in

the map, and performs map-based localization and navigation

with a 2D laser rangefinder. The mission starting point of

the robot is at the entrance of a room while the door is

open. The robot enters the room and explores it to obtain

positions of the objects to pick up. The exploration could

be done either with the frontier-based method [21], [22] or

the waypoint-based topological exploration [23], [24], both

could be managed by a layered map. Since we are interested

in the POPR problem as described in Section III-D, at least

one object or deposit is unobservable and one object or



Fig. 4. An Xtion RGB-D camera on top of the robot is used for object
detection. Due to its effective working distance (between 0.8m and 3.5m)
and field of view (about 58◦ horizontally and 45◦ vertically), it is tricky to
get the knowledge of the entire environment for the robot.

deposit is unreachable. The robot performs object grasping

when the environment can no longer be explored.

In addition to the above execution conditions, other com-

ponents used in our test cases include:

• Inputs: 12 objects (3×4 categories) are randomly placed

on the floor and table in the room.

• Testing method: O-FSM, greedy algorithm (i.e. P1).

• Expected results: tidy up the room within a limited ac-

tions (for scenario planning) and time (for simulation).

Two halting criteria can be defined: either the robot com-

pleted the overall mission, or the number of actions per-

formed (or the runtime) reached a predetermined threshold.

B. Analysis

We use three test cases (see Fig. 5) to illustrate the

effectiveness of our method. The scenario is abstracted from

the competition arena specifications of the World Robot

Challenge 2020 [25]. Specifically, as shown in Fig. 6, a

3.5m×4m room contains a variety of furniture, and one side

of the room is set as the delivery area, while the rest of the

area is for scattered objects. A Toyota HSR robot is then

asked to perform the tidy-up task at the entrance through

which the robot enters the arena.

The scenario planning was carried out according to the

designed test cases, and the results are given in Table II. As

shown in Fig. 5, there is an unobservable and unreachable

object (in green) in Case I, an unobservable and unreachable

deposit (in rose) in Case II, and both in Case III. We count

the number of times each plan is used and the total actions

required to complete the entire task. For the convenience of

calculation, we count four actions if the robot completes P2.

Empirically, fewer actions usually mean faster completion of

tasks. It can be seen that by using our method, the tidy-up

task can be completed within a limited number of actions,

while without the need for complete and global awareness

of the environment. Moreover, from our experience, the best

practice would be use the proposed method to ensure first

that all the deposits are reachable, then the whole tidy-up

problem can be solved smoothly.

TABLE II

O-FSM-BASED SCENARIO PLANNING RESULTS

Case P1 P2 P3 Total actions

I 12 0 0 36

II 10 1 1 45

III 11 0 1 52

Table III shows the simulation experiment results (the

simulation scenario is shown in Fig. 3) including the time

required for the robot to complete the task and the total

distance traveled. We omit the process of object recognition,

grasping and release in order to focus more on the evalu-

ation of decision-making methods. In Case I, using greedy

algorithm and using O-FSM get the same result as only P1

was performed in O-FSM. In Cases II and III, only using

greedy algorithm caused the task to fail.

TABLE III

SIMULATION EXPERIMENT RESULTS WITH DIFFERENT METHODS

Case Method Time Distance

I
O-FSM 661s 56.87m
Greedy 661s 56.87m

II
O-FSM 822s 80,69m
Greedy fail fail

III
O-FSM 919s 91.36m
Greedy fail fail

VI. CONCLUSIONS

In this paper, we proposed a quantifiable stratification

method for tidy-up task with service robots that are typically

domestic mobile manipulators. Called O-FSM, it reintegrates

traditional approaches into modern applications, includes a

series of independent plans, from simple to complex, to cope

with ever-changing object-deposit configurations. Different

from the existing work, the core idea of our proposal is to

always prioritize the simplest method that inherently has the

least impact on future uncertainty, while the effectiveness has

been illustrated with well designed test cases.

Our method is based on the assumption that the robot

has incomplete observation and the task is characterized

by high complexity. In the case of that the robot has a

complete observation of the entire environment during the

execution of the mission, the traditional global planning

method can be applied. The future work will take dynamic

objects such as humans and other robots into account in

the task planning, for human-aware navigation [26], [27]

or manipulation. Moreover, we will consider integrating

the lifelong learning of spatio-temporal representations [28],

[29], that allows the robot perform the right action at the

right time through active navigation.
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