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Key Points 19 

• Observed instantaneous radiative forcing has increased, strengthening the top-of-20 

atmosphere radiative imbalance. 21 

• Due to cancellations in longwave and shortwave radiation, the sum of rapid adjustments 22 

and radiative feedbacks exhibit an insignificant trend. 23 

• Observed increases in instantaneous radiative forcing are direct evidence of the 24 

anthropogenic effects on the Earth’s radiative energy budget. 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 



Abstract 33 

 34 

Changes in atmospheric composition, such as increasing greenhouse gases, cause an initial 35 

radiative imbalance to the climate system, quantified as the instantaneous radiative forcing. This 36 

fundamental metric has not been directly observed globally and previous estimates have come 37 

from models. In part, this is because current space-based instruments cannot distinguish the 38 

instantaneous radiative forcing from the climate’s radiative response. We apply radiative kernels 39 

to satellite observations to disentangle these components and find all-sky instantaneous radiative 40 

forcing has increased 0.53±0.11 W/m2 from 2003 through 2018, accounting for positive trends in 41 

the total planetary radiative imbalance. This increase has been due to a combination of rising 42 

concentrations of well-mixed greenhouse gases and recent reductions in aerosol emissions. These 43 

results highlight distinct fingerprints of anthropogenic activity in Earth’s changing energy 44 

budget, which we find observations can detect within 4 years. 45 

 46 

Plain Language Summary 47 

Climate change is a response to energy imbalances in the climate system.  For example, rising 48 

greenhouse gases directly cause an initial imbalance, the radiative forcing, in the planetary 49 

radiation budget, and surface temperatures increase in response as the climate attempts to restore 50 

balance. The radiative forcing and subsequent radiative feedbacks dictate the amount of 51 

warming.  While there are well-established observational records of greenhouse gas 52 

concentrations and surface temperatures, there is not yet a global measure of the radiative 53 

forcing, in part because current satellite observations of Earth’s radiation only measure the sum 54 

total of radiation changes that occur. We use the radiative kernel technique to isolate radiative 55 



forcing from total radiative changes and find it has increased from 2003 through 2018, 56 

accounting for nearly all of the long-term growth in the total top-of-atmosphere radiation 57 

imbalance during this period. We confirm that rising greenhouse gas concentrations account for 58 

most of the increases in the radiative forcing, along with reductions in reflective aerosols. This 59 

serves as direct evidence that anthropogenic activity has affected Earth’s energy budget in the 60 

recent past. 61 

 62 

1. Introduction 63 

 64 

The Instantaneous Radiative forcing (IRF) is the initial imbalance of the Earth’s top-of-65 

the-atmosphere (TOA) radiative energy budget directly caused by a change in atmospheric 66 

composition, such as increasing greenhouse gases (GHGs), or perturbed surface properties, like 67 

from land use change. All anthropogenic climate changes are a response to the IRF, including 68 

surface temperature change and associated radiative feedbacks (Sherwood et al. 2015). Despite a 69 

sound basis in physics and radiative transfer theory, the IRF is hard to directly diagnose from 70 

observations. Multiple remote sensing and in-situ instruments observe net radiative fluxes, but 71 

these measurements convolve the IRF with radiative responses to the changing atmospheric 72 

state. Some studies have diagnosed a more broadly defined “greenhouse effect” by evaluating 73 

observations of clear-sky longwave radiation at the surface (Philipona et al. 2004) and TOA 74 

(Raghuraman et al. 2019), but this analysis does not separate the IRF from water vapor feedback 75 

processes.  76 

Harries et al. (2001) compared outgoing longwave radiation at the TOA from two 77 

satellite instruments launched decades apart, attributing emission differences at relevant spectral 78 

bands to rising greenhouse gas (GHG) concentrations. However, instrumental uncertainty 79 

between the two platforms complicates interpretation (Jiang et al. 2011). Feldman et al. (2015, 80 



2018) used ground observations from the US Department of Energy Atmospheric Radiation 81 

Measurement (ARM) program to provide the most observationally-oriented assessment to date 82 

of GHG surface radiative forcing, which is proportional to the TOA IRF.  However, their 83 

analysis was limited to longwave (LW) forcing from CO2 and CH4 and was only conducted for 84 

two locations. The total IRF has not been directly diagnosed globally from observations.  85 

Well understood radiative transfer theory tightly constraints the GHG component of the IRF. 86 

Line-by-line radiative transfer models diagnose it within 1% agreement (Collins et al. 2006; 87 

Mlynczak et al. 2016; Pincus et al. 2020).  However, these highly accurate calculations are 88 

computationally expensive, so analysis is often limited to a few idealized atmospheric profiles. 89 

Quantifying the IRF globally and over time relies on more efficient but less accurate 90 

parameterized radiative transfer models (Soden et al. 2018), which introduces model bias when 91 

applied to observations. Diagnosing the IRF from aerosols with these models suffers from the 92 

same pitfalls, plus additional uncertainty associated with aerosol optical properties that are not 93 

well-observed (Randles et al. 2013; Stier et al. 2013). While there have been recent efforts to 94 

constrain aerosol IRF with observations (Bellouin et al. 2020; Watson-Parris et al. 2020), results 95 

are usually not temporally resolved. 96 

Here we circumvent these limitations by applying radiative kernels (Soden et al. 2008) to 97 

isolate the IRF from radiative feedbacks and rapid adjustments over time. We demonstrate that 98 

the IRF has increased with rising GHG concentrations, accounting for recent, positive trends in 99 

the total TOA radiative imbalance. More specifically, we consider this IRF to be largely a 100 

consequence of concentration changes after anthropogenic emissions are moderated by natural 101 

carbon cycle responses (Friedlingstein et al. 2019). 102 

 103 



2. Methods 104 

 105 

Variations in the total, all-sky radiative energy balance at the TOA, dR, constrain global 106 

surface temperature change and consists of the all-sky instantaneous radiative forcing (IRF) and 107 

radiative responses to the IRF: 108 

 109 

𝑑𝑅 = 𝐼𝑅𝐹 + 𝑑𝑅!																	(1), 110 

 111 

 112 

where dRl is net radiative changes caused by surface temperature-mediated radiative feedbacks 113 

and rapid adjustments from, to first order, temperature (T), water vapor (q), surface albedo (a) 114 

and cloud (C) changes (Vial et al. 2013; Sherwood et al. 2015): 115 

 116 

𝑑𝑅! = 𝑑𝑅" + 𝑑𝑅# + 𝑑𝑅$ + 𝑑𝑅%             (2). 117 

 118 

For simplicity, we will not decompose these terms further into feedbacks and rapid adjustments 119 

since it has no bearing on diagnosing the IRF.  We simply refer to these radiative anomalies as 120 

radiative responses.  We note that dRl  includes both anthropogenic responses and natural 121 

variability (e.g. Trenberth et al. 2015). 122 

The Clouds and Earth’s Radiant Energy System (CERES) has provided global TOA 123 

energy balance observations since 2000. Here, we diagnose dR using radiative flux anomalies 124 

from the CERES Energy Balance and Filled (EBAF) Ed. 4.1 product (Loeb et al. 2018a; Loeb et 125 

al. 2019). While no observational product measures the radiative response terms in isolation, 126 

they can be diagnosed using radiative kernels combined with observations of the relevant state 127 



variable, x (B. Zhang et al. 2019; Bony et al. 2020).  An individual, non-cloud radiative response, 128 

dRx, in linear form is: 129 

 130 

𝑑𝑅& =	
'(

'&
𝑑𝑥 = 𝐾&𝑑𝑥,			𝑥 = 𝑇, 𝑞, 𝛼						(3), 131 

 132 

where Kx is a radiative kernel representing direct radiative changes from small, standard 133 

perturbations in state variable x and dx is the actual temperature (T), water vapor (q) or surface 134 

albedo (a) climate response. Under clear-sky (CS) conditions: 135 

𝑑𝑅%) = 𝐼𝑅𝐹%) + 𝑑𝑅!
%)																	(4), 136 

 137 

where: 138 

𝑑𝑅!
%) = 𝑑𝑅"%) + 𝑑𝑅#%) + 𝑑𝑅$%)            (5). 139 

 140 

To diagnose dRx or dRCS
x we use observational-based radiative kernels developed from 141 

the CloudSat Fluxes and Heating Rates product 2B-FLXHR-LIDAR (Kramer et al. 2019). 142 

Unlike GCM-derived radiative kernels, these kernels are free from model bias in the base state, 143 

and thus ideal for diagnosing observed radiation changes. Calculating Kx requires using a 144 

radiative transfer model to convert base state perturbations to radiative sensitivities. Therefore, 145 

using radiative kernels introduces some radiative-transfer model dependency. We apply the 146 

radiative kernels to deseasonalized anomalies of temperature and specific humidity profiles from 147 

version 6 Level 3 AIRS retrievals (Aumann et al. 2003) to estimate dRT and dRq and to surface 148 

albedo anomalies from CERES EBAF surface fluxes (Kato et al. 2018) to estimate dRa.  Due to 149 

computational expense, radiative kernels, including those used here, are often derived from one 150 



year of data. However radiative kernel inter-annual variability is small (Pendergrass et al. 2018; 151 

Thorsen et al. 2018), therefore applying radiative kernels to the entire observational record is 152 

justified.   153 

In the traditional radiative kernel technique used here, the cloud radiative response (dRC) 154 

is calculated as the change in cloud radiative effects (CRE) corrected for cloud masking (Soden 155 

et al, 2008; Kramer et al. 2019): 156 

 157 

𝑑𝑅% = 𝑑𝐶𝑅𝐸 − (𝑑𝑅" − 𝑑𝑅"%)) − 6𝑑𝑅# − 𝑑𝑅#%)7 − (𝑑𝑅$ − 𝑑𝑅$%)) − (𝐼𝑅𝐹 − 𝐼𝑅𝐹%))						(6), 158 

 159 

where CRE is the difference between all-sky and clear-sky radiative fluxes. The cloud masking 160 

correction is necessary because CRE includes differences between all-sky and clear-sky non-161 

cloud radiative changes, which are not actual cloud radiative responses (Soden et al. 2004). Here 162 

dCRE is estimated using the TOA CERES EBAF radiative fluxes. The dRx terms are diagnosed 163 

using all-sky and clear-sky radiative kernels as described above. 164 

 The ultimate goal of this study is to derive the IRF from these radiative kernel 165 

calculations.  Under clear-sky conditions, we simply diagnose IRFCS by rearranging Equation 3, 166 

whereby:	167 

𝐼𝑅𝐹*+ = 𝑑𝑅*+ − 𝑑𝑅!
*+ = 𝑑𝑅*+ − 6𝑑𝑅"*+ + 𝑑𝑅#*+ + 𝑑𝑅$*+7									(7),	 168 

 169 

For all-sky conditions, an analogous calculation would require dRC to be removed from dR, but 170 

since estimating dRC as in equation 6 requires the IRF to be known, this differencing technique is 171 

not possible.  Following common practice (Soden et al. 2008; Vial et al. 2013), we estimate the 172 

all-sky IRF as: 173 



𝐼𝑅𝐹 =
𝐼𝑅𝐹%)

𝐶𝑙
						(8), 174 

 175 

where Cl is a constant that accounts for cloud masking of the IRF. For the longwave (LW) Cl, 176 

we use a constant of 1.24, derived by dividing clear-sky and all-sky double-call radiative transfer 177 

calculations of CO2 IRF from models (Smith et al. 2018). The cloud mask for the shortwave 178 

(SW) is derived from direct output of aerosol IRF from Modern-Era Retrospective Analysis for 179 

Research and Applications, Version 2 (MERRA-2) reanalysis (Gelaro et al. 2017). The global-180 

mean value is 2.43, in line with a range of observational-based cloud masking estimates by 181 

Bellouin et al. (2020). Only the MERRA-2 SW Cl is available over time, but it has an 182 

insignificant long-term trend. Consequently, SW IRF has nearly identical trends when computed 183 

with a time resolved versus constant SW Cl.  184 

This conversion to all-sky conditions accounts for the presence of clouds but not cloud 185 

changes. Therefore, the IRF in this study does not include aerosol-cloud interactions, such as 186 

cloud albedo effects (Boucher et al. 2013).  Instead, these terms are included in dRC. Therefore, 187 

the aerosol component to the kernel-derived estimates of IRF is akin to aerosol direct radiative 188 

effects found throughout the literature (e.g. Thorsen et al. 2020).  189 

The AIRS L3 data has the shortest record among satellite observations used in this study, 190 

with 2003 being the first complete year of data. Thus, we compute all deseasonalized anomalies 191 

from 2003 through 2018 relative to the mean of that time span. While we refer to the resulting 192 

calculation as the IRF for brevity, we actually show anomalies of the IRF. For comparison, we 193 

also estimate the IRF by applying the CloudSat radiative kernels to MERRA-2 reanalysis over 194 

the same period. This reanalysis product assimilates a variety of satellite observations, including 195 

observations of aerosol properties.  196 



In climate models, idealized simulations and flux diagnostics from double-call radiative 197 

transfer calculations can be used to evaluate the accuracy of radiative kernel estimates of dRl and 198 

IRF (e.g. Vial et al. 2013; Smith et al. 2018).  Such a comparison is not possible in the observed 199 

record or the MERRA-2 reanalysis, however. Since the IRF is derived from differencing the 200 

other radiative terms, there will always be near-perfect energy closure, albeit with some error due 201 

to cloud masking assumptions, which is typically small (Chung and Soden 2015). Alternatively, 202 

we will compare these kernel-derived estimates to various independent measures of the IRF. 203 

To verify the aerosol component of the IRF, we compare radiative kernel-derived SW 204 

IRF to direct output of the aerosol direct radiative effect from MERRA-2. We also compare SW 205 

IRF to trends in aerosol optical depth (AOD) from MERRA-2 and observations from the 206 

Moderate Resolution Imaging Spectroradiometer (MODIS) merged Dark Target and Deep Blue 207 

product (Sayer et al. 2014).  208 

We compare radiative-kernel derived estimates of the LW IRF to offline radiative 209 

transfer calculations of GHG IRF. We apply empirical formulas to observed global-mean 210 

concentrations of 5 major greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12), provided by 211 

NOAA Global Monitoring Division (Hoffman et al. 2006; Montzka et al. 2011). Etminan et al. 212 

(2016) derive the empirical formulas from polynomial fits to line-by-line radiative forcing 213 

calculations. While these formulas were originally developed for net stratospherically adjusted 214 

radiative forcing, we use corrections from additional line-by-line calculations (Hodnebrog et al. 215 

2013; Etminan et al. 2016) to calculate TOA IRF, decomposed into a LW and SW component.  216 

We also estimate GHG IRF using the SOCRATES offline radiative transfer model 217 

(Edwards et al. 1996; Manners et al. 2015) with NOAA GHG concentrations and atmospheric 218 

profiles from the MERRA-2 reanalysis. Like the other IRF estimates, these calculations are 219 



presented in anomaly space with the seasonal cycle removed. The IRF from CFCs has decreased 220 

recently, but this has been compensated for by a near equal increase from other halocarbons not 221 

considered in empirical fit and SOCRATES calculations (Myhre et al. 2013). To account for this, 222 

we repeat these calculations with no CFC trend. This only modifies total GHG IRF trends by 223 

<5%, however, so hereafter we focus on results without this assumption. The SOCRATES IRF 224 

calculations are conducted under pristine, clear-sky conditions and converted to all-sky via 225 

Equation 8, like the radiative kernel calculations. 226 

The various inputs and assumptions detailed above can contribute uncertainty to the 227 

estimated radiative changes. In a Supplemental Appendix we provide a comprehensive 228 

uncertainty assessment in the IRF trends due to these contributors, including from observed dR, 229 

radiative kernels, and the cloud masking constant, Cl.  We find these uncertainties are smaller 230 

than the trend regression uncertainty associated with timeseries variability. Therefore, all trends 231 

presented hereafter are provided with 95% confidence intervals (or roughly 2 standard errors 232 

around the mean) associated with the least-squares linear regression. This is common practice 233 

when diagnosing CERES trends (e.g. Loeb et al. 2018a,b). 234 

The anomalies of dR, dRl and the IRF are subject to the same sources of uncertainty as long-235 

term trends. Therefore, Figure 1 and 2 below include uncertainty bounds diagnosed as 2s across 236 

multiple estimates of the radiative terms using different radiative flux data products from CERES 237 

and alternative radiative kernel sets and model estimates of Cl (see Supplemental Appendix).  238 

 239 

3. Results 240 

 241 

 242 

Figure 1a shows a timeseries of global-mean total radiative flux anomalies (dR) from CERES 243 

satellite observations and its component from radiative responses (dRl), estimated by applying 244 



the CloudSat-based radiative kernels to CERES and AIRS observations (hereafter 245 

CERES/AIRS). Positive anomalies indicate a net increase in downwelling radiation at the TOA 246 

(planetary warming). The sum of the radiative responses, dRl , accounts for nearly all of the total 247 

short-term dR variability, as evident by their strong correlation (r=0.88) and small root-mean-248 

squared difference of 0.024±0.003 W/m2; ~3.5% of the standard deviation of dR. On inter-annual 249 

timescales, ENSO strongly influences this variability (Trenberth et al. 2014), which lags by ~5 250 

months (Supplemental Fig. S1; Loeb et al. 2018b). Long-term dR exhibits a positive, linear trend 251 

(0.038±0.02 W/m2/year) significant with 95% confidence, while dRl exhibits an insignificant 252 

trend (0.002±0.02 W/m2/year) an order of magnitude smaller. This arises from cancelation 253 

between LW and SW dRl. The LW dRl has a negative linear trend (-0.042±0.02 W/m2/year) 254 

(Fig. 1b), mainly from global warming-driven dRT  decreases (-0.041±0.007 W/m2/year) 255 

(Supplemental Fig. S2). The SW dRl  trend (0.044±0.02 W/m2/year) is nearly equal and opposite 256 

of the LW, driven by increases in SW dRa (0.023±0.09 W/m2/year) and SW dRC (0.020±0.13 257 

W/m2/year), a predominantly low cloud response (Loeb et al. 2018b). The latter alone accounts 258 

for most of the SW interannual variability.  259 

 260 



 261 

 262 

Figure 1. Global-mean a) net, b) longwave (LW) and c) shortwave (SW) total radiative flux 263 

anomalies from 2003 through 2018 as measured by CERES (black) and the contribution to that 264 

total from the sum of radiative responses (red).  Respective trendlines are displayed as dashed 265 

lines. Uncertainty of +/-2s is shown for each timeseries, computed as described in the Methods.  266 

Linear trends and 95% confidence intervals are provided in text. 267 

 MERRA-2 also exhibits a significant, positive trend in dR but not dRl due to compensating 268 

LW and SW components (Supplemental Fig. S3).  However, there is a positive trend in LW dRl 269 

and a negative trend in SW dRl, opposite from the CERES/AIRS response. This occurs due to a 270 

considerably different LW and SW dRC (Supplemental Fig. S4) compared to satellite 271 

observations. 272 



 Since neither dRl or its uncertainties account for the positive dR trend, it must be 273 

explained by the IRF. Figure 2 shows the timeseries of the total, LW and SW IRF under all-sky 274 

conditions, estimated from the radiative kernel technique. The total CERES/AIRS IRF exhibits a 275 

significant, positive trend (0.033±0.007 W/m2/year), mostly from increasing LW IRF 276 

(0.027±0.006 W/m2/year). The SW IRF exhibits a smaller, yet still significant increase 277 

(0.006±0.003 W/m2/year). The LW IRF trend is opposite in sign from LW dR, since decreasing 278 

LW dRl compensates.  In the SW, IRF and dR are both increasing, but SW dRl is the dominant 279 

contributor while the IRF trend is much smaller. 280 

Rising GHG concentrations explain the positive LW IRF trend. Accordingly, it increases 281 

at a similar rate to the GHG IRF estimates from the empirical fit (0.021±0.0002 W/m2/year or 282 

0.022±0.0002 W/m2/year if ignoring CFCs [see Methods]) and the SOCRATES radiative 283 

transfer model (0.023±0.0003 W/m2/year) (Fig. 2b), despite these calculations neglecting some 284 

GHG forcers found in nature, such as ozone. MERRA-2 exhibits a similar LW IRF trend to 285 

CERES/AIRS (0.029±0.003 W/m2/year) while direct output of the LW aerosol IRF from 286 

MERRA-2 exhibits no trend. This further indicates GHG increases account for roughly all LW 287 

IRF increases.  288 



 289 

 290 

Figure 2. Global-mean a) total, b) longwave (LW) and c) shortwave (SW) instantaneous 291 

radiative forcing (IRF) estimated from the radiative kernel technique for CERES/AIRS (red) and 292 

MERRA-2 (blue). Additional calculations of greenhouse gas-only IRF are also shown using 293 

empirical formulas (green) and the SOCRATES radiative transfer model (gray). For reference, 294 

the trendline for total radiative flux anomalies (Fig 1a) is displayed with the total IRF as a black 295 

dashed line. Uncertainty of +/-2s is shown with shading for each timeseries, computed as 296 

described in the Methods.  Linear trends and 95% confidence intervals are provided in text and 297 

in Table 1. 298 

 Increasing GHG concentrations also contribute (0.002±0.00 W/m2/year) to the total 299 

positive SW IRF trends, according to estimates from the empirical fits. The SW GHG trend is 300 



negligible in the SOCRATES calculations, but the model version used here does not account for 301 

the SW absorption of CH4.  302 

The total SW IRF increase is nearly identical in CERES/AIRS and MERRA-2, and to 303 

aerosol-only SW IRF trends from MERRA-2 direct output (Supplemental Fig. S5). They also 304 

exhibit similar short-term variability. This suggests aerosols explain most of the SW IRF. The 305 

long-term radiative heating is consistent with declining anthropogenic aerosol emissions during 306 

this period (Q. Zhang et al. 2019). Towards the end of the timeseries, CERES/AIRS SW IRF has 307 

more positive anomalies. Locally, the largest differences with MERRA-2 after 2015 are in major 308 

absorbing aerosol source regions (Supplemental Fig. S6), suggesting a contribution from 309 

different absorbing aerosol properties. 310 

Figure 3 shows local linear trends in kernel-derived, total SW IRF from CERES/AIRS 311 

and MERRA-2 and direct MERRA-2 output of aerosol-only SW IRF (Figure 3c).  The spatial 312 

pattern of the SW IRF trend is generally consistent across all three estimates. A notable 313 

hemispheric asymmetry is present, with large changes concentrated in the populous Northern 314 

Hemisphere. This includes large positive trends over the Eastern United States, Western Europe 315 

and Eastern China, where anthropogenic emissions of reflective aerosols have declined because 316 

of government actions to combat poor air quality (Kühn et al. 2014; Ridley et al. 2018; Q. Zhang 317 

et al. 2019). In contrast, the SW IRF trends are negative over India, where emissions continue to 318 

rise (Dey et al. 2012).   319 

There are some magnitude differences in these major source regions, however. For 320 

instance, trends are larger in the Eastern US and India in CERES/AIRS than in MERRA-2. This 321 

coincides with differences in the MODIS and MERRA-2 AOD trends (Figure 3d,e), which are 322 

also larger in CERES/AIRS. Over Saharan Africa, the sign of the SW IRF trend differs, 323 



consistent with opposing trends in MODIS and MERRA-2 AOD. Dust radiative forcing during 324 

this period is likely a key factor (Supplemental Fig. S7; Shao et al. 2013) and is highly uncertain 325 

(Miller et al. 2014; Kok et al. 2017).   326 

 327 

 328 

 329 

 330 

‘ 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

Figure 3. Local linear trends from 2003 through 2018 in all-sky shortwave instantaneous radiative forcing 

(SW IRF) diagnosed in a) CERES/AIRS observations and b) MERRA-2 reanalysis using the radiative kernel 

differencing technique and c) from direct output of MERRA-2 aerosol IRF. Also, local linear trends over the 

same time period are shown for aerosol optical depth (AOD) from d) MODIS and e) MERRA-2. 



 347 

 348 

The strong agreement in MERRA-2 trends from kernel differencing versus direct SW 349 

aerosol IRF output (Fig 3b,c) highlights the dominant role of aerosols in the total SW IRF trends. 350 

It also confirms the accuracy of the radiative kernel technique. The kernel differencing method 351 

results in artifacts in the polar regions, however, where large local trends are a consequence of 352 

underestimating the SW dRa removed from dR (Supplemental Fig. S8) and not from actual 353 

forcing. One possible explanation is surface albedo radiative kernels fail to capture important 354 

ice-albedo feedback non-linearities (Block et al. 2013). Nevertheless, the polar region errors 355 

have negligible effect on global-mean SW IRF trends. 356 

Some inter- and intra-annual variability (hereafter short-term variability) in SW IRF is 357 

expected, given natural variations in aerosol concentrations. Consequently, the detrended 358 

aerosol-only (s=0.088 W/m2) and kernel-derived (s=0.097 W/m2) SW IRF  in MERRA-2 359 

exhibit similar variability and are highly correlated (r=0.78). The source of the notable short-360 

term variability in LW IRF (Fig. 2b) is less apparent, however, since greenhouse gas 361 

concentrations increase relatively steadily on these timescales, as evident in the empirical fit 362 

estimate of GHG IRF, which increases almost perfectly linearly.  363 

While radiative kernel error may play some role, the LW IRF from CERES/AIRS 364 

exhibits considerably more short-term variability (s=0.24) than MERRA-2 (s=0.16), despite 365 

using the same CloudSat-derived radiative kernels in both estimates. This highlights short-term 366 

inconsistencies between the radiative fluxes observed by CERES (dRcs) and the AIRS retrievals 367 

used to diagnose LW dRl
cs. For instance, the difference between CERES/AIRS and MERRA-2 368 

dRl
cs exhibits considerably more short-term variability than the difference between dRcs. This is 369 

mostly due to different variability in dRT
cs (Supplemental Fig. S9), and more specifically due to 370 



different temperature anomalies at the surface and in the boundary layer between AIRS and 371 

MERRA-2 (Supplemental Fig. S10). Since AIRS temperature anomalies are more variable, so is 372 

the dRT
cs estimate.  And since this variability is not also observed radiatively by CERES, it is not 373 

evident in dRcs.  This ultimately translates to a more variable LW IRF when using the kernel 374 

differencing technique. This also explains why LW IRF spatial patterns are noisier for 375 

CERES/AIRS than for MERRA-2 (Supplemental Fig. S11). Cloud contamination likely 376 

contributes to the AIRS temperature variability, as found previously (Hearty et al. 2014).  This is 377 

evident at the surface, for example, where the largest differences between AIRS and MERRA-2 378 

temperature anomalies tend to occur where clouds are common (Supplemental Fig. S9), 379 

especially over land. While global-mean surface temperature anomalies from AIRS closely agree 380 

with other, independent datasets (Susskind et al. 2019), it is possible the temperature biases that 381 

do exist are magnified in the context of radiative changes. 382 

The LW IRF variability may also stem from its sensitivity to the atmospheric base state 383 

(Pincus et al. 2015). However, this contribution appears to be small. In the LW GHG IRF 384 

estimated from the SOCRATES radiative transfer model, we use daily MERRA-2 temperature, 385 

surface albedo and humidity data, thus capturing the GHG IRF sensitivity to the unperturbed, 386 

non-cloud base state.  Still, the short-term variability from this offline calculation is nearly as 387 

small as estimates with the empirical fit, which does not account for base state variability. The 388 

LW IRF short-term variability in this comparison (and in the radiative kernel-derived estimates) 389 

is not due to variations in the cloud base state since LW cloud masking is always treated as a 390 

constant. While clouds may play a greater role in reality, the SW IRF estimated from radiative 391 

kernels with constant cloud masking has similar short-term variability to the aerosol-only SW 392 

IRF in MERRA-2, which accounts for cloud masking temporal variations. This suggests cloud 393 



variability may not be important in the global-mean. Lastly, some LW IRF variability in 394 

MERRA-2 (and in CERES/AIRS) may be due to spatial variability in the GHG concentrations 395 

(Myhre et al. 2013), which is not present in the empirical fit or the SOCRATES estimates.  396 

 397 

 LW SW Net 

CERES/AIRS 0.027±0.006 0.006±0.003 0.033±0.007 

MERRA-2 0.029±0.003 0.006±0.003 0.035±0.004 

Aerosol-Only MERRA-2 -4.2E-4±1.5E-4 0.006±0.003 0.006±0.003 

Table 1. Global-mean linear trends (W/m2/year) and 95% confidence bounds in 398 

instantaneous radiative forcing estimated using the radiative kernel differencing 399 

technique (first two rows) and MERRA-2 flux diagnostics (third row).  400 

 401 

 402 

 403 

4. Conclusions 404 

 405 

We have diagnosed the global instantaneous radiative forcing (IRF) directly from 406 

observations using radiative kernels. Table 1 summarizes linear trends. We find that from 2003 407 

through 2018, the observed IRF has increased 0.53±0.11 W/m2, almost entirely accounting for 408 

the positive trend in CERES Top-of-Atmosphere (TOA) radiative flux anomalies (dR). The 409 

intrinsic LW and SW climate radiative responses largely cancel out. This IRF increase mostly 410 

occurs in the LW (0.43±0.1 W/m2), driven by rising greenhouse gas concentrations. This serves 411 

as direct observational evidence that anthropogenic activity is impacting the Earth’s energy 412 

balance. The SW IRF has also increased (0.1±0.05 W/m2). In part, this is a reflection of 413 

government-mandated aerosol emission reductions throughout major source regions, which may 414 

have a greater direct impact than inferred by the SW IRF, which does not include aerosol cloud-415 

albedo effects in this analysis.  416 



Diagnosing the observed IRF is important for our fundamental understanding of Earth’s 417 

response to climate change and a valuable piece of information for policy decisions. 418 

Conceivably, observed IRF could be used as a top-down approach for monitoring the climate 419 

response to mitigation efforts. By applying published metrics of instrumental uncertainty in 420 

AIRS (Tobin et al. 2006; Hearty et al. 2014) and CERES (Loeb et al. 2018), along with the 421 

kernel-derived IRF variance and trend, we apply formulas by Leroy et al. (2008) to determine the 422 

minimum length of the observational record necessary to detect a climate change signal.  These 423 

formulas account for trend uncertainty due to natural variability and instrumental uncertainty. 424 

Using this approach, we find total IRF trends are detectable, given these sources of uncertainty, 425 

within 3.8 years using the satellite data presented in this study. Therefore, the methods 426 

introduced here could be useful for near-real time monitoring, especially since the time to 427 

detection shortens with the lengthening of the observational record.   428 
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 671 

Figure 2. Global-mean a) net, b) longwave (LW) and c) shortwave (SW) total radiative flux 672 

anomalies from 2003 through 2018 as measured by CERES (black) and the contribution to that 673 

total from the sum of radiative responses (red).  Respective trendlines are displayed as dashed 674 

lines. Uncertainty of +/-2s is shown for each timeseries, computed as described in the Methods.  675 

Linear trends and 95% confidence intervals are provided in text. 676 

 677 

Figure 2. Global-mean a) total, b) longwave (LW) and c) shortwave (SW) instantaneous 678 

radiative forcing (IRF) estimated from the radiative kernel technique for CERES/AIRS (red) and 679 

MERRA-2 (blue). Additional calculations of greenhouse gas-only IRF are also shown using 680 

empirical formulas (green) and the SOCRATES radiative transfer model (gray). For reference, 681 

the trendline for total radiative flux anomalies (Fig 1a) is displayed with the total IRF as a black 682 

dashed line. Uncertainty of +/-2s is shown with shading for each timeseries, computed as 683 

described in the Methods.  Linear trends and 95% confidence intervals are provided in text and 684 

in Table 1. 685 

 686 



Figure 3. Local linear trends from 2003 through 2018 in all-sky shortwave instantaneous 687 

radiative forcing (SW IRF) diagnosed in a) CERES/AIRS observations and b) MERRA-2 688 

reanalysis using the radiative kernel differencing technique and c) from direct output of 689 

MERRA-2 aerosol IRF. Also, local linear trends over the same time period are shown for aerosol 690 

optical depth (AOD) from d) MODIS and e) MERRA-2. 691 

 692 

Table 1. Global-mean linear trends (W/m2/year) and 95% confidence bounds in instantaneous 693 

radiative forcing estimated using the radiative kernel differencing technique (first two rows) and 694 

MERRA-2 flux diagnostics (third row).  695 
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Supplemental Appendix: 742 

SA1.  Uncertainty Quantification 743 

 Following common practice among previous CERES-focused literature (e.g. Loeb et al. 744 

2018a,b), the trend uncertainty quoted throughout the main text is a measure of the linear 745 

regression uncertainty, which is largely driven by the internal variability of the timeseries being 746 

analyzed. The 95% confidence intervals are given. It is worthwhile to also evaluate uncertainty 747 

due to the various assumptions and diagnostic tools that contribute to the estimate of the IRF.  As 748 

illustrated by equations 7 and 8 in the main text, all-sky IRF is estimated by subtracting 749 

radiative-kernel derived, clear-sky radiative responses from the overall clear-sky TOA radiative 750 

imbalance (dRCS).  This difference, an estimate of the clear-sky IRF (IRFCS) is then divided by a 751 

cloud masking constant, Cl, to convert IRFCS into an all-sky IRF. In this supplementary section, 752 



we diagnose uncertainty in IRF trends associated with observations of dRCS, radiative kernels, 753 

and Cl.  We do so by repeating calculations of the IRF, each time substituting in different values 754 

for these terms from different sources as explained below, while keeping all other terms 755 

unchanged from the method and data described in the main text. Since the standard trend 756 

uncertainty is dependent on these additional sources of uncertainty, it is not practical to combine 757 

them to quantify a total, comprehensive measure of uncertainty. We therefore discuss these 758 

sources individually, compare their relative magnitude, and summarize the uncertainty budget in 759 

Table SA4.  We focus on the observational estimate of the IRF. 760 

SA1.1 Uncertainty in dRCS 761 

 In this work, observed, total TOA radiative anomalies are diagnosed using radiative flux 762 

data from CERES EBAF 4.1. This is identical to CERES EBAF4.0 (Loeb et al. 2018a), except it 763 

includes an additional clear-sky radiative flux dataset. While the traditional clear-sky products 764 

are comprised only of pixels designated as cloud-free, the new product uses an adjustment factor 765 

to mimic a total absence of clouds for all regions, similar to how clear-sky is defined in model 766 

simulations (Loeb et al. 2019). While CERES has well documented uncertainty in the magnitude 767 

of the TOA radiative flux measurements, our work to estimate the IRF is conducted in anomaly 768 

space, where uncertainty in absolute fluxes is irrelevant. Instead, it is the uncertainty due to the 769 

stability (or lack thereof) of the observing platform that is important. The presence of spurious 770 

trends is frequently assessed by comparing EBAF products to the CERES SSF1deg product, 771 

which is considered to be extremely stable (e.g. Loeb et al. 2018a,b).  To determine associated 772 

uncertainty from stability in the observed timeseries of dRCS, we recompute the IRF using four 773 

sources of clear-sky radiative fluxes: CERES EBAF 4.1 assuming clear-skies over the total 774 

region, CERES EBAF 4.1 assuming clear-skies over cloud-free regions only (the traditional 775 



method), CERES SSF1deg from Terra and CERES SSF1deg from Aqua.  All other components 776 

of the IRF calculation are consistent across the four estimates.  Linear trends of the global-mean 777 

IRF are summarized in Table SA1. 778 

CERES clear-sky Source Net LW SW 

EBAF 4.1 – clear-sky (for total 

region) 

0.033 0.027 0.0061 

EBAF 4.1 – clear-sky (for cloud-free 

areas of region) 

0.026 0.019 0.0064 

SSF1deg Terra 0.027 0.026 0.0015 

SSF1deg Aqua 0.024 0.025 -0.0004 

Standard Deviation 0.0041 0.0035 0.0034 

Table SA1. Linear trends from 2003 through 2018 in global mean net, longwave (LW) and 779 

shortwave (SW) all-sky Instantaneous radiative forcing, estimated with differences observational 780 

sources of clear-sky radiative fluxes used to diagnose clear-sky TOA radiative flux anomalies. 781 

Units are W/m2/yr. 782 

 783 

 Across the four estimates, we find a standard deviation of s = 0.0041 W/m2/yr for the Net 784 

IRF, s = 0.0035 W/m2/yr in the LW and s = 0.0034 W/m2/yr in the SW. We consider this to be 785 

an upper bound on uncertainty associated with the stability of the CERES observations, since 786 

stability is not the only source of differences between these datasets. Ultimately, we use the new 787 

EBAF 4.1 clear-sky fluxes, representing cloud absence over all regions, in the main analysis 788 

since it is more consistent with the way clear-sky is defined in radiative kernels, the additional 789 

offline radiative transfer calculations of LW GHG IRF, MERRA-2, and in climate models.   790 

 SA1.2 Radiative kernel uncertainty 791 

 Radiative kernels based on CloudSat/CALIPSO observations are used in this study to 792 

quantify radiative responses to changes in temperature, water vapor and surface albedo.  793 

Radiative kernels are constant in time (beyond a seasonal cycle) and therefore do not contribute 794 

to any spurious trends in the diagnosis of the IRF. However, there is uncertainty in the magnitude 795 

of the radiative kernels which can contribute to uncertainty in the anomalies and trend of the 796 



IRF.  To quantify this, we estimate the IRF using four different sets of radiative kernels: those 797 

based on CloudSat/CALIPSO discussed in the main text, as well as radiative kernels derived 798 

from the GFDL (Soden et al. 2008), ECHAM6 (Block and Mauritsen 2013) and HadGEM3 799 

(Smith et al. 2020) climate models. All other components of the calculation are consistent across 800 

the four estimates.  Linear trends of global-mean IRF are summarized in Table SA2. 801 

 802 

Radiative Kernel Net LW SW 

CloudSat/CALIPSO 0.0333 0.0272 0.0061 

GFDL 0.0313 0.0286 0.0027 

ECHAM6 0.0320 0.0297 0.0023 

HadGEM3 0.0323 0.0263 0.0060 

Standard Deviation 0.0008 0.0015 0.0020 

Table SA2. Linear trends from 2003 through 2018 in global mean net, longwave (LW) and 803 

shortwave (SW) all-sky Instantaneous radiative forcing, estimated using different sets of 804 

radiative kernels.  Units are W/m2/yr. 805 

 We find a standard deviation in trend across the four estimates of s = 0.0008 W/m2/yr for 806 

Net IRF, s = 0.0015 W/m2/yr in the LW and s = 0.0020 W/m2/yr in the SW. 807 

SA1.3 Uncertainty in the cloud masking term.   808 

 The cloud masking constant, Cl, used to estimate all-sky IRF accounts for the effect of 809 

the presence of clouds on the magnitude of the IRF, relative to clear-sky conditions. This 810 

quantity is not directly observable and typically requires separate radiative transfer calculations 811 

to diagnose. Therefore, like radiative kernels, it contains uncertainty due to radiative transfer 812 

error and due to biases in the cloud climatology used in those calculations.  813 



 A lack of data prohibits accurately computing the cloud masking directly from 814 

observations. All- and clear-sky double-call calculations of the IRF from model simulations offer 815 

the best alternative.  However, as discussed by Soden et al. (2018), these diagnostics are rarely 816 

conducted with model simulations. To the best of our knowledge, none are available for realistic, 817 

historical forcing scenarios. 818 

With these limitations, we assume the LW cloud masking is equivalent to the masking of 819 

IRF from CO2 perturbations in this study, which is the dominant GHG driver over the observed 820 

period being evaluated. The Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et 821 

al. 2013) includes the necessary double-call calculations from four models to diagnose CO2 822 

cloud masking, using prescribed sea surface temperature, atmosphere-only simulations where 823 

CO2 concentrations are quadrupled. To diagnose uncertainty in the IRF trends due to Cl, we 824 

recompute observed all-sky LW IRF by applying Cl estimated from these four models to the 825 

observed clear-sky IRF.   826 

For the SW, there are analogous simulations in CMIP5 (and CMIP6) for aerosol forcing 827 

scenarios, but there are no double-call calculations available to diagnose Cl.  Instead, we use 828 

clear-sky and all-sky Direct Radiative Forcing (DRF) in 15 models included in the AeroCOM 829 

Phase II project (Myhre et al. 2013).  Although DRF only includes anthropogenic aerosols, the 830 

model-mean Cl from these simulations is 2.70, close to the value from MERRA-2 for SW IRF 831 

used in the main text (2.43).   832 

 To determine associated uncertainty in IRF trends, we recompute IRF with each LW and 833 

SW value of Cl from the model simulations discussed above.  Results are summarized in Table 834 

SA3. 835 

 836 



 837 

 838 

Model LW IRF  Model SW IRF 

CanAM4 0.0281  BCC 0.00354 

HadGEM2-A 0.0272  CAM4-Oslo 0.00631 

INMCM4 0.0253  GEOS_CHEM 0.00627 

IPSL-CM5A-LR 0.0243  GISS_MATRIX 0.01081 

   GISS-ModelE 0.01024 

   GMI 0.00841 

   GOCART 0.00913 

   HadGEM2 0.00634 

   IMPACT-Umich 0.00306 

   INCA 0.00726 

   ECHAM5-HAM 0.00502 

   NCAR-CAM3.5 0.00557 

   OsloCTM2 0.00362 

   SPRINTARS 0.00290 

   TM5 0.00923 

Standard Deviation 0.00150  Standard Deviation 0.00253 

Table SA3. Linear trends from 2003 through 2018 in global mean net, longwave (LW) and 839 

shortwave (SW) all-sky Instantaneous radiative forcing, estimated using different cloud masking 840 

constants derived from 4 CMIP5 models for the LW and 14 AeroCOM models for the SW that 841 

provided the radiative flux diagnostics necessary for this calculation. 842 

The standard deviation across the 4 estimates of LW IRF is s = 0.00150 W/m2/yr and s = 843 

0.00253 W/m2/yr across the 14 estimates of SW IRF.  Since different models are used for the 844 

LW and SW component, we estimate the standard deviation of the net IRF (s = 0.00294 845 

W/m2/yr), by summing every possible pair of LW and SW IRF trends listed in Table SA3. 846 



 847 

 848 

SA1.4 Summary 849 

Table SA4 summarizes the results above and additionally shows the trends and 95% 850 

confidence intervals for global-mean IRF as outlined in the main text. The 95% confidence 851 

intervals represent roughly ±2 standard errors around the mean. To make the additional measures 852 

of uncertainty comparable, the values shown in Table SA4 are doubled from the standard 853 

deviations outlined in Tables SA1-3 and are divided by the square root of the number of samples 854 

that contributed to each uncertainty calculation (to represent of ± 2 standard errors around the 855 

mean) 856 

IRF  Trend 95% Confidence 

Interval (±) 

dRCS uncertainty Radiative kernel 

uncertainty 

Cloud Mask 

Uncertainty 

Net 0.033 0.007 0.004 0.001 0.0015 

LW 0.027 0.006 0.0035 0.0015 0.0015 

SW 0.006 0.003 0.0035 0.002 0.0018 

Table SA4. Linear trends and 95% confidence intervals (± value) for observed, global-mean net, 857 

longwave (LW) and shortwave (SW) Instantaneous Radiative Forcing diagnosed using the 858 

methods and data described in the main text as well as uncertainty (±2 standard errors) from 859 

clear-sky TOA radiative anomalies (dRCS), radiative kernels and the cloud masking constant. 860 

 861 

All uncertainties are an order of magnitude smaller than the Net and LW IRF trend and of similar 862 

magnitude to the trend in the SW.  The IRF trends never cross the zero W/m2/yr threshold given 863 

the sources of uncertainty presented. Therefore, the trends are significantly positive. The largest 864 

source of uncertainty is in the linear regression itself, represented by the 95% confidence 865 

intervals, followed by uncertainty in dRCS. For the Net IRF, this is arguably to be expected, since 866 

the trend from the radiative kernel-derived radiative responses is insignificant. 867 

 868 

 869 

 870 



 871 

 872 

 873 

Figure S3. Global-mean total radiative flux anomalies (black) as measured by CERES and the 874 

contribution from radiative feedback processes (red). Both quantities are smoothed with a 12-875 

month moving average.  The Niño3.4 Index (NOAA/NCEP CPC) is overlaid (blue dashed). 876 

 877 

 878 

 879 

 880 



 881 

Figure S2. The total a) longwave (LW) and b) shortwave (SW) radiative response and its 882 

decomposition into individual radiative responses in CERES/AIRS observations. 883 

 884 



 885 

Figure S3. Global-mean, MERRA-2 a) net, b) longwave (LW) and c) shortwave (SW) total 886 

radiative flux anomalies (black) from 2003 through 2018 and the contribution to that total from 887 

the sum of radiative responses (red).  Respective trendlines are displayed as dashed lines. 888 

 889 

 890 



 891 
 892 

Figure S4. Same as Figure S2 but for MERRA-2. 893 



 894 

Figure S5. Global-mean a) total shortwave instantaneous radiative forcing (SW IRF) from 895 

MERRA-2 derived from the kernel differencing technique and b) aerosol-only SW IRF from 896 

direct output of MERRA-2 radiative flux diagnostics. 897 

 898 

 899 

 900 
Figure S6. Average difference (CERES/AIRS minus MERRA-2) in SW IRF from 2016 through 901 

2018. 902 
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 904 

 905 

 906 

 907 
Figure S7. Local linear trends from 2003 through 2018 in dust aerosol optical depth from 908 

MERRA-2 reanalysis. 909 

 910 

 911 

 912 

 913 



 914 

 915 

Figure S8. Local linear trends from 2003 through 2018 in clear-sky surface albedo radiative 916 

response, used in the kernel differencing method to derive shortwave instantaneous radiative 917 

forcing (SW IRF). 918 

 919 



 920 

Figure S9. a) Difference between satellite observations and MERRA-2 in global-mean longwave 921 

(LW) total radiative flux anomalies (red solid line) as well as the contributions from the sum of 922 

LW radiative responses (blue solid) and the LW temperature radiative response (blue dashed), in 923 

isolation. b) Mean absolute difference between satellite observations and MERRA-2 in local 924 

surface temperature anomalies. 925 

 926 



 927 

 928 

Figure S10. Correlation of the global-mean differences in the temperature feedback between 929 

CERES/AIRS and MERRA-2 with differences in temperature anomalies at each vertical level 930 

and the surface. 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 
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 941 

 942 

 943 

 944 

 945 

Figure S11. Local linear trends from 2003 through 2018 in all-sky longwave 

instantaneous radiative forcing (LW IRF) diagnosed in a) CERES/AIRS 

observations and b) MERRA-2 reanalysis. 


