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Abstract

Manual operations feature prominently in the manufacture of many electrical machines. Even though high-volume electri-

cal machine manufacture is dominated by automation, several manufacturing operations continue to involve manual
intervention because of the complexity of such operations makes them heavily reliant on high dexterity manual skills and

experience. However, quality can be variable due to human involvement. Currently, in order to maintain a high precision

of control and required tolerances of the final machine, inspection is performed at various steps during manufacturing
and assembly. Detecting a defect at these end-of-line tests can result in significant wasted time and costs due to rework

or scrappage. The solution to this problem lies in in-process monitoring particularly for error prone manual operations.

This paper presents a literature review of the state-of-the-art available techniques and limitations in process monitoring
within the context of electrical machine manufacturing. To quantify the degree of manual activities in process monitoring

within electrical machine manufacture, a structured survey of UK based companies was conducted, identifying specific

error prone manual processes to target, and gaps in inspection. The survey identified that a significant proportion of
activities in electrical machine manufacture are manual, or semi-automated with manual interventions. However, litera-

ture review revealed only a limited research in in-process monitoring of manual operations in this area. Finally, two case

studies are presented where case study 1 presents a framework for digitisation of a variety of manual manufacturing
tasks, and case study 2 demonstrates real-time capture, modelling and analysis of deformable linear objects in electrical

machine manufacturing.
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Introduction

The global shift towards cleaner growth and lowering

carbon emissions has resulted in significant on-going

changes in ways energy is generated and utilised. A key

contributor towards this paradigm shift is electrification

of transport, with high efficiency electrical machines

being a key enabling technology. The manufacture of

electrical machines with high quality and reliability is a

core element of meeting these demands. By way of

example, the manufacture of electrical machines for the

aerospace sector involves meeting demanding toler-

ances and quality outcomes within a highly regulated

environment that brings the challenge of maintaining a

high level of control and tolerances within the manufac-

turing process in order to satisfy the requirements of

key end-of-line tests. Manufacturing tolerances in the

production process (e.g. within lamination and rotor/

stator processes) can have a significant influence on the

operating behaviour of electrical machines.1 Recently,

there have been studies in investigating methods to

improve or better control the electrical machine manu-

facturing processes by means of incorporating
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automation, Internet of Things (IoT) and other forms

of digitisation.2

In low and medium volume machine manufacturing,

particularly for machines with the very highest levels of

performance, input from skilled manual processes is

commonplace.3 Electric motors are one of the most

representative and important electrical machines, and a

key component of electric motor is the stator.

Manufacturing of the stator represents the largest pro-

portion of production costs,4 and therefore this work is

focussed on manual processes and activities involved in

manufacturing and assembly of the stator core. These

manual processes are present in a number of critical

steps e.g. fitting of coils into the stator core, the con-

nection of coils to the machine terminals and the vari-

ous wet-processes involved in coil manufacture such as

varnishing or encapsulation. The resulting variations

are one of the contributors to failure and defects in

electrical machine manufacture.5 The vast majority of

quality assurance during manufacturing is through

inspection or tests at various steps during manufactur-

ing and assembly.6 Such tests do not tend to capture or

make use of in-process data for tracking and traceabil-

ity of parts towards defect detection, mitigation and

certification at the point of manufacture. Monitoring

of product and process during manufacturing can

potentially track and trace the origin of arising defects/

anomalies thus allowing consistent product quality and

enabling process optimisations. Well established non-

destructive testing and manufacturing digitisation

methods, which are increasingly featuring in the manu-

facture of many machinery components, are not

necessarily well suited for in-process inspection of elec-

trical machines because they have been developed with

rigid parts in mind whereas electrical manufacturing

processes commonly involve deformable materials and

wet processes.7

In high volume manufacturing, such as electrical

machines for the automotive sector, advanced manu-

facturing techniques involving automation supported

by digital manufacturing tools, have been extensively

deployed.1,8–10 Although some of these techniques are

transferrable, there still are gaps in activities and pro-

cesses that require high degrees of dexterity, human

skill and cognition typically undertaken within low-vol-

ume, high value, electrical machine manufacture, as

found within the aerospace industry.3 The review work

and case studies in this paper aim to target these activi-

ties and processes, for digitisation and control, due to

their high variability and strict tolerances. This need

for further research has been recently highlighted in

2020, where Psarommatis et al.11 have emphasised the

need to investigate the role of human activities on over-

all effectiveness for zero defect manufacturing.

Overview of the manufacturing process of

an electric motor

An overview of the processes involved in production of

an electric machine is depicted in Figure 1 and

described briefly in this section. The main components

of an electric motor are the stator, rotor, and housing.

Although, some of the manufacturing processes vary

according to specific machine types, there is a

Figure 1. An overview of the manufacturing process of a permanent-magnet electric motor where grey boxes represent the key

components of the motor.12 The boxes marked with blue asterisk represent the process discussed in Table 2.
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significant degree of commonality in the general pro-

duction process. Some key features are discussed

below:

Housing: The housing is the external case of a motor

that supports and protects the internal structure of the

core components. Commonly used manufacturing tech-

niques for housing production are die casting, deep

drawn, and roll forming.13 Following this, machining

techniques such as turning, milling, drilling, sawing, or

grinding are conducted to achieve final precision.13

Stator: The stator is composed of laminated core

that is produced by thin electrical sheets that have been

cut into a desired shape, usually by punching or laser

cutting.14 The individual electrical steel sheets are then

stacked and joined together to form the overall core

using techniques such as riveting, welding or adhesive

bonding.15 Slot insulations and windings are then

located and fixed in place in the laminated core.16 Once

various coils are placed within the stator slots and fixed

in place typically by a lacing process and slot closures,

electrical connections from the tails of the phase coils to

the machine terminals are made by one of the number

of contacting techniques for example thermal crimping,

ultrasonic crimping or laser welding.17 Finally, impreg-

nation is conducted to enhance insulation and thermal

conductivity using techniques such as trickling, dipping

or vacuum pressure impregnation.13

Shaft: The role of the shaft is to transmit the torque

from the machine to load. The geometrical precision and

the mechanical integrity of the shaft are two essential

characteristics which determine the performance and

hence the utility of the shaft. The most established route

to shaft production involves cutting a metal bar to the

desired length, and then the forming and machining pro-

cesses are applied to produce the semi-finished product

with rough geometry. Once the semi-finished product is

obtained, the surface hardening technique is applied to

improve the hardness of the surface material referring to

Austenitizing and cooling at a pre-defined speed.18

Rotor: The rotor is composed of laminated core and

windings or magnets depending on the type of motor

for example, in permanent magnet synchronous motor

(PMSM) an array of individual permanent magnet

poles are arranges on the core in a specified pattern.

The rotor elements on the rotor and shaft are then

joined together and balanced. Several connection meth-

ods can be used for the connection between shaft and

laminated core, viz. form-fit, force-fit, and firmly

bonded.19

Final assembly: Finally, the stator and rotor are

fitted into the housing, whilst all the other components

including bearings, end shields, sensors are assembled,

and the machine is tested using end of line tests (EoL).

End-of-line tests

Currently during the production of electrical machines,

quality control is often realised using methods such as

Statistical Process Control20 as part of EoL tests. These

EoL tests are based on an offline inspection of products

and are carried out at selected intervals in the manufac-

turing chain.6 They aim to detect all potential faults

caused by the production process and guarantee final

product quality. Current EoL tests can be mainly

divided into passive, active, and static tests21:

� Active tests: The active test refers to operating the

machines under all possible operation modes: oper-

ation both with and without monitoring parameters

such as current, voltage, torque, winding tempera-

ture etc.
� Passive tests: The electric motor is connected to an

external motor and tested as a generator. During

passive tests, the same parameters as active tests

could be checked.21

� Static tests: For static tests, the motor is discon-

nected from power supply or external motor to test

its static characteristics.

Table 1 depicts the key EoL tests and manufacturing

processes associated with faults detected during these

tests. Further details on each of the listed EoL tests

have been provided in Appendix A. It can be seen that

the quality of winding impacts all the end of line tests

suggesting its very significant influence on achieving

required manufacturing standards. Insulation, contact-

ing and impregnation processes also influence many

EoL tests.

The quality assurance of final products is highly

dependent on end-of-line tests; this means that the

defects caused during manufacturing processes can

only be detected after major manufacturing steps have

been completed and all possible defects of the produc-

tion chain have been accumulated.22 At this stage,

defects can only be corrected by time-consuming

rework or the product has to be scrapped, wasting the

already consumed machining time, material and

energy. Additionally as a typical electrical machine pro-

duction process is a combination of many traditional

manufacturing techniques (Figure 1) in some cases it

can be complex to track the original source of the

observed failure. These drawbacks of EoL testing can

be addressed by creating solutions for in-process moni-

toring/inspection to immediately identify and react to

detected defects without having to wait until the final

stage of the manufacturing chain.23

Industrial perspectives and motivation

In order to understand the process variations that could

lead to potential defects in both manual and automated

manufacturing processes, a questionnaire was prepared

and validated with five researchers from the University

of Sheffield who were experts in the field of manufac-

turing of electrical machines. Details of the profiles of

five researchers including their roles, years of

Tiwari et al. 3



experience, manufacturing knowledge, etc. are provided

in Appendix B. Once the suggested corrections were

incorporated, the questionnaire was approved, and it

was presented to industrial organisations involved in

manufacturing of electrical machines. Their feedback

helped in gaining insight into the involvement of man-

ual processes and current level of automation within

industry. Discussions provided us with feedback on spe-

cific areas of electrical machine manufacture to target,

possible future use cases, existing inspection technolo-

gies within these companies, and gaps that need to be

addressed. A list of responses can been seen in Table 2

for six recently surveyed companies and profile of

respondents and manufacturing companies is sum-

marised in Table 3. The manufacturing activities listed

in Table 2 are explained in section 2, and highlighted in

Figure 1. An overview of manufacturing activities in

electric motor production are provided in Kampker.4 A

few key elements of information sought from the ques-

tionnaire were:

� Discussion on the degree of involvement of manual

operations in overall manufacturing activities

related to electrical machines.
� How would they rate the involvement of manual

operations in the manufacturing activities listed in

Table 2?

� The most error prone manual manufacturing

activity.
� The operations for which monitoring or interven-

tions could bring the errors down.
� The manual activities (listed in Table 2) in which

the intrinsic knowledge or experience of a worker

plays a role in quality of manufacture.
� Any in-process monitoring for any manual activi-

ties during manufacture.
� Current end of line tests in the electrical machine

manufacturing process.

Respondents A-E provided feedback on all the activi-

ties listed in Table 2, however a partial response was

received from respondent F because they belonged to

an SME and only a part of the activities listed in

Table 2 were relevant to their work. The responses

from industry indicate that a significant proportion of

activities are highly manual or semi-automated with

some supporting manual interventions.

The respondents highlighted that some activities

such as forming reliable contacts to machine coils are

difficult to automate. As quoted by respondent B, ‘con-

tacting or making connections are trickier for automa-

tion for example, routing wires to right place, adding

tubing to end wires is less automated; errors due to

wrong end termination could occur’.

Table 1. End-of-line tests and relating manufacturing processes.

Manufacturing
process

Noise &
vibration
test

Regenerative
test

Cogging
torque
test

Running
temperature
test

Winding
resistance
test

DC
Hipot
test

Surge
test

Rotor
eccentricity
test

Lamination � � �

Insulation � � � �

Winding � � � � � � � �

Contacting � � �

Impregnation � � �

Bearing � �

Shaft � �

Assembly � �

Table 2. Industry perspective on involvement of manual and automated activities in the following electrical manufacturing processes

provided by six companies (A, B, C, D, E and F).

Manufacturing activity Highly manual Semi-automated
(some manual
activities)

Mainly automated
(few manual
interventions)

Fully automated
(no manual
intervention)

Possibility for
future automation

1 Lamination/Laminated
core production

A E B, C, D

2 Insulation D, E, F A, D B, C, D B
3 Winding/wiring A, D C, E, F B, C, D D D
4 Contacting/terminations A, B, C, D, E B, C D D
5 Impregnation A, D, E B, C, D D
6 Magnet assembly B, C, D, F A, C, B, E B, D D
7 Core and shaft joining B, C, D A, C, B, E D
8 Final assembly A, B, C, D, F E D

4 Proc IMechE Part B: J Engineering Manufacture 00(0)



All respondents mentioned that winding was the

most error prone manual activity. Other error prone

manual activities included making end connections,

applying insulation slots and final assembly. According

to respondent A, ‘In winding a random wound

machine, it’s easy to get a wire on the wrong side of the

slot liner or pull the cross over insulations when strap-

ping the end windings’. It can be concluded that

inspecting pre-wound coils or monitoring while wind-

ing or making connections can facilitate early detection

or prevention of faults in the process. According to

respondent B, ‘it would be interesting to monitor the

windings, especially pre wound coils, by utilising vision

systems so that they are inspected before slotting in

and measurements can only be done where potential

failures are spotted’. However, respondent C empha-

sised monitoring of parameters of winding machine

that define product quality because monitoring the pre-

wound coils may be difficult to observe. According to

respondent C, ‘if the coil is defective then scrap is high,

therefore there is need to identify quicker reliable ways

of monitoring’. According to respondent D, there is

currently some process monitoring in terms of visual

inspection and geometry checks against template or

drawings.

It was also found that low defect rate and high

accuracy of the manufactured product were the top

priority for manufacturers of high value electrical

machines, whereas high production rate was the top-

most priority for manufacturers of low-medium value

electrical machines.

Most respondents agreed that intrinsic knowledge or

experience of a worker plays an important role in qual-

ity of manufacture involving manual operations. As

stated by respondent B, ‘there is a huge difference in

winding quality between a novice and an expert coil

winder’. According to respondent E, ‘up to 50% of fail-

ures in the manufacturing process can be attributed to

manual activities’. Despite this, there is very little inves-

tigation on the monitoring and inspection of manual

operations in electrical manufacture, an observation

reinforced in Psarommatis et al.11

Process monitoring in key identified

processes in electrical machine

manufacturing

Process monitoring during electrical machine manufac-

turing can potentially track and trace the origin of aris-

ing faults/anomalies thus allowing consistent product

quality and enabling process optimisations. A timeline

(Figure 2) demonstrating the advancement of tech-

niques for in-process monitoring in manufacturing of

electric machines has been provided. Further details

about techniques with references have been included in

Appendix B.

As seen previously in Table 1, the quality of winding

impacts all the end of line tests illustrating its central role

in achieving required manufacturing standards. Our sur-

vey with industry (section 4) also revealed that two pro-

cesses involved in stator manufacturing namely winding

and wiring, and contacting constitute significant error

prone manual operations. Therefore, current state of the

art in in-process monitoring in these two identified tech-

niques is described in the following sections.

Winding and wiring

A controlled and precise means to assemble the

machine winding (concentrated or distributed) in order

Table 3. Profile of respondents and manufacturing companies.

Characteristics A B C D E F

Ownership Public limited
company

Private
limited
company

Private
limited
company

Public limited
company

Private
limited
company

Private limited
company

Main sector Aerospace,
automotive

Automotive
aerospace
wind

Automotive
rail

Aerospace Automotive Automotive

Value & volume of
manufactured
electric machines

High value,
low-medium
volume

Medium
value, high
volume

Medium-high
value,
high volume

Medium- high
value, low-
medium volume

Low-high
value, low-
medium
volume

Low-medium value,
low volume

Size of company
(employees)

1000+ 50 + 1000 + 1000 + 100+ 50 +

Role of Respondent(s) Manufacturing
specialist

Design
engineer

Technical
specialist

Manufacturing
specialist

Technical
specialist

Director of
manufacturing

Year(s) of experience 20 10 22 10 7 15
Customers Global UK Global Global UK UK
Plant location Global UK Global Global UK UK
Manufacturing
knowledge

Extensive Extensive Extensive Extensive Good Extensive

Tiwari et al. 5



to maintain standards and reduce manufacturing var-

iance is challenging since winding is a complex process

in which many uncertain factors exist due to its highly

non-deterministic nature.16 According to Rodriguez

et al.24 due to the non-deterministic nature of the wire

windings traditional model-based techniques fail to

control this process.

To achieve quality control, techniques for automatic

inspections during manufacture by utilising vision sys-

tems has been proposed by Oliveira et al.25 in which a

vision system based on edge-detection tools was devel-

oped to identify defects such as coil segments of the

winding that are not properly fastened to the other coils.

The developed edge-detection tools had a limitation for

large production volumes, and to deal with this the

authors proposed a CNN based artificial intelligence

method for detecting defects in stator windings of induc-

tion motors.25 Leo et al.26 proposed a vision system for

online quality monitoring by performing dimensional

measurements of critical lengths of copper wire during

manufacturing. Another vision-based method to moni-

tor the wire drawing process was proposed by Larsson

et al.,27 that could potentially be utilised in inspection of

insulation of wire before starting the winding process.

The lack of process knowledge and the dividends

that would accrue from the increasing the copper fill

factor during machine design phase prompted simula-

tion and modelling studies to understand the winding

process. Bönig et al.28 developed finite element based

simulation tool and modelling for prediction of coil

winding behaviour. They represented the highly

dynamic process of winding within this simulation, by

utilising dynamic influences such as rotational speed or

acceleration of the coil body. To aid in handling wire

winding and flexibility, Sell-Le Blanc et al.5 developed

an analytical modelling and simulation process for the

orthocyclic winding of bobbins, a concentrated winding

with a high theoretical fill factor yield. This demon-

strated different wire tensile force profiles due to

changes in velocity during winding for a range of

bobbin geometries (round, square, rectangular).

Recently, a digital twin of the linear winding process

based on finite element method has also been pre-

sented29 to investigate the influence of various para-

meters during the process.

The discussed monitoring approaches focus on auto-

mated winding techniques. However, interactions with

industry (section 4) revealed significant involvement of

manual activities in winding and wiring process.

Additionally, the role of the intrinsic knowledge or expe-

rience of a worker in the quality of winding was high-

lighted by industry respondents for example, as quoted

by respondent B, ‘huge difference between winding qual-

ity of an expert winder and a novel winder’ and respon-

dent D, ‘experience of a worker plays a key role in coil

winding especially of Litz wire’. Despite the continued

prevalence of manual processes in many high-value elec-

trical machines, there have been very few attempts to sys-

tematically and robustly monitor/inspect manual

activities involved in winding and wiring processes.

Terminations

The process of terminating the stator windings in a

connector or terminal box for onward connection to a

drive or supply is a key process and determines the elec-

trical and mechanical quality of the joint. However, it

is challenging to achieve precise process control due to

the number and complexity of the influencing factors.

Thermo-crimping is a widely adopted technology for

terminating insulated copper wires after the winding

process and a few techniques for automatic inspections

of this process have been reported in literature, these

include monitoring of wear on components for exam-

ple, electrodes and quality monitoring of the joint.30

Fleischmann et al.31 demonstrated the possibility of

determining the wear margin of electrodes and the joint

quality by monitoring process variables such as energy

and temperature. By utilising ML algorithms, such as

artificial neural networks, the system independently

Figure 2. A timeline demonstrating the advancement of techniques for in-process monitoring during manufacturing of electric machines.
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changed machine settings by its self-adapting and pas-

sive online learning capabilities. Recently, the more

energy efficient contacting process of ultrasonic crimp-

ing has been investigated in terms of process monitor-

ing17 with ML technologies having been applied for

achieving a controlled process. Firstly, the crimp qual-

ity was classified based on its appearance, secondly

algorithms were implemented with amplitude and pres-

sure of ultrasonic crimping as input parameters.

Finally, a CNN was employed to predict the contact

resistance and hence provide an estimate of joint qual-

ity. Figure 3 depicts various some key features for the

prediction of quality of a thermal crimp for example,

edges, region of burnt insulation, area of electrode

influence, etc.

In addition to the crimping processes, welding has tra-

ditionally been used for contacting. Several ML tech-

niques have been reported to predict weld strength for

example, Sumesh et al.32 deployed algorithms to pre-

dict the welding quality based on acoustic signal. A

vision-based method to estimate the welding defect

using a CNN to classify the joint with an accuracy of

95.83% was demonstrated.33 Weigelt et al.,17 proposed

a system architecture for analysis of welding quality of

joints for contacting of hairpin windings. The input

data sources were process parameters from the welding

machine and visual information acquired from cameras

that were used in a CNN for developing a quality mon-

itoring system consisting of a pre-process credibility

check and a post-process quality assessment and defect

classification.

The above approaches focussed on estimating the

quality of the joint; however as shown in Table 1, con-

tacting processes can often involve significant manual

activities, one such example given by an industry

respondent is ‘finalising and securing all end termina-

tions for each coil’. At this stage, ‘incorrect wire con-

nections may occur as the accuracy/precision may

depend on the experience and training of the operator’.

Wire endings and terminations require high precision

but automation is difficult. However, to our knowledge

there have been no attempts to capture manual activi-

ties for in-process monitoring and inspection in con-

tacting/terminations.

State of the art in monitoring of manual

operations and case studies

State of the art

There are relatively few published studies that have

attempted to understand manual operations in electri-

cal machine manufacturing process. Research by Lipka

et al.34 and Fischer et al.35 proposed using a nearfield

localization system for assembly operations in order to

detect the position and orientation of assembly tools or

assembler’s hands. However, this mechanism has a lim-

itation that it may not be able to capture cause-effect

link between worker actions and their effect on the state

of workpiece. Another study captured human beha-

viour during manual welding and identified key process

variables, critical tasks and strategies adapted by man-

ual welders.36

Due to limited studies from the domain of electrical

machine manufacture, concepts can be drawn from

related processes in other application domains that also

involve significant manual activities. Han et al.37 pro-

vided a methodology for using motion-sensing technol-

ogies for knowledge capture on different manufacturing

processes. They categorised manufacturing tasks, com-

pared capabilities and limitations of various motion

sensing technologies such as the Microsoft Kinect,

Leap-motion and Senz3D and finally used the collected

information to compare performance differences

between experienced and novice workers. Yoshida et al.

proposed a data fusion analysis method consisting of

field-oriented interviews, human motion capture and

videos from both expert technicians and novices, and

the operational differences between those were ana-

lysed. Kikuchi et al.38 presented a motion analysis

method to extract tacit knowledge, such as expert hand

gestures and eye movements, during a composite layup

task and their relationship with mechanical properties

and dimensional stability of the resulting product. Gu

et al.39 developed a Portable Assembly Demonstration

(PAD) system using an RGB-D camera, this system

could recognize the tool/part used, the action applied

and the assembly state characterizing the spatial rela-

tionship between the parts. Chen et al.40 proposed a

fusion framework that utilised data from two differing

modality sensors (a Kinect camera and a wearable iner-

tial sensor (accelerometer)) to extract and analyse oper-

ator actions during a manual task.

Intention recognition suggested in Schlenoff et al.41

proposed separating human intentions into two groups:

activities and states. This work presented a structure

for recognising process states, rather than actions, due

to better detection of discrete events versus continuous

human movements. Prabhu et al.42,43 demonstrated use

of gaming interface device (Microsoft Kinect) to simul-

taneously capture human actions and the resulting

workpiece motions non-obtrusively in three dimensions

in real-time. The captured human-workpiece interac-

tion data was automatically segmented into human

Figure 3. Key visual indicators for the prediction of quality of a

thermal crimp.
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action states, represented as therbligs44 and workpiece

states. The use of therbligs also enabled this methodol-

ogy to be used for human motion analysis for effective

and ergonomic design of assembly workstations.

Furthermore, in 2017 they developed an informatics-

based method, enabled by vision sensors and machine

learning, to capture and digitise manufacturing task

knowledge from skill-intensive task of composite hand

layup.7

In addition to capturing the human motion (in terms

of activities and states), the intention recognition could

also be obtained by capturing physiological signals (e.g.

Electroencephalography (EEG), Electromyography

(EMG)) from the human during a manual operation.

This topic is not the key focus of this paper and there-

fore this aspect is not considered in detail. Further

information in this area can be obtained from.45,46

The research on composite layup in Prabhu et al.7,42

is particularly relevant because most manual processes

in electrical machine manufacture for example, wind-

ing, wiring, making end connections, etc. involve han-

dling deformable material similar to composite hand

layup process. Further details explaining this work

have been presented as first case study in the following

section.

Case studies

Two case studies are presented in this section demon-

strating in-process inspection of skill-intensive manual

manufacturing processes. The first case study draws

from the authors’ previous work in providing in-

process support and monitoring in real-time during a

manual composite hand layup process. The second case

study is from authors’ current work at the University

of Sheffield in electrical machines manufacture.

Case study 1: In-process support and monitoring during manual

layup task. This previous research by the authors devel-

oped an informatics-based method, enabled by a com-

bination of vision sensors and machine learning, to

capture and digitise manufacturing knowledge from a

skill intensive task of composite hand layup. This was

the first time modelling of cause-effect link between

worker actions and workpiece states in a composite

manufacturing process was achieved,7 utilising hidden

Markov models to capture and digitise key constituents

within a manual task involving a worker and

workpiece.

i. Worker-workpiece interaction: A manual manufac-

turing task is a series of worker-workpiece interac-

tions where human action is followed by feedback

from the workpiece on its state of progress, which

is then analysed by the worker to choose the next

action towards successful completion of the task.42

Based on this concept, a worker’s response can be

divided into three categories7 suggesting that every

workpiece feedback conveys a set of affordances to

the worker who selects an appropriate response

based on the situation and their abilities.47

ii. Digitisation: The digitisation process comprises of

six steps: Capture, Segment, Model, Extract,

Decode and Reproduce (as demonstrated in

Figure 4(a)).

Capture: The actions of worker and the effect of

those actions on the workpiece using Kinect sensors

(V1 and V2) are captured and converted into digital

data.

Segment: Continuous data from worker actions is

segregated into action primitives corresponding to

progress of the workpiece.

Model: This step gives a digital representation to

worker-workpiece interactions by modelling using

Hidden Markov Models (HMMs). The HMMs repre-

senting the manual task (hand layup task) are utilised

to extract, decode and reproduce the manufacturing

task knowledge belonging to the task.

Extract: This step obtained probable worker

response for not only observed but also for unobserved

workpiece state sequence.

Decode: This step obtained key manufacturing

knowledge constituents of the manual task from the

extracted worker action states namely task strategy,

precise manual actions, mechanics of worker’s motion

during task execution, problem-solving gestures etc.

Reproduce: Involved producing an accurate digital

representation of the task (and knowledge) in the form

of videos, animations etc.

Figure 4. (a) The 6-step digitisation process and (b) picture demonstrating in-process support to the worker during the layup task.
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The digitisation framework shown in Figure 4(a)

was successfully implemented for in-process support

and inspection during manual composite layup tasks.

As shown in Figure 4(b), an overhead projector was

used to provide instructions to the worker during the

layup process. The system was capable of inspecting the

process by alerting the worker of any missed or wrong

operation. Although initially applied in the context of

composite layup, this methodology lends itself to sev-

eral operations with deformable objects in electrical

machine manufacture.

Case study 2: Real-time capture, modelling and analysis of

deformable linear objects in electrical machine

manufacturing. Even in highly automated electrical

machine manufacturing lines, one area which often

requires some level of manual intervention, particularly

in medium and large sized machines (i.e. . 10kW or

so) is the placement of the tails of the phase windings

into jigs for coil termination. This might include the fit-

ting of a secondary insulating sleeve and/or copper fer-

rules to highly stranded wire bundles. In many high

power automotive traction machines or aerospace gen-

erators coils are comprised of a large number parallel

strands of wire (often several 10 of wires each with a

diameter of the order of 1mm or so). Manipulating

and routeing these multi-stranded tails to form a com-

pact and repeatable interconnect is an intricate task

with a high degree of variance in the starting condi-

tions, which in part explains the residual manual inter-

vention in an otherwise highly automated process. The

application of excessive force or attempts to introduce

bends into the interconnect path that are too tight may

compromise the lifetime of the insulation of the inter-

connects themselves or even the last few turns of the

coil in the stator core. Hence, precise tracking of evolu-

tion of the interconnect paths which the interconnects

take as they are manually manipulated offers a means

of ensuring some degree of consistency.

The current work undertaken at the University of

Sheffield has begun to allow for the real-time capture,

modelling and analysis of deformable linear objects

(DLOs) such as cables and wires for a number of pro-

cessing and assembly steps.

i. Worker-workpiece interaction: Human experience

and skill can affect the activities and quality of out-

come, and therefore it is important to gather

enough information to aid in the tracking and tra-

ceability of the past and current actions of the

worker. For example, this information could be the

forces applied during coil or wire manipulation, the

speed at which a particular task is being performed

or the order of assembly. Another key component

to track and record is the coils/cables/wires them-

selves, and how these deformable objects were

handled during these processes. This can allow us

to detect whether damage may have occurred

through poor actions such as bending or twisting,

allowing this information to inform other steps fur-

ther ahead.

ii. Digitisation: A number of technologies and meth-

ods can be used for capturing in-process data dur-

ing steps associated with coils and windings and

worker-workpiece interaction, for example stan-

dard RGB cameras or 3D depth imaging sensors.

Once this data is captured in real time or offline,

in-process tracking and traceability of human-

workpiece interactions within coil and windings

assembly could be obtained. For example during

the activity of human operator manipulating the

coil or wiring in the stator, a number of key points

need to be digitised or modelled, these include:

� Hand detection

� Hand segmentation

� Hand 3D pose estimation

� Cable or wire segmentation

� Cable or wire 3D shape estimation

After digitising the above mentioned steps, higher level

activities can be captured, such as how the operator is

handling the cable or wire, or any tools, the speed and

forces applied during this operation, and the position

and motion of cables or wires through time. This can

be achieved through the digitisation of these steps, uti-

lizing IoT and machine vision to capture in real-time

the manipulation of wirings and cables and track their

position in relation to targeted sequence of events or

end goals. An example is presented in Figure 5 where

state of the art image segmentation techniques48 are

used to identify a cable from a natural scene and track

its position through time.

Here the scene is broken up into a set of ‘superpixels’

tied to colour and texture each pixel can act as a node

in a graph Figure 5(a), and this graph can be traversed

in order to segment out individual cables and wires,

Figure 5(b). Extracting cables and wiring as individual

connected node graphs over time in three dimensions

allow both the recording of any past mistakes or faults

(bending/kinks), allow track and guide assembly in

real-time or predict where future failure could occur as

a result (Figure 5(c)). Over time, a better understanding

of the interdependencies between these steps can be

developed and tracked through an electrical machine

manufacturing process.

Discussion

Based on extensive review of literature and case studies,

numerous existing and potential approaches from

research and industrial practice were examined which

deal with in-process monitoring of manual and auto-

mated operations in EM production. Some of the

approaches directly address EM manufacturing,

whereas some approaches can be transferred from simi-

lar processes in other application domains. Figure 6

provides few examples (without claiming completeness)
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of identified technologies in order to achieve motion

capture (involving human actions), workpiece capture

(workpiece and tools) and process capture during some

manual and automated activities from EM manufac-

turing such as winding and wiring, and terminations.

The listed technologies for motion and workpiece

capture are vision sensors (e.g. Kinect RGB-D), inertial

sensors (e.g. Perception Neuron MOCAP system), geo-

location sensors (e.g. Bluetooth positioning systems)

and multi-modal sensors (e.g. temperature, pressure

sensors, optical fibre sensing etc.). The listed enabling

technologies for process capture are ML, big data and

data mining, and simulation and digital twin. The sym-

bols in Figure 6 indicate if there are studies directly

referring to the EM production, if techniques can be

derived from related fields, or if no appropriate tech-

niques have been identified so far; the processes in blue

and yellow colour represent manual and automated

processes respectively. The main observations from

Figure 6 are summarised in conclusions section.

Figure 5. Tracking of wiring and cables: (a) superpixels used to breakup image, (b) connect each superpixel node to build a chain

linked to cable colour/texture, and (c) capture information in real-time and provide guidance to target.

Figure 6. Enabling technologies for motion capture, workpiece capture and process analytics for a few manual and automated

processes in EM production.
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Conclusions

This paper has presented a review of state of the art in

process monitoring for manual operations in electrical

machine manufacturing. Discussions from manufactur-

ing experts from UK based companies, revealed that a

significant proportion of activities remain as manual or

semi-automated and some activities such as contacting

are difficult to automate. Winding/wiring and making

connections were identified as highly error prone man-

ual activities and emphasis was laid on the value that

could be accrued from in-process monitoring during

these operations. However, there is a paucity of litera-

ture in these areas in electrical machine manufacturing.

Nonetheless, advances in digital technologies and

well-established frameworks from other domains in

manufacturing can be leveraged to overcome this short-

coming. The two case studies presented in the paper

provide an illustration of the potential for applying

recent advances in digital manufacturing to use cases

from winding, contacting, impregnation, magnet

assembly or final assembly containing multitude of

joining processes. The framework presented in case

study 1 could be implemented in the digitisation of a

variety of manual manufacturing tasks in electrical

machine. Case study 2 demonstrates real-time capture,

modelling and analysis of deformable linear objects in

electrical machine manufacturing. In addition to pro-

cess monitoring/inspection, this approach can be a step

towards the automation of hitherto skill-intensive tasks

in electrical machine manufacture.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publi-

cation of this article.

Funding

The author(s) disclosed receipt of the following finan-

cial support for the research, authorship, and/or publi-

cation of this article: This project was supported by the

Engineering and Physical Sciences Research Council of

the UK through the Future Electrical Machines

Manufacturing Hub (EP/S018034/1), and the Royal

Academy of Engineering under the Research Chairs

and Senior Research Fellowships scheme. The authors

would like to acknowledge Airbus for their support.

ORCID iD

Divya Tiwari https://orcid.org/0000-0003-4546-5031

Availability of data and material

The underlying data can be accessed at 10.15131/shef.-

data.12770021. Code availability: Not applicable.

References

1. Meyer A, Heyder A, Brela M, et al. Fully automated

rotor inspection apparatus with high flexibility for

permanent magnet synchronous motors using an

improved hall sensor line array. In: 2015 5th international

electric drives production conference (EDPC), September

2015, pp.1–5. New York: IEEE.

2. Mayr A, Weigelt M, von Lindenfels J, et al. Electric

motor production 4.0–application potentials of industry

4.0 technologies in the manufacturing of electric motors.

In: 2018 8th international electric drives production confer-

ence (EDPC), December 2018, pp.1–13. New York:

IEEE.

3. Jackson K, Efthymiou K and Borton J. Digital manufac-

turing and flexible assembly technologies for reconfigur-

able aerospace production systems. Procedia CIRP 2016;

52(1): 274–279.

4. Kampker A. Elektromobilproduktion. Berlin, Heidelberg:

Springer-Verlag, 2014.

5. Sell-Le Blanc F, Hofmann J, Simmler R, et al. Coil wind-

ing process modelling with deformation based wire ten-

sion analysis. CIRP Ann 2016; 65(1): 65–68.

6. Staudter C, Mollenhauer JP, Meran R, et al. Design for

Six Sigma+ LeanToolset: implementing innovations suc-

cessfully. Berlin Heidelberg: Springer-Verlag Science &

Business Media, 2008.

7. Prabhu VA, Elkington M, Crowley D, et al. Digitisation

of manual composite layup task knowledge using gaming

technology. Compos B Eng 2017; 112: 314–326.

8. Hultman E and Leijon M. Utilizing cable winding and

industrial robots to facilitate the manufacturing of elec-

tric machines. Robot Comput Integr Manuf 2013; 29(1):

246–256.

9. Liaqat A, Hutabarat W, Tiwari D, et al. Autonomous

mobile robots in manufacturing: Highway Code develop-

ment, simulation, and testing. Int J Adv Manuf Technol

2019; 104(9): 4617–4628.

10. Prajapat N, Turner C, Tiwari A, et al. Real-time discrete

event simulation: a framework for an intelligent expert

system approach utilising decision trees. Int J Adv Manuf

Technol 2020; 110(11): 2893–2911.

11. Psarommatis F, May G, Dreyfus PA, et al. Zero defect

manufacturing: state-of-the-art review, shortcomings and

future directions in research. Int J Prod Res 2020; 58(1):

1–17.

12. Mayr A, Seefried J, Ziegler M, et al. Machine learning in

electric motor production-potentials, challenges and

exemplary applications. In: 2019 9th international electric

drives production conference (EDPC), December 2019,

pp.1–10. New York: IEEE.

13. Tong W. Mechanical design of electric motors. Boca

Raton, FL: CRC press, 2014.

14. BayraktarSx and Turgut Y. Effects of different cutting

methods for electrical steel sheets on performance of

induction motors. Proc IMechE, Part B: J Engineering

Manufacture 2018; 232(7): 1287–1294.

15. Slade PG (ed.). Electrical contacts: principles and applica-

tions. Boca Raton, FL: CRC press, 2017.

16. Hagedorn J, Sell-Le Blanc F and Fleischer J. Handbook

of coil winding. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2018.

17. Weigelt M, Mayr A, Seefried J, et al. Conceptual design

of an intelligent ultrasonic crimping process using

machine learning algorithms. Procedia Manuf 2018; 17:

78–85.

18. Davis JR (ed.). Surface hardening of steels: understanding

the basics. Materials Park, OH: ASM International, 2002.

Tiwari et al. 11



19. Meyer A, von Lindenfels J, Mayr A, et al. Manufactur-

ing imperfections in electric motor production with focus

on Halbach array permanent magnet rotor assembly. In:

2018 8th international electric drives production conference

(EDPC), December 2018, pp.1–7. New York: IEEE.

20. Cai DQ, Xie M and Goh TN. SPC in an automated man-

ufacturing environment. Int J Comput Integr Manuf 2001;

14(2): 206–211.

21. Butov A and Verl A. Comparison of end of line tests for

serial production of electric motors in hybrid truck appli-

cations. In: 2014 4th international electric drives produc-

tion conference (EDPC), September 2014, pp.1–4. New

York: IEEE.

22. Huang Q, Zhou S and Shi J. Diagnosis of multi-

operational machining processes through variation pro-

pagation analysis. Robot Comput Integr Manuf 2002;

18(3–4): 233–239.

23. Schlick T, Hertel G, Hagemann B, et al. Zukunftsfeld elek-

tromobilität. Chancen und Herausforderungen für den

deutschen Maschinenund Anlagenbau. Düsseldorf, Hamburg,

Frankfurt: Roland Berger Strategy Consultants, 2011.

24. Rodriguez A, Vrancx P, Nowe A, et al. Model-free learn-

ing of wire winding control. In: 2013 9th Asian control con-

ference (ASCC), June 2013, pp.1–6. New York: IEEE.

25. Oliveira BCF, Seibert AA, Fröhlich HB, et al. Defect
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Appendix A

Some of the main EoL tests are described as follows:

� Acoustic noise and Vibration Test (Active)

During this test, an excitation function of motor opera-

tion is chosen and the noise behaviour is recorded by

sensors. The airborne noise and structural noise is
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separated by an appropriate algorithm and noise can

be analysed to diagnose potential discrepancies in

mechanical precision, rotor eccentricity, magnetic even-

ness (winding faults) and the assembly.1

� Regenerative Test (Passive)

During this test, the machine under test is connected to

a separate drive motor and operates as a generator. The

induced voltage of the motor is a function of rotation

speed and excitation, and hence by setting the speed of

the external motor the electromagnetic characteristics

of excitation can be analysed, which can offer informa-

tion about windings’ geometry, resistance and insula-

tion status.2,3

� Moment of Inertia Test (Active)

The dynamic behaviour of the motor is evaluated by its

moment of inertia test.4,5 Parameters measured during

this test give essential information about control system

design and motor selection.

� Cogging Torque Test (Active and passive)

Cogging torque testing can be an important EoL test

for permanent magnet motors. Cogging torque is cre-

ated by undesired interactions between the permanent

magnet and stator slot teeth6 and leads to vibrations,

noise and speed fluctuations in the motor, affecting

motor performance.7 In machines for applications with

very demanding cogging torque specifications the pres-

ence of specific harmonics can be indicative of drift in

key tolerances.8

� Running Temperature Test (Active and passive)

The running temperature test is conducted to check

heat dispersion throughout the machine.9 An abnormal

running temperature typically results from winding

insulation defects/failure.

� Winding Resistance Test (Static)

This test measures the DC resistance of the winding at

constant temperature and aims to detect winding short

circuit, loose connections, open circuits or imbalance

among different phases.10

� DC High Potential Test (Static)

During this test, a pre-defined constant voltage or low-

frequency AC (0.1Hz) is applied to the terminals of dif-

ferent phases and the leakage current is measured which

is used to infer an effective leakage resistance. If the cal-

culated resistance is within limits, the winding insula-

tion (between coils and motor body) of this machine is

considered to be within specification.11

� Surge Test (Static)

During this test, a high voltage pulse is applied to

windings and the response is recorded. Based on this

response (wave shape, amplitude, phase, and fre-

quency, etc.), the turn to turn, coil to coil as well as a

phase to phase insulation is evaluated, and other wind-

ing defects such as loose winding, bad wire connection

are inferred.12

� Rotor Eccentricity Test (Passive)

During this test, the rotor is mounted on a horizontal

movable bearing system, and is rotated. As this bearing

system has freedom in the horizontal direction, the

rotation of an unbalanced rotor can cause the vibration

along the horizontal direction which is used to evaluate

the rotor eccentricity.

Table A1. Questionnaire validation – Profile of respondents.

Characteristics A B C D E

Expertise of respondent(s) Manufacturing
research

Electrical
machines

Manufacturing Manufacturing Electrical
machines

Year(s) of experience 20 + 25 + 10 + 10 + 3+
Manufacturing knowledge Extensive Good Good Extensive Good
Electrical machine
domain knowledge

Good Extensive Good Good Extensive

Experience with industry Extensive Extensive Good Good Good
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Table B1. Advancement in techniques for process monitoring in manufacturing of electric machines

Publication
year

Title Sensor/process
parameters

Purpose Faults type Method EM part

1 2002 Prediction of burr height formation in
blanking processes using neural network

Tool clearance and
tool wear radius.

– Burr height Finite element
modelling of
blanking process,
ANN

Lamination
(stamping)

2 2004 A proposal to use artificial neural networks
for process control of punching/blanking
operations

Force Fault detection/in-
process monitoring

Burr height ANN Lamination
(stamping)

3 2005 Support vector machines for quality
monitoring in a plastic injection moulding
process

Time, temperature,
injection velocity

In-process
monitoring

Streaks, stains,
burn marks, edges,
unfilled parts,
warped parts

SVM Plastic moulding

4 2007 Experimental analysis of conditions for
machine vision control in em stator assembly
process

Camera Fault detection/in-
process monitoring

Geometry faults Lamination
(stamping)

5 2007 Real-time arc-welding defect detection and
classification with principal component
analysis and artificial neural networks

Plasma spectra In-process
monitoring

Success or not ANN, principal
component analysis

Contacting
(welding)

6 2008 Artificial neural network modelling of weld
joint strength prediction of a pulsed metal
inert gas welding process using arc signals

Voltage, back-
ground voltage,
pulse duration,
pulse frequency,
wire feed rate, the
welding speed

In-process
monitoring

Tensile strength ANN Contacting
(welding)

7 2010 Investigation on arc sound and metal transfer
modes for on-line monitoring in pulsed gas
metal arc welding

Acoustic In-process
monitoring

Success or not Experiment based
mathmetical
analysis

Contacting
(welding)

8 2011 A study of welding process modelling based
on support vector machines

Current, voltage,
camera, wire feed
rate

In-process
monitoring

Backside weld
width

SVM Contacting
(welding)

9 2013 Application of artificial intelligence to stator
winding fault diagnosis in permanent magnet
synchronous machines

Current End-of-line fault
diagnosis or EM
working
monitoring

Winding short
circuit

ANN, particle
swarm
optimization

Winding

10 2013 Proactive quality control system for defect
reduction in the production of electric drives

Lamination and
magnet assembly

11 2013 Model-free learning of wire winding control Winding
12 2013 Machine learning algorithms for quality

control in plastic moulding industry
Pressure In-process

monitoring
Good or bad Naı̈ve bayes,

decision trees,
SVM clustering
(1NN, 3NN, 5NN)

Plastic moulding

(continued)
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Table B1. Continued

Publication
year

Title Sensor/process
parameters

Purpose Faults type Method EM part

13 2013 Optimization of plastic injection moulding
process by combination of artificial neural
network and genetic algorithm

Temperature,
process time,
pressure

Parameter
prediction

Injection pressure,
part weight,
process cycle time

ANN, genetic
algorithm

Plastic moulding

14 2014 First steps towards an intelligent laser
welding architecture using deep neural
networks and reinforcement learning

Camera In-process
monitoring and
control

Success or not ANN, SVM,
reinforement
learning

Contacting (laser
welding)

15 2014 Automated fault detection using deep belief
networks for the quality inspection of
electromotors

Vibration End-of-line fault
diagnosis or EM
working
monitoring

Good or bad Deep belief
network

Whole motor

16 2014 Evaluation of energy efficient joining
processes in the field of electric drives
manufacturing considering quality aspects

Energy efficient
analysis

Contacting
(thermo crimping)

17 2014 Review of vision-based steel surface
inspection systems

Lamination

18 2014 Fault analysis of linear winding processes for
noncircular orthocyclic coils

Two cameras Fault detection Coil geometry
faults

Conventional
image processing

Winding

19 2015 Analysis of wire tension control principles for
highly dynamic applications in coil winding

Winding

20 2015 Investigation of model parameter variation
for tension control of a multi motor wire
winding system

Winding

21 2015 Use of machine learning algorithms for weld
quality

Acoustic Fault detection Lack of fusion, burn
through

J48, random forest
algorithm

Contacting
(welding)

22 2015 Motor stator with thick rectangular wire lap
winding for HEVs

Winding

23 2015 An audio signal based model for condition
monitoring of sheet metal stamping process

Acoustic Fault detection/in-
process monitoring

Statistical sensor
signal processing

Lamination
(stamping)

24 2015 Automated inspection system of electric
motor stator and rotor sheets

Temperature,
camera

Fault detection/in-
process monitoring

Geometry faults Statistical sensor
signal processing

Lamination
(stamping)

25 2015 Analysis of wear behaviour of stamping tools
in the production of electrical steel sheets

Lamination
(stamping)

26 2015 Mechanical fault diagnosis method based on
machine learning

NA End-of-line fault
diagnosis or EM
working
monitoring

Imbalancing, rotor
thermal bending,
shaft crack, bearing
fault and,
permanent bending

SVM, particle
swarm
optimization

Whole motor

27 2016 Distributed condition monitoring systems in
electric drives manufacturing

Input power,
temperature

In-process
monitoring

Joint quality ANN Contacting
(thermo crimping)

(continued)
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Table B1. Continued

Publication
year

Title Sensor/process
parameters

Purpose Faults type Method EM part

28 2016 Recognition of unnatural variation patterns in
metal-stamping process using artificial neural
network and statistical features

NA Fault detection/in-
process monitoring

Dimention out,
double punch, high
burr, rivet slanting

ANN Lamination
(stamping)

29 2016 Concept for magnet Intra logistics and
assembly supporting the improvement of
running characteristics of permanent magnet
synchronous motors

Field-sebtitive
sensors (Hall effect
sensor, AMR-
sensor etc.)

In-process
monitoring

Permanent
magnets deviation

Data mining Megnet assembly

30 2017 Process monitoring of the wire drawing
process using a web camera based vision
system

Camera Fault detection/in-
process monitoring

Wire surface
imperfection

Winding

31 2017 Preliminary study for online monitoring
during the punching process

Vibration Fault detection/in-
process monitoring

Burr height Signal processing Lamination
(stamping)

32 2017 Potentials of machine learning in electric
drives production using the example of
contacting processes and selective magnet
assembly

Contacting and
magnet assembly

33
34 2017 Quality inspection of machined metal parts

using an image fusion technique
Camera Fault detection/in-

process monitoring
Scratch Image processing Lamination

(stamping)
35 2017 Improving the laser cutting process design by

machine learning techniques
Beam parameters Optimal parameter

prediction
K-means clustering,
decision tree

Lamination (laser
cutting)

36 2018 Conceptual design of an intelligent ultrasonic
crimping process using machine learning
algorithms

Welding power,
sonotrode
pressure,
sonotrode
material,
sonotrode
geometry, anvil
material,
conductor
material, insulation
material, camera

In-process
monitoring

Crimp appearance,
electrical resistance

ML (concept
analysis)

Contacting
(ultrasonic
crimping)

37 2018 Evaluation of machine learning for quality
monitoring of laser welding using the
example of the contacting of hairpin windings

Camera In-process
monitoring

Electrical
resistance, joint
geometry defects

ML Contacting (laser
welding)

38 2018 Defect inspection in stator windings of
induction motors based on convolutional
neural networks

Camera Fault detection Coil geometry
faults

CNN Winding

39 2018 Development and experimental evaluation of
a vision system for detecting defects of stator
windings in induction motor assembly lines

Camera Fault detection Coil geometry
faults

Conventional
image processing

Winding
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