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Abstract 11 
Coral reefs are highly vulnerable habitats, threatened by climate change and local anthropogenic 12 
impacts. Management is imperative, and spatial prioritisation apportions the area of interest to 13 
inform investments of scarce conservation resources. Spatially delineated planning units used to 14 
make management decisions are typically large enough to contain significant natural variabilities, 15 
but the ecological significance of such variance is seldom considered in planning decisions. On coral 16 
reefs, the patchiness of habitat quality within planning units matters both ecologically and 17 
functionally. Here, we show that considering within-planning unit variance in spatial prioritisation 18 
influences the location and design of reserve networks. Studying Timor-Leste, we statistically model 19 
the average and variance in coral cover. We compare conservation priority areas for scenarios 20 
informed by coral cover and variance to a baseline scenario with the spatial prioritisation software 21 
Marxan. To further explain these differences, and to show the value of including coral variance as a 22 
metric in spatial prioritisation, we created a reserve quality score. We show that the similarity 23 
between reserve networks was only 57% for protection, and 44% for restoration objectives. For both 24 
objectives, the inclusion of cover variance improves the conservation benefit of management. This 25 
project has shown a novel way to target areas for restoration. These results demonstrate that not 26 
only is mean coral cover (and, by extension, reef condition) a key criterion in selecting marine 27 
conservation actions, but its variance must be considered in spatial conservation prioritisation to 28 
improve both the efficiency and benefit of management actions within marine reserve networks. 29 

Keywords 30 

Spatial prioritisation; coral cover; species distribution models; coral reef restoration; marine 31 
conservation; Marxan. 32 

1. Introduction 33 
There is an increasing need for habitat management, driven primarily by climate change and global 34 
ecosystem decline (Harvey et al., 2018). Threats to coral reefs occur at both large (e.g. climate 35 
change; Hughes et al., 2017) and small (e.g. fishing) spatial scales. As conservation funds are limited, 36 
it is important to select the most appropriate places to allocate resources for conservation or 37 
restoration. The most suitable locations will depend not only on the conservation objectives and 38 
resources available, but also existing local governance or policies, and potential threats. Marine 39 
spatial planning is the process through which areas of the marine system are allocated to different 40 
and often conflicting uses, including conservation, tourism or development (Douvere, 2008). 41 
Systematic conservation planning focuses on the conservation of natural habitats, and considers 42 
social, economic and political factors, in addition to biodiversity targets aiming to find and protect 43 
areas that are comprehensive, adequate and representative of biodiversity (Margules and Pressey, 44 
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2000).  Marine spatial prioritisation is a methodological component of this process which locates 45 
areas for new marine reserves. Only recently has the condition of habitats been included in the 46 
spatial prioritisation process (e.g. Magris et al., 2016, 2020; Vercammen et al., 2019), as the 47 
presence or absence of a conservation feature was previously the primary driver of reserve 48 
placement. 49 

Reef management often includes the designation of marine protected areas (MPAs) and restoration. 50 
Marine protected areas aim to reduce damaging activities and threats, such as agricultural run-off 51 
and offer protection to the habitats and species within their boundaries (Day et al., 2012), while 52 
restoration actively rehabilitates a degraded habitat (SER, 2004), for example, in order to increase 53 
the amount or cover of a species or habitat. Until recently (e.g. Magris et al., 2016, 2020; 54 
Vercammen et al., 2019), marine spatial prioritisation typically omitted habitat quality information 55 
and minimised costs, potentially leading to reserves or management areas established in less 56 
threatened areas (e.g. Magris and Pressey, 2017), or poor-quality habitat (e.g. Maxwell et al., 2009). 57 
Habitat quality is never homogeneous, yet heterogeneity within habitats (e.g. variation in coral 58 
cover) is rarely considered (although terrestrial conservation is more advanced in this respect, e.g. 59 
Harlio et al., 2019), and the disparities when selecting sites with high variability are unclear. 60 

Hard coral cover is a common ecological measures that can be used as a proxy for reef health in the 61 
absence of more comprehensive reef quality data (Bruno and Selig, 2007; Vercammen et al., 2019). 62 
However, there are limitations to this metric; it does not indicate disease (Maina et al., 2008), and is 63 
too slow to evaluate ecosystem change (Beger, 2015). Habitats with high, mono-specific coral cover 64 
may be dominated by few species, and benefits of protecting them may be less than a more diverse, 65 
medium cover habitat (Richards, 2013), therefore variability is a vital metric in spatial prioritisation. 66 
The benefits of maintaining heterogeneity in landscapes and populations have been previously 67 
recognised (e.g. Foley et al., 2010). At the kilometre scale, greater variability in coral cover and 68 
complexity increases diversity in coral species (Richards, 2013) and therefore in associated fauna. 69 
Habitat variability also indicates that there may be increased rugosity, supporting increased 70 
abundance and richness of fishes (Harborne et al., 2012). Further, higher reef complexity can 71 
improve recovery after bleaching events (Januchowski-Hartley et al., 2017). Although using coral 72 
cover variance as a proxy for habitat quality still has limitations, and should be carefully validated 73 
(Stephens et al., 2014), it is a widely available metric that is straightforward to collect and model, 74 
compared to more complex measures of local scale habitat variability. 75 

There is no simple method for determining priority areas for reef conservation, and the availability 76 
of data in the marine environment is often a limiting factor. Numerous approaches have been 77 
suggested to capture important threats and processes, such as dynamic reserves (Tittensor et al., 78 
2019), the value of protecting connectivity (Beger et al. 2010, 2015; Magris et al., 2018), and the 79 
inclusion of areas which will remain valuable under future climate scenarios (Makino et al., 2014). 80 
Despite this, the value of using the variation in coral cover remains a gap in the literature. Spatial 81 
prioritisation apportions the area of interest into planning units (PUs), favouring the selection of 82 
areas with certain characteristics (Nhancale and Smith, 2011). The scale at which the area is 83 
analysed typically dictates the minimum spatial scale at which biological patterns can be 84 
incorporated into spatial prioritisation (Cheok et al., 2016). The need to summarise biodiversity 85 
metrics at the PU scale hinders current spatial planning approaches from considering habitat 86 
heterogeneity. Incorporating such heterogeneity in biodiversity patterns would enable analyses at a 87 
finer resolution and allow more specific allocation of management actions. Here, we tackle this 88 
challenge by determining whether inter-habitat variability in hard coral cover and quality has an 89 
impact on marine spatial planning for a case study area in Timor-Leste. We use contrasting scenarios 90 
to see if different planning objectives, such as protection or restoration, result in different priority 91 
areas being selected. We posit that the heterogeneity in hard coral cover will allow us to 92 
differentiate priority sites for marine reserves or restoration, and that its inclusion will substantially 93 
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improve the quality of reserves. This may be especially important in global conservation network 94 
sites such as that recently developed by Beyer et al. (2018). 95 

2. Materials and Methods 96 

Timor-Leste is a small country within the Coral Triangle, a region of the western Pacific Ocean, 97 
supporting high levels of marine biodiversity (Fig. 1 a). The country has one MPA (Nino Konis 98 
Santana National Park), at the eastern end of the island. The northern coastline and fringing reef 99 
matrix of Timor-Leste, including Oecusse, and the islands of Ataúro and Jaco were divided into 100 
planning units approximately 500 m wide, extending outwards to the edge of the reef. This created 101 
983 PUs, (725 for north shore/ Jaco; 139 in Oecusse; 119 around Ataúro), covering 245 km2, with an 102 
average PU size of 0.25 km2 (Smith et al., 2009). 103 

2.1 Introduction to data 104 
Ecological and mapping survey data of benthic habitat and fish biomass was provided by US NOAA 105 
(see PIFSC, 2017 for further detail on sampling methods and results) and the XL Catlin Seaview 106 
Survey (González-Rivero et al. 2014, 2016; Rodriguez-Ramirez et al., 2020). The XL Catlin Seaview 107 
Survey photographed the benthos approximately every 2 m along 1.8 km transects (n = 27; 108 
González-Rivero et al., 2016), at locations representing the North shore, Jaco, Atauro and Oecusse. 109 
These kilometre (km)-scale transects span several PUs, with the number of photos ranging from 14 110 
to 844 (288 on average) photos per PU, giving an indication of variance in coral cover. NOAA 111 
provided benthic habitat maps from a satellite mapping project, which covered the whole study 112 
area, and the benthic cover was obtained on 131 sites spaced randomly around the whole site of 113 
interest through photo quadrats of approximately 0.7m2 in area. Here, the mean cover was 114 
calculated from 30 photographs taken along a 30 m transect, at depths no deeper than 30 m (PIFSC, 115 
2017). No surveys were conducted on the south shore and it was therefore excluded from our 116 
analysis. Reef fish biomass data for 150 sites were also supplied by NOAA (methods as in PIFSC, 117 
2017), to be used as part of a reef quality score. 118 

2.2. Species distribution models 119 
We predicted both the mean and variance in coral cover for PUs not surveyed with species 120 
distribution models (SDMs). We downloaded pre-processed, candidate environmental predictors 121 
(Table 1) at a spatial resolution of 9.2 km from Bio-ORACLE (V 2.0; Assis et al., 2018; Tyberghein et 122 
al., 2012). Environmental data were interpolated through kriging to increase the resolution to 123 
approximately 750 m, ensuring the predictor data spanned the entire project areas, including 124 
inshore environments. For the model, we must assume these interpolated values are free of error. 125 
Candidate predictors were selected based on known relationships between reef benthos and 126 
environmental factors (Table 1), and effective predictors were determined using Akaike's 127 
Information Criterion (AIC) values (Hu, 1987). Where two predictors were correlated with Pearson’s 128 
correlation (Pearson, 1920) > 0.6, only one was used, the other was excluded to reduce error. 129 
Gravity, a measure of human impact that combines population density with the travel time to a reef 130 
was also included as a proxy for fishing pressure (Table 1; Cinner and Maire, 2018).  131 

We developed the coral cover and variance SDMs using seven effective predictor parameters (Table 132 
1); while gravity was used in both models, the environmental parameters differed to explain 133 
variance. The final predictors for mean coral cover were maximum sea surface temperature (SST), 134 
dissolved oxygen, phosphate concentration, currents velocity and gravity. For coral cover variance, 135 
currents velocity, gravity, PU area and the number of habitats in the PU were used. 136 

Meter-scale surveys were used to predict coral cover across all PUs, while km-scale transects allow 137 
the prediction of cover variance, measured as the standard deviation in coral cover. The lm and 138 
predict functions (‘stats’ package; R Core Team, 2017) were used to create the models in R (R version 139 
3.6.0; R Core Team, 2017) and predict coral cover for the PUs not surveyed. The response variable in 140 
each model was cube-root transformed to reduce skewness, with AIC values supporting this method 141 
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(Table S1). We used a relatively simple model without weightings to avoid overfitting. A stepwise 142 
function served to remove unnecessary model terms and determine the best model by the lowest 143 
AIC value (e.g. Maire et al., 2016). We validated the models by bootstrapping and estimating model 144 
fit with training and validation datasets, containing 70% and 30% of the data respectively 145 
(Shimodaira, 2004). Pearson’s correlation was also calculated between observed values and 146 
predicted values from the model to determine the best fitting model. 147 

2.3 Marxan 148 
We created a broad conservation decision framework to relate potential management objectives to 149 
different actions depending on the local coral cover and variance characteristics of the reef habitat 150 
(Fig. 2). We then created planning scenarios to reflect potential conservation or restoration 151 
objectives. Marxan v 1.8.10 (Ball et al., 2009) was selected as the conservation prioritisation 152 
software, and used with standard calibration unless specified otherwise. Marxan uses simulated 153 
annealing to solve a minimum set objective-based problem. It selects sets of PUs to reach targets for 154 
all conservation features at a minimum cost. Mean hard coral cover was separated into three 155 
conservation features, high, medium and low cover, using the natural breaks algorithm. The coral 156 
cover variance was separated into high and low variance following the same method (Vercammen et 157 
al., 2019). The area of the PU multiplied by population number within a 2.5 km radius was applied as 158 
a metric for the cost to remove the bias from variation in PU size. We set targets for the above coral 159 
cover and coral cover variance conservation features and 13 baseline habitats (Table S2) based on 160 
regional targets (CTI-CFF, 2013) and recent recommendations (Zhao et al., 2020). For each of the five 161 
prioritisation scenarios, targeting either protection or restoration, (Table 2), 100 runs were carried 162 
out in Marxan. The Baseline scenario was based on binary presence-absence data from the 13 163 
baseline habitats to emulate how reef prioritisations are typically run. We used Marxan’s selection 164 
frequency outputs to analyse the results. The selection frequency output indicates which PUs are 165 
important to prioritise, through indicating how important they are for meeting predefined targets. 166 
This is a simple measure of how many times Marxan selects the PU in multiple runs, showing how 167 
important a PU is in the construction of a reserve network. 168 

2.4 Analysis and reef quality score 169 
To assess differences between results for each scenario, a dissimilarity matrix of Marxan solutions 170 
was created using the vegdist function (‘vegan’ package; Oksanen et al., 2019) and hierarchical 171 
clustering was carried out in R (R Version 3.6.0; R Core Team, 2017)  using the hclust function (‘stats’ 172 
package; (R Core Team, 2017). These results were visualised as a dendrogram, using the 173 
colorDendrogram function (‘sparcl’ package; Witten and Tibshirani, 2018). Fish biomass data were 174 
interpolated using kriging as data resolution was not sufficient for modelling. The resulting fish 175 
biomass dataset and the results from coral cover and cover variance were normalised and applied to 176 
a metric estimating habitat quality within the given reserves (hereafter, reserve quality score) for 177 
each PU (Equation 1): 178 

Equation 1: 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =  
∑𝐶𝑜𝑣𝑒𝑟∗𝐶𝑜𝑣𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒∗𝐹𝑖𝑠ℎ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑈𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒  . 179 

3. Results 180 

3.1 Species distribution models 181 

Predicted hard coral cover varied between 9.98% and 24.85% (range = 14.87%; Fig. 1 b), with a mean 182 
of 15.86% and a median of 15.03%. The coral cover variance was predicted with a mean of 10.96% 183 
and a median of 10.70%, and between 7.95% and 16.33% (range = 8.38%; Fig. 1 c). Pearson’s 184 
correlation between actual and predicted hard coral cover values was < 0.4 Fig. S1 a), while 185 
Pearson’s correlation for coral cover variance was 0.45, averaged for all bootstrapping runs (Fig. S1 186 
b). The range and distribution for measured hard coral cover and predicted values are comparable 187 
but slightly lower for predicted coral cover. The high variance seen within km-scale transects was not 188 
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depicted in mean values from any surveys (Fig. S2). The relationship between coral cover and cover 189 
variance was weak for the range of values in this study (Pearson’s correlation, r = 0.24, p < 0.005). 190 

3.2 Marxan 191 

Under the Baseline scenario, 60% of PUs were selected across runs, but selection frequency across 192 
all runs was low (< 50 for 981 PUs). Under the Coral Protection scenario, there is a focus around Nino 193 
Konis Santana National Park, as well as a central area of the north coast. Only 5% (n = 45) of the PUs 194 
were selected 100% of the time, while 59% (n = 584) was not selected in any of the 100 runs. When 195 
the variance in the coral cover of each PU was included in the input data, the selection frequency 196 
around Jaco Island, in Nino Konis Santana National Park, was more comparable to that of the 197 
Baseline scenario, but an increase in small areas with high selection was seen elsewhere. Compared 198 
to the Coral Protection scenario, almost twice as many PUs (11%, n = 104) were selected in every 199 
run, while 62% (n = 613) PUs were not selected at all. For a protection objective, Coral Protection 200 
and Coral Variance Protection scenarios have 56.5% agreement (Cohen’s kappa = 0.303, p < 0.005). 201 

When considering restoration, the output was very different when assessing coral cover and coral 202 
cover variance; large stretches of the northern coastline were prioritised for restoration projects. 203 
The selection frequency and spatial configurations of prioritisation solutions differed substantially 204 
for different conservation objectives (Table S3). A quarter (25%) of PUs are selected > 75% of the 205 
time in the Coral Restoration scenario, compared to over a third (36%) in the Coral Variance 206 
Restoration scenario. The latter scenario had a higher selection frequency around much of Nino 207 
Konis Santana National Park. No PUs were selected around Ataúro Island, and very few were 208 
selected in Oecusse (n = 11 for Coral Protection scenario and n = 39 for Coral Variance Protection 209 
scenario). Coral Restoration and Coral Variance Restoration scenarios have 44.2% agreement 210 
(Cohen’s kappa = 0.329, p < 0.005). 211 

3.3 Analysis and reef quality score 212 

Each scenario returns a distinct set of solutions (Fig. 3 a), although the Baseline scenario returns a 213 
more variable set of solutions, as seen by the large outer quartiles in figure 3 b. Scenarios for 214 
protection or restoration were grouped. The calculated reserve quality score is not significantly 215 
different between Baseline scenario and any other scenario, but all others are significantly different 216 
to one another (One-way ANOVA, p < 0.005; Tukey post hoc between all groups p < 0.05; Fig. 3 b). 217 
The inclusion of cover variance results in the selection of better-quality reefs under both protection 218 
and restoration objectives. 219 

4. Discussion 220 
Our study used species distribution models and spatial conservation prioritisation to show that 221 

management area priorities change substantially, for both restoration and conservation, if the 222 

variance in habitat quality is included. Ultimately, this suggests that it would be beneficial to deploy 223 

methods for initial spatial prioritisation that are similar to our conceptual framework (Fig. 2).  This 224 

conclusion may also extend into other ecosystems, such as mangroves or terrestrial rainforests, 225 

although further research is needed to confirm this. The present study has been successful in 226 

including predictions of coral cover in spatial prioritisation to distinguish between protection and 227 

restoration areas, targeting the most degraded areas for restoration, and avoiding low-quality areas 228 

for protection. We argue that areas with low coral cover, but higher cover variance, are preferable 229 

for restoration as there is some structure within the habitats that will support the faster colonisation 230 

of restored habitat by associated species such as fishes. 231 

Mean hard coral cover across the planning region was low, with none of our predictions exceeding 232 

25% cover, consistent with previous studies from Timor-Leste (e.g. McCoy et al., 2015; Turak and 233 

Devantier, 2013), but lower than elsewhere in Coral Triangle (e.g. Chung et al., 2017; Vercammen et 234 
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al., 2019). This indicates the importance of considering coral cover and variance of a site relative to 235 

both adjacent, local, and global reefs, to get a full picture of the habitat condition.  236 

When considering protection, the inclusion of coral cover variance changed the location of the 237 
suggested area network by 43%, and by 56% when the objective was restoration. The coral variance 238 
scenarios for both protection and restoration had higher reserve quality scores than their associated 239 
coral cover scenarios; indicating clear differences in MPA design when cover variance was 240 
considered. These additional criteria of reef quality indicate that we should protect different areas of 241 
the reef, so we suggest that without considering these additional characteristics, we may be missing 242 
the most suitable sites. While this consideration is an integral part of the planning process, 243 
continued monitoring to assess whether objectives are being fulfilled when conservation 244 
management is implemented. It is also important to carefully consider the objectives, as a higher 245 
quality reef is not necessary or indeed desirable for restoration. It is important to consider a baseline 246 
dataset as reserves are often implemented with the aim of representation, regardless of the quality 247 
or condition of the habitats they are protecting (Klein et al., 2013). The inconsistencies in the 248 
Baseline scenario output indicate that these standard representation targets can be met in a 249 
multitude of ways, many of which will not be effective in capturing specific management objectives, 250 
as they only consider representation. On comparing the similarity of the solutions for each scenario, 251 
the two restoration scenarios were distinct from the protection scenarios, while the baseline output 252 
contained much more variation. This demonstrates the importance of clearly understanding the 253 
conservation objectives before beginning the planning process, as it can influence the data required. 254 

Our results reveal the extent of variance that is hidden when only mean coral cover is considered. 255 
Additionally, the loss of reserve quality was highlighted when only coral cover data were considered 256 
(Fig. 3 b). The heterogeneity seen within the PUs here suggests that spatial prioritisation at larger 257 
scales may be inefficient. Rouget (2003) suggested that broad-scale spatial prioritisation is 258 
appropriate in homogeneous landscapes, while fine-scale, high-resolution planning should be used 259 
for anything more variable. Heterogeneity in habitats or landscapes makes it difficult to manage for 260 
coarse conservation objectives (Game et al., 2008). No significant correlation was found between 261 
average coral cover and variance, so cover variance cannot be inferred from knowing hard coral 262 
cover, or vice versa. Despite this, the variance is expected to be low in PUs with mean coral cover 263 
close to 0% or 100%. Areas with high species richness or biodiversity are more likely to be affected 264 
by anthropogenic impacts (Elahi et al., 2015; Quintero et al., 2010), suggesting that areas with 265 
medium to high variance should be protected (Fig. 2). We represented heterogeneity with the 266 
standard deviation in coral cover, but other elements of heterogeneity are important to conserve; 267 
including variance in species traits or responses to climate change (Walsworth et al., 2019). Areas of 268 
high biodiversity, and therefore high heterogeneity should be targeted for protection, whereas 269 
restoration, as it is focused on degraded habitats, is proposed to target low or declining biodiversity, 270 
and low to medium heterogeneity. This area requires further study, as higher variance could 271 
potentially improve restoration success. 272 

We were able to use a small spatial scale for PUs, relevant to local communities. Following 273 
suggestions from Smith et al. (2009), the size of the PUs was based on the scale of proposed 274 
management actions. However, it is more common, particularly where species distribution models 275 
are not used (Tulloch et al., 2016), that the analysis scale is determined by the data available for 276 
conservation features (Rouget, 2003) or predictor variables (Vercammen et al., 2019). Here, the cost 277 
was calculated as the population within 2.5 km multiplied with the overall area of the PU as a proxy 278 
for the fishing cost (Ban et al., 2009), however, avoidance of areas around larger towns and cities 279 
may occur. Although costs will be higher for active restoration projects, as they still require 280 
protection. The opportunity costs for a reef will be the same regardless of the action. Protection 281 
should not be favoured over restoration because it is perceived to have a lower cost (Possingham et 282 
al., 2015).  283 
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With the use of small PUs, within- and between-reserve connectivity should be considered before 284 
implementation (Beger et al., 2015a). We did not directly consider connectivity here, but currents 285 
velocity was considered in both models, and the strength of these currents around the reefs of 286 
Timor-Leste, as well as the small size of the island suggest a well-mixed system (Allen and Erdmann, 287 
2013). However, over a larger study area, integrating connectivity into a reserve can increase the 288 
success of a network of small PUs due to its importance in biodiversity persistence. Despite the 289 
importance of incorporating components such as connectivity, and due to the urgency of marine 290 
conservation, implementing a network of evenly spaced reserves is a sufficiently effective strategy if 291 
the local ecology is not well understood (Walsworth et al., 2019). However, here we have shown 292 
how variable a reserve system based on coarse habitat presence-absence data can be (Fig. 3 b). As 293 
with all models, there is uncertainty associated with our analysis. For example, higher resolutions of 294 
predictor datasets would be preferable to predict coral cover in our coastal PUs, however we were 295 
constrained by the available resolution in Bio-ORACLE. Such limitations in data makes local and 296 
small-scale conservation or restoration planning very challenging, highlighting the long-term need 297 
for improved data sources. 298 

The decision framework, shown in figure 2, is separate to the Marxan scenarios, and provides an 299 

overview of factors contributing to habitat quality but is not exhaustive. Local influences (e.g. 300 

environmental factors, pollution or fishing pressure) were not included here but may contribute to 301 

the distribution of degraded areas. Restoration aims to rehabilitate coral cover and variance and is, 302 

therefore, most suitable in partially degraded areas. Spatial prioritisation is a complex process with 303 

several factors to consider, ranging from ecological to socio-economic management objectives. As 304 

our analysis shows, different ecological objectives change reserve systems, so the inclusion of 305 

additional objectives relating to socio-economic or other ecological factors will inevitably change the 306 

location of reserve networks and their efficacy (Beger et al., 2015b). Extremely degraded reefs are 307 

not the most efficient use of management funding (Loerzel et al., 2017), and no action is suggested. 308 

Particularly in places with small-scale fisheries such as Timor-Leste, equitable distribution of 309 

management areas (Barr and Mourato, 2009) will increase the likelihood of no-take areas being 310 

respected as each village can still access fishing grounds (Rocliffe et al., 2014). Excluding socio-311 

economic considerations from spatial action planning will reduce the efficiency of a reserve or 312 

restoration project (Scholz et al., 2004). Despite the evident trade-offs that occur in spatial 313 

prioritisation, our framework clearly shows how the theory presented here can be applied to local 314 

habitat conservation or restoration projects, based on an understanding of the habitat condition. 315 

Within a real-world spatial planning project, this could provide stakeholders with a better 316 

understanding of potential reserve networks. 317 

Our results are relevant to Timor-Leste in the present-day environmental climate but could be 318 

expanded spatially and temporally in future studies. Through using projected future climate data, 319 

similar methods could be used to determine how the heterogeneity of coral cover changes with the 320 

climate. This might impact spatial conservation priorities, or the selection of appropriate 321 

management actions (e.g. Makino et al., 2014). As well as variance in coral cover, there is 322 

heterogeneity in human uses of marine ecosystems (Crowder and Norse, 2008). Here, this was 323 

represented by the population count within 2.5 km of the reef, but this is a coarse surrogate, as it 324 

does not consider the differences in fishing methods. Furthermore, the distribution of these 325 

pressures is likely to change in the future, especially as Timor-Leste is a developing country. 326 

Currently, there is a movement of communities protecting their reefs through customary law known 327 

as tara bandu and these localized protection measures are important to consider in a larger spatial 328 

plan (Tilley et al., 2019). There is potential to forecast future fishing pressures, allowing more 329 

accurate predictions of mean coral cover and variance over a longer period. 330 
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In summary, we have shown that the inclusion of the variance component of coral cover for spatial 331 

conservation prioritisation improves reserve design at a relatively small spatial resolution. 332 

Additionally, we have used a measure of coral cover variance to target areas specifically for 333 

restoration. The results of our study support the inclusion of cover variance in spatial prioritisation 334 

and provide a guide for future studies in this field. These methods can be expanded to larger spatial 335 

scales and different ecosystems, using similar, widely available datasets. Considering recent and 336 

ongoing climate change, in both marine and terrestrial habitats, it is important not to waste 337 

conservation effort in ineffective places. 338 
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7. Tables and Figures 569 

 570 

 571 

 572 

 573 

 574 

  575 

Table 1: Parameters and their ecological justification for use as predictor variables for coral cover or 

cover variance in species distribution models. Environmental parameters were collected between 

2000 and 2014 (see Tyberghein et al., 2012 for further detail). PU refers to planning unit.  

Parameter Units Justification Reference 

Monthly maximum sea 
surface temperature 
(SST) 

oC Most corals have narrow 
temperature tolerance. 

Kleypas et al., 
1999 

Dissolved molecular 
oxygen 

mol m-3 Used as a surrogate for carbonate 
saturation state Linked to pH and 
calcite concentration. 

Haas et al., 
2014 

Phosphate mol m-3 Corals are adapted to nutrient 
poor waters, thus nutrients 
influence coral health 

Hallock and 
Schlager, 1986 

Currents velocity m-1 

Calculated from 

u (meridional) 

and v (zonal) 

values. 

Ocean currents influence 
connectivity and recruitment that 
can aid recovery and control coral 
cover and impact reef patchiness. 

Feng et al., 
2016  

Gravity Population, 

distance to reef 

Local human populations 
influence the health (and coral 
cover) of reefs. 

Cinner et al., 
2018 

PU area m2 Correlates with coral reef area 
while accounting for irregular size 
of PUs. 

- 

Number of habitats in PU Number More habitat types will increase 
heterogeneity. 

- 

Table 2: Details of input parameters for Marxan scenarios. 

Scenario 
Data 

Objective 
Targets (%) 

Baseline Cover Variance High Med Low 

Baseline   
 

All Habitats 20 
Coral protection   

 
Protection 50 35 10 

Coral restoration   
 

Restoration 10 35 50 
Coral variance protection    Protection 50 35 10 
Coral variance restoration    Restoration 10 35 50 
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 576 

 577 

 578 

 579 

 580 

 581 

 

Figure 1: Timor-Leste; (a) location of Timor-Leste within the Coral Triangle; the results of species 

distribution models showing (b) coral cover and (c) coral cover variance. Spatial limits of our 

analysis are as follows: xmin 124.50°; xmax 127.38°; ymin 9.38°; ymax 8.12°. Both blue colour and 

shorter bars represent low cover or variance, while red and higher bars depict high cover or 

variance. A natural breaks algorithm was used to determine categories. Maps were created using 

ArcGis 10.6 (ESRI, 2017). 
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 582 

 583 

 584 

585 

   

Figure 2: Conservation decision framework. A decision tree showing the suggested actions 

based on two metrics of habitat quality. For no take zones and partial fishery closures, the 

conservation objective is protection. Photos from NOAA (PIFSC, 2017). 
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  586 

a)              b) 

     

Figure 3: Marxan results: (a) Dendrogram showing reserve design differences for 5 scenarios, as 

shown on the Y-axis: Baseline, Coral Protection, Coral Restoration, Coral Variance Protection and 

Coral Variance Restoration. Dendrogram was created using colorDendrogram function (‘sparcl’ 
package; Witten and Tibshirani, 2018). (b) The average reserve quality score for the same 5 

scenarios, following equation 1. The whiskers represent outer quartiles, excluding outliers. Bars 

at top represent significance between cover and cover variance scenarios (***: p < 0.001). 
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8. Supplementary Information 587 

a) 

 

b) 

 

Figure S1: Output of first nine bootstrapping runs for (a) coral cover model and (b) coral cover 

variance model. Observed data from either NOAA or XL Catlin (as indicated in x-axis titles), 

averaged by planning unit, is compared against the predicted coral cover from SDMs to assess the 

accuracy of the model. 1-9 indicate the bootstrapping run. The blue line represents the labelled 

Pearson’s correlation (R) between the observed and predicted data for each run. A correlation 
closer to 1 suggests a more accurate run. P value is included for Pearson’s correlation. Shaded area 

shows 95% confidence intervals. Plotted in R using the qplot function (‘ggplot2’ package; Wickham, 
2016) 
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Figure S2: XL Catlin Kilometer-scale surveys show high within-reef variance. Blue points show 

measures of coral cover as a percentage, with each vertical line showing one PU; blue points are 

semi-transparent and darker areas  show clustering. Black points show the mean coral cover per 

PU according to m-scale surveys.  
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Table S1: AIC values used to determine best measure of human pressure. 

Measure of human 

pressure 

Mean correlation 

500 runs 

AIC value ΔAIC 

Gravity 0.380 264.25 0.00 

Population within 2.5 km 0.338 267.01 2.76 

Population within 25 km 0.371 265.21 0.96 

Travel Time to reef 0.355 265.44 1.19 

Table S2: Coral reef habitats observed in m-scale NOAA data along the northern coastline of 

Timor-Leste. 

Coral Reef Habitats 

Hard shallow coral 
Hard medium coral 
Hard deep coral 
Soft shallow coral 
Soft medium coral 
Soft deep coral 
 

Seagrass  
Mangrove 
Intertidal 
Emergent rocks 
Macroalgae 
Lagoon  
Unknown 

Table S3:  Table of statistics for each scenario. The Cohen’s kappa test was compared to the 
Baseline scenario. 

 Number 

of PUs 

in best 

solution 

Mean 

number of 

PUs 

Mean 

Selection 

frequency 

Median 

selection 

frequency 

Results of Cohen’s kappa test 

% 

agreement 

with 

baseline 

Cohen’s 
kappa 

p 

Baseline 

 

 

161 161 16.4 0 - - - 

Coral 

protection 

 

213 241 21.8 0 62.3 0.336 < 0.001 

Coral 

restoration 

 

359 354 36.0 17 39.0 0.148 < 0.001 

Coral 

variance  

Protection 

 

242 242 24.7 0 64.2 0.340 < 0.001 

Coral 

variance 

restoration 

424 420 42.7 27 43.9 0.200 < 0.001 

 


