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Abstract

Most state-of-the-art feature selection methods tend to overlook the structural rela-

tionship between a pair of samples associated with each feature dimension, which may

encapsulate useful information for refining the performance of feature selection. More-

over, they usually consider candidate feature relevancy equivalent to selected feature

relevancy, and therefore, some less relevant features may be misinterpreted as salient

features. To overcome these issues, we propose a new feature selection method based

on graph-based feature representations and the Fused Lasso framework in this paper.

Unlike state-of-the-art feature selection approaches, our method has two main advan-

tages. First, it can accommodate structural relationship between a pair of samples

through a graph-based feature representation. Second, our method can enhance the

trade-off between the relevancy of each individual feature on the one hand and its re-

dundancy between pairwise features on the other. This is achieved through the use of

a Fused Lasso framework applied to features reordered on the basis of their relevance

with respect to the target feature. To effectively solve the optimization problem, an iter-

ative algorithm is developed to identify the most discriminative features. Experiments

demonstrate that our proposed approach can outperform its competitors on benchmark

datasets.
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1. Introduction

High-dimensional data are ubiquitous in many data mining and pattern recognition

applications [1]. Such data poses significant challenges for classifications, since they

not only demand expensive computational complexity but also degrade the general-

ization ability of the learning algorithm [2]. To tackle this issue, a variety of feature5

selection methods have been proposed [3]. By eliminating irrelevant and redundant

features, feature selection directly chooses a subset of the most salient features from

the original feature space so that the classification accuracy and interpretability of the

learning algorithm can be improved [4]. In general, feature selection can be partitioned

into a) filter methods, b) wrapper methods, and c) embedded methods [3], according10

to the way of using various learning algorithms in the feature subset selection process.

Among these, filters are usually preferred in many real-world applications due to their

preferable generalization ability and high computation efficiency [4].

In the literature, many efficient filters have been proposed based on various in-

formation theoretic criteria used for evaluating the discriminative power of features,15

such as correlation [5], mutual information (MI) [6], etc. Among these, MI measures

are considered to be most effective as they are able to measure the nonlinear rela-

tionships between features and targets [6]. Existing MI methods mostly concentrate

on maximizing dependency and relevancy or minimizing redundancy. Representative

examples include 1) the mutual information-based feature selection (MIFS) [7], 2) the20

maximum-relevance minimum-redundancy criterion (MRMR) [8], and 3) the joint mu-

tual information maximisation criterion (JMIM) [9], etc.

Although efficient, most existing information theoretic feature selection methods

often utilize measures derived from the statistical characteristics of feature vectors to

evaluate their goodness. This may lead to suboptimal solutions for feature selection be-25

cause the structural relationship between a pair of samples associated with each feature

dimension is often neglected by representing features as vectors. However, in many re-

al world applications, structural relationship between pairwise samples associated with

each feature dimension may contain useful information that is significant for classifi-

cation. As an illustrative example (see Figure 1), for three glass-beads denoted as M130
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Figure 1: Illustrative Example on Sample Relationship.

(Sphere, Red Colored), M2 (Triangle, Pink Colored), and M3 (Ellipsoid, Blue Col-

ored), the relationships between pairwise samples (M1,M2), (M1,M3), and (M2,M3)

are different associated with color. If we classify them according to this feature, M1 and

M2 tend to be in the same class. However, if we classify these glass-beads associated

with shape, M1 and M3 tend to be in the same class. We can employ any vectorial ker-35

nel to compute the kernel-based similarity between these samples and use the C-SVM

associated with the kernel matrix for classification. Clearly, the selected features sig-

nificantly influence the kernel computation between pairs of samples together with the

final classification performance. This is because the kernel-based correlation between

sample pairs should be greater if the samples are from the same class, and lower if they40

are from different classes. We observe that the sample relationships of the target fea-

ture also satisfy this condition. Thus good fearure selections result if the kernel-based

feature graph for a sampled feature is similar to that of its target feature. This indicates

that sample relationships associated with the various feature dimensions are important

to evaluate the effectiveness of features, and could moreover benefit the classification45

performance obtained. Therefore, the structural relationships between sample pairs

associated with each feature dimension should be incorporated into feature selection.

More specifically, let fi = (fi1, . . . , fia, . . . , fib, . . . , fiM )T be the vectorial rep-

resentation for each feature from a dataset consisting of N features and M samples.

Traditional information theoretic methods often select the most discriminative features50

by calculating various criteria such as mutual information between these feature vec-

tors, thus cannot incorporate the relationship between a pair of samples fia and fib

associated with fi into feature selection and may lead to significant information loss.

In feature selection, the appealing characteristics of graph representations have fa-
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cilitated the development of some pioneering works to tackle this issue. For instance,55

Zhang et al. [10] have developed a high-order covariate interacted Lasso for feature

selection. Specifically, a feature hypergraph is first constructed to characterize the

high-order relations among features, where each vertex represents a feature and each

hyperedge associated with a weight representing the high-order interaction information

among features connected by that hyperedge. A multidimensional interaction informa-60

tion measure is proposed to evaluate the significance of different feature combinations.

However, this method cannot incorporate relationship between a pair of samples asso-

ciated with each feature dimension, thus may lead to significant information loss.

To solve this problem, Cui et al. [11] have introduced a novel feature selection

approach based on graph-based feature representations to incorporate relationship be-65

tween pairwise samples associated with each feature dimension. Specifically, a set of

feature graphs is first constructed to incorporate pairwise relationship between samples,

where each graph represents each feature. For each feature graph, each vertex denotes

a sample, and the edge between a pair of vertices denotes the structural relationship

between pairwise samples associated with each feature. With these feature graphs on70

hand, a novel information theoretic criterion is proposed to evaluate the joint relevancy

of different pairwise features. This criterion is utilized to derive an interaction matrix

which is further combined with an elastic net model for feature selection.

Although more efficient than [10], the method in [11] suffers from the problem

of ignoring some good features with high individual relevancy in relation to the target.75

For a pair of features which are highly similar and are both relevant to the target, the

method in [11] might ignore this pair of features due to the high redundancy degree

between them. For instance, given four features with relevancy values 1.0, 0.98, 0.96,

and 0.2, the higher the relevancy value, the more discriminative the corresponding

feature. For this example, the first feature is correlated with the second and the third80

features. However, the combination of feature 2 and feature 3 contains more useful

information than the first feature, and therefore, it is better to choose feature 2 and

feature 3. However, the method in [11] will discard these features because they have

high redundancy with the first feature.

In addition, although the Elastic Net regularizer described in [11] can both ensure85
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Figure 2: Framework of the proposed feature selection method.

sparsity and promote grouping in the selected features, its performance is less effective

when there is an order relation, such as spatial or temporal orders [12] among the

features. Tibshirani et al. [13] claimed that features should be ordered while performing

feature selection and proposed the Fused Lasso model, which has been shown effective

for feature dimension reduction [14]. Specifically, by penalizing the L1-norm of both90

the coefficients and their successive differences, Fused Lasso can encourage sparsity

of both the coefficients and their successive differences, i.e., features that are closely

ranked by the order relation will be treated collectively. This indicates that although

both Fused Lasso and the Elastic Net can promote a grouping of the selected features,

the Elastic Net selects features that are highly correlated as a group while Fused Lasso95

is more effective for features that can be ordered in a meaningful way.

The purpose of this work is to resolve the aforementioned issues by proposing a

novel Fused Lasso feature selection approach using graph-based feature representa-

tions. Specifically, our idea is based on converting the original vectorial features into

structure-based feature graph representations to incorporate structural relationship be-100

tween samples, and defining a new structural interaction measure to compute the joint

significance of pairwise feature combinations in relation to the target feature graph.

With this measure on hand, we obtain a structurally interacting matrix where each el-

ement denotes the proposed structural interaction measure. This matrix is used as a

regularizer on the feature weights which can simultaneously maximize the joint rel-105

evancy and minimize the redundancy of the selected features. Finally, we formulate

the corresponding feature subset selection problem into a least square regression mod-

el associated with the proposed structurally interacting regularizer and a Fused Lasso

regularization term to exploit the ordering effect of regression coefficients which are
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ranked in terms of relevancy. To effectively solve the corresponding feature subset se-110

lection problem, an iterative algorithm is developed to identify the most discriminative

features. The framework of the proposed feature selection approach is presented in

Figure 2 and the major contributions of this work are highlighted as follows.

First, unlike [11], we illustrate how to convert each original vectorial feature into a

structure-based feature graph representation, to encapsulate the structural relationship115

between a pair of samples. Specifically, a new kernel-based similarity measure asso-

ciated with the original Euclidean distance is proposed to construct the (target) feature

graph structures. Furthermore, a new structural interaction measure associated with the

feature graph representations is developed to simultaneously maximize joint relevancy

of different pairwise feature combinations in relation to the target feature graphs and120

minimize redundancy among selected features.

Second, with the proposed structural interaction measure on hand, we compute

an interaction matrix to characterize the structural informative relationship between

pairwise feature combinations in relation to the target feature graph. Moreover, we

formulate the corresponding feature subset selection problem as a least square regres-125

sion problem associated with a Fused Lasso regularizer. The reasons for using Fused

Lasso are as follows. a) When the number of features is larger than the sample size, the

maximum number of features selected by Lasso cannot exceed the number of samples.

Although Elastic Net can achieve better performance than Lasso, it is less efficien-

t than Fused Lasso when there is an ordering relation of features. b) When there is130

an ordering relationship for the regression or classification coefficients, Fused Lasso

exploits this ordering by explicitly regularizing the differences between neighboring

coefficients through an L1-norm regularizer. Thus, it can ensure sparsity not only in

the coefficients but also in the differences between neighboring coefficients. That is,

for features reordered based upon their individual feature relevancy, Fused Lasso s-135

elects several consecutive features which are of high relevancy to the target, and thus

enhances the trade-off between relevancy of each individual feature and the redundancy

of pairs of features.

Third, because of nonseparability and nonsmoothness of the Fused Lasso regular-

ization term in the objective function, solving the feature selection problem is compu-140
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tationally demanding and difficult. Therefore, an efficient iterative algorithm is devel-

oped to locate the optimal solutions to the proposed feature selection problem. The

experiments verify the effectiveness of the proposed feature selection approach.

The rest of this paper is organized as follows. In Section 2, we briefly describe

the related works. In Section 3, we introduce some important concepts used in the145

proposed method and present the proposed feature selection method. In Section 4, we

exploit an iterative optimization algorithm for solving the proposed model and provide

some theoretical analysis on its convergence and computational complexity. In Sec-

tion 5, we report the experimental results. Finally, In Section 6, we summarize the

present study and draw some conclusions.150

2. Related Work

Feature selection methods have been extensively investigated in statistical pat-

tern recognition, data mining and machine learning and there have been a number of

attempts to review the feature selection methods. For instance, Vergara et al. [15]

presents a review of mutual information based feature selection methods. In addition,155

a comprehensive survey of feature selection algorithms including filter, wrapper, and

embedded methods can be found in [3]. In the following, we briefly review state-of-

the-art graph-based feature selection methods and regularization-based feature selec-

tion methods, which are most relevant to the proposed approach.

2.1. Feature Selection Methods Based on Graphs160

Recently, the graph-based approaches, such as semi-supervised learning [16], com-

plex networks [17], and deep learning methods [18], have played a significant role in

machine learning due to their capability of encoding the similarity relationships among

data. In feature selection, there are mainly two ways of using graphs to model features.

The first category represents the feature space as a graph-based representation, and the165

underlying manifold structure and the relationships between feature vectors can be re-

flected by a universal and flexible framework. The best known methods are the Fisher

score [19] and Laplacian score [20], both of which belong to the graph-based feature
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selection framework. Many effective graph-based feature selection methods have been

proposed within this framework. For instance, Mandal and Mukhopadhyay [21] de-170

veloped a graph-theoretic approach for selecting non-redundant features without using

the class labels of data. In this method, the entire feature space was first converted

into a weighted undirected complete graph where the nodes represent the features and

the edge weights represent the dissimilarities between the features. Moradi and Rosta-

mi [22] proposed a novel graph-theoretic approach for unsupervised feature selection,175

in which the entire feature set is represented as a weighted graph and these features are

further divided into several clusters using a community detection algorithm. Finally, a

new iterative search strategy is developed to locate the informative features. However,

these methods cannot incorporate the high-order correlation of features into the feature

selection process, thus leading to suboptimal solutions.180

Zhang and Hancock [23] proposed a hypergraph based information theoretic fea-

ture selection approach that overcomes this shortcoming. In their approach, the feature

space is characterized as a hypergraph with each node representing a feature and each

edge weight corresponding to the multidimensional interaction relationship between

the features connected by the edge. This is followed by a hypergraph clustering al-185

gorithm which is applied to the hypergraph to identify the most discriminative feature

subset. Although much improvement has been achieved, these methods are all based

on representing the feature space as a graph, i.e., utilizing the graph-based structure to

model the relationship between feature vectors. The structural relationship of a pair of

samples in each feature dimension, which encapsulates useful structural information190

for refining the performance of feature selection, is neglected.

This oversight has lead to some significant advances in the modelling of features

as graphs. For instance, in [24], a novel feature selection approach using graph-based

features is developed, where each vectorial feature is transformed into a graph-based

feature which incorporates the relationship between a pair of samples. More specifi-195

cally, each vertex denotes a sample, and each edge between two vertices represent the

correlation between a pair of samples in the corresponding feature dimension. Then,

the most salient vectorial features can be selected by evaluating the graph-based fea-

tures that are most relevant to the target feature graph, through the Jensen-Shannon
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Figure 3: Differences between feature selection methods based on graphs

divergence between the graphs. However, this approach cannot locate the most dis-200

criminative features adaptively, therefore, to overcome this drawback, in [25], a novel

information theoretic feature selection approach which can encapsulate the correlation

between pairwise samples in each feature dimension is developed. This method can

automatically identify the subset containing the most discriminative and less redundant

features by solving a quadratic programming problem. These works are quite differ-205

ent from those works which use one graph to represent the entire feature space. The

differences of these graph-based feature selection methods are illustrated in Figure 3.

2.2. Regularization-based Feature Selection Methods

In the literature, many effective regularization-based feature selection methods, in

particular, the Lasso-type methods such as Lasso, Elastic Net, Group Lasso, etc., have210

been proposed. Table 1 presents the mathematical formulations of the existing Lasso-

type feature selection methods. The methods in the table are described as follows.

Suppose we have a set of training data {(xi, yi), i = 1, ..., n} with n observations

(samples) and p dimensional features, which is used to estimate the regression coeffi-

cients β. Each xi = (xi
1, x

i
2, ..., x

i
p)

T ∈ Rp×1 is a vector of predictors and yi ∈ R

is its corresponding response for the i-th sample. We represent the data using the ma-

trix form X = [x1,x2, · · ·,xn] ∈ ℜp×n and also represent the response vector as

9



Table 1: Formulation of existing Lasso-type feature selection methods

Method Mathematical Formulation

Lasso β∗ = argminβ ‖yT − βtX‖2
2 + λ‖β‖1

Elastic Net β∗ = argminβ ‖yT − βtX‖2
2 + λ1‖β‖1 + λ2‖β‖

2
2

Fused lasso β∗ = argminβ ‖yT − βtX‖2
2 + λ1‖β‖1 + λ2

∑p
i=2 ‖βi − βi−1‖

Group Lasso β∗ = argminβ ‖yT − βtX‖2
2 + λ1

∑G
g=1 ‖βIG

‖2
2

ccLasso β∗ = argminβ ‖yT − βtX‖2
2 + λ

∑p
j=1 µj‖βj‖, µj = (1 − |ρ(y, aj)|)

2

unLasso β∗ = argminβ ‖yT − βtX‖2
2 + λ1‖β‖1 + λ2β

TCβ

InLasso β∗ = argminβ ‖yT − βtX‖2
2 + λ1‖β‖1 − λ2β

TSβ

InElasticnet β∗ = argminβ
1
2‖y

T − βTX‖2
2 + λ1‖β‖1 + λ2‖β‖

2
2 − λ3β

TWβ

y = (y1, y2, ..., yn)
T ∈ ℜn. With this representation to hand, the linear regression

model, for instance, can be written as

min
β∈ℜp

n∑

i=1

‖yi −

p∑

j=1

βjx
i
j‖

2
2 = min

β∈ℜp
‖yT − βtX‖22

s.t.

n∑

i=1

‖β‖0 = k, (1)

where y ∈ ℜn×1 represents the label vector, X ∈ ℜp×n denotes the training dataset,

k denotes a predetermined number of the selected features. To estimate the regression

coefficients β and fit the above linear regression model, the ordinary least square (OLS)

approach is used. OLS selects the coefficients β = (β1, ...,βp)
T by minimizing the

residual sum of squares shown in Eq.(1). However, the minimisation of Eq.(1) is an NP-

hard optimization problem which is difficult to be solved exactly. Therefore, we can

relax the constraint equation in problem Eq.(1) by imposing a positive regularization

parameter λ and adding it to the objective function, that is

min
β∈ℜp

‖yT − βtX‖22 + λ‖β‖0. (2)

However, solving Eq.(2) is still very challenging. Hence, an alternative formulation

using l1-norm regularization instead of the l0-norm has been proposed for practical

purposes. This corresponds to the regularized counterpart of the Lasso problem in215

statistical learning [26]. Lasso imposes an l1 constraint on the regression weights, such

that some regression weights in the regression model will shrink to zero. Therefore, it

automatically chooses a set of the discriminative variables. The sparsity is controlled

by the tuning parameter λ ≥ 0. As λ becomes larger, the larger the number of zero

10



elements in the vector β, i.e., the features are selected more sparsely.220

However, Lasso is based on the independence assumption on the input variables,

though for a great variety of real world applications features are often correlated.

Hence, when highly correlated features exist, Lasso tends to choose only one of these

features, leading to suboptimal performance. To overcome this drawback, the Elastic

Net [27] uses an additional l2 regularization term into the Lasso objective function for225

selecting groups of correlated features. Thus the Elastic Net can be seen as a linear

combination of the Lasso and Ridge penalty. It thus enjoys a similar sparsity of repre-

sentation with Lasso and also promotes a grouping effect on the selected features. This

leads to a more appropriate feature selection and predictive performance.

Given feature grouping information, the Group Lasso [28] attempts to conduct fea-230

ture selection on groups of variables. It performs Lasso at an inter-group level, where

features from different groups compete to survive, and an entire group of predictors

may be dropped out of the model simultaneously. For a group of features with high

pairwise correlations, the Lasso tends to choose only one feature from the group and is

not sensitive to the features selected. In contrast, the Group Lasso determines whether235

this group of features is discriminative. Nonetheless, the Group Lasso model requires

a non-overlapping group structure, which restricts its practical applicability [10].

When there is some ordering relationship among the coefficients and all the coeffi-

cients are closely related to their neighbors, Fused Lasso [13] enforces sparsity in both

the coefficients and their successive differences. It thus yields a solution with sparsity240

in both the coefficients and their successive differences. Fused Lasso is especially use-

ful when the number of features p is much greater than the sample size n. However,

comparing to the alternative models, Fused Lasso is more difficult to solve due to the

nonseparability and nonsmoothness of the regularization term in the objective function.

The above review indicates that traditional sparse learning feature selection meth-245

ods are based on the assumption that there is conditional independence among the vari-

ables, and they aim to perform regression individually for each response vector. There-

fore, they fail to incorporate correlation between the variables and response as well

as the variable correlation into the feature selection process. Recently, some methods

have been proposed to overcome this drawback. For example, Chen et al. [29] devel-250
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oped an uncorrelated Lasso (unLasso) to perform variable de-correlation and feature

selection simultaneously, such that the features selected are uncorrelated as much as

possible, leading to less redundancy. Moreover, Jiang et al. [30] developed a covariate-

correlated Lasso (ccLasso) which identifies the covariates that correlates more strongly

with the target. As a result, the features selected are highly relevant to the target, result-255

ing in high relevance. Furthermore, to incorporate high-order feature interactions into

a Lasso regression model, Zhang et al. [10] developed a high-order covariate interacted

lasso (InLasso) feature selection method. By conducting a feature hypergraph to mod-

el the high-order interactions among features and utilizing the feature hypergraph as a

regularizer on the feature weights, InLasso automatically determines whether a feature260

is redundant or interactive depending on a neighborhood dependency criterion.

Although the above methods have improved the performance of feature selection

to some extent, the selected features may not be optimal. This is because none of the

above works can incorporate the structural relationship of pairwise samples in each

feature dimension into the feature selection process. Intuitively, such structural infor-265

mation is one type of prior information that can benefit the feature selection problem.

To resolve this problem, Cui et al. [11] have developed a novel graph-based feature

selection method. They commence by transforming each vectorial feature into a graph-

based representation which incorporates structural relationship between a pair of sam-

ples. A new structural interaction measure is developed to quantify the joint relevancy270

of different pairwise feature combinations in relation to target graph features. Then a

new optimization model associated with a least square error, an elastic net regularizer,

and the proposed interaction measure is formulated to select the discriminative fea-

ture subsets. Although efficient, the proposed method has the following issues. First,

it adopts the Euclidean distance as the measure to construct both the feature graph275

Gi(Vi, Ei) and the target feature graph Ĝi(V̂i, Êi) to compute the relationship be-

tween a pair of feature samples. However, the characteristics of these graph structures

may be overemphasized and dominated by the large distance value. In addition, for a

pair of features which are highly similar and are both relevant to the target, [11] might

ignore this pair of features due to the high redundancy between them.280

In this paper, we propose a new feature selection method to overcome these issues.
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We commence by introducing some important preliminary concepts as below.

3. Preliminary Concepts

In this section, we first illustrate the construction of the feature graph which incor-

porates structural information of pairwise feature samples. We then review the prelim-285

inaries of Jensen-Shannon divergence for multiple probability distributions, which is

utilized to compute the similarity between feature graph structures.

3.1. Kernel-based Feature Graph Modelling

In this subsection, we illustrate how to convert the original vectorial features into

structure-based feature graphs, in terms of a kernel-based similarity measure. The290

reason of representing each original feature as a graph structure is that graph-based

representation can capture richer global topological information than vectors. Thus,

the pairwise sample relationships of each original feature vector can be incorporated

into the selection of the most discriminative features to reduce information loss.

Let X = {f1, . . . , fi, . . . , fN} ∈ RM×N be a dataset of N features and M samples.295

We transform each original vectorial feature fi = (fi1, . . . , fia, . . . , fib, . . . , fiM )T in-

to a feature graph structure Gi(Vi, Ei), where each vertex via ∈ Vi represents the a-th

sample fia and each weighted edge (via, vib) ∈ Ei represents the relationship between

the a-th and b-th samples. Moreover, we also need to construct a graph structure for the

target feature Y. For classification problems, Y are the class labels and usually take the300

discrete class values c ∈ {1, 2, . . . , C}. For such case, we first compute the continuous

value based target feature for each feature fi as f̂i = (f̂i1, . . . , f̂ia, . . . , f̂ib, . . . , f̂iM )T ,

where each element f̂ia corresponds to the a-th sample. When the element fia of fi

belongs to the c-th class, the value of f̂ia is the mean value µia of all samples in fi from

the same class c. Similar to the process of converting each original feature fi into the305

feature graph, we construct the resulting target feature graph representation for each

feature fi associated with its continuous value based target feature f̂i as Ĝi(V̂i, Êi),

where each vertex v̂ia represents the a-th sample of f̂i (i.e., the a-th sample of Y in

terms of f̂i), and (via, vib) ∈ Ei represents the relationship between the a-th and b-th

13



samples of fi (i.e., the structural relationship between the a-th and b-th samples of Y310

in terms of f̂i). To compute the relationship between pairwise samples, [11] employed

the Euclidean distance as the measure to construct both the feature graph Gi(Vi, Ei)

and the target feature graph Ĝi(V̂i, Êi). However, the characteristics of these graph

structures may be overemphasized and dominated by the large distance value.

To overcome the aforementioned problem, we further propose a new kernel-based

similarity measure associated with the original Euclidean distance to construct the (tar-

get) feature graph structures. Specifically, for the feature graph Gi(Vi, Ei) of fi and its

associated Euclidean distance based adjacency matrix A, each row (column) of A can

be seen as the distance based embedding vector for each sample of fi. Assume Aa,:

and Ab,: denote the embedding vectors of the a-th and b-th samples respectively. The

relationship between these two samples can be computed as their normalized kernel

value associated with dot product

Ka,b =
〈Aa,:, Ab,:〉√

〈Aa,:, Aa,:〉〈Ab,:, Ab,:〉
, (3)

where 〈·, ·〉 is the dot product. We utilize the kernel matrix to replace the original Eu-315

clidean distance matrix as the adjacency matrix of Gi(Vi, Ei), and the relationships

between the samples of fi are all bounded between 0 and 1. For the target feature

graph Ĝi(V̂i, Êi), we also compute its adjacency matrix using the same procedure. The

kernel-based similarity measure not only overcomes the shortcoming of graph charac-

teristics domination by the large Euclidean distance value between pairwise feature320

samples, but also encapsulates high-order relationship between feature samples. This

is because the kernel-based relationship between each pair of samples associated with

their distance based embedding vector encapsulates the distance information between

each feature sample and the remaining feature samples. Finally, the kernel-based rela-

tionship can also represent the original vectorial features in a high-dimensional Hilbert325

space, and thus reflect richer structural characteristics.

3.2. The JSD for Multiple Probability Distributions

In Statistics and Information Theory, an extensively used measure of dissimilarity

between probability distributions is the Jensen Shannon divergence (JSD) [31]. JSD
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has been successful in a wide range of applications, including analysis of symbolic

sequences and segmentation of digital images. In [32], the JSD has been adopted

to measure similarity between graphs associated with their probability distributions.

Moreover, [11] have utilized the JSD to compute the similarity between an individual

feature graph in relation to its target feature graph. Unlike the previous works that

focus on the JSD measure between pairwise graph structures, our major concern is

the similarity between multiple graphs. Specifically, the JSD measure can be used to

compare n (n ≥ 2) probability distributions,

DJS(P1, · · · ,Pn) = HS

( n∑

i=1

πiPi

)
−

n∑

i=1

πiHS(Pi) (4)

where πi ≥ 0 is the corresponding weight for the probability distribution Pi and
∑n

i=1 πi = 1. In addition, HS denotes the Shannon entropy of a probability distri-

bution. In this work, we set each πi =
1
n

. Since we aim to calculate the joint relevancy

between features in terms of similarity measures between graph-based feature repre-

sentations, we utilize the negative exponential of DJS to calculate the similarity IS

between the multiple n (n ≥ 2) probability distributions, i.e.,

IS(P1, · · · ,Pn) = exp{−DJS(P1, · · · ,Pn)}. (5)

4. The Proposed Fused Lasso Feature Selection Using Structural Information

In this section, we introduce the proposed approach. We commence by defining

a new structural interaction measure to compute the joint relevancy between features.330

Moreover, we present the mathematical formulation for the feature subset selection

problem and exploits an iterative optimization algorithm to solve it.

4.1. The Proposed Structural Interaction Measure

We propose the following structural interaction measure for evaluating the joint

relevancy of different pairwise feature combinations in relation to the target features.

For the set of N features f1, . . . , fi, . . . , fj, . . . , fN defined earlier and the associated

discrete target feature Y taking the discrete values c ∈ {1, 2, . . . , C}, we calculate the
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joint relevance degree of the feature pair {fi, fj} in relation to the target feature Y as

Ufi,fj =
IS(Gi,Gj; Ĝi) + IS(Gi,Gj; Ĝj)

IS(Gi,Gj)
(6)

where Gi is the feature graph of each original feature fi, Ĝi is the target feature

graph of Y in terms of fi. IS(Gi,Gj) and IS(Gi,Gj; Ĝi) are the JSD-based in-335

formation theoretic similarity measures calculated by Eq.(5) for n = 2 and n = 3,

respectively. The above interaction measure is composed of two terms. The first term

IS(Gi,Gj; Ĝi) + IS(Gi,Gj; Ĝj) measures the relevancy of pairwise features fi and

fj in relation to the target feature Y. The second part IS(Gi,Gj) evaluates the redun-

dancy between the feature pair {fi, fj}. As a result, the proposed structural interaction340

measure Ufi,fj is large if and only if IS(Gi,Gj; Ĝi) + IS(Gi,Gj; Ĝj) is large and

IS(Gi,Gj) is small. This indicates that the pairwise features (fi, fj) are informative

and less redundant.

Although the proposed structural interaction measure as well as that proposed by

[11] are both related to the JSD measure, the proposed measure differs from [11] in345

that our method focuses on the JSD measure between multiple probability distribu-

tions rather than only two probability distributions to compute the feature relevance.

Therefore, the proposed structural interaction measure can compute the joint relevancy

of a pair of feature combinations in relation to the target. By contrast, the measure pro-

posed by [11] is based upon the relevance degree of each individual feature in relation350

to the target feature graph, which may result in the selection of less relevant features.

Moreover, based upon the graph-based feature representations, we obtain a struc-

tural information matrix U, where each entry Ui,j ∈ U corresponds to the structural

interaction measure between a pair of features {fi, fj} based on Eq.(6). Given the struc-

tural information matrix U and the N -dimensional feature coefficient vector β, where

βi corresponds to the coefficient of the i-th feature, one can locate the most discrimi-

native feature subset by solving the optimization problem below

max f(β) = max
β∈ℜN

βTUβ, (7)

where β ≥ 0.
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4.2. Mathematical Formulation

Our feature selection approach aims to capture structural information between pair-

wise features and encourage the selected features to be jointly more relevant with the

target while maintaining little redundancy. In addition, it should simultaneously pro-

mote a sparse solution both in the coefficients and their successive differences. There-

fore, we unify the minimization problem of Fused Lasso and Eq.(7) and propose the

fused lasso for feature selection using structural information(InFusedLasso), which is

mathematically formulated as

min
β∈ℜN

1

2
‖y −Xβ‖22 + λ1‖β‖1 + λ2‖Cβ‖1 − λ3β

T Uβ, (8)

where y ∈ ℜn×1 represents the label vector, X ∈ ℜp×n denotes the training dataset,

λ1 and λ2 are the tuning parameters for the Fused Lasso model, and λ3 is the corre-355

sponding tuning parameter of the structural interaction matrix U. The first term in the

above objective function is the ordinary least square error term which utilizes informa-

tion from the original feature space. The second regularization term with parameter λ1

encourages the sparsity of β as in Lasso and the third regularization term with parame-

ter λ2 shrinks the differences between successive features specified in matrix C toward360

zero. Same as in standard Fused Lasso [33], C is a (N − 1) × N matrix with zero

entries everywhere except 1 in the diagonal and −1 in the superdiagonal. Moreover,

the fourth term encourages the selected features to be jointly more relevant with the

target while maintaining less redundancy among them. To solve the proposed model

(8), it is of great necessity to develop an efficient and effective algorithm to locate the365

optimal solutions, i.e., β∗. A feature fi belongs to the optimal feature subset if and only

if β∗
i > 0. Accordingly, the number of optimal features can be recovered based on the

number of positive components of β∗.

4.3. Optimization Algorithm

To effectively resolve model (8), we develop an optimization algorithm based upon

the split Bregman iteration approach [33]. We commence by reformulating the uncon-
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strained problem (8) into an equivalent constrained problem shown below

min
β∈ℜN

1

2
‖y −Xβ‖22 + λ1‖p‖1 + λ2‖q‖1 − λ3β

T Uβ

s.t. p = β,

q = Cβ. (9)

To solve the problem, we derive the split Bregman method for the proposed optimiza-370

tion model (9) using the augmented Lagrangian method [34]. To be specific, the corre-

sponding Lagrangian function of (9) is

L̃(β, p, q, u, v) =
1

2
‖y −Xβ‖22 − λ3β

T Uβ + λ1‖p‖1

+λ2‖q‖1 + 〈u,β − p〉+ 〈v,Cβ − q〉, (10)

where u ∈ ℜN and v ∈ ℜN−1 are the dual variables corresponding to the linear

constraints p = β and q = Cβ, respectively. Here 〈·, ·〉 denotes the standard inner

product in the Euclidean space. By adding two terms µ1

2 ‖β − p‖22 and µ2

2 ‖Cβ − q‖22375

to penalize the violation of linear constraints p = β and q = Cβ, one can obtain the

augmented Lagrangian function of (10), that is,

L(β, p, q, u, v) =
1

2
‖y −Xβ‖22 − λ3β

T Uβ + λ1‖p‖1

+λ2‖q‖1 + 〈u,β − p〉+ 〈v,Cβ − q〉

+
µ1

2
‖β − p‖22 +

µ2

2
‖Cβ − q‖22, (11)

where µ1 > 0 and µ2 > 0 are the corresponding parameters. To find a saddle point

denoted as (β∗, p∗, q∗, u∗, v∗) for the augmented Lagrangian function Ł(β, p, q, u, v),

the following inequalities hold

L(β∗, p∗, q∗, u, v) ≤ L(β∗, p∗, q∗, u∗, v∗) ≤ L(β, p, q, u∗, v∗), (12)

for all β, p, q, u and v. It is clear that β∗ is an optimal solution to (8) if and only if

β∗, p∗, q∗, u∗, v∗ solves this saddle point problem for some p∗,q∗,u∗,and v∗ [35].
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We solve the above saddle point problem using an iterative algorithm by alternating

between the primal and the dual optimization shown below





Primal:(βk+1, pk+1, qk+1) = argmin
β,p,q

L(β, p, q, u∗, v∗)

Dual:uk+1 = uk + δ1(β
k+1 − pk+1)

vk+1 = vk + δ2(Cβk+1 − qk+1),

where the first step updates the primal variables based upon the current estimation of

uk and vk, followed by the second step which updates the dual variables based upon the

current estimates of the primal variables. Because the augmented Lagrangian function

is linear in both u and v, updating the dual variables is comparatively simple and we

adopt a gradient ascent method with step size δ1 and δ2. Therefore, the efficiency of

the above optimization algorithm depends upon whether the primal problem can be

resolved quickly. To facilitate better illustration, denote

V (β) =
1

2
‖y −Xβ‖22 − λ3β

T Uβ + 〈uk,β − pk〉+ 〈vk,Cβ − qk〉

+
µ1

2
‖β − pk‖22 +

µ2

2
‖Cβ − qk‖22. (13)

Because the objective function on minimizing β, i.e.,V (β) is differentiable, we can

resolve the primal problem by alternatively minimizing β, p, and q as follows,





βk+1 = argmin
β

V (βk)

pk+1 = argmin
p

λ1‖p‖1 + 〈uk,βk+1 − p〉+
µ1‖β

k+1−p‖2
2

2

qk+1 = argmin
q

λ2‖q‖1 + 〈vk,Cβk+1 − q〉+
µ2‖Cβk+1−q‖2

2

2 .

(14)

Furthermore, since the objective function V (β) on minimizing β is quadratic and

differentiable, we can obtain the optimal solution of β by setting
∂(V (β))

∂β
= 0, that is,

XTXβ − 2λ3Uβ + µ1Iβ + µ2CT Cβ −XT y − µ1p
k

+µ1µ
−1
1 uk − µ2CT qk + µ2CTµ−1

2 vk = 0, (15)

i.e.,the optimal solution are obtained by solving a set of linear equations as follows

Dβk+1 = XT y + µ1(p
k − µ−1

1 uk) + µ2CT (qk − µ−1
2 vk). (16)
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Because matrix D = XTX − 2λ3U + µ1I + µ2CT C is an N × N matrix, which is380

independent of the optimization variables. For small N , we can invert D and store D−1

in the memory, such that the linear equations are resolved with minimum cost. That

is, βk+1 = D−1(XT y + µ1(p
k − µ−1

1 uk) + µ2CT (qk − µ−1
2 vk)). However, for large

N , we need to numerically solve the linear equations at each iteration by means of the

conjugate gradient algorithm.385

In addition, the objective functions of the minimization of p and q are quadratic and

nondifferentiable terms according to Eq.(14), which are completely separable, there-

fore we adopt the soft thresholding approach to find the optimal solutions for p and

q. Specifically, let tλ be a soft thresholding operator defined on vector space which

satisfies Γλ(ω) = [tλ(ω1, tλ(ω1, ..., ...]
T , with tλ(ωi) = sgn(ωi)max{0, |ωi|− λ}.390

Using the soft thresholding operator, the optimal solution of p and q in Eq.(12) can

be respectively calculated as

pk+1 = Γµ
−1
1 λ1

(βk+1 + µ−1
1 uk), (17)

and

qk+1 = Γµ
−1
2 λ2

(Cβk+1 + µ−1
2 vk). (18)

Moreover, according to Eq.(13), the optimal solution of u and v can be respectively

updated as

uk+1 = uk + δ1(β
k+1 − pk+1), (19)

and

vk+1 = vk + δ2(Cβk+1 − qk+1). (20)

Overall, we develop Algorithm 1 for locating optimal solutions to the proposed

feature selection problem.

4.4. Computational Complexity

Suppose N is the number of features, M is the number of samples, and K is the

required number of iterations to converge at optima. For each iteration, the computa-395

tional complexity for updating β according to Eq.(16) is O(N2M). Additionally, the

computational costs for updating p in Eq.(17) and q in Eq.(18) are both O(N). More-

over, the computational costs for updating u in Eq.(19) and v in Eq.(20) are both O(N).
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Algorithm 1 The iterative optimization algorithm for the feature selection problem

Input: X,y,β0, p0, q0, u0 and v0.

Output: β∗

1: while not converged do

2: Update βk+1 according to the solution to Eq.(16).

3: Update pk+1 using Eq.(17).

4: Update qk+1 using Eq.(18).

5: Update uk+1 using Eq.(19).

6: Update vk+1 using Eq.(20).

7: end while

8: return solution

Therefore, the overall time complexity of the proposed iterative algorithm is calculated

as max{O(N2MK), O(NK)}.400

4.5. Convergence Proof

In this subsection, we present the convergence property of Algorithm 1.

Theorem 1. Assume there exists at least one solution denoted as β∗ of the op-

timization problem (8). Suppose V (β) is convex, 0 < δ ≤ µ1, 0 < δ2 ≤ µ2,

and λ1 > 0, λ2 > 0, λ3 > 0. To facilitate the presentation, assume J(β) =

1
2‖y − Xβ‖22 − λ3β

T Uβ. Then the following property for the split Bregman itera-

tion shown in Algorithm 1 holds, i.e.,

lim
k→∞

J(β) + λ1‖β
k‖1 + λ2‖Lβ

k‖1 = J(β∗) + λ1‖β
∗‖1 + λ2‖Lβ

∗‖1. (21)

Moreover,

lim
k→∞

‖βk − β∗‖ = 0, (22)

whenever problem (8) has a unique solution. Note that the condition for the conver-

gence in Theorem 1 is quite easy to satisfy. This is because the regularization param-

eters λ1 and λ2 should always be greater than zero. Therefore, as long as 0 < δ1 ≤ µ1405

and 0 < δ2 ≤ µ2, the algorithm converges. In our implementation, we just choose
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Table 2: Statistics of experimental datasets

Dataset USPS Pie YaleB Lymphoma Leukemia RELATHE BASEHOCK Isolet1

#Feature 256 1024 1024 4026 7129 4322 4862 617

#Sample 9298 11554 2414 96 73 1427 1993 1560

#Class 10 68 38 9 22 2 2 26

Type Image Image Image Biomedical Biomedical Text Text Speech

δ1 = µ1 and δ2 = µ2. We will provide the convergence proof for Theorem 1 in

Appendix, which follows similar ideas from [36].

5. Experiments

In this section, we conduct several experiments on standard machine learning dataset-410

s to verify the performance of the proposed Fused Lasso feature selection method, i.e.,

InFusedLasso(K), where K denotes the kernel-based feature modelling approach. The

purposes of the experiments are to: 1) compare the proposed algorithms with several

benchmark feature selection methods to demonstrate the performance of our method;

2) compare the results obtained with and without the kernel-based feature modelling415

approach to show its effectiveness, especially for the data sets associated with features

re-ordered according to their individual feature relevance to the target; 3) conduct con-

vergence analysis of the proposed method; and 4) conduct a parameter study in order

to choose the optimal parameter settings for the experiments.

More specifically, we use eight standard machine learning datasets abstracted from420

Biomedical, Speech, Text and Computer Vision databases. The numbers of features

vary from 256 to 7129 with a mean of 2908. The dimensionality of half of these

datasets exceed 4,000. In addition, the numbers of samples vary from 73 to 11,554. A-

mong them, RELATHE and BASEHOCK are both large in feature dimension and sam-

ple size, whereas Lymphoma and Leukemia are typical datasets with high-dimensional425

features and small sample size. Details of these datasets are presented in Table 2.

5.1. Experimental Settings

To evaluate the performance of our proposed InFusedLasso(K) method and com-

pare it with state-of-the-art feature selection methods in a fair and reasonable way,
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we set up our experiments as follows. The proposed method is compared with sever-430

al existing state-of-the-art Lasso-type feature selection methods and one graph-based

feature selection method, i.e., InElasticNet [11]. The Lasso-type methods used for

comparisons include Lasso [26], Fused Lasso [13], Group Lasso [28], ULasso [29],

InLasso [10], and ccLasso [30].

i) Lasso performs feature selection through the l1-norm, where features correspond-435

ing to zero coefficients in the parameter vector will be discarded.

ii) ULasso aims to conduct variable de-correlation and variable selection simulta-

neously, such that the variables selected are uncorrelated as much as possible.

iii) Fused Lasso encourages sparsity in both the coefficients and their successive

differences, which is useful for applications with features ranked in meaningful ways.440

iv) Group Lasso can enforce sparsity on features at an inter-group level, where

features from different groups compete with each other and will be in and out of the

model as a group.

v) Elastic Net linearly combines the l1 and l2 regularization terms of the Lasso and

Ridge approaches. It ensures democracy among groups of correlated groups and allows445

selection of the relevant groups while promoting sparse solutions.

vi) InLasso encapsulates high-order feature interactions, which effectively evalu-

ates whether a feature is redundant or interactive based on a neighborhood dependency

criterion. It avoids deleting useful features arising in individual feature combinations.

vii) ccLasso applies prior knowledge of variable-response correlation into the Las-450

so regularized feature selection method, so that the features chosen can be strongly

correlated with the response.

viii) InElasticNet is a graph-based feature selection method which incorporates

pairwise relationship between samples of each feature dimension.

In order to make the best use of the data and obtain stable results, a 10 × 10-fold455

cross-validation strategy is used. Specifically, for each dataset, each feature selection

algorithm associated with a C-SVM classifier based on the Linear kernel, the 10-fold

cross-validation approach is repeated 10 times. For the 10-fold cross-validation ap-

proach, we use nine folders for training and one folder for testing. In the experiments,

we vary the number of selected features from zero to the total number of features of460
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Table 3: The best results of all methods and the corresponding number of selected features.

Datasets Lasso ULasso FusedLasso GroupLasso InLasso InFusedLasso(D) InFusedLasso(K)

USPS 86.30(50) 83.25(50) 87.40(50) 83.93(50) 93.94(50) 92.50(50) 94.16(50)

Pie 94.48(70) 94.57(70) 86.94(70) 92.35(160) 96.58(70) 96.00(70) 96.90(70)

YaleB 46.64(50) 47.43(50) 48.09(50) 45.02(50) 71.20(50) 95.24(50) 96.37(50)

Lymphoma 91.11(100) 94.44(160) 90.00(120) 91.11(200) 96.00(140) 96.00(140) 96.55(120)

Leukemia 82.86(200) 82.86(200) 94.29(140) 91.43(180) 100.00(80) 100.00(80) 100.00(100)

RELATHE 86.00(200) 85.49(200) 85.62(200) 74.33(200) 80.70(180) 86.83(180) 86.59(200)

BASEHOCK 67.22(140) 67.33(200) 84.62(200) 73.33(200) 86.58(180) 93.87(180) 94.51(200)

Isolet1 91.67(100) 92.18(100) 88.08(90) 83.53(100) 91.92(100) 91.92(100) 93.26(100)

Table 4: InFusedLasso versus InElasticNet.

Datasets InElasticNet InFusedLasso(D) InFusedLasso(K)

USPS 94.10(50) 92.50(50) 94.16(50)

Pie 96.81(70) 96.00(70) 96.90(70)

YaleB 94.62(50) 95.24(50) 96.37(50)

Lymphoma 95.56(160) 96.00(140) 96.55(120)

Leukemia 100.00(80) 100.00(80) 100.00(100)

RELATHE 83.66(180) 86.83(200) 86.59(200)

BASEHOCK 92.75(200) 93.87(200) 94.51(200)

Isolet1 92.23(100) 91.92(100) 93.26(100)

the dataset, with a fixed interval, e.g., 5, 10, 20, etc., to investigate the changes in the

classification accuracy associated with different number of features [10, 37]. And the

performance of various feature selection methods is evaluated in terms of the mean

classification accuracies versus different number of selected features.

5.2. Comparison of Classification Accuracy with Standard Feature Selection Methods465

The classification performance obtained via the comparative methods are shown

in Figure 4. In addition, the best mean classification accuracies of different methods

associated with the number of selected features are reported in Table 3.

Figure 4 exhibits the classification accuracies of different algorithms obtained with

different number of selected features. From this figure, it can be noticed that when470

the number of selected features reaches a certain number, the proposed approach can

outperform the alternative methods on all the eight datasets, which demonstrates the

advantage of the proposed InFusedLasso method. Moreover, Table 3 confirms that

the proposed approach can achieve the best classification performance on all the eight

datasets. Additionally, the proposed InFusedLasso (K) method can achieve on average475

2.96% to 37.54% improvement for all the six baseline methods including Lasso, ULas-

24



Table 5: InFusedLasso on representative datasets before and after feature pre-ordering.

Dataset YaleB Lymphoma Leukemia Isolet1

Unordered 94.48(50) 95.55(160) 98.57(200) 93.01(100)

Ordered 96.37(50) 96.55(120) 100.00(100) 93.26(100)

Table 6: InFusedLasso on representative datasets with high and low order interacted information.

Dataset YaleB Lymphoma Leukemia Isolet1

InFusedLasso (L) 94.94(50) 95.55(180) 98.57(40) 91.32(100)

InFusedLasso (K) 96.37(50) 96.55(120) 100.00(100) 93.26(100)

so, Fused Lasso, Group Lasso, InLasso, and InElastic Net. These experimental results

indicate that the proposed InFusedLasso method can better learn the characteristics and

interaction information residing on the features. This is because only the proposed ap-

proach can incorporate the structural information between feature samples through the480

structure-based feature graph representation.

5.3. Effects of the Kernel-based Modelling Method

To take our study one step further, we also compare the proposed framework as-

sociated with the distance-based graph features, denoted as InFusedLasso(D), that has

been adopted by the previous Interacted ElasticNet method (InElaNet) [11]. Moreover,485

we also directly compare our proposed method to the Interacted ElasticNet method

(InElaNet) [11], since this method can also encapsulate the structure correlated infor-

mation. The results have been displayed in the Table 4. From this table, we can notice

that the proposed method can outperform the InFusedLasso(D) method on all dataset-

s. In addition, it is shown that the proposed InFusedLasso(K) method can outperform490

the InElaNet method on all of the datasets. The reason is that the required feature

graph structures of the InFusedLasso(D) and InElaNet methods are computed based

on the Eucliden distance. As we have stated earlier, the distance with large value may

dominant the characteristics of the feature graph and influence the effectiveness. By

contrast, the proposed InFusedLasso(K) method employs a new kernel-based graph495

modeling procedure to establish feature graphs and proposes a new structural interac-

tion criterion to evaluate the joint relevancy of pairwise feature combinations in relation

to the discrete target. As a result, the proposed InFusedLasso(K) method overcomes

25



0 5 10 15 20 25 30 35 40 45 50

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

USPS

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(a) For USPS

0 10 20 30 40 50 60 70

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

Pie

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(b) For Pie

0 5 10 15 20 25 30 35 40 45 50

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

YaleB

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(c) For YaleB

0 20 40 60 80 100 120 140 160 180 200

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

lymphoma

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(d) For Lymphoma

0 20 40 60 80 100 120 140 160 180 200

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

Leukemia

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(e) For Leukemia

0 20 40 60 80 100 120 140 160 180 200

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

RELATHE

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(f) For RELATHE

0 20 40 60 80 100 120 140 160 180 200

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

BASEHOCK

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(g) For BASEHOCK

0 10 20 30 40 50 60 70 80 90 100

Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

Isolet1

Lasso

ULasso

FusedLasso

GroupLasso

InLasso

InFusedLasso

(h) For Isolet1

Figure 4: Accuracy versus the number of selected features.
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the shortcomings of the InFusedLasso(D) method and the InElaNet method. In addi-

tion, we observe that the InFusedLasso(D) method achieves better performance than500

InElaNet [11] on five out of the eight datasets, including YaleB, Lymphoma, Leukemi-

a, RELATHE, and BASEHOCK. This is because the InFusedLasso(D) method is based

on the Fused Lasso regularization terms, whereas the InElaNet method is based on the

Elastic Net regularization terms. Although both methods are based on distance-based

graph-features, the InFusedLasso(D) method can enhance the trade-off between rele-505

vancy of each individual feature and the redundancy of feature pairs, thus leading to

better performance than the InElaNet method.

Overall, the experimental results verify that the proposed approach can locate more

discriminative feature subsets than state-of-the-art feature selection approaches.

5.4. Exploiting the Ordering Relation510

To evaluate the capability of fused lasso regularization term, i.e., the third regular-

ization term in Eq.(8), on features with an ordering relation, we conduct experiments

on four representative datasets. Because there is no natural ordering relation among

the coefficients, we first calculate the individual relevance of each feature in relation to

the target feature graph using the JSD measure for two probability distributions, and515

then rank these features according to their individual relevance scores. We compare the

results obtained via the proposed method before and after this ranking procedure and

display the results in Table 5. It is clearly shown in Table 5 that the proposed method

achieves higher classification accuracies on all four datasets after ranking. This clearly

demonstrates the advantage of Fused Lasso for features with ordering relation, that is,520

by reordering the features according to their relevance to the target feature, Fused Las-

so can provide a better tradeoff between relevancy of each individual feature and the

redundancy of pairwise features.

5.5. Comparison of high and low order interaction measures

To evaluate the effects of the proposed kernel-based interaction measure, which is525

a high-order interaction measure, with the low-order interaction measure proposed in

[11], we compare the classification accuracy obtained via the proposed InFusedLasso

27



0 50 100 150 200 250 300 350 400 450 500

Iteration Number

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

USPS

(a) For USPS

0 50 100 150 200 250 300 350 400 450 500

Iteration Number

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

YaleB

(b) For YaleB

Figure 5: Convergence curve for the optimization algorithm.

(K) method with InFusedLasso (L). Both methods are associated with the fused lasso

regularization terms. The only difference is that the InFusedLasso (K) method utilizes

the proposed high-order interaction measure and InFusedLasso (L) utilizes the interac-530

tion measure proposed in [11]. The classification accuracies are displayed in Table 6.

It is clearly shown that the proposed kernel-based interaction measure has a positive

impact on the performance of the proposed method.

5.6. Convergence Evaluation

In this subsection, we experimentally evaluate the convergence properties of the535

proposed optimization algorithm. Because we can observe similar results on all the

datasets, we only display the convergence curves on two datasets, i.e., USPS and Yale-

B. Specifically, the variations of the objective function values at each iteration are re-

ported in Figure 5, which indicates that the proposed optimization algorithm converges

as the iteration number within about 150 iterations, which ensures the efficiency and540

effectiveness of the proposed feature selection approach.

5.7. Parameter Sensitivity

Our proposed feature selection method consists of three adjustable parameters, i.e.,

λ1, λ2, and λ3. Specifically, λ1 and λ2 are the tuning parameters for the Fused Lasso

model, where λ1 encourages the sparsity of β as in Lasso and λ2 shrinks the differ-545

ences between successive features specified in matrix C toward zero. Moreover, λ3 is

the corresponding tuning parameter of the structural interaction matrix U. Different

combinations of these three parameters might end with different classification results.
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Figure 6: Accuracies with different λ1 and λ2 when λ3 = 0.01, 0.1, 1.0, respectively on USPS, Lymphoma,

RELATHE and Isolet1 datasets.
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In order to explore which combination of these three parameter values result in the

best classification accuracy for a specific problem associated with the given classifier,550

we vary the value of λ3 in the range of 0.01, 0.1, 1.0 to investigate the benefits of the

proposed structural interaction matrix. With a fixed value of λ3, i.e., for λ3 = 0.01,

λ3 = 0.1, λ3 = 1.0, respectively, we vary the values of λ1 and λ2 in the range of

0.01, 0.1, 1.0, and show the influence of the fused lasso term. The results are shown

in Figure 6. More specifically, the first column of this figure corresponds to the results555

with different values for λ1 and λ2, with a fixed value of λ3 = 0.01. The second

column corresponds to the results with different values for λ1 and λ2, with a fixed

value of λ3 = 0.1. And the third column corresponds to the results with different

values for λ1 and λ2, with a fixed value of λ3 = 1.0. In addition, we choose the USPS,

Lymphoma, RELATHE, and Isolet1 datasets for the parameter sensitivity analysis. The560

reasons for choosing these four datasets are as follows. First, USPS is a typical Image

classification example with small number of features and large number of samples.

Second, Lymphoma and RELATHE are typical examples from the Text classification

and Biomedical classification tasks, and are both high in feature dimension and low

in sample size. Third, Isolet1 is another example from the Speech classification task565

associated with small number of features and large number of samples.

From Figure 6, we have the following observations.

I. Generally, for each of the four datasets, 1) different combinations of the three

parameters result in different classification accuracies; 2) there is a combination of the

three parameters where the corresponding classification accuracy achieves the best; and570

3) the values for the three parameters, in which the best classification accuracies are

obtained, are different for the different datasets.

II. When the value of λ3 is larger than both λ1 and λ2, the classification accuracies

for the datasets tend to be higher. This indicates the proposed interaction matrix, which

involves both feature redundancy and feature relevancy, has greater impact on the clas-575

sification results than both the sparsity term and the differences between successive

features. In addition, because the sparsity term and the differences between successive

features represent information from the original feature space, this observation also re-

veals that the structural information encapsulated by the interaction matrix, has greater
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impact than the information from the original feature space.580

III. With fixed values for λ3 and λ2, we can see that the larger the value for λ1, the

lower the classification accuracy is. This indicates that when choosing values for λ1,

we should keep its value lower than both λ3 and λ2.

6. Conclusions

In this paper, we have developed a new Fused Lasso model for feature selection.585

Unlike most state-of-the-art methods, our proposed approach incorporates structural

information between pairwise samples into the feature selection process, which is sig-

nificant for refining the performance of feature selection. More specifically, a new

kernel-based similarity measure associated with the original Euclidean distance is pro-

posed to construct the (target) feature graph structures. Furthermore, a new structural590

interaction measure associated with the feature graph representations is developed to

simultaneously maximize joint relevancy of different pairwise feature combinations in

relation to the target feature graphs and minimize redundancy among selected features.

We embed the proposed interaction measure into a least square minimization mod-

el together with a Fused Lasso regularizer, which can enhance the trade-off between595

relevancy of each individual feature and the redundancy of pairwise features. Due to

the nonseparability and nonsmoothness of the Fused Lasso regularization term in the

objective function, an effective iterative algorithm is exploited to solve the proposed

feature subset selection problem. Experiments demonstrate that the proposed feature

selection approach is effective.600

In future works, we may extend our approach associated with the quantum Jensen-

Shannon divergence instead of the classical divergence measure. Specifically, in our

previous works [38, 39], we have proposed a number of quantum Jensen-Shannon ker-

nels using quantum walks. Since the quantum walks can encapsulate more complicated

information of graph structures than the classical random walks used in this work. It605

would be interesting to extend the proposed feature selection method using the classi-

cal Jensen-Shannon divergence to that of using its quantum counterpart, resulting in a

new quantum-based feature selection method.
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