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Abstract

This paper proposed a novel approach to generate face caricatures automat-
ically from a single portrait image. We decompose the process of 3D face
caricatures generation into two independent subtasks: appearance transfer
of texture and the geometry transfer of mesh. For the appearance trans-
fer, we design a GAN-based network named CariFaceGAN to learn the style
mapping from portrait to caricature, in which facial features are leveraged
to preserve identity consistency. For geometry transfer, we first learn the
transformation of the landmarks between portraits and caricatures in an em-
bedded space obtained with Locally Linear Embedding method, and then
Kriging interpolation is used to manipulate the portrait mesh constructed
from a single image. The experimental results show that our proposed Cari-
FaceGAN outperforms the state-of-the-art methods in terms of maintaining
identity consistency and providing satisfactory visual effects.

Keywords: Style transfer, Generative Adversarial Networks, 3D face mesh,
Caricature

1. Introduction

Caricature is a kind of artistic work that describes a person with exag-
gerated characteristics to create a comic or grotesque effect. Since it can
highlight people’s personality, caricature is widely used in the entertainment
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industry, e.g. movies, television works, and games, etc. In recent years,
with the rapid development of the computer animation industry, there is
a high demand for 3D caricatures. Compared to 2D caricatures, 3D carica-
tures are more effective as they can produce images of variational appearance
by changing the camera pose, and generate images of richer expressions by
deforming the face mesh. Moreover, our proposed method is able to auto-
matically output 3D caricature faces from 2D portrait images, without the
need to build 3D face model manually.

In recent years, pioneer researchers start tackling the 3D caricature prob-
lem. The previous research [1, 2, 3] need heuristics to craft the face gener-
ation, such as manipulating the facial sketch or exaggerating specific parts.
Although they can effectively control the process of model generation, it re-
quires skilled operators and these operations are not user-friendly. Other
methods like [4, 5, 6, 7, 8] focus on automatic generation of 3D caricature
face, whereas the texture of the model is not considered or fixed using a
predefined one. Our proposed method uses a discriminative model with lo-
cal information (k nearest neighbor face keypoints) to generative caricature
model, and our model can easily control the degree of exaggeration. For
appearance transfer, there are some style transfer methods [9, 10, 11, 12, 13]
and cross-domain image transfer methods [14, 15, 16, 17, 18, 19, 20] based
on Generative Adversarial Networks (GAN) [21], which theoretically suits
the appearance transfer task. However, compared to other applications e.g.
landscapes, dogs, and cats, the effectiveness of these methods in transferring
portrait to caricature is not significant due to the complexity of facial de-
tails. Hence, a significant evolution is required to advance the state-of-the-art
methods for 3D face caricature. Based on the loss functions of MUNIT and
CariGANs, we add identity loss to ensure the identity consistency of deep
facial features, which can generate new face style but preserve the identity
information.

In addition, there exist other challenges in 3D face caricature. Firstly,
the ground truth of 3D caricature face is scarce as drawing 3D caricature
faces manually is time-consuming for 3D modelers. Secondly, different from
3D face reconstruction based on 3D Morphable Models (3DMM) [22], which
can be accomplished by refining the parameters of Basel Face Model (BFM)
[23] to match the input 2D portrait, 3D caricature face does not have any
parameterized morphable models since the styles of caricature are varied by
different artists.

Following [25, 8, 18], we decouples the task into two subtasks of appear-

2



Texture

CariFaceGAN .
Mapping

R-Net 3 3 Geometry S

Transfer

Figure 1: The System overview. We proposed a two-stage method to generate 3D cari-
cature from a single image. First, we train a network named CariFaceGAN to transform
portrait image into caricature image. Then we use R-NET [24] to build portrait mesh
and design a pipeline to deform the mesh. Finally, the 3D caricature face can be obtained
by combining the deformed mesh with the caricature texture. The input image is from
WebCaricature dataset.

ance transfer and geometry transfer. Similar to style transfer of image, the
goal of the appearance transfer is to transform the portrait style of facial
photos to caricature style. We designed a network named CariFaceGAN in-
spired by MUNIT [17], which can translate the portrait to caricature with
the maximization of preserving the facial identity information. The goal of
the geometry transfer is to exaggerate and deform the 3D portrait mesh to
generate the 3D caricature mesh. By using Locally Linear Embedding (LLE)
26], we embed the 2D landmarks of these two domains into low dimensional
space to learn the mapping function and then use Kriging interpolation [27]
to finish the deformation. Finally, the 3D caricature face can be obtained by
simply combining the 3D caricature mesh with the caricature style texture.
To summarize, main contributions of this paper are:

e We propose a CariFaceGAN appearance transfer network utilizing FaceNet

28] to supervise the generation process of the caricature image, which
can enhance the identity consistency between the original face and the
generated caricature face. It is novel to use deep face features to su-
pervise the generation of caricature images.

e We propose a novel approach that leverages an intermediate domain
to eliminate the geometric variance in the domain transferring from
portraits to caricatures. This intermediate representation provides an
underlying geometrical constraint between the original and target do-
main, thereby facilitating the training of CariFaceGAN.
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e We propose a geometry transfer pipeline that can generate 3D carica-
ture mesh by inputting a portrait image. Our method is fully automatic
without any need for the ground truth of 3D caricatures and user par-
ticipation.

2. Related Work

2.1. 3D Face Reconstruction.

The task of 3D face reconstruction is to predict a complete facial structure
with texture from single or multiple images. Since 3DMM][22] was proposed
in 1999, it has been the technical basis of this task and a vast array of CNN
based methods [29, 30, 31, 24, 32, 33, 34, 29, 35| were proposed to predict
3DMM coefficients to reconstruct 3D face models in recent years. In addi-
tion, in order to break through the limitation of 3DMM, some model-free
methods [36, 37] were proposed. Although they achieve great results in face
reconstruction, the appearance and geometry of portrait and caricature are
absolutely different, these methods are not suitable for caricature face gener-
ation. [24] proposed R-Net based on ResNet[38] which is used to reconstruct
the portrait mesh in this paper.

2.2. 3D Caricature Generation.

2.2.1. Semi-Automatic Methods

For the sake of accuracy, there are some semi-automatic methods that
require user operation in the process of generating 3D caricature. [1] proposed
a two-step method, which first allows users to drag and drop the average
model to get a rough model and its landmarks, and then uses the Kriging
Interpolation to refine the face model according to landmarks. [2] extracts the
human identity from a 3D human face model, then transfer it to a 3D artistic
face model, where the transformation degree can be controlled by user. [3]
proposed a sketching system that allows users to change facial feature curves
to exaggerate the specific features, and then sketch with 3D portrait face is
fed into their network to create a caricature face. Although they can control
the process of model generation manually, these operations are unfriendly to
users.

2.2.2. Automatic Methods

Many research has studied generating 3D caricatures automatically. [4, 5]
use LLE to embed the 2D faces and 3D caricatures into a low dimension
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Figure 2: The construction of Intermediate Domain. The images are from WebCaricature
dataset.

space, and learn the mapping between these two space. [6] divides the whole
face into several regions, and then regresses a set of linear mappings for
each region, and finally constructs all transformed regions. [7] proposed a
deformation representation coordinates system to formulate the 3D carica-
ture generation as an optimization problem. [8] proposed VAE-CycleGAN
to solve this cross-domain problem, which converts a 3D portrait mesh into
3D caricature mesh. [25] builds a PCA model for 3D caricature meshes and
trains a GAN which can automatically translate 2D pictures to 3D caricature
meshes while the exaggerated shape of meshes can be controlled. Although
these methods can generate 3D models well, the required ground truth of
3D caricatures is expensive. In contrast, our method just needs caricature
images with landmarks.

2.3. Style Transfer.

9] first proposed an effective style transfer method from one to another,
and many follow-up research has been proposed to improve the quality of
transformation. [10] presented a solution for real-time style transformation
and perceptual loss to measure high-level perceptual and semantic differences
between images. [11] designs an explicit representation for styles, which
enables the network to completely extract the style from the content. Owing



to the success of GAN, image translation has made much progress in recent
years. [14], [15] and [16] proposed methods to transfer unpaired images
from one domain to another. [17] proposed MUNIT, in which the style of
the translation outputs can be controlled by a user-provided example image
or a random style code in the target domain. Although they can achieve
satisfactory results in some domain like landscape paintings or oil paintings,
they show limited capability of translating image from portrait to caricature.
For caricature generating, [18] and [19] use the perceptual loss to supervise
the training of caricature generator which can produce good visual effect, but
lack of identity consistency. To tackle this, we use the pretrained FaceNet to
enhance the identity consistency.

3. Method

In this section, we demonstrate the framework and the details of our pro-
posed method. As shown in Fig. 1, our goal is to generate a 3D caricature
face from a single face image. To tackle this challenging problem, we decom-
pose this task into two subtasks, namely appearance transfer and geometry
transfer. For appearance transfer, we designed a cross domain transfer net-
work named CariFaceGAN to transform input portrait into caricature style.
And for geometry transfer, we firstly use LLE to embed the landmarks of the
face, then learn the mapping between portraits and caricatures, and finally
use Kriging interpolation to deform the dense points of the face mesh.

3.1. Appearance Transfer

In this section, we introduce CariFaceGAN, which can transform the
appearance style of portrait into caricature with the preservation of identity
consistency.

3.1.1. Construct an Intermediate Domain.

To facilitate the neural network to transfer the appearance, we build an
intermediate domain which bridges the geometric differences between por-
trait domain and caricature domain. As shown in Fig. 2, let x € X denotes
an image in portrait domain X, ¢y’ € Y’ an image in caricature domain Y,
and y € Y an image in the constructed intermediate domain Y. Using land-
marks of 200 portraits from X, where the number of portraits is selected
empirically and data dependent, we establish a manifold space. For the rest
portraits in X, we calculate the embedding e for each portrait, and £ denotes
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Figure 3: The architecture of CariFaceGAN. For brevity, we only show the network ar-
chitecture of the mapping ® : X — Y. The blue and red arrows from x or y to c or s
represent encoder and vice versa. The input image is selected from the WebCaricature
dataset.

the collection of e. And for each image y; with its landmarks I,/, we embed [,
to the manifold space, and find the nearest embedding e; in E by Euchdean
distance, where j is the index of the nearest embedding. Under the guidance
of the displacement between [, and [, according to e;, we use differentiable
spline interpolation module from [39] to calculate the displacements on hori-
zontal and vertical. And using the displacements of dense points, we rerender
the image [,, with simple bilinear interpolation. Then we get image domain
Y, which is same with Y’ in appearance style and similar to X in shape.
The goal of CariFaceGAN is to learn the mapping ® : X — Y to transform
a portrait style image into caricature style. And for brevity, we will only
introduce ® : X — Y, and the opposite mapping is the same.

3.1.2. Architecture.

Architecture of CariFaceGAN is shown in Fig. 3. Following MUNIT, we
assume that X and Y share the same content space, and that they have their
own style space independently, the distribution of the style code is assumed
to be standard Gaussian distribution. What we need to do is to extract their
content code noted as ¢ and style code noted as s from image, and combine
the content code of x with the style code of y to get the target image. To



this end, we train a decoder G and two encoders E® and E° for each domain,
and for mapping ® : X — Y, their relationship can be formulated as follows:

¢ = ES(x), s, =E(x), §,€N(0,1), (1)
T =Gy, 8:), U=Gylcs,5y)

where T is a reconstruction image generated from content code ¢, and style
code s,, which are encoding from x by E$ and E. x and z should be same
because D® and E® are a pair of inverse functions. 5, is sampled from
standard Gaussian distribution, and ¢ is the target image.

With a large enough scale of network, an input portrait can be mapping
to any different random images in the target domain, without considering
whether the content of the generated image is same to input ones. Cycle
consistency has been proved to be effective way to maintain the content
information in cross-domain image transfer problem. In order to use cycle
consistency, we reconstruct the input image using the content code from &
and the style code from x. And this process can be formulated as follows:

Cy = E;(g)a Sy = E;(x)a = Gx(cl)a Sﬂc) (2>

where ¢; is the content code of § encoded by the content encoder of
domain Y. & is the reconstructed image from content code ¢; and style code
s, using generator G, and cycle consistency will be calculated between &
and z.

In summary, there are 4 images in this process, in which x, £ and & are
consistent in theory because they have the same content and style code. gy
is the target image which combined from content code of portrait and style
code of caricature. The encoders, decoders and the discriminators have the
same structure as MUNIT.

3.1.8. Loss.

The loss of CariFaceGAN consists of four parts as follows.

Adversarial loss. In order to make the image generated by CariFaceGAN
indistinguishable from images in caricature domain, we employ adversarial
loss to match the translated image g to the target caricature distribution.

LY = Eanx, 5,~n001) [log (1= Dy(4(x, 5,))] + Eyy [log (Dy(y)]  (3)

where D, is the discriminator of domain Y. g(z, §,) is defined in Equation
1.



Table 1: Mainly differences among MUNIT, CariGANs and ours.
Methods MUNIT CariGANs ours

Structure information Generative and global  Discriminant and local
Bidirectional reconstruction loss
Cycle loss
Perceptual loss

Identity loss

X X X N X
X A X
ANIENEN

Bidirectional reconstruction loss. Reconstruction loss is designed to en-
sure the encoder and decoder are a pair of inverse function. We employ the
bidirectional reconstruction loss for both image — code — image and code
— image — code:

Lree = Eonx [|| Z(2) — 2 [|1]
L. =Eeux, s,~nv00) [ B2 (3(
Lite =Euox, 5,0 01) LI EY(9(

where Z(z) is defined in Equation 1.

Cycle loss. As mention above, bidirectional reconstruction loss can be
used to limit that encoder and decoder are a pair of inverse function in each
domain, and we also need to make sure that (£, G) in two domains are the
opposite processes. Cycle consistency reconstructs the source domain image
from the target domain, which can ensure the generation processes of these
two domains are opposite to each other. We employ cycle loss as follows:

8y)) — E&(x) [|1] (4)
Sy)) = 3y ]

z,
xz,

Lo =Eox, sonon) [l (2, 5) — 2 1] (5)

where Z(z, §,) is defined in Equation 2.

Identity loss. While only low-level information (pixel-level) is utilized to
supervise the process of image transfer, we find that the target image gener-
ated by the network loses the facial details of origin input image. Inspired by
[40] and [24] using FaceNet to supervise the process of 3D face reconstruction,
we adopted it to supervise the process of facial appearance transfer. Specifi-
cally, we extract deep facial features and compute the cosine consistency as
follows:

<a,b>

Sl o] (6)

1= Eunx, 5,~n00) [cosdist( f(§(z,5,)), f(2))]

cos_dist(a,b) =1



where f is the function that embedding the facial image into facial fea-
tures by FaceNet and < -,- > is the vector inner product. The FaceNet is
pretrained by VGGFace2[41] dataset.
Owverall loss. Overall, the aforementioned loss function is defined for ® :
X — Y, and the opposite mapping is the same. The final loss function of
our CariFaceGAN is defined as follows:
Eoverall = £Zd/v + Lo, + wrec(»cx + LY

adv rec rec)

+ Weode (L2, + Lrée + L3z, + Lrke) (7)
+ wcyc(‘CZyc + Egyc) + wid(ﬁimd + ‘Ci}d)

where Wree, Weode, Weye and w;q are weights to control the importance of
loss of each parts. The main differences among MUNIT, CariGANs and
CariFaceGAN are summerized in Table 1. Firstly, CariGANs use generative
model to construct an intermediate domain with global information, while
our proposed method uses discriminative model with local information (k
nearest neighbor face keypoints). Secondly, as for the loss function, MUNIT
utilize bidirectional reconstruction loss to ensure the encoder and decoder
are a pair of inverse function, CariGANs utilize cycle loss to ensure transfer
function of two domains are the opposite processes, while we use both these
two loss functions. Finally, CariGANs use perceptual loss to keep the content
consistency of input and output, aiming at reducing reconstruction error,
while we use identity loss to ensure the identity consistency with deep facial
feature, aiming at reducing semantic error.

3.1.4. Training detail.

We follow the training strategy of MUNIT. The weights of loss are set
as Wree = 10, Wepge = 1, Weye = 10 and w;q = 0.8 respectively in all our
experiments. Learning rate begins at 1.5e — 4 and decays 70% after each
50K iterations, and 500K total iterations. And use the Adam optimizer [42]
with a batch size of 2.

3.2. Geometry Transfer

It is challenging to directly recover 3D mesh from a single caricature
image. In this section, we present a geometry transfer pipeline to build the
3D caricature mesh.
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Figure 4: Overview of the pipeline of geometry transfer. The upper part is the offline
stage, and the lower part is the runtime stage.

3.2.1. Data preparation.

Unlike the data used in CariFaceGAN, we only use frontal facial portrait
and caricature in training of geometry transfer. We collect images in por-
trait domain and caricature domain, in which images of the same index are
paired. In other words, one caricature is paired with one portrait. We use
the landmarks detector designed by [43] to detect 68 landmarks d_p for each
portrait, and label landmarks d_c manually for each caricature. d_p and d_c
are 136-d vectors defined as [xo, Yo, X1, Y1, -.-T67, Yo7| Where (x;,y;) is the 2D
coordinates of the ith landmarks. Before using these landmarks, it is nec-
essary to align them to a uniform center point, angle and scale, since these
images come from various sources. We use the method designed by [44] to
align these landmarks. Finally, P denotes the matrix consisting by aligned
d_p, and C' by aligned d_c.

3.2.2. QOverview.

As shown in Fig. 4. In the offline stage, we use LLE to embed landmarks
of faces in two domains and learn the mapping between P and C inspired
by [5]. And in the deployment stage, we firstly reconstruct 3D face following
[24], in which also outputs the facial landmarks, so we do not need to detect
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them using another 2D landmarks detector. Then using the learned mapping,
we predict the target caricature landmarks corresponds to the input image.
Finally, Kriging interpolation is employed to deform the dense point of mesh.

It is worth noting that in our method, we only use two-dimensional infor-
mation to manipulate the 3D portrait mesh, that is, we do not manipulate in
the z-axis direction. The reason for this is that the ground truth of 3D cari-
cature mesh is rare, and the deformation on the x and y axises can represent
the exaggeration to some extent.

3.2.3. Mapping based on Locally Linear Embedding.

In offline stage, we establish a manifold space using LLE for P and C.
Then matrix W which record the neighborhood weight for each data and
d dimension embeddings P’ can be calculated, so as W¢ and C’. And the
least square method is utilized to find the mapping ¢ : P" — C".

In runtime stage, we denote the input portrait landmarks as p, and the
predicted caricature landmarks ¢ can be calculated as follow steps: 1) Cal-
culating the weight vector w? by minimizing the cost function:

E(wp) = (p - Z]Gn(p) wfpj)27

st. > wi =1 (®)

jen(p)

where n(p) denotes the indices of k nearest neighbours of p in P, and w7 is the
weight summarize the contribution of the j-th data point to the reconstruc-
tion of p following [26]. 2) Since P and P’are corresponding, the embedding
can be calculated by p’ = wPP’. 3) By using mapping ¢ : P' — ', we
can get the caricature embedding ¢’. 4) Searching within C’, we also get
the k nearest neighbours of ¢ and calculate the weight vector w® similar
to Equation 8. 5) The predicted caricature landmarks can be calculated by
¢ = w®C. The parameters are set to k = 5 and d = 15 respectively in our
implementation.

3.2.4. Kriging interpolation.

Kriging interpolation [27] is a regression algorithm for spatial modeling
and interpolation of stochastic process or random field based on covariance
function, which can calculate the best linear unbiased prediction and is ap-
plied widely in geostationary research. Inspired by [1], we used 3D Universal
Kriging [45] to deform the 3D face mesh into the target 3D caricature mesh.
As caricature landmarks ¢ have been predicted, we can calculate the offset

12
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Figure 5: Some qualitative results of the ablation study on CariFaceGAN. We generate
these caricatures for each method using randomly sampled style codes. Inputs are selected
from CelebA dataset.

Al = ¢ — p. And we denote the x axis offset of landmarks as Al,, and y as
Al,. Landmarks in 3D face mesh are regarded as observed points, and Al,
and Al, as observed values respectively. Then the offset of x and y axis of
dense vertices can be calculated using the 3D Universal Kriging interpola-
tion. Finally, the target 3D caricature mesh can be calculated by adding the
offset to the 3D face mesh.

4. Experimental Results and Analysis

In this section, we evaluate the performance of our proposed method on
the tasks of appearance transfer and geometry transfer respectively. We first
introduce the dataset used to train and evaluate in our experiments in Sec.
4.1. We then show the performance of our system in Sec. 4.2. Then in
Sec. 4.3, we analyze our CariFaceGAN and compare it with other methods.
Finally, we compare our geometry transfer with baseline method and show
the 3D caricatures built by our proposed method in Sec. 4.4. The results
shown in all figures are randomly generated.

4.1. Dataset

WebCaricature WebCaricature is a large portrait-caricature dataset
consisting of 6042 caricatures and 5974 photographs from 252 people col-
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Figure 6: The comparison of state-of-the-art image-to-image translation methods. All
these models are trained on the dataset which is used by CariFaceGAN. The style images
of Neural Style and Fast Style are shown in the first row. We only use CariStyGAN of
CariGANSs for appearance transferring. The inputs are selected from CelebA dataset.

lected from the Internet. For each image in this dataset, 17 labelled facial
landmarks are provided.

CelebFaces Attributes Dataset CelebFaces Attributes Dataset (CelebA)
is a large-scale face attributes dataset with more than 200K celebrity images
and each with 40 attribute annotations. Images in this dataset cover large
pose variations and background clutter.

To train the CariFaceGAN, we utilize 3540 caricatures from WebCarica-
ture as domain Y”’, where we remove 1) caricatures with large poses; 2) similar
to the portraits; 3) with a single eye. And select 5000 portraits randomly
from CelebA as domain X, whose number of pictures is the same as that of
the Y’ domain. For all these images, the face region is cropped according to
the landmarks and rotated horizontally according to the angle between the
binocular line and the horizontal direction. 2000 randomly selected portraits
in CelebA are used for testing.

To train the geometry transfer algorithm, we build a paired portrait-
caricature mini dataset. We provided a painter with 70 images of frontal
portraits, and he created the corresponding caricature for each portrait. We
used the landmarks detector[43] to detect 68 landmarks for portraits, and
labelled 68 landmarks manually for caricatures.

14
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Figure 7: Result of the comparison of facial loss and perceptual loss. Inputs are from
CelebA dataset.

4.2. System Performance

Our main code is developed in PyTorch [46]. A desktop with a NVIDIA
GeForce RTX 2080Ti and Intel i7 9700k (3.6GHz) CPU is used for evalua-
tion. The total time used to predict a 256 X256 image is approximately 0.421
seconds including 0.143 seconds for appearance transfer and 0.278 seconds
for geometric transfer.

4.8. Experiments on CariFaceGAN

Our system allows user customization on appearance style as aforemen-
tioned. In Fig. 11, we show different results with three random style codes.

4.8.1. Ablation Study.

To verify our loss function used in CariFaceGAN, we design an ablation
study on loss function. Fig. 5 present the qualitative result, which shows that
cycle loss can retain most of the content information, but it is not effective for
some facial details such as eyes and mouths. And after joining the identity
loss, the details of the eyes and mouths are well preserved. In addition, in
order to verify capability of our method on maintaness of identity consistency,
we use pretrained FaceNet to map the original image and its corresponding
caricature output to a compact Euclidean space, where distances directly
correspond to a measure of face similarity. We calculate the average distance
in test set is 0.573+0.136, which is less than the threshold 1.242 defined by
FaceNet.
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4.3.2. Comparison with State-of-the-Art Methods.

We qualitatively compare our CariFaceGAN with previous state-of-the-
art methods in Fig. 6. All these methods are based on the implementations
provided by the author except CariGANs [18] which has not released its
codes. The dataset used to train these networks is same with us. In these
works, Neural Style [9] and Fast Style [10] are CNN-based style transfer
network, and the rest are GAN-based cross-domain image transfer network.

Neural Style, the first style transfer network, achieves satisfactory results
in this experiment, but sadly it is computationally expensive. Fast Style is
an improved version of Neural Style, which can complete the style transfer
task in real-time, but the effect on the portrait is not significant, it changes
the hue only. CycleGAN [14] and UNIT [16] train a bidirectional conversion
network based on GAN, which has more creative freedom than Neural Style
and Fast Style, but they are not good at creating portrait and caricature.
MUNIT [17] is based on UNIT, which can transfer one portrait into multiple
results. We randomly sample style code for MUNIT, and the results show
clear artefact. CariGANs [18] based on MUNIT and CycleGAN is the first
deep neural network for unpaired portrait-to-caricature translation, which
consists of CariGeoGAN for geometry exaggeration and CariStyGAN for ap-
pearance stylization. It is worth noting that the training caricatures used by
CariStyGAN are deformed by CariGeoGAN, while ours is constructed by the
method mentioned in Sec. 3.1, since their training dataset has not released.
The result shows that CariStyGAN works properly in most cases, but the
identity consistency of input and output images cannot be guaranteed.

We have compared the inference time of our CariFaceGAN with Fast
Style, CycleGAN, UNIT, MUNIT, and CariStyGAN of CariGAN, perform-
ing on NVIDIA GeForce RTX 2080Ti and Intel i7 9700k (3.6GHz), results
are shown in Table 2. The inference time of CycleGAN is minimal, and
that of other networks are almost the same. Furthermore, we conduct a user
study for Fig. 6 with 50 participants (including 32 artists and art students
and 18 people without art background; 22 males and 28 females; aged from
18 to 38) to measure the visual effect of the generated caricatures. We use a
score ranging from 0 to 5 to represent the criteria, from the worst to the best.
Results are shown in Table 2, and ours achieves the highest score while Cari-
GANSs is the second. Kruskal-Wallis test is then used to test the scores of all
methods (P < 0.05), and Nemenyi test is used in pairwise comparison where
the difference between CariGANs and ours is not statistically significant (P
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Figure 8: Results of our proposed method. The caricatures in the second column are
generated by CariFaceGAN. Portrait meshes in the third column are built by R-NET,
and caricature meshes are deformed from portrait meshes using our proposed geometry
transfer pipeline. The last three columns are the final 3D caricature. Input images are
selected from CelebA and WebCaricature dataset.
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Input portrait a=0.7 a=1.0 a=15
mesh

Figure 9: Results of adjusting the geometric exaggeration extent parameter . The first
column on the left shows the input images from CelebA dataset, and the second is the
result of face reconstruction using R-NET. The three columns on the right are deformation
results under different «. Input images are selected from CelebA dataset.

Table 2: Comparison of inference time, human score and Inception score of the state-
of-the-art methods and ours. We only use CariStyGAN of CariGANs for appearance
transferring.

Methods Fast Style  CycleGAN UNIT MUNIT CariGANs ours

Time/sec 0.179 0.011 0.159 0.161 0.143 0.139
Human score 1.24+046 2.76+083 0.36+0.50 0.24+043 3.14+1.23 3.36+0.96
Inception score  2.294+0.15 3.05+£0.08 3.12+0.13 2.97+0.14 2.92+0.10 3.02+0.17

> 0.05). For the quantitative result, we utilize the Inception score which
uses a pre-trained classifier and sampled images in [47] for the evaluation of
the entire test set. The comparison results with the state-of-the-art methods
are shown in Table 2, where UNIT get the highest score. Kruskal-Wallis test
is then used to test the scores of all methods (P < 0.05), and Nemenyi test
is used for pairwise comparison where the difference between UNIT, Cycle-
GAN and ours is not significant (P > 0.05). Although UNIT and CycleGAN
also get high scores, they do not meet our requirements in terms of identity
consistency.

4.3.3. Comparison with Perceptual Loss.
Perceptual loss, which is adopted by Fast Style and CariStyGAN, is a suc-
cessful loss function in the task of image transfer. By inputting the original
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Figure 10: The comparison between baseline method and ours. Parameter « is set to 1.
Input images are selected from CelebA dataset.

image and the translated result into the pretrained VGG [48] and comparing
the differences of two output features in the last convolution layer of VGG,
perceptual loss can explicitly keep the content consistency of these two im-
ages. To compare the role of identity loss and perceptual loss, we replace the
identity loss of CariFaceGAN with perceptual loss and leave other configura-
tions unchanged. The experimental results are shown in Fig. 7 which shows
that identity loss can better maintain the content consistency in the task of
caricature generation.

4.4. Ezxperiments on 3D Caricature Generation

Fig. 8 shows the final 3D caricature, which is built by mapping the
caricatures texture to the caricature mesh.

4.4.1. Results with Control.

Our proposed geometry transfer can be controlled by user. To tweak the
geometric exaggeration extent, we introduce a parameter o to adjust the
offset of landmarks. As in the previous representation, we use ¢ to represent
the landmarks of the input image, and p the target landmarks calculated by
¢, Al = ¢ — p the offset of landmarks. The observed values finally used in
3D Universal Kriging can be obtained by aAl. Setting o to 0.5, 1 and 2
respectively, and the results are shown in Fig. 9.
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Figure 11: Our system allows the user to control the appearance style. Results are gener-
ated with random style codes and input images are from CelebA dataset.

4.4.2. User Study.

Since caricature is a kind of artistic work, its quality should be judged by
the users. Therefore, we conduct a user study with 40 participants (including
18 artists and art students and 22 volunteers without art background; 17
males and 23 females; aged from 19 to 35) to compare our method with a
baseline method. A straight-forward method to build 3D caricature mesh
is to use Laplacian deformation algorithm[49], whose results are shown in
Fig. 10. Baseline results are built by deforming the portrait mesh with the
offset of paired portrait and caricature landmarks. We randomly pick 10
paired results of baseline and our method, and every participant is requested
to give scores to the following two questions: 1) the degree of similarity
between the 3D caricature model and the 2D caricature geometric structure
in the data set; 2) the visual effect of the 3D caricature model. We use a
score ranging from 0 to 5 to represent the criteria (i.e. worst to the best),
and the whole results are shown in Table 3. In order to verify whether
the difference between these two methods is statistically significant, we use
Mann-Whitney test to test the scores of these two questions. The result show
that our approach is superior to baseline both in visual effects (P<0.001) and
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Table 3: Quantitative results of the user study of 3D caricature built by baseline and our
method.

Methods Q1 Q2

Baseline 3.37+0.9 2.91 +£0.81
Ours 3.75+1.13 3.48 £ 0.97

Input Output Input Output

Figure 12: Failure cases of CariFaceGAN. Outputs in the first two rows show a certain
degree of artefacts in the mouth and eyes, while the change of the styles in the last two
rows is not significant enough. Input images are selected from CelebA dataset.

structural consistency (P<0.001).

5. Conclusions

In this paper, we propose a method to build 3D caricature which consists
of a GAN-based cross-domain transfer network (CariFaceGAN) and a geom-
etry transfer pipeline. The experimental results show that our CariFaceGAN
outperforms previous state-of-the-art methods in both maintaining identity
consistency and transferring the style. Moreover, the 3D caricatures con-
structed by our approach show satisfactory visual effects.

There still exists some room for improvement. Firstly, the low resolution
of generated images from CariFaceGAN (i.e. 256 x 256) can not provide
sufficient details when mapping the texture to the deformed mesh, thereby
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leading to some blurred areas in the final 3D caricatures. Secondly, since
translating portrait to caricature is a very challenging task, our model also
fails in some cases as shown in Fig. 12. There are mainly two types of failure
cases, one is the occurrence of artefacts on the eyes or mouth, and the other
is the unexpected variance during the conversion. Thirdly, since labelled
caricature data is scarce in the offline stage of the geometry transfer pipeline,
the deformation result is relatively monotonous. These will be considered in
future work.
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