
This is a repository copy of Mixed State Entanglement Classification using Artificial Neural 
Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/174263/

Version: Published Version

Article:

Harney, Cillian, Paternostro, Mauro and Pirandola, Stefano orcid.org/0000-0001-6165-
5615 (2021) Mixed State Entanglement Classification using Artificial Neural Networks. 
New Journal of Physics. 063033. ISSN 1367-2630 

https://doi.org/10.1088/1367-2630/ac0388

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



            

PAPER • OPEN ACCESS

Mixed state entanglement classification using artificial neural networks
To cite this article: Cillian Harney et al 2021 New J. Phys. 23 063033

 

View the article online for updates and enhancements.

This content was downloaded from IP address 88.108.230.4 on 19/08/2021 at 09:26



New J. Phys. 23 (2021) 063033 https://doi.org/10.1088/1367-2630/ac0388

OPEN ACCESS

RECEIVED

25 February 2021

REVISED

10 May 2021

ACCEPTED FOR PUBLICATION

20 May 2021

PUBLISHED

14 June 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Mixed state entanglement classification using artificial neural

networks

Cillian Harney1,∗ , Mauro Paternostro2 and Stefano Pirandola1

1 Department of Computer Science, University of York, York YO10 5GH, United Kingdom
2 Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast,

Belfast BT7 1NN, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: cth528@york.ac.uk

Keywords: entanglement classification, entanglement measures, machine learning, neural network quantum states

Abstract

Reliable methods for the classification and quantification of quantum entanglement are
fundamental to understanding its exploitation in quantum technologies. One such method,
known as separable neural network quantum states (SNNS), employs a neural network inspired
parameterization of quantum states whose entanglement properties are explicitly programmable.
Combined with generative machine learning methods, this ansatz allows for the study of very
specific forms of entanglement which can be used to infer/measure entanglement properties of
target quantum states. In this work, we extend the use of SNNS to mixed, multipartite states,
providing a versatile and efficient tool for the investigation of intricately entangled quantum
systems. We illustrate the effectiveness of our method through a number of examples, such as the
computation of novel tripartite entanglement measures, and the approximation of ultimate upper
bounds for qudit channel capacities.

The core tasks of entanglement classification [1–3] and quantification [4–6] are essential for future

quantum technologies, and ask the seemingly straightforward questions: given a quantum state ρ, is it

entangled? If so, by how much is it entangled? As the system size or dimension of a quantum system grows,

these questions become highly non-trivial and in general there are no universal criteria or methods to

provide answers. The most popular mathematical recipe for classification, the positive partial transposition

(PPT) criterion (or Peres–Horodecki criterion) [7, 8], applies only to (2 ⊗ 2) or (2 ⊗ 3) bipartite systems.

As one extends to multipartite, higher-dimensional quantum systems more sophisticated tools are required.

The application of classical machine learning tools for the study of quantum systems, such as artificial

neural networks, have seen a surge of interest due to their remarkable expressive power and efficiency

[9–11]. In particular, Carleo and Troyer [12] showed that restricted Boltzmann machines offer a

resoundingly appropriate classical representation of quantum states, due to their ability to perform

dimensionality reduction, their non-local information distribution, and optimization capacity [13].

Ansatzes based on this architecture are known as neural network quantum states (NNS), and they have

been a successful classical simulation tool in a variety of contexts such as tomography [14–17], open

quantum system dynamics [18–22], and the study of quantum technologies [23–26].

The versatility of NNS also provides an excellent framework for the study of entanglement [27]. As

introduced for pure, qubit states in reference [28], it is possible to manipulate and constrain these neural

networks in a way that guarantees a strict form of separability. These constrained variational states are

known as separable neural network states (SNNS). Combined with a quantum state reconstruction

algorithm, this introduces a unique entanglement witness protocol based on the reconstructive performance

of an SNNS with a target state.

In this paper, we generalize these results to mixed, d-dimensional quantum states. We show how SNNS

can be used to perform highly specific entanglement classification, and approximate entanglement measures

to a very high degree of accuracy. The ability to implicitly characterize the space of separable states is

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Neural network quantum state architectures for the simulation of pure states. Panel (a) illustrates the standard NNS
construction for n qudits. The visible-layer consists of nv × d̃ units which encode the accessible basis states of the target system;
here d̃ is the number of visible units required to encode a single qudit state where C(·) is some encoding function such that

C(|d〉) = {gi}d̃
i=1 and its inverse C̄({gi}d̃

i=1) = |d〉. Correlations between qudits are captured by an nh unit hidden-layer with
interconnected weights and biases. Panel (b) illustrates the amplitude/phase machine that uses two hidden-layers and only real
valued parameters.

extremely valuable, and allows one to compute entanglement measures that are otherwise extremely

difficult to measure, such as the relative entropy of entanglement (REE) [29].

This paper is structured as follows: in section 1 we revise the NNS architecture and its variants for pure

and mixed states. Section 2 overviews separable architectures, and shows how specific forms of

entanglement can be guaranteed. In section 3 the methods of classification and quantification using SNNS

are discussed. Section 4 provides numerical evidence for their utility through a number of relevant

examples, with interesting applications in the study of noisy tripartite entanglement, bound entanglement,

and quantum channel capacities. Finally, conclusions and future directions are addressed in section 5.

1. Neural network quantum states

1.1. Pure states

The simplest neural network model we can introduce is the positive, real NNS. This model uses a real

valued restricted Boltzmann machine (RBM) architecture, with nv visible units s = {s1, . . . , snv}
representing the number of qudits being modelled within the target quantum system, fully interconnected

with nh hidden units h = {h1, . . . , hnh
}. The visible units are typically binary valued to study

d = 2-dimensional systems, si ∈ {−1, 1} as are the hidden units hj ∈ {−1, 1}; however this depends on the

system being modelled. This network architecture allows us to capture the correlations of the objective

quantum system through network parameters:

Π = {ak, bj, Wkj} for k ∈ [1, nv], j ∈ [1, nh], (1)

a ∈ R
nv , b ∈ R

nh , W ∈ R
nv×nh , (2)

where a are visible biases, b are hidden biases, and W is the network weight matrix. The total number of

parameters is |Π| = nh · nv + nh + nv (see figure 1).

2
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Figure 2. A restricted Boltzmann machine architecture for the simulation of (generally entangled) density matrices using
complex parameters.

The inherent advantage offered by the RBM architecture for generative modelling is that there are no

intra-layer connections (i.e. there are no connections between adjacent visible units or hidden units). This

allows for an ansatz that is independent from the activations of the hidden state space. Thus, one can define

a positive NNS wavefunction as [12]

ΨΠ(s) = e

nv
∑

k=1

aksk
nh
∏

j=1

2 cosh

(

∑

k

Wkjsk + bj

)

, (3)

and therefore the NNS is |ΨΠ〉 =
∑

s ΨΠ(s)|s〉.
Whilst NNS have typically been applied to qubit systems using binary visible units, one can extend the

modelling to d-dimensional qudits by using a set of visible binary neurons that collectively represent a

single qudit [17]. One may choose to encode d-dimensional states using a collection of d̃ visible, binary

neurons via an encoding function C, i.e.

|s〉 �→ C(s) = {g1, g2, . . . , gd̃} = g. (4)

The nv qudit visible-layer can then be encoded into ñv = d̃nv > nv visible neurons,

s = {s1, s2, . . . , snv} �→ {g1, g2, . . . , g ñv
}. (5)

We may identically define the qudit decoding function C̄ such that C̄(g) = |s〉. One may encode qudits into

binary codes on the visible-layer |s〉 �→ bin(s), requiring ñv = ⌈log2 d⌉ nv visible binary neurons, which

however requires d = 2r for some integer r in order to admit a complete basis set. For arbitrary d it may be

more useful to utilize one-hot encoding such that |s〉 �→ one − hot(s) = ed
s where ed

s is a d-length vector that

is zero at all indices except index s.

In order to study non-positive quantum states one can introduce complex network parameters. Letting

ak = αk + iβk, bj = γ j + iλj, and Wkj = Γkj + iΛkj, then the NNS wavefunction is

ΨΠ(s) = e

nv
∑

k=1
(αk+iβk)sk

nh
∏

j=1

2 cosh
(

θγj + iθλj

)

, (6)

where θγj =
∑

kΓkjsk + γj, and θλj =
∑

kΛkjsk + λj. Thus the NNS can exhibit phase properties of quantum

states. The network parameter set extends to Π = {ak, bj, Wkj} ∈ C.

Alternatively one can preserve reality of network parameters by restructuring the nature of the NNS

ansatz itself. In particular we can construct an ansatz that uses two RBMs that unify to represent a complete

state. Defining a variational phase state ΦΞ(s), and amplitude state ΨΠ(s), this network ansatz is given as

[14]

|ΨΠ,Ξ〉 =
∑

s

ei log ΦΞ(s)ΨΠ(s)|s〉. (7)

Therefore both the variational phase and amplitude networks need only be real valued, since the

complex/phase properties of the state are managed through the complex exponential. The state is now

defined by two parameter sets, Π = {ak, bj, Wkj} ∈ R and Ξ = {ck, dj, Ukj} ∈ R.

3
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1.2. Mixed states

To extend the variational ansatz to mixed states requires the addition of a hidden mixing-layer with nm

hidden units, capable of encoding the classical probability distribution of the mixed quantum state [19–21].

The network state can be constructed from two sets of variational network parameters: Π = {cp, Ukp},

cp ∈ Rnm and Ukp ∈ Cnv×nm encoding the mixing probabilities [30] and the previously defined

Ξ = {ak, bj, Wkj} ∈ C which encodes the pure state probability distribution. Let the density-matrix row and

column degrees of freedom be described by basis vectors {α,β} respectively. As these parameter sets are

independent, we may describe a density-matrix element as a contribution from a classical mixing state PΠ

and a pure state σΞ.

The contribution from a classical mixing network is given by

Pα,β
Π

=

nm
∏

p=1

cosh(φp(α,β)), (8)

φp(α,β) = cp +
∑

k

Ukpαk + U∗
kpβk, (9)

where x∗ denotes complex conjugation. Meanwhile the pure state contribution is

σα,β
Ξ

= eω(α,β)

nh
∏

j=1

cosh(θj(α)) cosh(θ∗j (β)), (10)

ω(α,β) =
∑

k

akαk + a∗kβk, (11)

θj(x) = bj +
∑

k

Wkjxk. (12)

The complete variational state can therefore be constructed as a sum over all density-matrix elements,

ρΠ,Ξ =
∑

α,β

Pα,β
Π

· σα,β
Ξ

|α〉〈β| = PΠ ⊙ σΞ, (13)

where ⊙ is the Hadamard product. This architecture is presented in figure 2. It is important to emphasize

that by construction, the classical mixing state PΠ cannot simulate quantum correlations, only classical

correlations (see appendix A). The pure state density-matrix σΞ alone is able to simulate the quantum

correlations within the global network state. Just as a mixed state can be decomposed via a statistical

ensemble of pure states {pi; |φi〉}, where ρ =
∑

ipi|φi〉〈φi|, equation (13) can be considered as a matrix

element-wise decomposition of the density-matrix which is readily accessible via NNS.

The network parameters in this ansatz are necessarily complex, thus combining the control of phase and

amplitude contributions much like equation (6). However, it may be desirable to formulate an ansatz that is

similar to equation (7) in which phase/amplitude contributions are controlled by different networks. One

could use the NNS in equation (7) to learn a vectorised density-matrix ρΠ,Ξ = vec(ρΠ,Ξ) = |ρΠ,Ξ〉, where

the function vec(·) simply reshapes an n-qudit, dn × dn density-matrix into a d2n column vector. It follows

that two real parameter RBMs could then be used to learn phase and amplitude properties respectively, as

with pure states. Whilst optimal convergence towards a target vectorised mixed state is possible in this way,

the ansatz itself is neither Hermitian or positive semi-definite under reshaping to a matrix. That is, given an

inverse vectorisation function vec−1(·) which reshapes a d2n column vector into dn × dn density-matrix,

then ρΠ,Ξ = vec−1(ρΠ,Ξ) is not a valid density-matrix. Therefore, this form of ansatz may represent states

that are non-physical, which is clearly not desirable.

Instead, we can restructure the mixed state ansatz in order to take a closer form to the complex

exponential format utilized in the previous section. Let the real parameter sets Ξ,Π be used to describe the

pure state phase and amplitude networks respectively, and the complex parameter set Ω used to describe the

mixing network. Recall a pure state wavefunction in complex exponential form ΨΠ,Ξ(α) = ei log ϕΞ(α)

σΠ(α). It is useful to define the following functions of our pure density-matrix phase/amplitude

wavefunctions

Φ
α,β
Ξ

=
ϕΞ(α)

ϕΞ(β)
, Γ

α,β
Π

= σΠ(α)σΠ(β). (14)

In order to incorporate classical mixing we need a mixing-layer that takes a similar vectorized form.

4
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Omitting the visible biases which are already possessed by the pure states, the mixing-layer takes the form

Pα,β
Ω

=

nm
∏

p=1

cosh(μp + iψp) =

nm
∏

p=1

rα,β
p ei log ϑ

α,β
p , (15)

μp(α,β) = cp +
∑

k

Rkp(αk + βk), (16)

ψp(α,β) =
∑

k

Ikp(αk − βk), (17)

where Rkp = Re(Ukp) and Ikp = Im(Ukp) denote the real and imaginary components of the mixing network

respectively. One can then construct the following phase and amplitude functions for the classical mixing

r
α,β
Ω

=

nm
∏

p=1

√

cosh(μp + iψp) cosh(μp − iψp), (18)

ϑα,β
Ω

=

nm
∏

p=1

exp

[

1

2i
log

(− cosh(μp + iψp)

cosh(μp − iψp)

)]

, (19)

such that the vectorized mixing state takes the form ei log |ϑΩ〉|rΩ〉. This allows for any element of the

complete mixed state to be expressed according to

ρα,β
Ω,Π,Ξ = e

i log
(

Φ
α,β
Ξ

ϑ
α,β
Ω

)

Γ
α,β
Π

rα,β
Ω

. (20)

2. Separable neural network architectures

2.1. Separable pure network states

Through restrictions on the connectivity of the weight matrix Wkj, one can guarantee separability of the

generative network state. Let us define K as a collection of K-disjoint subsets K = {kl}K
l=1, that collect qudit

indices from an n-qudit system. More precisely,

K =

K
⋃

l=1

kl, s.t. {1, . . . , n} ⊆ K, (21)

km ∩ kl = Ø, ∀ m �= l ∈ {1, . . . , n}. (22)

In equation (21) we have demanded that the global partition set necessarily contains all n-qudits in the

system, and that subsets of qudits are disjoint in equation (22). Hence, an n-qudit, pure state |Ψ〉 is defined

to be K-separable if it can expressed as a tensor-product of sub-states |Ψ〉 = ⊗

k∈K|ψk〉, i.e. it is separable

with respect to the partition set K. This is a very precise format of separability, as it precisely specifies the

arrangement of entangled parties. If we were to disregard specific party orderings we would refer to

(|K| = K)-separability.

Disjointedness in this definition of K-separability ensures that each qudit is only entangled with respect

to a single subset of the quantum system. This provides a specific level of detail to the entanglement

structure, while also degenerating many forms of entanglement that we may not be interested in. For

example, genuine tripartite entanglement under disjoint K-separability allows for only a single set

K = {k1} = {1, 2, 3} with no partitions. We may then define non-disjoint K-separability as an extension of

the previous definition simply by removing the conditions in equation (22). Using this non-disjoint

definition, genuine tripartite entanglement allows for many more definitions, K = {1, 2, 3}, {1, 2|2, 3},

{1, 2|2, 3|1, 3}, . . ., which is studied in later sections (see figure 3 for an example).

To strictly impose either type of separability on an NNS, the goal is to express the wavefunction of the

network state in the following form

ΨΠ(s) =

K
∏

l=1

ψ
kl
Π (s) , (23)

where ψ
kl
Π

are separable sub-wavefunctions that describe the behaviour of qudits in the partition kl. We may

then construct an analogous hidden-layer partition set H = {hl}K
l=1, which assigns a subset of hidden units

5
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Figure 3. Different pure state network architectures used to simulate genuine tripartite entanglement. Panel (a) depicts a form of
GHZ-type entanglement according to the partition set KGHZ = {1, 2|2, 3}. Notice that qudits 1 and 3 do not possess a direct
connection, but may relay correlations through qudit 2. Panel (b) illustrates a non-disjoint, W-type entanglement structure
according to K = {1, 2|2, 3|1, 3}.

to each visible subset of entangled qudits K = {kl}K
l=1. By segmenting the layer of hidden units into these

K-subsets and applying the following restriction to the weight matrix

Wij = 0 for i ∈ kl, j /∈ hl, ∀ l ∈ {1, . . . , K}, (24)

this condition then provides the complete, K-separable network state

ΨΠ|K(s) =

K
∏

l=1

eω̃l(s)
∏

j∈hl

2 cosh
(

θ
j
l(s)

)

,

θ
j
l(s) =

∑

i∈kl

Wijsi + bj, ω̃l(s) =
∑

i∈kl

aisi. (25)

2.2. Separable neural network density matrices

Whilst pure states are K-separable when they can be expressed as the tensor product of |K| = k local

sub-states, a mixed state possesses a form of separability iff it can be expressed as a convex combination of

local sub-states ρ{kl}K
l=1 . It is now useful to define two distinct forms of separability; consistent and

inconsistent mixed-multipartite separability.

A state is consistently K-separable if it can be expressed as a convex combination of states which all

admit an identical form of separability,

ρK =
∑

j

pj

⊗

k∈K
ρk

j . (26)

On the contrary, a state is inconsistently {Kj}-separable if it is a mixture of states with different

entanglement properties,

ρ{Kj} =
∑

j

pj

⊗

k∈Kj

ρk
j , (27)

so its entanglement properties are defined by a combination of constituent Kj-separabilities. Precise

classification methods are much more difficult for mixed states, however there are still some very useful

approaches that can be introduced using NNS.

Consistently K-separable states require a direct application of the separability conditions given by

equation (24) onto the pure state of the NNS. Since the mixing state cannot capture quantum correlations,

6
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it is already separable and requires no restrictions. It is thus expedient to apply the separability conditions of

equation (24) onto the pure states of the mixed NNS, restricting the capacity of the neural network to

simulate quantum correlations. Enforcing separability on the pure density-matrix in this way

σα,β
Ξ|K =

K
∏

l=1

eωl(α,β)
∏

j∈hl

cosh(θ
j
l(α)) cosh(θ

j∗
l (β)),

ωl(α,β) =
∑

i∈kl

aiαi + a∗i βi, (28)

thus provides an NNS guaranteed to be consistently K-separable

ρKΠ,Ξ = PΠ ⊙ σΞ|K. (29)

If one wishes to enforce complete separability such that for an n-qudit state ρ =
∑

jpj

⊗n
m=1ρ

m
j , one can

of course just apply consistent separability onto the network state via the separability set K = {1|2|, . . . , |n}
in an identical manner as before. However, as the state is completely separable, there are no quantum

correlations and the pure states in the network ansatz are not necessary for simulation of the state. It can

then be simplified to ρΠ = PΠ, and we can simulate completely separable mixed quantum systems using an

RBM with a classical mixing-layer only [31]

ρ
Sep
Π

=
∑

α,β

eω(α,β)

nm
∏

p=1

cosh(φp(α,β))|α〉〈β|. (30)

Unfortunately, it is not possible to strictly classify an inconsistently separable mixed state according to

ansatzes discussed in this section. Take the tripartite example

ρ =
∑

j

pjρ
{1,2|3}
j +

∑

k

pkρ
{1|2,3}
k +

∑

m

pmρ
{1,3|2}
m , (31)

which can be thought of as ‘cheap’ genuine tripartite entangled state. We can certainly define an NNS that

can reconstruct a state of this form (trivially, one can utilize a fully connected NNS that can reconstruct ρ);

however we cannot specify all three forms of separability in ρ without also allowing the NNS to potentially

manifest genuine, pure tripartite entanglement. One can instead utilize independent consistently separable

NNS according to the partitions {1, 2|3}, {1, 3|2} and {2, 3|1} in order to quantify the amount of

entanglement in the target state with respect to each partition.

3. Classifying and quantifying entanglement

3.1. Learning of quantum states

We present a learning protocol for a pure NNS |ΨΠ,Ξ〉 to reconstruct a target state |ϕ〉 using the ansatz from

equation (7), which is then extendible to mixed states. We employ a unified learning approach, where the

variational state optimizes the global, vectorized fidelity with a target state, rather than separate phase and

amplitude fidelities. We may define the loss function as the negative logarithmic fidelity between two pure

states as a function of our set of variational parameters

L = − log

√

|〈ΨΠ,Ξ|ϕ〉|2
〈ΨΠ,Ξ|ΨΠ,Ξ〉〈ϕ|ϕ〉

. (32)

Splitting these wavefunctions into respective phase and amplitude functions,

ΨΠ,Ξ(s) = ψΠ(s)ei log(φΞ(s)), ϕ(s) = λ(s)ei log(ξ(s)), (33)

we wish to compute the derivatives of the unified cost function with respect to the parameter sets {Π,Ξ}.

Since these wavefunctions utilize only real parameters, it is expedient to compute the derivatives using the

following chain rule formulation,

∇ψΠ
k L =

∂L
∂|ψΠ〉

· ∂|ψΠ〉
∂Πk

, ∇φΞ
k L =

∂L
∂|φΞ〉

· ∂|φΞ〉
∂Ξk

. (34)

Computing these gradients will provide the necessary parameter update rules at the mth iteration to the kth

network parameter by gradient descent, taking the form

Πm+1
k = Πm

k − η∇ψΠ
k L, Ξm+1

k = Ξm
k − η∇φΞ

k L, (35)

7
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where η is some learning rate small enough such that the network state converges to the target state over

sufficient iterations of the learning scheme.

Defining the quantity

∆(s) = 〈ΨΠ,Ξ|ϕ〉−1 e
i log

φ
Ξ

(s)

ξ(s) , (36)

complete gradients with respect to variational parameters can therefore be computed as

∇ψΠ
k L =

∑

s

[

ψΠ(s)

|ΨΠ,Ξ|2
− λ(s)Re [∆(s)]

]

OΠ
k |ψΠ〉, (37)

∇φΞ
k L = −

∑

s

[

λ(s)ψΠ(s)

φΞ(s)
Im [∆(s)]

]

OΞ
k |φΞ〉, (38)

where OΠ
k = diag

(

∂Πk
log |ψΠ〉

)

, OΞ
k = diag

(

∂Ξk
log |φΞ〉

)

denote diagonal matrices containing the

logarithmic derivatives of the network state with respect to the kth amplitude and phase network

parameters respectively. Utilizing equation (38) in the update rule given by equation (35), the phase and

amplitude properties will optimize in a unified manner, maximizing the fidelity between the network and

the target state endowed with non-trivial phase structure.

Fortunately this learning procedure is readily extended to mixed states via the ansatz in equation (20).

Since the variational state is in a complex exponential format, one then formulates a cost function based on

the fidelity between the vectorized density-matrix and the vectorized target state. The extension is

straightforward and explained in appendix B.

As shown in reference [28] separable neural network states can be used to perform entanglement

classification and provide entanglement measures of pure, two-dimensional quantum states. Using qudit

sub-encoding and the mixed state architectures discussed in the previous sections, these ideas can be

extended to classification of more complex quantum systems.

Let us devise a precise decision rule for classification. Consider a target n-qudit state σ, a K-separable

learner ρKΩ, and a free, entangled learner ρEnt
Ω

which have both been optimized with respect to

reconstructing σ. Using the Bures fidelity, F(σ, ρ) = Tr
√√

σρ
√
σ, we denote the reconstruction fidelity of a

learning process as the final/optimal fidelity achieved after a given number of learning iterations. A target σ

is learnable via ρEnt
Ω

iff its reconstruction fidelity satisfies

F(σ, ρEnt
Ω ) � Fopt = 1 − ǫ, (39)

for a sufficiently small threshold ǫ. The choice of Fopt determines the reliability of classification, and in our

numerical experiments we fix ǫ � 10−4. The accuracy of this reconstruction via free learning also

benchmarks the satisfactory computational resources required in the network, informing the separable

reconstruction.

One can reliably infer that a target state is K-separable if it is learnable by both a free NNS (ρEnt
Ω ), and a

K-separable NNS (ρKΩ). Then the NNS reconstruction fidelities must satisfy

F(σ, ρKΩ) � F(σ, ρEnt
Ω ) � Fopt. (40)

Otherwise, the state is entangled to a higher degree. One may then quantify the entanglement content of the

target by investigating the distance between σ and an approximation to the closest K-separable state.

3.2. Quantifying entanglement

The most difficult aspect of quantifying entanglement stems from the complicated nature of characterising

the space of separable quantum states. Thanks to the implicit guarantee of specific separability, SNNS offer

an extremely useful tool to help with this, and provide the opportunity to study a variety of entanglement

measures that are otherwise much too difficult to explore.

Let us consider measures E that satisfy the general properties of a valid entanglement measure [4]. Many

important types of E are constructed as a geometric optimization problem with respect to the space of all

fully separable states DSep. That is, given a target state σ and a distance measure (possibly quasi-distance

measure) f,

E(σ) = min
ρ∈DSep

f (σ, ρ), (41)

if σ ∈ DSep =⇒ E(σ) = 0, (42)

if σ /∈ DSep =⇒ E(σ) > 0. (43)

8
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These are entanglement measures which are computed by locating the closest separable state (CSS) σ⋆ to σ,

with respect to the distance measure f. For such measures, the employment of SNNS to parameterize the

separable states ρΩ ∈ DSep is extremely useful, as it offers an efficient way to perform this optimization.

Furthermore, since SNNS are inherently separable, they will always approximate an upper bound on E,

since they are certifiably limited in the quantum correlations that they are able to simulate. This is,

E(σ) � EΩ(σ) = min
ρΩ∈DSep

f (σ, ρΩ). (44)

To generalize, we may construct a measure EK which is analogous to E, but is defined with respect to the

space of all states which are at most K-separable. Defining the set of all states that are K-separable as DK,

then the set of all states that are at most K-separable is given by [32]

D̃K = DK
⋃

|K′|>|K|
DK′ . (45)

Assuming a measure of the form equation (41), then we can define

EK(σ) = min
ρ∈D̃K

f (σ, ρ) � EK
Ω(σ), (46)

if σ ∈ D̃K =⇒ EK(σ) = 0, (47)

if σ /∈ D̃K =⇒ EK(σ) > 0. (48)

EK satisfies all the general properties of an entanglement measure, but now with respect to D̃K, and is

therefore able to classify/quantify more complex forms of entanglement.

Let us specify some important entanglement measures which SNNS can utilize, starting from the

geometric measure of entanglement (GME) [33]. For pure states, the GME is the maximum fidelity that can

be obtained between a target state |σ〉 and the set of pure, at most K-separable states B̃K

EG(|σ〉) = max
|ϕ〉∈B̃K

F(|σ〉, |ϕ〉). (49)

For more sophisticated mixed state approaches, it is expedient to employ any number of density-matrix

distance measures. Several important examples include the trace distance

EC1
(σ) =

1

2
min
ρ∈DSep

‖σ − ρ‖1, (50)

where ‖X‖1 = Tr
√

X†X or the Bures metric

EB(σ) = min
σ∈DSep

[

1 − F2(ρ,σ)
]

, (51)

where F is the Bures fidelity as before. These quantities are readily approximated via SNNS, and easily

specified to different forms of K-separability.

Of particular interest is the REE [29], an entanglement measure that has many applications in quantum

communications and channel capacities [34]. The REE is based on the quantum relative entropy (QRE), a

kind of distance measure between two quantum states where

S(ρ‖σ) = Tr
[

ρ
(

log ρ− log σ
)]

, (52)

such that S(ρ‖σ) ∈ [0,+∞). Due to its asymmetry and the fact that it is infinite on pure states, it is not a

true metric. However, the QRE is an important distinguishability measure between quantum states which

provides access to important entropic quantities such as the Shannon entropy. Minimizing the relative

entropy with respect to the set of all separable quantum states results in the REE

ER(ρ) = min
σ∈DSep

S(ρ‖σ), (53)

which can be readily employed with respect to parameterized NNS. This can of course generalize to EK
R (σ)

given a form of separability. Interestingly, the REE is sub-additive and in general

ER(ρ⊗ σ) � ER(ρ) + ER(σ). (54)

9
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Figure 4. The classification and entanglement quantification of a d = 5 Werner state ̺η,d, defined in equation (56) for
η = −0.75. Using NNS, the REE was approximated to within ǫ < 10−5 precision of the known analytical value ER(̺η,d) ≈ 0.4564
[36]. The entangled network used 10 hidden mixing neurons and 10 hidden pure state neurons, whilst the separable network
used 10 hidden mixing neurons. The density matrices of the (approximate) CSS ρ

Sep
Ω

≈ ̺⋆η,5 and target state approximations are
also shown.

This lets us define a regularized n-shot REE

En
R(ρ) =

1

n
min
σ∈DSep

S(ρ⊗n‖σ) � ER(ρ). (55)

The single-shot, standard REE alone is an extremely difficult quantity to compute, largely due to the

characterization of DSep and the unruliness of the QRE. Its computation has recently been explored using

an active learning strategy [35], in which the authors use active learning to compress DSep into a more

relevant subset of the separable state space that contributes strongly to the REE. Thanks to the implicit

separability of NNS, we may choose an alternative approach where it is possible to optimise some other cost

function such as fidelity/trace distance that will simultaneously minimise the QRE towards the optimal

REE. In doing so, SNNS should allow for the accurate and efficient approximation of ER, and previously

unexplored REEs with respect to other forms of separability EK
R .

4. Applications and results

4.1. Mixed states in d-dimensions

The most substantial generalisation of the methods introduced in reference [28] is the ability to classify and

quantify entanglement in mixed, d-dimensional states. To illustrate this improvement, consider the

d-dimensional Werner state, parameterized by

̺η,d =
(d − η)I⊗2

d + (dη − 1)Fd

d(d2 − 1)
, (56)

where Fd =
∑d−1

i,j=0|ij〉〈ji| is the two-qudit flip operator, Id is the d-dimensional identity operator, and η

characterizes the entanglement properties of the state. For η ∈ [−1, 0] the state is entangled, and we can

easily quantify this entanglement using the analytically known REE [36],

ER(̺η,d) =
1 + η

2
log2(1 + η) +

1 − η

2
log2(1 − η). (57)

In figure 4 we display an optimization procedure for d = 5, η = −0.75 using an entangled learner ρEnt
Ω and a

fully separable learner ρ
Sep
Ω

. The free, entangled learner is able to reconstruct the target Werner state with

ease, and an extremely high fidelity, while the fully separable learner correctly classifies the target as

entangled.

Beyond the obvious entanglement classification, the SNNS is able to quantify the REE of the state, by

monitoring the relative entropy EΩ
R (̺η,d) = S(̺η,d‖ρSep

Ω
) throughout the learning process. As the

optimization converges, EΩ
R → ER, we gather an approximation to the REE of the state. Indeed, under

typical optimization settings, the REE is approximated to within ǫ < 10−5 precision of the known analytical

value ER(̺−0.75,5) ≈ 0.4564, reinforcing the strength of this approach.

10
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Figure 5. Bound entangled state classification. Entangled learners ρEnt
Ω

(blue) are used to confirm the learnability of the target

bound entangled state via NNS. Separable learners ρ
Sep
Ω

(red) are then used to classify the target state thus approximate an upper
bound on the trace distance from the CSS σ⋆

α. We also illustrate density matrices of the approximate CSS and the target state for
α = 3.95.

4.2. Classification of bound entangled states

The positivity of a partially transposed quantum system can be a signature of separability. However it is not

universal, and there exist classes of states which are PPT but are entangled, known as bound entangled (BE)

states. Here we consider the following two-qutrit state,

σ+ = −1

3
(|01〉〈01|+ |12〉〈12|+ |20〉〈20|),

σ− =
1

3
(|10〉〈10|+ |21〉〈21|+ |02〉〈02|),

σα =
2

7
|Φ+〉〈Φ+|+ α

7
σ+ +

5 − α

7
σ−, (58)

where |Φ+〉 = 1√
3
(|00〉+ |11〉+ |22〉) is a d = 3-dimensional Bell state. This state is known to satisfy the

following entanglement properties [37]:

σα is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Separable if 2 � α � 3,

Bound entangled if 3 < α � 4,

Free entangled if 4 < α � 5.

(59)

Here we investigate the target state in the BE region, and show that this bipartite state cannot be optimally

reconstructed via SNNS. Figure 5 depicts the employment of entangled learners ρEnt
Ω

(blue), and fully

separable learners ρ
Sep
Ω

(red) to reconstruct σα across the domain 3 < α � 4.

For all values of α, ρEnt
Ω

is able to reconstruct the state to a high degree of precision such that the trace

distance is ‖σα − ρEnt
Ω

‖1 �10−4. However, the separable learners are unable to reach this level of

reconstruction accuracy. Hence, since σα are learnable via free NNS, the inability of ρSep
Ω

to reconstruct σα

implies that these states are entangled in this region. Since they are also PPT in this region, we have

successfully shown the ability of SNNS to classify bound entanglement.

During each constrained optimization we gather an upper bound on the distance between the target BE

state, and its CSS. As said before, this is an upper bound since ρ
Sep
Ω

offers an approximation to the CSS, and

is potentially loose. Nonetheless the inferred classification is informative. Figure 5 plots the trace distance

‖σα − ρSep
Ω

‖1, shown to steadily rise as α increases, which is expected as σα becomes freely entangled for

4 < α � 5.

4.3. Detection and measurement of multipartite entanglement

The versatility of the K-separable state design means that we can explore entanglement classification and

quantification methods that are otherwise very difficult. In particular, we may construct an NNS protocol

that is able to witness W/GHZ-state entanglement, and measure W/GHZ-type correlations in both pure

11
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Figure 6. Classification and quantification of d = 2 W/GHZ type entanglement using NNS. Panel (a) shows the classification of
W-type entanglement using two NNS designed according to the partition sets KGHZ = {1, 2|2, 3} and KW = {1, 2|2, 3|1, 3}. If a
variational state endowed with KW-separability can optimally reconstruct a target that KGHZ cannot, then it must possess W-type
entanglement. In turn, we locate the closest GHZ-entangled state to |W〉. In Panel (b) this is extended to mixed, depolarized
W/GHZ-states for p = 1

3
. Panel (c) depicts different versions of the REE upper bounds on a depolarised W-state σ

p
W with respect

to depolarising probability. Here we plot three types of REE: The fully separable REE ER (red), the genuine tripartite REE EGen
R

(green) and the strictly W-type entanglement REE EW
R (blue).

and mixed quantum states. Consider the three-qubit W and GHZ states respectively [38, 39]

|W〉 = 1√
3

(

|001〉+ |010〉+ |100〉
)

,

|GHZ〉 = 1√
2

(

|000〉+ |111〉
)

.

These are both maximally entangled three party states. However they possess two inequivalent forms of

tripartite entanglement, such that |W〉 cannot be transformed into |GHZ〉 by means of LOCC (local

operations and classical communications) strategies. The key difference in these forms of entanglement is

their robustness i.e. when a party is removed from a GHZ state the remaining states are separable, whilst a

W-state remains entangled. Therefore a W-state possesses strict bipartite entanglement between all three

parties, whereas GHZ entanglement can be achieved via ‘relayed entanglement’ [40].

To classify between these states, we must define a partition set that is capable of capturing GHZ

correlations, but incompletely capture W-type correlations. The non-disjoint separability set

KW = {1, 2|2, 3|1, 3}, (60)

is capable of learning both W and GHZ entangled states, as it strictly specifies bipartite entanglement

between all parties. However, one can construct the partition set

KGHZ = {i, j|i, k}, i �= j �= k ∈ {1, 2, 3}, (61)

which is any possible permutation of two subsets of KW. Programming an NNS according to KGHZ does not

allow the network to capture direct correlations between qubits j and k, and will therefore provide an

insufficient ansatz to reconstruct W-states. This forms a witness for W-type entanglement; if a target state is

learnable via an NNS endowed with KW-separability, but is not learnable via KGHZ-separability, then the

state is verified as possessing W-type entanglement. Furthermore, by constructing entanglement measures

E
KGHZ
Ω

we are able to measure the amount of W-type correlations within a target state.

Figure 6(a) shows the pure state classification of a three-qubit W-state, where the non-disjoint network

architectures perform classification easily. Note that these three-qubit partitions can be analogously

embedded into larger, n-qudit systems in order to study more complex forms of entanglement.

Realistically, multipartite entangled resources for future quantum communication/computing protocols

will be noisy and imperfect. Generating and distributing multipartite entanglement over noisy quantum

channels is fundamental for many future quantum technologies, particularly for secure communications

and quantum networks [41–48]. Therefore it is a more interesting challenge to consider the classification

and quantification of tripartite entanglement subject to decoherence. For instance, one can consider

versions of |W〉/|GHZ〉 in which each qudit has been passed through a depolarizing channel

ED(ρ) = (1 − p)ρ+
p

dn
I
⊗n
d , (62)
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where n denotes the number of qudits being acted on (in this case n = 3). We denote these noisy,

three-qubit states as

σ
p
W = (1 − p)|W〉〈W|+ p

8
I
⊗3
2 , (63)

σ
p
GHZ = (1 − p)|GHZ〉〈GHZ|+ p

8
I
⊗3
2 . (64)

Using mixed NNS programmed with different separabilities, we may then easily distinguish between the

entanglement properties of noisy W/GHZ-states subject to depolarizing channels. Indeed, figure 6(b) shows

that for p = 1
3

we can perform this classification. Given two learners ρKW
Ω

and ρKGHZ
Ω

, it is clear that both are

able to optimally reconstruct the noisy GHZ-state, whilst only ρKW
Ω

is able to optimally reconstruct the noisy

W-state, completing the classification.

This is taken a step further in figure 6(c) where different versions of the REE of σ
p
W is monitored for

various depolarizing probabilities. This plot describes three forms of REE:

• The standard ER (red) defined on the space of all fully separable states (using the partition set

KFS = {1|2|3}) which measures the amount of any entanglement present.

• The genuine tripartite entangled REE, EGen
R (green), using the bi-separable partition sets

KBS = {i, j|k}, i �= j �= k ∈ {1, 2, 3}, which measures the amount of genuine tripartite entanglement in

the state (W or GHZ correlations).

• The W-REE, EW
R (blue) using the partition set KGHZ in equation (61), which measures the amount of

genuine, tripartite, strictly W-type entanglement within the state.

By employing more complex separable architectures, we may study how different forms of entanglement

behave with respect to environmental properties, such as depolarization. By measuring EGen
R and EW

R for

instance, we may monitor the decoherence of genuine tripartite entanglement, rather than any entangle-

ment as done so by ER. Such characterizations could prove very useful in communication/networking

scenarios, where genuine multipartite entanglement is critical to performance.

It is important to remind the reader that these are upper bounds. The standard REE upper bound is

expected to be tight, as fully separable NNS architectures precisely capture full separability. However, KBS

and KGHZ are degenerate, e.g. KBS = {i, j|k} has 3 unique forms. Since mixed SNNS are restricted to

consistent separabilities, there may be convex combinations of states of these separabilities that produce

tighter bounds. It is unknown if this is the case, nonetheless EGen
R and EW

R provide informative upper bounds

on these unique entanglement measures.

4.4. Ultimate limits for channel capacities

We may provide a more practical example for the use of SNNS in the realm of quantum communications,

using them to approximate upper bounds of quantum channel capacities. Introduced in reference [34], the

Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound is an ultimate upper bound on the two-way assisted

quantum (and secret-key) capacity C(E) for a given quantum channel E . Its derivation is based on the

techniques of channel simulation and teleportation stretching, which have proven to be extremely versatile

in a number of settings [42, 49–53]. An essential class of quantum channels are those which are

teleportation covariant, meaning that they satisfy the condition

E(UρU†) = VE(ρ)V†, (65)

for some pair of teleportation unitaries {U, V}. Let us define the Choi matrix of a d-dimensional channel E
as the result of passing one mode of a maximally entangled state Φ+ through the E , and the other through

an identity channel I
ρE = I ⊗ E[Φ+], (66)

where the maximally entangled state may take the form Φ+ = 1
d

∑d−1
i,j=0|ii〉〈jj|. For teleportation covariant

channels, the ultimate channel capacity can then be upper bounded in a remarkably simple way [34]

C(E) � En
R(ρE) � ER(ρE), (67)

where ER is the standard REE (and En
R its n-shot version). SNNS can be used to approximate upper bounds

on these channel capacities, via constrained reconstruction of the Choi state of the desired quantum

channel.

We consider two important, teleportation covariant, d-dimensional quantum channels in an effort to

illustrate the effectiveness of our approach: the depolarizing channel considered in equation (62), and the

HW channel [54–56]. The Choi states of these channels are the classes of isotropic states and Werner states
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Figure 7. PLOB channel capacity upper bounds computed via separable neural network states. We plot the exact capacities
(continuous plots) against the minimum REE quantities achieved by SNNS (scatter plots, see inset). Panel (a) displays the
communication capacities for d = 2, 3, 4-dimensional quantum systems in a depolarizing channel of depolarizing probability p,
using mixed, qudit SNNS ansatzes. Panel (b) depicts the capacity for Holevo–Werner (HW) qutrit channels. The network states
approximate the REE to a typical accuracy of ǫ < 10−5, hence reproducing the capacities to a very high degree of precision.

respectively, whose REE bounds are known analytically. Therefore, we can compare the numerical

performance of computing the REE via SNNS with the known, exact bounds.

Figure 7(a) reports REE bounds on the capacity of depolarising channels for dimensions d = 2, 3, 4.

Approximating these bounds via separable network states requires the targeted reconstruction of the

isotropic state,

ρED
= (1 − p)Φ+ +

p

d2
I
⊗2
d . (68)

Using a bipartite SNNS ρSep
Ω

, and attempting to learn the target Choi state leads to an approximation of the

REE of said state. Performing this optimization for many depolarizing probabilities p, the results in

figure 7(a) can be produced. This is be achieved to a very high degree of accuracy, reproducing the

analytical bounds with an average error ∼ǫ < 10−5. Furthermore, these bounds can be computed very

efficiently by performing each optimization sequentially, initializing the network parameters using the

results of previous optimizations (see appendix C).

In figure 7(b) we give REE upper bounds for the HW channel, which takes the form

Eη,d
HW(ρ) =

(d − η)I⊗2
d + (dη − 1)ρT

d2 − 1
, (69)

such that T superscript denotes the transposition. The Choi state of the HW channel is the d-dimensional

Werner state, introduced in equation (56). The single shot REE bounds for the HW channel are analytically
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known and given in equation (57), and are independent of dimension d. Again, this single shot bound is

approximated to a good precision, as shown in the results.

For Werner states of dimension d > 2, their REE is known to be strictly sub-additive when η < − d
2
, and

previous studies have explored the two-shot REE for these Choi states [55], which can therefore be used to

tighten these upper bounds. For instance, in figure 7(b) the two-shot capacity can be seen to significantly

tighten the bounds for d = 3. In order to compute these tighter bounds, one must modify the definition of

the n-shot quantities slightly. Now the minimization is performed with respect to the space of all locally

bi-separable states. Consider the n-copy Werner state, and let us label each copy with indices of its modes

{i, j},

̺⊗n
η,d = ̺

{1,2}
η,d ⊗ ̺

{3,4}
η,d ⊗ . . .⊗ ̺

{2n−1,2n}
η,d . (70)

The goal is now to find the CSS that possesses the following bi-separability

σn = σ{1,3,5,...,2n−1}
a ⊗ σ

{2,4,6,...,2n}
b , (71)

where we have permuted the labels into a bi-separable decomposition such that each state belongs to

exclusively even or odd mode labels. This corresponds to a situation where two users each possess n local

modes, and their goal is to produce the closest state to ̺⊗n
η,d that is bi-separable between them. In general this

is a very difficult task, and while beyond the scope of this paper, poses as an interesting future application

for SNNS.

5. Conclusions and outlook

We have generalized the concept of NNS with programmable separability to mixed, d-dimensional quantum

states. We discussed a number of neural network architectures for the description of quantum states, and

detailed how their entanglement properties may be controlled via constraints placed on network

connectivity. It was shown that network connectivity controls entanglement structure on a very specific

level, requiring distinctions between certain forms of entanglement. Outlining one of many possible

optimisation protocols, methods of classification and quantification via SNNS have been logically

developed, and applied in a number of important settings. We then studied a practical application of these

tools in the bounding of ultimate quantum channel capacities, showing that they can reproduce the PLOB

bounds for DV channels with high precision.

There are a number of valuable future directions in which SNNS may be explored and expanded. While

an optimization scheme based on the vectorized fidelity is effective for a variety of applications (as shown in

this work) more sophisticated optimization protocols could enhance performance for more specific

entanglement measures. In particular, a gradient descent method that directly minimizes the relative

entropy (or some variant thereof) would provide a more effective computation of the REE for complex

states. This would also lend well to the study of n-shot REE quantities with applications in quantum

channel capacities, and the characterization of more complex BE states (such as those constructed from

un-extendible product bases). Combining these tools with those from practical quantum tomography could

also be extremely useful, e.g. where SNNS may be used to certify the effectiveness an entanglement

distribution protocol.
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Appendix A. Neural network mixed state ansatz

We briefly review the construction of the mixed NNS ansatz (see reference [19–21] for more detailed

derivations) to illustrate the emergence of the classical mixing state and pure state ansatzes. A generic

density-matrix element with respect to row and column basis vectors {α,β} can be expressed as

ρα,β =
∑

n

pnφn(α)φ∗
n(β), (A1)

where pn is the classical probability of a pure state φn existing within ensemble, and the sum
∑

n may run

over many contributing states.

We can use NNS in order to translate this expression into a variational ansatz. As stated in the main text,

the inherent advantage to a pure NNS is that its output is independent from the activations of the hidden

layer h ∈ {−1, 1}nh , which consists of nh neurons. Prior to tracing out this hidden layer, a pure NNS

wavefunction is given by,

ΨΠ(s) =
∑

h

exp

⎛

⎝

nv
∑

k=1

aksk +

nh
∑

j=1

bjhh +

nv ,nh
∑

k,j=1

Wkjhjsk

⎞

⎠ . (A2)

Using this NNS wavefunction, it is then easy to construct a pure density-matrix, such that σα,β = ΨΠ(α)

Ψ∗
Π(β), using two visible layers in order to encode density-matrix entries, as shown in figure (2).

In order to construct the mixed state ansatz, we introduce an additional mixing layer m ∈ {−1, 1}nm

which is used to represent the classical probabilities pn = exp
(

∑

pcpmp

)

, where cp ∈ R are the real-valued

hidden mixing neural biases. This mixing layer is interconnected with the visible layers in order to capture

classical correlations, mediated via the weight matrix Ukp ∈ Cnv×nm . Combining all the RBM contributions

the ansatz reads,

ρα,β =
∑

m

∑

hα ,hβ

exp

⎛

⎝

nm
∑

p=1

cpmp

⎞

⎠× exp

⎛

⎝

∑

k

akαk +
∑

j

bjhα j +
∑

k,j

Wkjhα jαk +
∑

k,p

Ukpmpαk

⎞

⎠

× exp

⎛

⎝

∑

k

a∗kβk +
∑

l

b∗l hβ l +
∑

k,l

W∗
klhβ lβk +

∑

k,p

U∗
kpmpβk

⎞

⎠ .

(A3)

Since there are no intra-layer connections, the hidden layers can be effectively traced out, leaving the mixed

state ansatz used in equation (13).

In this work, we make use of a matrix element-wise version of the mixed state decomposition in

equation (A1), such that

ρ =
∑

α,β

∑

n

pnφn(α)φ∗
n(β)|α〉〈β| = P ⊙ σ, (A4)

where P describes classical contributions to the density-matrix, while σ describes quantum contributions

from pure states. This representation is readily accessible via the NNS ansatz, and extremely useful for

programming forms of entanglement. Importantly, it is by construction that the contributions from the

mixing layer are purely classical. On its own, the mixing layer is capable of simulating classical correlations

only, and is therefore implicitly separable.

Appendix B. Learning with complex-exponential ansatz for mixed states

As discussed in section 1.1, one can make use of a restructuring of the mixed state ansatz into complex

exponential form in order to take better control of the learning procedure. Indeed, the total mixed state can

be expressed as

ρα,β
Ω,Π,Ξ = ei log(ΦΞ(α,β)ϑΩ(α,β))ΓΠ(α,β)rΩ(α,β), (B1)

such that the state is constructed from three variational parameter sets, where rΩ and ΓΠ assume

responsibility for the magnitude of any element of the density-matrix, while functions ΦΞ and ϑΩ are

responsible for the complex phase of such elements. Consider a target state χ which also admits the

following decomposition

χα,β = λ(α,β)ei log ξ(α,β). (B2)
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The pure density-matrix phase/amplitude functions ΦΞ and ΓΠ respectively, are parameterized by real

valued parameter sets. Furthermore, they are decomposed with respect to their pure state wavefunctions, as

shown in equation (14). The logarithmic derivatives of the pair of pure state phase functions take the form

∂ log |ΦΞ〉
∂Ξk

=
∑

α,β

(

∂ log ϕ(α)

∂Ξk

− ∂ log ϕ(β)

∂Ξk

)

, (B3)

while the amplitude function derivatives are

∂ log |ΓΠ〉
∂Πk

=
∑

α,β

(

∂ log σ(α)

∂Πk

+
∂ log σ(β)

∂Πk

)

. (B4)

Meanwhile, the mixing state phase/amplitude wavefunctions ϑΩ and rΩ respectively are based on complex

parameters. In this case, it is expedient to take derivatives with respect to real and imaginary components,

i.e. ∂ log |rΩ〉
∂ Re(Ωk)

, ∂ log |rΩ〉
∂ Im(Ωk)

, ∂ log |ϑΩ〉
∂ Re(Ωk)

and ∂ log |ϑΩ〉
∂ Re(Ωk)

which can be treated separately. All these derivatives take real,

compact and easily derived forms with respect to the neural network parameters, making gradient

computations straightforward.

The learning procedure of minimising the negative logarithmic fidelity between a target vectorized

density-matrix |χ〉 and the mixed NNS is given by the usual update rule in section 3. Defining the quantity

∆(α,β) = 〈ρΩ,Π,Ξ|χ〉−1 e
i log

ΦΞ(α,β)ϑΩ(α,β)

ξ(α,β) , (B5)

where 〈ρΩ,Π,Ξ|χ〉 is the vectorized overlap between the variational and target state, we can then make use of

the following gradients,

∇ΓΠ

k L =
∑

α,β

[

r2
Ω(α,β)ΓΠ(α,β)

|ρΩ,Π,Ξ|2
− λ(α,β)rΩ(α,β)Re [∆(α,β)]

]

· OΠ
k |ΓΠ〉, (B6)

∇rΩ
k L =

∑

α,β

[

Γ2
Π(α,β)rΩ(α,β)

|ρΩ,Π,Ξ|2
− λ(α,β)ΓΠ(α,β)Re [∆(α,β)]

]

· OΩr
k |rΩ〉, (B7)

∇ΦΞ

k L = −
∑

α,β

[

rΩ(α,β)λ(α,β)ΓΠ(α,β)

ΦΞ(α,β)
Im [∆(α,β)]

]

· OΞ
k |ΦΞ〉, (B8)

∇ϑΩ
k L = −

∑

α,β

[

rΩ(α,β)λ(α,β)ΓΠ(α,β)

ϑΩ(α,β)
Im [∆(α,β)]

]

· OΩϑ
k |ϑΩ〉. (B9)

Here, |ρΩ,Π,Ξ|2 is the magnitude of the vectorized density-matrix. Furthermore OΩr
k = diag

(

∂Ωk
log |rΩ〉

)

and OΩϑ
k = diag

(

∂Ωk
log |ϑΩ〉

)

are the diagonal matrices with mixing layer gradients. Again, these are

treated separately with respect to real and imaginary valued parameters in Ω.

Appendix C. Details on numerical simulation

The gradient descent optimization procedures utilized throughout this work were facilitated by an adaptive

learning rate scheme using the AdaMax optimizer [57] with a typical initial learning rate of the order

ηinit ∈ [10−4, 10−3]. The number of learning iterations varied dependent on the complexity of the target

state, i.e. complexity of entanglement needed to be simulated/classified, the dimension of the qudit system

being considered (and therefore size of the target density-matrix). Since the time-to-convergence is shorter

for states with smaller degrees of entanglement, it is intuitively more efficient to perform classification with

a separable NNS than to explicitly reconstruct an entangled state.

A scenario in which the efficiency of learning can be greatly enhanced is the study of evolving, or

‘nearby’ states. Consider the results from figures 5–7. In a number of instances, we are classifying/

quantifying the entanglement of a target state which is changing incrementally (and by a small amount)

throughout an interval. Consider an NNS ρΩ that learns a state σ. It is logical to assume that if the target

state is perturbed/evolved by some small amount, σ′ = σ + δσ, the network Ω will only need to be

optimized by a small amount Ω′ = Ω + δΩ. Therefore, when studying evolving target states, it is extremely

useful to initialize each state using the parameter distribution of the previous learner. This not only

simplifies learning and performance, but increases efficiency dramatically; the initial target can be

reconstructed over a number of optimization steps S, but subsequent alterations to the network only require

a fraction of S steps.
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Importantly, when performing this method with SNNS one should ensure that the chosen initialization

complies with the entanglement properties of the separable variational state, i.e. a separable network should

be initialized with a nearby separable network state. If an SNNS is initialized in with the network

parameters of a nearby entangled NNS, when separability conditions are imposed the network state will

change rapidly and potentially end up in a state that is very different to the target, contrary to the desired

effect.
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