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Entropy based Termination Criterion for

Multi-objective Evolutionary Algorithms
Dhish Kumar Saxena, Arnab Sinha, João A. Duro, and Qingfu Zhang

Abstract—Multi-objective Evolutionary Algorithms evolve a
population of solutions through successive generations towards
the Pareto-optimal Front. One of the most critical questions faced
by the researchers and practitioners in this domain, relates to the
number of generations that may be sufficient for an algorithm
to offer a good approximation of the Pareto-optimal Front, for a
given problem. Ironically, till date this question largely remains
unanswered and the number of generations are arbitrarily fixed
a priori, with potentially punitive implications. If the a priori
fixed generations are insufficient, then the algorithm reports sub-
optimal solutions. In contrast, if the a priori fixed generations are
far–too-many, it implies waste of computational resources. This
paper proposes a novel entropy based dissimilarity measure that
helps identify on-the-fly the number of generations beyond which
an algorithm stabilizes, implying that either a good approximation
has been obtained, or that it can not be obtained due to the
stagnation of the algorithm in the search space. Given that,
in either case no further improvement in the approximation
can be obtained, despite additional computational expense, the
proposed dissimilarity measure provides a termination criterion
and facilitates a termination detection algorithm. The generality,
on-the-fly implementation, low computational complexity, and the
demonstrated efficacy of the proposed termination detection
algorithm, on a wide range of multi- and many-objective test
problems, define the novel contribution of this paper.

Index Terms—Evolutionary Multi-objective Optimization,
Many-objective Optimization, Entropy, Termination Detection
Algorithm.

I. INTRODUCTION

AN
Optimization problem characterized by M objec-

tives (assuming minimization, without loss of gen-

erality), n variables, J-inequality and K-equality constraints,

can be stated as:

Minimize F(x) = (f1(x), . . . , fM (x))⊺,
subject to gj(x) ≤ 0, j = 1, . . . , J ;

hk(x) = 0, k = 1, . . . ,K;
where x = (x1, x2, . . . , xn)⊺,

xL
i ≤ xi ≤ xU

i , i = 1, . . . , n.











(1)

If M = 1, it is referred to as a single-objective problem (SOP),

and if M ≥ 2, it is referred to as a multi-objective optimization
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problem (MOP). If, in particular, M ≥ 4, then the problem

is seen as a special class of MOP, and referred to as a many-

objective optimization problem (MaOP) [1]–[3]. In (1), the

set of all x = (x1, x2, . . . , xn)
⊺ which satisfy each of the

inequality and equality constraints define the feasible decision

(variable) space Ω, and the corresponding F(x) ∈ R
M define

the attainable objective space. If the objectives in an MOP

are conflicting, then no single solution can simultaneously

optimize all the objectives. Hence, the notion of optimality

in the context of MOPs is associated with a set of solutions

which offer different trade-offs among the objectives.

The best trade-offs among the objectives can be defined in

terms of Pareto optimality, as explained below. A solution x

is said to dominate another solution x
′, iff ∀i ∈ {1, . . . ,M} :

fi(x) ≤ fi(x
′) and ∃i ∈ {1, . . . ,M} : fi(x) < fi(x

′). The

subset of Ω which contains the elements that are not dominated

by any other element of Ω is referred as the Pareto-optimal

set (Ω∗), while its image in the objective space is called the

Pareto-optimal front (POF) [4].

For continuous problems, Ω∗ and the POF usually contain

an infinite number of solutions. However, from a practical

perspective, finding only a finite set of solutions that are

evenly distributed across the POF is considered sufficient. This

is because: (i) generating the entire Pareto-optimal set can

be computationally expensive or infeasible, and (ii) in real-

world applications, the decision maker may only be interested

in a representative set of Pareto-optimal solutions, towards

picking the most preferred solution for implementation. Given

this, the goal pragmatically reduces to finding a good POF–

approximation, implying a set of solutions characterized by

good convergence (solutions either lying on the true POF or

being significantly close to it); and good diversity (solutions

well distributed across the true POF).

Over the last two decades, Multi-objective Evolutionary Al-

gorithms (MOEAs) have been effective tools for solving real-

world MOPs [5]. Ironically, a critical question inevitably faced

by every MOEA practitioner, as to how many generations a

given MOEA is to be run to ensure a good POF–approximation

(for a given problem), has been largely overlooked. In the

absence of an adequate answer, the common practice is to

arbitrarily fix the number of generations a priori or to run an

MOEA till the available computational budget is exhausted.

However, this approach has several pitfalls, in that:

• an MOEA may report sub-optimal solutions if the a

priori fixed generations are insufficient, or the available

computational budget is low. In contrast, far-too-many

a priori fixed generations, or very high computational

budget may lead to a waste of computational resources.
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• it is devoid of any inbuilt-intelligence for: (i) an intermit-

tent or final assessment of how good is the obtained POF–

approximation vis-à-vis the true POF, and (ii) prompting

corrective measures, in case an MOEA gets stuck in a

part of the POF or the search space excluding the POF.

Given the above, the distinctive contributions of this paper

include:

• ideation of the notion of a robust termination criterion

for MOEAs: recognizing that a termination criterion

should be practically usable for any given MOEA and

an optimization problem, further backed by the iden-

tified research gap (Section II), this paper ideates that

a termination criterion be referred as robust, if it is:

(i) generic, in the sense that it does not require an

a priori knowledge of the POF, and neither depends

on MOEA-specific operators, nor on the MOEA-related

performance indicators, (ii) implementable on-the-fly, and

(iii) computationally efficient, allowing scalability with

the number of objectives.

• proposition of a robust termination criterion and a termi-

nation detection algorithm: an entropy based dissimilarity

measure with a computational complexity that is linear

in both the number of objectives and population size has

been proposed, which helps identify on-the-fly the number

of generations beyond which an MOEA stabilizes and

fails to improve the quality of solutions any further. This

provides a termination criterion, to implement which, a

termination detection algorithm is formalized.

• extensive simulations and results: the efficacy of the

proposed termination detection algorithm is demonstrated

on MOPs and MaOPs, at a scale that is unprecedented in

the existing literature on this issue. Here, the results are

based on 1, 440 simulations, performed on 23 MOPs and

21 MaOPs. For each problem, the simulations correspond

to three different settings of an algorithmic parameter (np,

explained later), and 10 different POF–approximations

obtained by an MOEA. While NSGA-II is used as the

underlying MOEA for each of the 44 test cases, ϵ-MOEA

is used for four MaOPs.

The remaining of this paper is organized as follows: Section II

reviews the existing literature on termination algorithms for

MOEAs. The formative concepts for this paper relating to en-

tropy, relative entropy, and probability distribution estimation

are presented in Section III, while their implementation in the

context of MOEAs is discussed in Section IV. A dissimilarity

measure is proposed in Section V, and the resulting MOEA

termination detection algorithm is presented in Section VI.

The chosen test problems and associated experimental settings

are discussed in Section VII. The experimental results are

discussed in Section VIII, the potential future directions in

Section IX, while the paper concludes with Section X.

II. PAST RESEARCH ON TERMINATION CRITERION FOR

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

The quest for a termination algorithm for MOEAs has

gained prominence in the last decade or so, following some

earlier research [6]–[9] on the conditions for convergence for

MOEAs, and emphasis on the significance of this issue in [10].

The existing termination algorithms are highlighted below.

1) An online termination algorithm has been proposed

in [11], where NSGA-II [12] is terminated when the

variation of the maximal crowding distance mean gets

below a user-defined threshold (interpreted as stabiliza-

tion of the population).

2) The algorithm in [13] terminates an MOEA when the

ratio of dominated solutions in two consecutive genera-

tions stabilizes, and is demonstrated on NSGA-II and

SPEA2 [14], and on PESA [15] in [16]. Its variant

in [17] proposes termination when the variance of the

normalized objective values stabilizes, and is demon-

strated on NSGA-II, SPEA2, and HypE [18].

3) The offline convergence detection algorithm in [19],

gathers populations from a series of MOEA runs, uses

Kolmogorov-Smirnov statistical test [20] to gauge the

changes in a set of performance indicators [21] (genera-

tional distance, hypervolume, and spread indicator), and

infer about convergence and termination. Its online im-

plementation in [22] replaces the Kolmogorov-Smirnov

statistical test by the χ2-variance test and t-test [20].

The above offline and online implementations have also

been compared in [23].

4) The criterion in [24] detects convergence and calls for

an MOEA’s termination based on the adjustment of

the indicator values (like hypervolume, ϵ-indicator, and

mutual-dominance-rate (ratio of dominated solutions))

to a uniform model, computed through the least squares

approximation and slope of the model. Its utility has

been demonstrated on NSGA-II, SPEA2 and PESA.

5) The criterion in [25] computes the ratio of the number

of members in a preceding archive (of non-dominated

solutions) that are retained in the current archive, to

the size of the current archive. When the improvement

in this ratio over successive generations falls below a

threshold, the MOEA’s termination is recommended.

6) The criterion in [26] defines a stability score for each

solution, as the number of solutions in the neighbor-

hood (defined in the variable space) that dominate it.

An MOEA is terminated, if the stability score for the

population (average of all solutions) tends to zero.

7) In [27], the Karush-Kuhn-Tucker (KKT) [28] optimal-

ity conditions are utilized, a KKT-proximity measure

(shown to reduce sequentially to zero as the iterates

approach the KKT point) is proposed, which in turn

guides MOEA termination.

It may be noted that most of the approaches discussed above

suffer from one or more of the following limitations:

• reliance on MOEA-specific operators which may ad-

versely affect the generality of the termination algo-

rithms: for instance, the online termination algorithm pro-

posed in [11] depends on the crowding distance operator

which is used in NSGA-II but not in many other MOEAs.

• reliance on MOEA-related performance indicators which

could lead to premature termination: for instance, the
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termination algorithm in [13] relies on utilizing the ratio

of dominated solutions in a given population. Notably, in

the case of MaOPs, it has been well reported in literature

that almost the entire population becomes non-dominated

very early in the evolutionary search [29], causing the

loss of selection pressure for convergence to the POF.

While it may be logical to terminate an MOEA when the

ratio of dominated solutions stabilizes (low potential for a

good POF–approximation), it could still imply premature

termination in terms of the POF–representation [30].

In that: (i) an MOEA termination guided by the ra-

tio of dominated solutions may lead to a poor POF–

approximation and also poor POF–representation [30],

and (ii) if the MOEA is allowed to run beyond the in-

ferred termination, significant improvements in the POF–

representation could be achieved, which paves way for

effective objective-reduction [30]–[32] in MaOPs.

Similarly, the algorithm based on the variance of normal-

ized objective values [17] could lead to premature termi-

nation, because: (i) even for solution sets with largely

disparate in-range distribution, the variance may become

comparable, early in the evolutionary search process, and

(ii) if the underlying MOEA is allowed to run further

(beyond the inferred termination), even the in-range dis-

tribution of solutions may become comparable (besides

the variance), for populations in successive generations.

• paradoxical requirement of a priori knowledge of the

POF: for instance, the termination algorithm in [19]

utilizes an indicator like generational distance, which can

not be computed unless the POF is known a priori.

• poor scalability with the number of objectives: the termi-

nation algorithms based on generational distance [19] and

hypervolume [19], [24] may not be usable for MaOPs,

since the computational cost of computing these indica-

tors grows exponentially with the number of objectives.

Hence, it is fair to infer that the impelling need for a robust

termination criterion largely remains unfulfilled, implying a

critical research gap which this paper aims to bridge.

III. FORMATIVE CONCEPTS: ENTROPY, RELATIVE

ENTROPY, AND PROBABILITY DISTRIBUTION ESTIMATION

The formative concepts for this paper are presented below.

In information theory, entropy as a concept introduced by

Shannon [33] measures the uncertainty associated with the

prediction of the outcome of a random variable, which is

equivalent to its information content (with the opposite sign).

Let X be a discrete random variable with cardinality T (each

element, given by xi) and probability distribution given by

p(X). Then, entropy can be defined as,

H(X) = −
T
∑

i=1

p(xi) log p(xi), (2)

Notably, H(X) only quantifies the information within the

probability distribution p(xi). For comparing two different

distributions, a concept known as relative entropy (also known

as Kullback–Leibler divergence [34]) quantifies how close a

probability distribution p(xi) is to a model (or candidate)

distribution q(xi). It can be used as a dissimilarity measure

between two stochastic processes. For a discrete domain, this

measure can be expressed as:

KL(p∥q) = −
T
∑

i=1

p(xi) log

{

q(xi)

p(xi)

}

. (3)

Notably, the following characteristics hold true for

KL(p∥q): (i) is always non-negative, i.e., KL(p∥q) ≥ 0; (ii)

it is not symmetric since KL(p∥q) ̸= KL(q∥p); and (iii) only

in a case when p(X) = q(X) then KL(p∥q) = KL(q∥p).
Towards computing entropy and relative entropy, the prob-

ability distribution p(xi) and q(xi) may be estimated using

parametric, semi-parametric, or non-parametric methods [35].

The non-parametric estimation methods are most flexible

since they do not make assumptions about the probability

distribution functional form, and the density estimation is

entirely data-driven. Two most commonly used methods in this

category are multivariate histograms [36] and kernel density

estimation [37], [38]. The former being a simple and fast

method, is utilized in this work and is discussed below.

Given a D-dimensional space, the multidimensional his-

togram method partitions each of the D dimensions into a

fixed number of intervals (nb), defined by an anchor point

(often, the origin) and bin widths for each dimension, namely,

h1, . . . , hD. These partitions result in nb
D number of cells,

jointly constituting a hyperrectangle with its hypervolume

given by
∏D

j=1
hj . The probability distribution function as-

sociated with cell xi is given by

p(xi) =
k(xi)

N̂
, (4)

where N̂ represents the total number of data points, and k(xi)
denotes the number of data points that exist in the cell xi.

Clearly, with an increase in the number of dimensions (D), the

number of cells grow exponentially (nb
D), and hence, fixing

nb (on which the smoothing of the probability distribution

depends) is a major challenge associated with this method.

IV. MULTIDIMENSIONAL HISTOGRAM ALGORITHM FOR

MOEA POPULATIONS

This paper, as pointed out earlier, aims to develop a ter-

mination criterion for MOEAs, by proposing a dissimilarity

measure capable of detecting their stabilization. This measure

(proposed later) utilizes the concept of relative entropy, where

in, the two distributions to-be-compared correspond to MOEA

populations (objective vectors of the feasible non-dominated

solutions) in two successive generations, say, P and Q. Their

probability distributions, say, p and q, respectively, are com-

puted by using the multidimensional histogram method, whose

complexity grows exponentially with the dimension D that

needs to be partitioned. In the current context, D corresponds

to the number of objectives (M ), which could be quite large

for a given optimization problem. Recognizing the challenge

of complexity, this section proposes a novel implementation

of the multidimensional histogram method, such that the

associated complexity reduces to O(N×M) (quantification in

Section VI-B), where N represents the population size used

by an MOEA, i.e., the size of each, P and Q.
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Fig. 1: Highlighting the effect of population dispersion on the

number of cells required for partitioning, and assignment of

a unique cell identification number to each cell. The numbers

0-24 inside the cells represent the cell numbers.

A. Computationally Efficient Data Structures

Towards a computationally efficient partitioning of the M -

dimensional objective space, it is assumed that all the bins

have the same width, and the use of following data structures

is proposed:

• JI : a set of cells representing the intersection region for

P and Q, where each cell satisfies p(xi) > 0 & q(xi) > 0
• PNI : a set of cells representing the non-intersection

region, where each cell satisfies p(xi) > 0 and q(xi) = 0
• QNI : a set of cells representing the non-intersection

region, where each cell satisfies p(xi) = 0 and q(xi) > 0
• C: a vector that stores cells from regions JI and PNI ;

• Cq: a vector that stores cells from region QNI .

• Pc and Qc: vectors that store the number of solutions in

each cell of C, contributed by P and Q, respectively.

• Qcq: a vector that stores the number of solutions in each

cell of Cq , contributed by Q.

For a sample illustration, consider P and Q comprising of

six solutions each, as shown in Figure 1. Notably:

• |JI | = 2; |PNI | = 3; |QNI | = 4; |C| = 5; |Cq| = 4
• C ≡ {8,9,16,17,21}; Cq ≡ {3,4,12,20}
• Pc ≡ {1,2,1,1,1}; Qc ≡ {1,0,1,0,0}; Qcq ≡ {1,1,1,1}.

Interestingly, a total of only nine cells are required to partition

P and Q combined, as opposed to 25 (n2
b). This reflects on

to the utility of the proposed data structures.

B. Assignment of a Unique Identification Number to a Cell

To enable a cell’s storage in C or Cq , it needs to be assigned

a unique identification number. Let s = {sj ; j = 1, . . . ,M} be

a solution either from population P or Q. Then the procedure

for assignment of a unique identification number for a cell

occupying s, is as follows:

• let Omax,j and Omin,j define the maximum and mini-

mum values, respectively, for the jth objective, amongst

all solutions in the combined population, namely P ∪Q

• let a function named GetCell id return a value (c), to

help identify the cell that a solution belongs to, and then:

1) map the solution into the range [0, 1] by:

s̄j =
sj −Omin,j

Omax,j −Omin,j

, for j = 1, . . . ,M ; (5)

2) let a vector B =
{

0

nb
, 1

nb
, . . . , nb

nb

}

with size nb+1

define a set of intervals such that:

Bkj
≤ s̄j ≤ Bkj+1, kj ∈ [0, . . . , nb − 1] (6)

3) determine the unique cell identification number, as:

c =
M
∑

j=1

kj × n
j−1

b . (7)

For illustration, consider the solutions A, B, and C in

Figure 1, where M = 2 and nb = 5. The cell identification

number for A (k = {1, 4}), is given by c = 21, while for B

and C (k = {3, 1}), c = 8, implying that solutions belonging

to the same cell have the same cell identification number.

C. Multidimensional Histogram Algorithm: General Steps

The general steps of the multidimensional histogram algo-

rithm (Algorithm 1) are as follows.

1) Find a cell corresponding to each solution in P , by

using GetCell id function (described in Section IV-B).

If the cell already exists in vector C, increment by one

the element in the vector Pc that corresponds to the

identified cell. Otherwise, proceed as follows:

a) add the cell to vector C, to keep a track of all

found cells for population P ;

b) update the vector Pc for the solution found, by

initializing the corresponding cell position as 1;

c) for the same position, initialize vector Qc with the

value 0 (no solution from population Q exists).

Here (Steps 2-12), the number of solutions from P that

fall into each cell are counted. Each cell is stored in

C, while the number of solutions are stored in Pc. The

corresponding position in Qc is initialized as 0.

2) Find a cell corresponding to each solution in Q, by using

GetCell id function. If the cell already exists in vector

C, increment the corresponding position in vector Qc.

Otherwise, proceed as follows:

a) If the cell exists in vector Cq , increment by one

the element in the vector Qcq .

b) Else: (i) add the cell to vector Cq to keep a track

of all found cells for population Q that were not

found for population P and (ii) initialize with value

1 the corresponding position in vector Qcq .

Here (Steps 13-27), the number of solutions from Q

that fall into each cell are counted, by distinguishing

between: (i) the cells already occupied by population

P (corresponding to vector C and counted by vector

Qc) and (ii) cells only occupied by population Q (cor-

responding to vector Cq and counted by vector Qcq).

To summarize, Algorithm 1 ensures that for P and Q, the

number of solutions that exists in each cell are stored in vectors

Pc, Qc and Qcq . This allows for computation of the probability

distribution associated with each cell (Equation 4), a step that

is directly implemented in Algorithm 2 (Section VI).
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Algorithm 1: Multidimensional Histogram Algorithm for

two MOEA populations.

Input:
P : feasible and non-dominated population corresponding to instant t
Q: feasible and non-dominated population corresponding to instant
t+ 1
nb: number of bins used to partition the search space equally among all
objectives
Output:
C: vector that stores cells from regions JI and PNI

Cq : vector that stores cells from region QNI

Pc: vector that stores the number of solutions within each cell of C for
population P
Qc: vector that stores the number of solutions within each cell of C for
population Q
Qcq : vector that stores the number of solutions within each cell of Cq

for population Q
1 begin

2 for each s in P do

3 c ← GetCell id(s, nb)
4 if c exist in C then

5 k = {index position of c in vector C}
6 Pc,k = Pc,k + 1 /* increment Pc,k by 1 */

7 else

8 C = {C, c} /* concatenate c at the end of

C */

9 Pc = {Pc, 1} /* concatenate 1 at the end

of Pc */

10 Qc = {Qc, 0} /* concatenate 0 at the end

of Qc */

11 end

12 end

13 for each s in Q do

14 c ← GetCell id(s, nb)
15 if c exist in C then

16 k = {index position of c in vector C}
17 Qc,k = Qc,k + 1 /* increment Qc,k by 1 */

18 else

19 if c exist in Cq then

20 k = {index position of c in vector Cq}
21 Qcq,k = Qcq,k + 1 /* increment Qcq,k by

1 */

22 else

23 Cq = {Cq , c} /* concatenate c at the

end of Cq */

24 Qcq = {Qcq , 1} /* concatenate 1 at the

end of Qcq */

25 end

26 end

27 end

28 end

V. PROPOSED DISSIMILARITY MEASURE

This section proposes a dissimilarity measure that helps

identify on-the-fly the number of generations beyond which

an MOEA could be considered to have stabilized, thereby,

providing a criterion for its termination.

For a cell xi ∈ JI (intersection set), solutions from both P

and Q exist, and the dissimilarity measure, namely D(p, q)I ,

can be given by

D(p, q)I =KL(p∥q) +KL(q∥p), where (8)

KL(p∥q) =−
∑

xi∈JI

p(xi)

2
log

{

q(xi)

p(xi)

}

, (9)

KL(q∥p) =−
∑

xi∈JI

q(xi)

2
log

{

p(xi)

q(xi)

}

(10)

Furthermore, if D(p, q)YP
and D(p, q)YQ

are to represent

the dissimilarity measures for the cells xi ∈ PNI and xi ∈
QNI , respectively, the combined dissimilarity measure for the

non-intersection sets, namely D(p, q)Y , can be given by

D(p, q)Y =D(p, q)YP
+D(p, q)YQ

, where (11)

D(p, q)YP
=−

∑

xi∈PNI

p(xi)

2
log p(xi), (12)

D(p, q)YQ
=−

∑

xi∈QNI

q(xi)

2
log q(xi) (13)

Finally, the dissimilarity measure between two MOEA pop-

ulations, denoted by D(p, q), can be defined by Equation 14.

D(p, q) = D(p, q)I +D(p, q)Y . (14)

Notably, D(p, q) has the following characteristics:

• it is non-negative: D(p, q) ≥ 0
• it is symmetric: D(p, q) = D(q, p)
• if p(X) = q(X) ∀X (implying p(xi) = q(xi) ∀xi ∈ JI ,

and PNI = QNI = ∅), then D(p, q) = 0.

• if p(X) ̸= q(X) ∀X , then the magnitude of D(p, q) can

not be gauged, except that it will grow as more and more

data points fall into non-intersection regions.

In the current context, where the data sets P and Q represent

MOEA populations in successive generations, the D(p, q)
measure may be high during the initial generations, due to

significantly dissimilar populations. Subsequently, it may:

(I) retain high and largely varying values, if MOEA popu-

lations keep traversing in the non-POF objective space

(II) retain high but almost similar values, if MOEA popula-

tions stagnate in the non-POF objective space

(III) achieve a zero or near-zero value when MOEA popula-

tions over successive generations become largely similar.

This may occur in scenarios where an MOEA:

a) offers a good POF–approximation (good conver-

gence to & good distribution across the POF)

b) stagnates in a part of the true POF (good conver-

gence to & poor distribution across the POF)

These characteristics of the dissimilarity measure, promise

to counter some of the pitfalls in fixing of the number of

MOEA-generations a priori or running it till the available

computational budget is exhausted. In that:

• an MOEA termination based on population stabilization

is not arbitrary, and the likelihood of sub-optimal solu-

tions or wastage of computational resources, reduces.

• a zero or near-zero value of D(p, q) could be treated

as a necessary condition for a good POF–approximation.

Clearly, if the necessary condition is:

– violated (Items (I) and (II) above), then the lack of

good POF–approximation could be guaranteed.

– met (Item (III) above), then it provides clues to

two distinct possibilities on the quality of POF–

approximation, following which either the MOEA

could be terminated, or it could be treated as an

indicator of the right timing for MOEA parameters

to be explored/corrected (more in Section IX).

Given the state-of-the-art, where most existing MOEAs:
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• provide a good POF–approximation in the case of two-

and three-objective problems, the proposed dissimilarity

measure may achieve a zero or near-zero value.

• fail in providing a good POF–approximation in the case

of MaOPs, the proposed dissimilarity measure may retain

high values.

In either case, the underlying MOEA could be terminated

because the quality of POF–approximation can not be further

improved, despite additional computational expense.

VI. MOEA TERMINATION DETECTION ALGORITHM

This section proposes an MOEA termination detection al-

gorithm (Algorithm 2), by integrating: (a) probability den-

sity estimation by a multidimensional histogram algorithm

(Algorithm 1), (b) computation of the dissimilarity measure

(Equation 14), and (c) a termination criterion based on the

mean and standard deviation of the dissimilarity measures.

While the items (a) and (b) have previously been discussed in

detail, the termination criterion (item (c)) is introduced below.

A. MOEA Termination Criterion

MOEAs evolve a randomly initialized population through

several iterations (generations) of the variation (such as

crossover and mutation) and selection operators, aiming to

arrive at the POF. MOEAs are stochastic in nature, and hence,

it is fair to expect variations in the dissimilarity measures in

successive MOEA generations. In general, for a given problem

(difficulty influenced by the number and nature of objec-

tives, constraints, and variables), and pre-specified MOEA-

parameter settings, the extent of variation may depend on the

advancement of MOEA population (articulated in Items (I)–

(III), Section V) vis-à-vis the true POF.

Let i denote the generation-counter, t denote the current

generation, Di denote the D(p, q) value at ith generation; and

Mt & St denote the mean & standard deviation of D(p, q)
measures from the first to the tth generation, as given by

Equations 15 and 161, respectively.

M1 = D1 and Mt =
1

t

t
∑

i=1

Di, where t ≥ 2 (15)

St =
1

t

t
∑

i=1

(Di −Mt)
2 (16)

Towards a robust algorithm for termination detection (Al-

gorithm 2), it is proposed that when the mean and standard

deviation of the dissimilarity measures in a pre-specified

number of successive generations (ns) of the MOEA may

coincide–up to a pre-specified number of decimal places

(np), then the underlying MOEA be terminated, and the

last generation be reported as Ngt. Its rationale is that, if

np and ns are reasonably large numbers (contextually, say,

np ≥ 2 and ns ≥ 20), then the np–conformance between

1For the randomly initialized population (i = 0), D(p, q) can not be
computed because there is no other population available. For i = 1, two
populations are available (the randomly generated (p) and one evolved by
an MOEA (q)), hence D(p, q) can be computed, but that being the only
dissimilarity measure available, implies M1 = D1 and S1 = 0.

ns successive means and standard deviations, respectively,

becomes a stringent criterion which:

• may not be met by a set of randomly generated solutions,

or even MOEA populations successively traversing in the

non-POF objective space (Item (I), Section V)

• may be met in cases where the MOEA stabilizes (Items

(II) and (III), Section V), and the perturbations in D(p, q)
values over different generations may not be strong

enough to violate the requirement of np conformance.

Algorithm 2: MOEA Termination Detection Algorithm

Input:
ns: the number of successive generations of an MOEA for which the
mean and standard deviation of the dissimilarity measures are to be
compared
np: the number of decimal places to which the mean and standard
deviation of the dissimilarity measures are to be compared
nb: number of bins for the multidimensional histogram
t = 1, c1 = false and c2 = false.

1 begin

2 Generate a population of feasible non-dominated solutions
randomly and let this population be denoted by P .

3 Run an MOEA for one generation, using P as initial, and generate
a new feasible non-dominated population. Let this new population
be denoted by Q.

4 (C,Cq , Pc, Qc, Qcq) ← MultiHistogram(P,Q, nb)
/* (Algorithm 1) */

5 Dt = 0 /* Initialize the dissimilarity measure

at instant t */

6 for each i in C do

7 p = Pc,i/|P | /* p(xi), xi ∈ JI ∪ PNI */

8 q = Qc,i/|Q| /* q(xi), xi ∈ JI ∪ PNI */

9 if q > 0 then /* Relative entropy */

10 Dt = Dt −
[(

p

2
log p

q

)

+
(

q

2
log p

q

)]

/* (Equation 8) */

11 else if q = 0 then /* Entropy of P */

12 Dt = Dt − p log p /* (Equation 12) */

13 end

14 end

15 for each i in Cq do /* Entropy of Q */

16 q = Qcq,i/|Q| /* q(xi), xi ∈ QNI */

17 Dt = Dt − q log q /* (Equation 13) */

18 end

19 Determine Mt and St /* Equations 15 and 16 */

20 M̂t = Round(Mt, np) /* Round Mt to the np
th

decimal place */

21 Ŝt = Round(St, np) /* Round St to the np
th

decimal place */

22 if t > ns then

23 if [M̂t = M̂t−1 = . . . = M̂t−ns ] then c1 = true

24 if [Ŝt = Ŝt−1 = . . . = Ŝt−ns ] then c2 = true
25 end

26 if c1 = true and c2 = true then

27 Report Q as the final population and set Ngt = t
28 Terminate the run.
29 else

30 Set t = t+ 1, c1 = false, c2 = false, P = Q and go to
step 3.

31 end

32 end

The steps of the Algorithm 2, are as described below.

1) (step 2) Generate a population (P ) of feasible non-

dominated solutions randomly.

2) (step 3) With P as the initial population, run an MOEA

for one generation to get a new population (Q) of

feasible non-dominated solutions.

3) (step 4) Using nb and populations P and Q as input,
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run Algorithm 1 and obtain the vectors, namely, C, Cq ,

Pc, Qc, and Qcq .

4) (step 5) Initialize the dissimilarity measure value as zero,

Dt = 0 (for each generation, t).

5) Based on the computed vectors C, Cq , Pc, Qc, and Qcq:

a) (steps 6-13) For each cell in C: compute the

probability distributions associated with P (p, step

7) and Q (q, step 8), and the dissimilarity measure

using Equation 8 or 12 depending on a cell’s

membership in JI or PNI , and update Dt.

b) (steps 15-18) For each cell in Cq: compute the

probability distribution associated with Q (q, step

16), and the dissimilarity measure using Equa-

tion 13, and update Dt.

6) (steps 19-21) Compute the mean and standard deviation

(Mt and St, Equation 15 and 16) of Dt, and round-off

both to the np
th decimal place to determine M̂t and Ŝt.

7) (steps 22-31) If the number of generations (t) exceed

ns, terminate the MOEA and declare Ngt = t, if: (a) the

values between M̂t and M̂t−ns
are equal (c1 = true),

and (b) the values between Ŝt and Ŝt−ns
are equal (c2 =

true). Else, set P = Q and return to Step 2.

B. Computational Complexity of the Proposed Algorithm

The computational complexity of the proposed MOEA

termination detection Algorithm 2 is linear in the number

of objectives (M ) and the population size (N ). This claim

can be justified, as follows. The computational complexity of

Algorithm 2 is linked to the following:

• evaluation of function GetCell id (Section IV-B): this

function has a computational complexity of O(M), inde-

pendent of nb. This is because: (i) the integer rounding

of the term nb × s̄j will simply provide kj satisfying

Equation 6, and (ii) subsequent evaluation of the unique

cell id is based only on multiplication and addition

operations over the variable j = 1 . . .M (Equation 7).

• multidimensional histogram for two population sets: here,

the Algorithm 1 calls the function GetCell id for each

and every population member, implying the computa-

tional complexity of O(N ×M), by this step.

• the three stages in Algorithm 2, including:

– a call to Algorithm 1 (O(N ×M)).
– evaluation of the dissimilarity measure (Equation 8):

this has a dynamic computational complexity of

O(K), where K is the sum of cardinality of the sets

C and Cq . Notably, K cannot be greater than 2×N

(combined size of the parent and child populations).

Hence, the worst case complexity could be O(N).
– computation of Mt and St (Equations 15 and 16):

these computations have a computational complexity

of O(1), hence, can be neglected.

To summarize, the total worst case computational complex-

ity of Algorithm 2 is O(N ×M +N) = O(N ×M).

VII. TEST PROBLEMS AND EXPERIMENTAL SETTINGS

The effectiveness of the Algorithm 2 is investigated against

a wide range of test problems with varying difficulty lev-

els, including, CTP1–8 [39]; ZDT1–6 [39]; SCH1–2, POL,

KUR, FON, BNH, SRN, TNK, OSY [39]; DTLZ1–4 [40];

DTLZ5(I,M ) [30] (more details on these problems are pro-

vided in the supplementary file attached with this paper).

While NSGA-II has been chosen as the underlying MOEA

for all the test problems, ϵ-MOEA [41] has been used only

for a few sample cases (as justified in Section VIII-B). These

MOEAs share a common set of parameters, which are set

as below. With a population size of 200; the probability of

crossover and mutation used is 0.9 and 0.1, respectively; while

the distribution index for crossover and mutation is chosen as 5
and 20, respectively. An additional parameter associated with

ϵ-MOEA is ϵ, which is set as ϵi = 0.3, ∀ i = 1, . . . ,M .

Notably, besides the two population sets, three other inputs

are required by the Algorithm 2, including, nb, np and ns.

As argued in Section VI-A, np and ns need to be reasonably

large numbers, where their largeness is to be gauged in the

context of the role they play towards termination detection.

With regard to nb, efforts have been made to determine its

suitable value [42]–[45] in the general context of probability

density estimation. However, in this work such approaches

may not be best suited, for the following reasons:

• estimation of an optimal nb value is a computationally

expensive task, more-so, in the current context where

either or both the number of objectives and population

size may be large.

• in general, the data points may be scattered all over the

search space. However, in the current context, the data

points are non-dominated solutions capturing the trade-

off between the objectives, and hence, may occupy only a

small fraction of the total number of cells determined by

nb (as in Figure 1). Furthermore, an optimal value of nb

with regard to the probability density estimation may not

necessarily be optimal with regard to estimation of the

difference in the density functions of different data sets,

as is the case with the proposed dissimilarity measure.

Given the above considerations, simulations for each prob-

lem are performed corresponding to 10 different solution sets

obtained from an MOEA (NSGA-II or ϵ-MOEA), and the

parameters being nb = 10; ns = 20; and np = 2, 3 and 4.

VIII. EXPERIMENTAL RESULTS

This section reports the performance of the Algorithm 2 on

the considered test-suite, as below:

(a) the Ngt determined by Algorithm 2 (against np =
2, 3, 4), and the corresponding hypervolume2 measures

have been tabled.

(b) the POF–approximations (by the underlying MOEA) at

Ngt against np = 2, 3, 4 are simultaneously plotted to

facilitate a visual comparison between them. It may be

2The hypervolume computation is done by a dimension-sweep algo-
rithm [46], with O(NM−2 logN) time and linear space complexity (M
and N denoting the number of objectives and population size, respectively).
Towards it, the source codes at: http://iridia.ulb.ac.be/∼manuel/hypervolume,
are used. The reference points used, are based on the maximum values
of the objective functions across the population, and are reported in the
supplementary file attached with this paper.
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TABLE I: NSGA-II based Ngt (against np = 2, 3, 4, respectively) & D(p, q) measures by Algorithm 2 for a range of multi-

objective problems, and the corresponding hypervolume measures.

The Ngt and D(p, q) results are formatted as µ± σ, where µ and σ represent the mean and standard deviation of the respective entry, over 10 different
NSGA-II runs. The reported hypervolume measures correspond to only one (fifth of the 10) NSGA-II run.

Generations Ngt Dissimilarity Measure D(p, q) Hypervolume

Problem np = 2 np = 3 np = 4 np = 2 np = 3 np = 4 np = 2 np = 3 np = 4

CTP1 150±27 595±148 2399±691 0.035±0.001 0.019±0.001 0.016±0.000 1.306054 1.306284 1.306262
CTP2 133±20 539±71 2316±430 0.036±0.004 0.013±0.001 0.007±0.000 1.346923 1.347202 1.347365
CTP3 176±33 1025±151 6376±830 0.118±0.020 0.049±0.006 0.024±0.001 1.317466 1.327290 1.330874
CTP4 232±38 1314±119 8505±1159 0.144±0.023 0.066±0.010 0.030±0.003 1.217796 1.281876 1.314137
CTP5 160±18 578±40 2672±174 0.044±0.005 0.018±0.001 0.008±0.000 1.311780 1.317208 1.324180
CTP6 149±22 592±122 2259±419 0.033±0.003 0.017±0.001 0.013±0.000 8.702711 8.702202 8.703030
CTP7 196±21 820±74 3625±405 0.045±0.006 0.019±0.001 0.013±0.000 10.61766 10.61772 10.61773
CTP8 144±40 567±213 2473±969 0.026±0.006 0.011±0.001 0.007±0.000 8.555072 8.560030 8.561277

ZDT1 393±26 1771±122 8224±550 0.112±0.007 0.029±0.001 0.010±0.000 6.662722 6.663545 6.663480
ZDT2 462±27 2115±133 9880±582 0.146±0.008 0.035±0.001 0.011±0.000 7.330062 7.330301 7.330399
ZDT3 320±26 1411±104 6480±466 0.092±0.008 0.023±0.001 0.007±0.000 7.041472 7.042860 7.042790
ZDT4 502±26 2167±102 10244±480 0.218±0.010 0.057±0.002 0.019±0.000 265.6638 265.6636 265.6638
ZDT5 246±24 1023±53 4688±284 0.064±0.006 0.016±0.001 0.004±0.000 726.7726 727.6003 730.1003
ZDT6 597±61 2714±41 12658±240 0.248±0.019 0.074±0.001 0.035±0.000 5.816499 5.816490 5.816570

SCH1 73±12 226±48 1164±128 0.035±0.003 0.031±0.001 0.029±0.000 12875.30 12875.30 12875.29
SCH2 53±19 178±52 860±135 0.024±0.002 0.021±0.001 0.019±0.000 659.2688 659.2766 659.2829
POL 139±19 542±125 2448±581 0.028±0.004 0.014±0.001 0.010±0.000 2916.155 2916.146 2916.148
KUR 282±24 1255±102 5666±456 0.052±0.004 0.019±0.001 0.011±0.000 633.9241 633.9534 633.9651
FON 330±42 1456±178 6664±840 0.059±0.004 0.018±0.001 0.009±0.000 0.337600 0.337189 0.337386
BNH 56±13 148±43 975±185 0.021±0.002 0.020±0.002 0.020±0.000 5082.153 5082.767 5082.387
SRN 130±26 530±107 2326±557 0.035±0.003 0.023±0.001 0.020±0.000 278248.1 278314.4 278320.4
TNK 206±37 866±147 3937±695 0.043±0.002 0.013±0.001 0.006±0.000 15.22497 15.22506 15.22529
OSY 323±39 1478±157 6772±798 0.084±0.010 0.021±0.002 0.008±0.000 69852.53 69906.43 69906.63

noted that for all the two-objective test problems con-

sidered in this paper: (i) the true POFs are known, and

are reported in their respective references, and (ii) the

POF–approximations obtained by the underlying MOEA

(NSGA-II) conforms with the true POFs. However, as

the proposed dissimilarity measure primarily investigates

the stabilization of the MOEA (a necessary but not

sufficient condition for conformance with the true POF),

the discussions in the subsequent section are focused

on MOEA stabilization and termination, rather than the

quality of the POF–approximation offered by them.

(c) the D(p, q) measure at each MOEA generation is plot-

ted, along with its mean and standard deviation over as

many generations as deemed necessary to mark (done

by dotted vertical lines) the Ngt against np = 2, 3, 4.

For the sake of brevity, only a few sample plots under items (b)

and (c) above are presented here, while the remaining ones are

presented in the supplementary file attached with this paper.

A. Experimental Results for Multi-objective Problems

The Ngt determined by Algorithm 2, and the corresponding

hypervolume measures are presented in Table I.

Before interpreting the entire set of results, CTP1 is chosen

for a sample discussion, for which:

• Figure 2a reveals that the POF–approximation offered by

NSGA-II, at all Ngt against np = 2, 3, 4, is significantly

similar. Hence, it could be inferred that the NSGA-

II population has largely stabilized by the Ngt against

np = 2, and running NSGA-II any further does not offer

any significant improvements. These observations are

also supported by the significantly low D(p, q) measures

(Figure 2b). The minor variations in D(p, q) at any given

generation, compared to the immediately previous ones,

could be attributed to the variation operator like mutation.

Furthermore, while the Table I presents Ngt averaged

over 10 different NSGA-II runs, Figure 2b marks the Ngt

corresponding to one of the 10 runs.

• Figure 2c facilitates the visualization of how D(p, q)
varies from the initial generations (to the first 100 gen-

erations, here). The variations therein could be explained

by the facts that: (i) Mt and St are set to zero at t = 0,

and (ii) like any other MOEA, NSGA-II makes significant

advances toward the POF in the early phase of evolution,

while relatively smaller advances are made subsequently.

Hence, while Mt rapidly shoots up during the first few

generations, it gradually subsides.

Figure 2b and 2c also affirm the rationale for basing

the termination on the np–conformance of both the mean

and standard-deviation of D(p, q), over ns generations of an

MOEA. It can be seen that variations in the D(p, q) values

at different generations do not cause an abrupt change in the

corresponding values of Mt and St. This suggests that while

an Ngt based on np = 2 may be reliable, recourse to np = 3 or

np = 4 will add to the reliability of reported Ngt, at additional

computational cost.

The results for all other MOPs (Table I) reveal that the

D(p, q) values become smaller (tend to zero) as the value of

np is raised from 2 to 4. While it is impractical to relate the

reported Ngt with the underlying features of all the problems,

some interesting cases are being discussed, in that:

• among the CTP problems, the Ngt and D(p, q) values

for CTP4 are the highest, suggesting that the latter posed
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Fig. 2: CTP1: NSGA-II based POF–approximations (at Ngt against np = 2, 3, 4), and corresponding D(p, q) measures (with

mean & standard deviation) by Algorithm 2. The evolution of D(p, q) measures over first 100 generations is also highlighted.
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Fig. 3: CTP4: NSGA-II based POF–approximations (at Ngt

against np = 2, 3, 4), and corresponding D(p, q) measures

(with mean & standard deviation) by Algorithm 2.

most difficulties for NSGA-II. This inference could be

justified by the fact that the Pareto-optimal solutions for

CTP4 lie at the end of long narrow tunnels [47], posing

difficulties for an MOEA to converge. This also explains

why in the case of CTP43: (a) an increase in np is

accompanied by improvements in the POF-approximation

(Figure 3a), and (b) the variation in D(p, q) values is more

significant compared to other CTP problems (Figure 3b).

• within the ZDT problems, the Ngt and D(p, q) values

corresponding to ZDT6 are the highest, followed by

ZDT4 (regardless of np). These results could be explained

by the fact that compared to other problems:

3Notably, all the plots for MOPs presented in the supplementary file
attached with this paper are alike CTP1, in that, no significant visual
difference can be observed in the POF–approximations against increasing Ngt

corresponding to an increase in np from 2 to 4.

(a) ZDT6 poses more difficulties to an MOEA owing

to the non-uniformity in its search space, in that: (i)

the Pareto-optimal solutions are not uniformly distributed

across the POF, and (ii) the density of solutions changes

with respect to their proximity from the POF, such that

the density closer to the POF is lower.

(b) ZDT4 poses more difficulties to an MOEA owing to

the presence of 219 local Pareto-optimal solutions, and

100 distinct POFs of which only one is global.

• in the case of problems with low or moderate difficulty

levels, some interesting and plausible patterns are ob-

served (though, no hard generalizations can be drawn,

given the stochastic nature of MOEAs). For example:

(a) when M = 2, J = 0 and n = 1: the mean Ngt is

lower when the nature of objective(s) is simpler, as in

SCH2 (linear and quadratic objectives) vis-à-vis SCH1

(both quadratic objectives).

(b) when M = 2, J = 2 and n = 2: the Ngt are in

the order BNH < SRN < TNK, and can be explained

by difficulty levels guided by the nature of POF and

constraints. Both BNH and SRN have a convex POF,

but in BNH the constraints do not make any part of

the unconstrained POF infeasible, unlike SRN where

they eliminate some part of it. In TNK, the POF is

discontinuous and lies over a nonlinear constraint surface.

(c) the Ngt for OSY are relatively higher, and can

be attributed to higher difficulty levels guided by more

constraints (J = 6), more variables (n = 6), and a POF

which is a concatenation of five regions and maintaining

subpopulations at the intersection of constraint bound-

aries is a challenge.

Besides the fact that: (i) the reported Ngt correlate well with

the difficulty levels of the underlying problems, and (ii) the

corresponding POF approximations obtained conform with the

true POFs available in literature, the accuracy of Algorithm 2

could be further validated through the corresponding hyper-

volume measures (Table I). Once an MOEA achieves a good

POF–approximation, the hypervolume should not significantly

change if the MOEA were to run any longer. Hence, for the

reported Ngt to be inferred as correct:
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Fig. 4: Hypervolume measure across MOEA generations, for a few sample multi-objective problems. The vertical lines in each

plot mark the Ngt deduced by Algorithm 2, corresponding to np = 2, 3, 4, respectively.

• the hypervolume measure preceding the Ngt correspond-

ing to np = 2 should undergo significant change. This

is indeed the case, as sample plots (for problems with

varying degree of difficulty) in Figure 4 reveal.

• the hypervolume measure across the Ngt corresponding

to np = 2, 3 and 4 should not vary significantly. This is

indeed the case, barring the CTP4 problems, the plausible

reasons for which have already been discussed above.

B. Experimental Results for Many-objective Test Problems

Most existing MOEAs are known to fail in providing a good

POF–approximation in the case of MaOPs with reasonable

computational effort [29]. This paper neither aims to demon-

strate the efficacy of the termination detection algorithm on

multiple MOEAs, nor aims at a comparative evaluation of

MOEAs on MaOPs. Instead, it aims to illustrate the generality

and scalability of the Algorithm 2. Towards it:

(a) the performance of Algorithm 2 on MaOPs, correspond-

ing to NSGA-II (a generational MOEA), is studied.

(b) the scalability of Algorithm 2 is assessed by evaluating

the accuracy of its deductions (Ngt) for some MaOPs,

with reference to the hypervolume measure.

(c) the generality of Algorithm 2 is assessed by evaluating

its performance for some MaOPs, corresponding to

(another broad category of MOEAs, besides the gen-

erational) a steady-state MOEA, namely, ϵ-MOEA.

The item (a) articulated above can be realized with respect

to the two categories of MaOPs considered: (i) the DTLZ

problems, where the dimension of the POF is the same as M ,

and (ii) the DTLZ5(I,M ) problems, where the dimension of

the POF (I) may be less than M . Notably, for both categories,

the Ngt can be seen (Table II) to increase with an increase in

the desired degree of accuracy controlled by np (as expected).

In the particular case of DTLZ problems:

• the general trend is that the D(p, q) values increase with

an increase in M .

• for all the considered variants of the DTLZ problems, the

D(p, q) values are far-off from zero, implying stagnation

of NSGA-II far-off from the true POF.

• in many instances NSGA-II can be seen to stagnate faster

when the number of objectives are higher, for a particular

DTLZ problem. For instance, corresponding to the case

of np = 2: (i) the Ngt for DTLZ1(5), DTLZ1(15), and

DTLZ1(25) are 357±158, 318±75, 322±54, respectively,

and (ii) the Ngt for DTLZ3(5) and DTLZ3(15) are 336±
100 and 282±40, respectively. This could be related to the

fact that as M increases, more and more solutions tend

to be non-dominated from the early generations, given

which the dominance based primary selection becomes

ineffective, resulting in early stagnation.

Furthermore, in the particular case of DTLZ5(I,M ) problems:

• the general trend of an increase in the D(p, q) values

with an increase in M holds, but with some exceptions.

For example, the D(p, q) values for DTLZ5(2, 20) on an

average are better (lower) than those for DTLZ5(5, 10).

Though the POF–approximation is likely to worsen with

an increase in M , the above could be explained by the

fact that the search efficiency of an MOEA is not just

governed by M , but also by the dimension of the POF.

• for all the variants of the DTLZ5(I,M ) problem, barring

DTLZ5(2, 5), the D(p, q) values are far-off from zero,

implying stagnation of NSGA-II far-off from the true

POF. This is verified by the POF–approximations for a

sample problem, namely, DTLZ5(2, 50) (Figure 5a).
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Fig. 5: DTLZ5(2, 50): POF–approximations by NSGA-II and

ϵ-MOEA, at Ngt (against np = 2, 3, 4).

Towards realizing the item (b) articulated above, the hy-

pervolume measures for problems with M = 5 have been

reported4 in Table II. These measures, some of which have

4Beyond M = 5, it becomes difficult to compute the hypervolumes in
practically feasible time limit, hence, the scope is limited to M = 5.
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TABLE II: NSGA-II based Ngt (against np = 2, 3, 4) & D(p, q) measures for many-objective versions of the DTLZ and

DTLZ5(I,M ) problems, and the corresponding hypervolume measures (only when M = 5). In addition, the ϵ-MOEA based

Ngt and D(p, q) measures for problems with two- or three-dimensional POFs are reported, in rows prefixed by: Problemϵ.

For brevity, the DTLZ5(I,M ) problems are abbreviated as D5(I,M ). The Ngt and D(p, q) results are formatted as µ± σ, where µ and σ represent the
mean and standard deviation of the respective entry, over 10 different NSGA-II runs. The hypervolume measures for one NSGA-II run, at Ngt

corresponding to np = 2, 3, 4 are formatted as (α; β; γ) × 10p. For instance, for np = 2, the hypervolume is α× 10p.

Generations Ngt Dissimilarity Measure D(p, q) Hypervolume (formatted as above)

Problem np = 2 np = 3 np = 4 np = 2 np = 3 np = 4 np = 2; np = 3; np = 4

D1(05) 357±158 2544±349 17266±4999 1.193±0.242 1.614±0.173 1.617±0.242 (2.2932; 2.2933; 2.29333)× 1013

D1(15) 318±75 2236±400 23587±6688 3.031±0.105 3.310±0.121 3.403±0.067 –
D1(25) 322±54 1947±507 19358±4530 3.114±0.066 3.248±0.089 3.215±0.096 –

D2(05) 216±44 1490±230 10592±1132 3.093±0.038 3.113±0.019 3.161±0.016 (0.6285; 0.6296; 0.6333)× 102

D2(15) 276±33 1557±386 10579±1208 3.517±0.041 3.438±0.052 3.274±0.055 –
D2(25) 308±58 1792±278 12912±2224 3.561±0.064 3.401±0.085 3.228±0.036 –

D3(05) 336±100 1886±235 11543±1496 1.835±0.086 1.664±0.120 1.633±0.109 (1.6458; 1.6456; 1.6462)× 1016

D3(15) 282±40 1893±516 14477±1366 3.298±0.023 3.208±0.108 2.971±0.127 –
D3(25) 354±79 2470±933 17671±2946 3.136±0.066 2.992±0.131 2.653±0.213 –

D4(05) 420±36 1766±183 10667±1097 3.019±0.032 3.120±0.011 3.135±0.003 (0.6773; 0.6767; 0.6796)× 102

D4(15) 268±40 1299±141 10388±889 3.599±0.020 3.670±0.010 3.621±0.007 –
D4(25) 235±65 1422±171 10480±914 3.520±0.043 3.652±0.007 3.652±0.009 –

D5(2,05) 464±59 2015±292 8776±1414 0.436±0.043 0.271±0.077 0.225±0.112 (1.0141; 1.0149; 1.0149)× 102

D5(2,05)ϵ 308±17 1271±142 5400±634 0.208±0.008 0.180±0.005 0.145±0.007 –

D5(2,20) 706±367 3209±982 15244±1944 2.549±0.476 2.092±0.463 1.982±0.486 –
D5(2,20)ϵ 414±32 2677±261 11272±872 0.533±0.023 0.239±0.024 0.145±0.010 –

D5(2,50) 638±101 5681±789 22363±2620 3.168±0.083 1.943±0.263 1.630±0.252 –
D5(2,50)ϵ 450±67 3748±573 16232±2501 0.888±0.196 0.311±0.031 0.173±0.011 –

D5(3,05) 329±50 2444±220 9813±674 1.479±0.048 0.986±0.036 0.893±0.029 (1.0130; 1.0150; 1.0150)× 102

D5(3,05)ϵ 304±36 1444±212 10010±897 1.278±0.054 1.214±0.037 1.237±0.039 –

D5(3,20) 238±35 3020±416 14784±1090 3.580±0.056 2.902±0.169 2.793±0.147 –
D5(5,10) 219±27 2191±560 12435±1166 3.430±0.054 3.246±0.112 3.040±0.085 –
D5(5,20) 290±56 3735±357 14366±983 3.703±0.039 3.142±0.052 2.953±0.039 –
D5(7,10) 250±48 1636±387 11919±1324 3.475±0.038 3.387±0.050 3.141±0.083 –
D5(7,20) 306±57 1877±986 15687±1482 3.699±0.039 3.569±0.147 3.030±0.058 –
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Fig. 6: Hypervolume measure across MOEA generations, for a few sample MaOPs. The vertical lines in each plot mark the

Ngt deduced by Algorithm 2, against np = 2, 3, 4, respectively.

also been plotted in Figure 6 suggest that the hypervolume

measure: (i) preceding the Ngt corresponding to np = 2 under-

goes significant change, and (ii) across the Ngt corresponding

to np = 2, 3 and 4 does not vary significantly. This conforms

with the expected pattern (Section VIII-A), indicating that

the reported Ngt are correct. The fact that the accuracy of

Algorithm 2 is retained even in the case of MaOPs, affirms

its scalability with the number of objectives.

Finally, towards realizing the item (c) articulated above,

the response of Algorithm 2 to the POF–approximations

offered by ϵ-MOEA, for some problems with two- and three-

dimensional POFs, is explored. Notably, both the Ngt and

D(p, q) values for ϵ-MOEA are lower than those for NSGA-II

(Table II). Interestingly, in contrast to NSGA-II (Figure 5a),

ϵ-MOEA seems to have converged to the POF (Figure 5b) and

yet reports non-zero D(p, q) values. This could be explained

by the fact that while the ϵ-MOEA population has converged

to the POF, it has not stabilized in terms of diversity (evident

by the sparsely populated regions on the POF). Given the fact,

that the D(p, q) values basically reflect on to the stabilization

of the population, the reported results are justified.
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Fig. 7: DTLZ5(2, 50): comparison of the POF–approximations

by NSGA-II and ϵ-MOEA after 20,000 function evaluations

(or 100 generations), and corresponding D(p, q) measures.

IX. POTENTIAL FUTURE DIRECTIONS

The future research directions, inspired by the proposed

D(p, q) measure may relate to exploring its utility towards:

• performance comparison of different MOEAs: a lower

D(p, q) measure which fundamentally implies higher

conformance between MOEA populations in successive

generations (Section V), may reflect on to better conver-

gence to the POF in entirety or in part. Figure 7 illus-

trates that after 20,000 function evaluations5, the POF–

approximation obtained by ϵ-MOEA is much better than

NSGA-II’s, and this is accompanied by lower D(p, q)
measures for the former. Future work may explore in

detail if and how the D(p, q) measures at their respective

Ngt (or after a fixed number of function evaluations)

could be used in conjunction with (if not in isolation)

the existing performance indicators that help compare

MOEAs. Such a possibility in the case of MaOPs, where

an indicator like hypervolume becomes computationally

punitively expensive, may mark a significant contribution.

• unraveling the timing for change of MOEA parameters:

the parameters associated with the variation operators are

fixed a priori, and the chosen settings may not favor

a distributed exploration of the entire search space or

the POF [48]. This is often manifested in problems

with disconnected POF, where an MOEA gets stuck

in one segment and struggles for several generations

before getting a solution in the other segments. Such a

situation could possibly be favorably altered by changing

the parameter settings on-the-fly. For example, in the

MOEAs using real-parameter SBX recombination and

polynomial mutation operator (as in NSGA-II), if the

distribution index of crossover and mutation operators is

reduced, the span for the new solutions could be wider,

promising faster exploration of the search space, includ-

ing the POF. Hence, when a zero or near-zero (constant)

values of D(p, q) are observed over significant number of

generations, while one option could be to terminate the

MOEA, another option could be to treat it as the right

timing (otherwise not known) for exploratory/corrective

5For simplicity, evaluation of one solution is referred as one function
evaluation. For N = 200, 20, 000 function evaluations ≡ 100 generations, a
pre-stabilized case, since 100 is less than the Ngt at np = 2.

option of changing the parameter settings associated with

the MOEA’s variation operators. Further research in this

direction could provide interesting insights and results.

• unraveling the timing of objective-reduction [30], [31]

based decision-support for MaOPs: the importance of

applying objective reduction techniques to derive a de-

cision support characterized by objectivity, repeatability,

consistency, and coherence [32] is being recognized.

Notably, the propositions of the decision-support depend

on when along an MOEA run (in terms of generations)

are the objective-reduction techniques applied, an answer

to which is ironically not available. In future, it’ll be

interesting to explore on real-world MaOPs, as to how

effectively the stabilization of the proposed dissimilarity

measure can indicate the stabilization of the MOEA

population and an apt timing for application of objective

reduction techniques for decision support.

X. CONCLUSION

This paper has proposed a novel entropy based dissimilarity

measure that provides a termination criterion, and facilitates

a generic, scalable, and computationally efficient termination

detection algorithm. Based on experiments on a wide range

of test MOPs and MaOPs, it is established that the calls

for MOEA termination are timed differently for different

problems based on their inherent difficulty levels in terms

of the nature of objective functions & the (variable) search

space, number of objectives involved, and the dimensionality

of the true POF. The accuracy of the calls for termination

is validated through comparison of the POF-approximations

at different stages of an MOEA’s run, and also through the

hypervolume measures. For some sample problems, the per-

formance of the termination detection algorithm is evaluated

against two different categories of MOEAs, namely, NSGA-II

(a generational MOEA) and ϵ-MOEA (a steady state MOEA).

For a class of MaOPs, where ϵ-MOEA obtained faster and

(qualitatively) better POF–approximations, the termination de-

tection algorithm correspondingly reported lower dissimilarity

measures and called for earlier termination. The authors hope

that by facilitating an apt on-the-fly MOEA termination, this

work will be significantly useful towards preventing either a

pre-matured MOEA termination or wastage of computational

resources, a critical feature that has ironically remained largely

unaddressed so far.
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