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A B S T R A C T   

The COVID-19 pandemic was officially declared on March 11th, 2020. Since the very beginning, the spread of the 
virus has been tracked nearly in real-time by worldwide genome sequencing efforts. As of March 2021, more than 
830,000 SARS-CoV-2 genomes have been uploaded in GISAID and this wealth of data allowed researchers to 
study the evolution of SARS-CoV-2 during this first pandemic year. In parallel, nomenclatures systems, often with 
poor consistency among each other, have been developed to designate emerging viral lineages. Despite general 
fears that the virus might mutate to become more virulent or transmissible, SARS-CoV-2 genetic diversity has 
remained relatively low during the first ~ 8 months of sustained human-to-human transmission. At the end of 
2020/beginning of 2021, though, some alarming events started to raise concerns of possible changes in the 
evolutionary trajectory of the virus. Specifically, three new viral variants associated with extensive transmission 
have been described as variants of concern (VOC). These variants were first reported in the UK (B.1.1.7), South 
Africa (B.1.351) and Brazil (P.1). Their designation as VOCs was determined by an increase of local cases and by 
the high number of amino acid substitutions harboured by these lineages. This latter feature is reminiscent of 
viral sequences isolated from immunocompromised patients with long-term infection, suggesting a possible 
causal link. Here we review the events that led to the identification of these lineages, as well as emerging data 
concerning their possible implications for viral phenotypes, reinfection risk, vaccine efficiency and epidemic 
potential. Most of the available evidence is, to date, provisional, but still represents a starting point to uncover 
the potential threat posed by the VOCs. We also stress that genomic surveillance must be strengthened, especially 
in the wake of the vaccination campaigns.   
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1. Introduction 

The small outbreak of “pneumonia-like illness” reported in Wuhan, 
China, during December 2019 has outgrown (Zhou et al., 2020b; Li 
et al., 2020a) to be the most devastating pandemic of the 21st century. 
The thirteen months of SARS-CoV-2 pandemic have also witnessed 
synergistic efforts of the global scientific community, not only to 
demystify the emergence of the virus, but also to develop diagnostics 
and vaccines. Like never before, the spread of the virus has been tracked 
nearly in real-time by genome sequencing efforts throughout the world. 
This wealth of data has allowed researchers to study the evolution of 
SARS-CoV-2, map the emergence of new viral variants and, in the past 
few months, track the emergence of novel lineages, which are gener
ating concerns at multiple levels. Focusing on the recent events associ
ated with the detection of novel viral lineages in the UK, South Africa, 
and Brazil, we provide a summary of the lessons learned during the first 
year of COVID-19 pandemic. 

2. Origin of SARS-CoV-2 

The most fundamental questions that needed to be addressed at the 
beginning of the pandemic were focused on the understanding of the 
disease and the origin of the virus. The disease of unknown aetiology 
was termed COVID-19 (Coronavirus disease 2019) by the World Health 
Organisation (WHO) (Novel Coronavirus (2019-nCoV) Situation Report 
1, 21 January 2020, World Health Organization, 2020) and it became 
the first example of “Disease X”, caused by an unknown infectious agent. 
The virus was referred to as a novel coronavirus (2019-nCoV) by the 
WHO and subsequently named SARS-CoV-2 by the International Com
mittee on Taxonomy of Viruses (ICTV) (Coronaviridae Study Group of 
the International Committee on Taxonomy of Viruses, 2020). 

The outbreak of the SARS-CoV-2 at the animal market in Wuhan was 
investigated from two perspectives with respect to transmission of the 
virus. The virus could have been either transmitted to the human pop
ulation from an animal source or it could have been introduced in the 
market by individual(s) already infected with the virus. Investigation of 
initial cases revealed that not all the patients had a direct link to the 
animal market. Further, information on the appearance of their symp
toms around December 1, 2019 indicated that they might have acquired 
the infection from potentially undetected cases, prior to December 2019. 

The initial investigation for the characterisation and identification of 
the viral pathogen was carried out using whole genome sequencing and 
the first SARS-CoV-2 genome sequence was deposited in the public 
domain (Virological.org) on January 10th, 2020 (Wu et al., 2020). This 
facilitated the comparison of the genomic sequence of isolate “Wuhan- 
Hu-1” (GenBank accession number NC_045512) with the sequences of 
known viruses, which provided insight into the evolution of SARS-CoV- 
2. These sequence-based searches revealed that the Wuhan-Hu-1 isolate 
of SARS-CoV-2 shared >96% identity with RaTG13, a bat coronavirus 
belonging to subgenus Sarbecovirus (genus Betacoronavirus) that was 
isolated in 2013 from Rhinolophus affinis, a horseshoe bat in Yunnan, 
China. Based on the genetic proximity between RaTG13 and SARS-CoV- 
2, a bat origin for the latter was proposed (Zhou et al., 2020a). However, 
viruses similar to SARS-CoV-2 were also found in pangolins (Lam et al., 
2020; Xiao et al., 2020). An independent evolutionary analysis using the 
RNA directed RNA polymerase gene (RdRp), a stable genetic marker 
present in all RNA viruses, revealed that SARS-CoV-2 isolates are a ho
mogeneous population devoid of recombination and cluster indepen
dently of SARS-CoV. This study further revealed that SARS-CoV-2 shares 
a common ancestor with Bat-CoV (RaTG13) and Pangolin-CoVs, hinting 
at the presence of additional host(s) that might have also contributed to 
the evolution of SARS-CoV-2 to infect humans (Kasibhatla et al., 2020). 

Another novel bat coronavirus, named RmYN02, subsequently 

discovered using metagenomic analysis of bat viruses from the Yunnan 
province of China showed, in some parts of the genome, higher sequence 
similarity to SARS-CoV-2 as compared to its closest relative RaTG13 
(Zhou et al., 2020b). Furthermore, both SARS-CoV-2 and RmYN02 were 
observed to harbour multiple amino acid insertions at the junction of the 
S1 and S2 subunits of the spike (S) protein. However, relatively lower 
sequence identity between the spike proteins of RmYN02 and SARS- 
CoV-2, coupled with the key differences in their RBDs (receptor bind
ing domains), revealed that RmYN02 might not bind the ACE2 (angio
tensin-converting enzyme 2) receptor. These studies also indicated that 
insertion events in spike proteins could naturally and independently 
occur amongst betacoronaviruses infecting animals and humans (Zhou 
et al., 2020b). An independent study conducted by Boni et al. to deci
pher the origin of the pandemic suggested that, though frequent 
recombination events might have been responsible for shaping genetic 
diversity and evolution of sarbecoviruses in general, SARS-CoV-2, in 
particular, is not a recombinant of any sarbecovirus reported so far (Boni 
et al., 2020). 

Members of the family Coronaviridae have large genome sizes 
(~30,000 nt), with positive sense single-stranded RNA, and have a wide 
host-range that includes mammals, birds, and fishes (Cui et al., 2019; 
Forni et al., 2017). Members of the genus Betacoronavirus have been 
responsible for three major outbreaks in nearly two decades of the 21st 

century: the SARS, MERS and COVID-19 epidemics in 2002–2003, 2012 
and 2019–2021, respectively (Chan et al., 2020; Drosten et al., 2003; 
Zaki et al., 2012). The other two members of this genus that infect 
humans, namely HCoV-HKU1 and HCoV-OC43, have been associated 
with mild diseases (Cui et al., 2019; Forni et al., 2017). However, based 
on the estimate that HCoV-OC43 emerged around 1890s from a related 
bovine coronavirus, HCoV-OC43 was proposed as the potential causa
tive agent of the “Russian flu” pandemic (that occurred during 
1889–1890), which was speculated to be caused by an influenza A virus 
(Vijgen et al., 2005). For all betacoronaviruses, bats are reported as 
reservoirs; however, these viruses also infect different intermediate 
hosts such as palm-civets (SARS-CoV) and dromedary camels (MERS- 
CoV) (Forni et al., 2017; Cui et al., 2019). 

Since the genomic sequence of SARS-CoV-2 was obtained, the spike 
gene remained the focus of much attention, as it encodes the surface 
protein that harbours the RBD. Sequence comparisons revealed that it is 
one of the hyper-variable regions in coronavirus genomes and 5 out of 6 
residues involved in receptor binding differ between SARS-CoV-2 and 
SARS-CoV. Structural and biochemical studies further explained the role 
of these mutations in binding to the ACE2 receptor, as well as in host 
switching (Andersen et al., 2020; Letko et al., 2020; Wrapp et al., 2020). 
Owing to the high sequence similarity between the ACE2 receptor- 
binding sites of SARS-CoV-2 and the pangolin-CoVs, a potential role of 
pangolins as intermediate hosts was also deliberated extensively. A more 
recent analysis positions pangolins as species that might have had a role 
in the transmission of SARS-CoV-2 to humans, but dismissed the possi
bility of pangolins contributing to the process of adaptation of SARS- 
CoV-2 to humans (Boni et al., 2020). Similarly, the presence of a poly
basic furin cleavage site in the spike protein of SARS-CoV-2 and its 
absence in other betacoronaviruses triggered discussion regarding the 
emergence of furin cleave site due to recombination, which was ruled 
out. It was suggested that recombination events might have played a role 
in the evolution of sarbecoviruses prior to the diversification of SARS- 
CoV-2 (Boni et al., 2020). These analyses have also helped to dismiss 
the possibility of SARS-CoV-2 being a synthetic construct (Andersen 
et al., 2020) and underlined a need for systematic surveillance of po
tential reservoir species, not only to connect the missing dots and 
decipher the zoonotic spill-over of SARS-CoV-2, but also as a systematic 
plan for pandemic preparedness. More recent genomic analyses, how
ever, indicate the possibility of recombination in SARS-CoV-2 due to 
coinfections, which is deliberated in the succeeding sections. 
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3. COVID-19: from an outbreak to the pandemic 

Deciphering the emergence of disease, tracing its source, mapping 
associated events, identifying the potential mechanisms and/or routes of 
spread and releasing related information for consumption to govern
ments, health officials and people at large are critical for management of 
infectious diseases in general and to arrest the spread of the infectious 
agent in particular. The WHO has played a significant role in monitoring 
the spread of SARS-CoV-2 through various stages. The WHO, in collab
oration with other international agencies, has published several situa
tion reports, guidelines and advisories to monitor the spread of the virus. 

The first public release regarding the onset of “pneumonia-like” 
illness was made based on the detection of a “cluster of cases” by the 
Wuhan Municipal Health Commission on December 31, 2019. The first 
case of the disease outside China was reported in Thailand on January 
13, 2020. On January 30, when the number of confirmed cases reached 
98 and no deaths were reported outside of China, the WHO declared the 
outbreak of coronavirus as a public health emergency of international 
concern. The advisory urged nations to use the “window of opportunity” 
to prevent widespread transmission of the virus and to develop pre
paredness to combat the disease at every possible level. Subsequently, 
COVID-19 epidemic announcements were made by various nations. The 
epidemic threat of SARS-CoV-2 and its implications on global health are 
reviewed by Sheahan and Frieman (2020). 

The WHO, in the interest of the health of the global population, 
declared the SARS-CoV-2 pandemic on March 11, 2020 (Coronavirus 
Disease 2019 (COVID-19) Situation Report – 51, World Health Organi
zation, 2020), when the cases crossed over 118,000 and were spread 
over 110 countries. This action also had the purpose to inform people at 
large that the virus was circulating in several countries due to people 
with travel history and it was expected to spread far and beyond. 

4. SARS-CoV-2 genetic diversity 

Similarly to other viruses with an RNA genome, coronaviruses are 
prone to mutate during their replication and they do so at a much higher 
rate than viruses and cellular organisms with a DNA genome. In the case 
of viruses, mutation rates indicate the rate at which errors are made 
during genome replication, whereas substitution rates indicate the rate 
at which evolution proceeds at the molecular level, replacing pre- 
existing alleles by new mutations. For example, substitution rates for 
Influenza A viruses (negative sense ssRNA) are estimated to be around 
1.8 × 10-3 substitutions per site per year (s/s/y) and that of human 
enterovirus 71 (positive sense ssRNA) is estimated to be 3.4 x 10-3 s/s/y 
(Jenkins et al., 2002). Substitutions rates can also vary across genomic 
regions of the same virus. 

Substitution rates for SARS-CoV-2 derived using complete genome 
sequences vary slightly based on the molecular clock model used viz., 
strict and relaxed models. Values are 1.29 × 10–3 s/s/y (95% HPD 5.35 
× 10–4, 2.15 × 10–3) and 1.23 × 10–4 s/s/y (95% HPD 5.63 × 10–4, 1.98 
× 10–3) for relaxed and strict clock models, respectively (Duchene et al., 
2020). As compared to other positive sense RNA viruses, the substitution 
rate of SARS-CoV-2 is not exceptional. It is, however, placed at the lower 
end of the distribution, because of the exonuclease proofreading activity 
of nsp14 (Eckerle et al., 2010, 2007; Smith et al., 2013; van Dorp et al., 
2020a). 

The time to the most recent common ancestor (tMRCA) has been 
calculated for SARS-CoV-2 based on complete genome sequences. Most 
studies reported a temporal signal with a clock-like pattern of molecular 
evolution. So far, all analyses have indicated late November 2019 (~13 
to 19 Nov 2019, 95% CI: August 2019 to December 2019) as the tMRCA 
using log-normal relaxed molecular clock model(s). It is interesting to 
note that the tMRCA did not vary much, irrespective of the number of 
genomes analysed (Gómez-Carballa et al., 2020; Chaw et al., 2020; 
Ladner et al., 2020). This finding corroborates the fact that the first 
reported isolate dated to December 1, 2019 from Wuhan, and the 

incubation time for this virus is about two weeks. Strict clock models 
show a slightly earlier date for the tMRCA (November 7, 2019). The 
likely progression of the SARS-CoV-2 lineages (as described by the 
Pangolin tool) are A, B and B1 (Gómez-Carballa et al., 2020). 

Analyses of members of the Sarbecovirus subgenus (including 
Pangolin-CoV, Bat-CoV, and, SARS-CoV) revealed that the divergence 
time estimate for SARS-CoV-2 and RaTG13 is year 1969 (Boni et al., 
2020). This hints at the fact that viruses closely related to SARS-CoV-2 
have been circulating in horseshoe bats for many decades. 

4.1. SARS-CoV-2 lineage nomenclature 

One important problem in Virology is how to establish a nomen
clature system below the species level that is useful, informative, and 
widely accepted by all those who need to name variants (Rambaut et al., 
2020a). Categories below the species level in viruses have usually relied 
on immunogenic features (e.g., serotypes as in Dengue virus) or distinct 
and stable genetic differences (e.g., genotypes in hepatitis C virus or 
subtypes in influenza A virus). However, there are no common rules and 
additional levels, which usually are of interest for epidemiology, are 
difficult to accommodate consistently. This is especially so in the initial 
stages of spread of a new virus, when there has not been enough time to 
observe clear genetic differences that can be used at least for the major 
divisions within the species. In the case of SARS-CoV-2, there have been 
up to three different naming systems coexisting during the first year of 
the pandemic (Alm et al., 2020). 

Most complete genome sequences of SARS-CoV-2 are being uploaded 
to GISAID (https://www.gisaid.org) since the start of the pandemic. 
GISAID initiated a naming system based on large clades defined by 
marker variants from the reference genome (WIV04, MN996528) 
(Table 1). This scheme is simple but it is not consistent and it fits poorly 
the evolutionary characteristics of this virus. The high mutation rates of 
RNA viruses, despite the lower value of Coronaviruses, imply frequent 
parallel and backward mutations, impacting reconstruction of 
evolutionary relationships and thereby introducing inconsistencies in 
assignment of lineages to viral isolates. If a lineage is defined solely by a 
few mutations, recurrent mutations make it possible that the same 
combination appears in a different lineage or a backward mutation 
may make a member of a lineage loose one of the defining mutations. 

SARS-CoV-2 sequences deposited in GISAID are readily analysed in 
different platforms among which NextStrain (www.nextstrain.org) has 
gained a well-deserved popularity. In this platform, a consistent pipeline 
of phylogenetic and phylodynamic analysis (Hadfield et al., 2018) is 
applied to specific subsets of sequences. This is intended to optimize the 
balance between information and time used to produce it by reducing 
the total number of sequences used in each “build” (a new global build is 
constructed on a daily basis from around 4000 sequences). The 
nomenclature used in NextStrain builds is based on the inferred 

Table 1 
GISAID clade nomenclature  

Clade Marker variants (nt) Marker variants 
(aa) 

Number of 
sequences (210126) 

L WIV04-reference  4675 
S C8782T, T28144C NS8:L84S 8036 
V G11083T, G26144T NSP6:L37F, 

NS3:G251V 
5754 

G C241T, C3037T, 
A23403G 

S:D614G 57179 

GH C241T, C3037T, 
A23403G, G25563T 

S:D614G, NS3: 
Q57H 

79275 

GR C241T, C3037T, 
A23403G, G28882A 

S:D614G, N: 
G204R 

127622 

GV C241T, C3037T, 
A23403G, C22227T 

S:D614G, S: 
A222V 

85729 

Other minor 
clades   

5535  
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phylogenetic relationships, ultimately depending on the accumulation 
of mutations. Evolutionary stable lineages receive a name based on the 
year of emergence and a successive letter (e.g., 19A corresponds to the 
first lineage from 2019 and 20B to the second lineage from 2020). Some 
particular sublineages are identified with additional information (e.g., 
20E/EU1, 20I/501Y.V1) but with no systematic rule. 

To alleviate these problems, Rambaut et al. (2020a) proposed a new 
method of nomenclature for within viral species categories, based on 
evolutionary relationships and epidemiological relevance, denoted 
PANGO (Phylogenetic Assignment of Named Global Outbreak Lineages). 
This is a dynamic scheme that accommodates the expanding phyloge
netic diversification of SARS-CoV-2 lineages by constraining the number 
and depth of hierarchical levels. The names start with a letter (A and B, 
for the earliest lineages) and up to 4 hierarchical levels, each defined as 
descendant from a preceding level given four conditions (van Dorp et al., 
2020c): (a) one or more shared nucleotide differences from the ancestor 
lineage; (b) comprising at least five genomes with >95% of the genome 
sequenced; (c) genomes within a lineage exhibit at least one shared 
nucleotide change among them; and (d) a bootstrap support >70% for 
the lineage-defining node. The resulting names (e.g., A, B.1, B.2.5, etc.) 
are informative, consistent, and coherent and facilitate the use of neutral 
tags, with no negative connotations. Continuous supervision of active 
lineages is facilitated by easily accessible tools such as Pangolin (https:// 
github.com/hCoV-2019/pangolin). Viral lineages with no observations 
are assumed to be inactive and are delabelled. The different names that a 
particular genome can receive are provided in the Nextstrain builds 
(https://nextstrain.org/ncov). Ideally, it would be desirable to have a 
“rule of equivalences” that would “translate” the name of a clade/line
age in a nomenclature system to the corresponding name in any other. 
However, this is not possible. Table 2 summarizes the distribution of 
most (96.6%) sequences deposited in GISAID as of February 4, 2021, 
according to the three naming systems. All clades included in GISAID are 
represented in the table, but only a few of the lineages included in 
NextStrain and PANGO are considered. The reduction is especially 
relevant in the PANGO system, because there are 18 sublineages derived 
from lineage A, and 815 lineages derived from B. It is evident that, 
although many combinations never occur, it is not possible to establish 
an equivalence between the clade/lineage a sequence corresponds to in 
a system and those in the other systems. 

Recently, some recombinant lineages have been found in the UK (see 
below) and an appropriate naming system has been proposed for them 
within the PANGO framework (Pybus, 2021). The general rules for 
designation of PANGO lineages still apply, but new recombinant line
ages of the highest level are preceded by an X, so we will have XA.1, 
XB.1.1. These names do not contain information about the putative 
parental lineages. 

4.2. Emergence and spread of novel variants 

The epidemic growth of an organism provides ideal conditions for 

rapid diversification. This is especially so in fast mutating viruses. SARS- 
CoV-2, as other coronaviruses, has a low mutation rate compared to 
other RNA viruses as described above (Sironi et al., 2020). The fate of 
these mutations is governed by the usual processes operating in evolving 
populations: genetic drift, natural selection, founder effects, and, in 
some cases, recombination. Most mutations appearing within an infec
ted patient are deleterious, and hence usually eliminated by selection, or 
neutral, and their fate is dictated by stochastic events (i.e., genetic drift). 
Although some mutations might have a selective advantage at the 
within-individual level, their destiny at the population level will depend 
on factors such as their effects on transmissibility, which might increase 
or decrease their chances of survival during an epidemic. Fear of mu
tations was common in the early stages of the COVID-19 pandemic, 
although they did not represent any significant change in the virulence, 
transmissibility, lethality, or other relevant features of the infectious 
viruses (Grubaugh et al., 2020b). Furthermore, some of the mutations 
defining variants of concern also appeared in earlier lineages without 
provoking noticeable effects. Apart from the inherent difficulties in 
demonstrating a clear effect by a single mutation (MacLean et al., 2020; 
Tang et al., 2020), epidemiological processes may confound the genetic 
effects on the phenotype when evaluated in real populations. 

Some of the early mutations were already present in individuals who 
originated large clusters of transmission. As a consequence, many of the 
viruses sampled for genomic surveillance will present shared mutations 
originating in their common ancestors, eventually giving rise to new 
variants, i.e., organisms that share a common set of mutations usually 
associated with successful transmission or particular features. The de
scendants of these variants gave rise to a new lineage or sublineage, 
many of which might be present at a given time during the pandemics 
while others emerged and disappeared some time after. Hence, it is 
important to differentiate between mutations (particular genetic 
changes), variants (sets of organisms that share some mutations), and 
lineages or clades (the set of individuals descending from a given 
variant). In Virology, a variant becomes a strain when there is a signif
icant change in its transmissibility, pathogenicity, immunogenicity or 
lethality characteristics compared to other such variants (Kuhn et al., 
2013; Van Regenmortel, 2007). 

Before the current variants of concern and interest (analysed in detail 
below), there have been a few notable variants in the COVID-19 
pandemic. The first such variant is known as D614G. This name corre
sponds to an A to G transition at position 23,403 of the SARS-CoV-2 
genome (relative to the Wuhan reference sequence), that results in the 
replacement of an aspartic by a glycine at position 614 of the S or spike 
gene. The D614G mutation is usually accompanied by three additional 
mutations: a C-to-T mutation in the 5’ UTR position 241, a silent C-to-T 
mutation at position 3,037, and a C-to-T mutation at position 14,408 
that results in an amino acid change in the RNA-dependent RNA poly
merase (RdRp:P323L). These mutations defined a clade (G clade under 
the GISAID nomenclature system) that became dominant worldwide by 
the end of March 2020. Although several cases of G614 were detected in 

Table 2 
Distribution of human SARS-CoV-2 sequences of human origin deposited at GISAID (on February 4, 2021) in the major clades/lineages according to the three 
nomenclature systems: GISAID (clades V, S, O, L, G, GH, GR, GV), NextStrain (only lineages 19A, 19B, 20A, 20A.EU2, 20B, 20C, 20D, 20E(EU1), 20G, 20H/501Y.V2, 
and 20I/501Y.V1), and PANGO (lineages A*, including 18 sublineages, and B*, including 815 sublineages). In total, 96.6% of the total number of sequences at GISAID 
are included in this analysis.   

19A 19B 20A 20A.EU2 20B 20C 20D 20E(EU1) 20G 20H/501Y.V2 201/501Y.V1  

A B A B A B B A B A B B A B B B B 

V 3 6169 1               
S 18 1 8824 244  2  1          
O 45 4514 73 42 1 777 31  403 1 223 9  69 78 2 63 
L  5138                
G 14 264 1 1 15 66615  13 840 4 284 38  1808   293 
GH  55  1 1 21239 12446    49127   37 16968 853  
GR      505 3 1 104337   4007  6   44381 
GV  1    119 2  2    1 99356     
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China and Germany by the end of January 2020, they likely represented 
independent mutations, and the first representative of the D614G 
variant was sampled on 20 February 2020 in Italy from where it rapidly 
spread to Europe and the rest of the world (Korber et al., 2020). 

The reasons for the rapid spread of this variant have been contro
versial, because its emergence was coincident with the start of the rapid 
diffusion of the virus outside of Asia, first in Europe and later in the 
Americas and rest of the world. The main point of discussion was 
whether the rapid spread was due to an intrinsic advantage of this 
variant compared to others or the main causes were related to epide
miological reasons and not to the intrinsic features of the variant 
(Grubaugh et al., 2020a). Structural and in vitro analyses, along with 
experiments in animal models, of the G614 form of the spike protein 
point at an increased infectivity and higher viral load than that of the 
D614 alternative, thus providing support for intrinsic viral properties as 
responsible for the observed replacement (Korber et al., 2020; Plante 
et al., 2020). A large study of more than 25,000 genomes from the UK 
tested the hypothesis of positive selection of G614 in this population 
(Volz et al., 2021). The results were not conclusive concerning the action 
of natural selection on this variant but they found a significant associ
ation with viral load and younger age of patients. Using an even larger 
sample and a new method that takes into account the recurrence of 
mutations, van Dorp et al. (2020b) found no evidence that D614G in
creases viral transmissibility. 

Is selective advantage a necessary condition for a variant to increase 
its frequency? Population genetics theory shows that a mutant allele can 
increase its frequency, even reach fixation, without the action of selec
tive processes. Genetic drift operates with intensity inversely propor
tional to population size, which seems to exclude it from acting in viral 
populations, although with increased overdispersion of transmission the 
more genetic drift would be expected. Additionally, the epidemic spread 
of SARS-CoV-2 has been shown to depend strongly on “super-spreading” 
events (Adam et al., 2020; Liu et al., 2020; Majra et al., 2021), the 
epidemiological equivalent of population bottlenecks followed by 
exponential growth, which can increase rapidly the frequency of a 
neutral, even slightly deleterious, mutation. Such events have been 
observed during the COVID-19 pandemic. For instance, the 20E.EU1 (or 
lineage B.1.177) variant was detected at the beginning of the 2020 
summer in the North-East of Spain, linked to agricultural workers 
(Hodcroft et al., 2020). In a few weeks, it became the dominant variant 
in Spain, which opened its borders to international travel. At the 
beginning of fall, this variant had become the most prevalent in several 
European countries, including Switzerland, the UK, and Denmark. The 
most noticeable variant-defining mutation, A222V again on the spike 
protein, does not show significant effects on the ability of the protein to 
mediate viral entry. Hence, its spread seems to be better explained by 
chance and opportunity than by any selective advantage. 

New, adaptive variants may arise at any time during a pandemic. 
However, benefitting from being advantageous depends on the envi
ronment, including external factors and genomic context, and on 
chance, because population size (i.e., genetic drift) is still important in 
medium sized populations and in those undergoing frequent bottle
necks. The same D614G mutation that became dominant in the COVID- 
19 pandemic was detected in other lineages before it originated the 
highly successful clade 20A. So far, there has been very little immune 
selection on SARS-CoV-2 from the human population, but this is likely to 
change as more people develop immune defences as a result of natural 
infection and vaccination. An excellent opportunity to learn how SARS- 
CoV-2 adapts to changing environmental conditions and the basis of 
how it might have jumped to infect humans is given by the changes 
observed upon jumping to another host species. 

SARS-CoV-2 has been found in many domestic and captive animals 
because of infections from humans or experimental infections (Abdel- 
Moneim and Abdelwhab, 2020). One particular case has received quite 
attention, the jump to minks which have resulted in serious outbreaks in 
mink farms and even transmissions from minks to humans (Oude 

Munnink et al., 2021). Outbreaks in mink farms have been detected in 
several countries, including Denmark, the Netherlands, Sweden, USA, 
and Spain (van Dorp et al., 2020c). Apart from the economic losses for 
the fur industry, the possibility of adaptation of SARS-CoV-2 to a new 
host with a widespread distribution is cause of much concern for the 
additional difficulties in controlling a pandemic with new natural 
reservoirs. 

A detailed genomic analysis of outbreaks in several Dutch mink 
farms revealed that they were caused by different lineages (Oude 
Munnink et al., 2021) and showed a clear relationship between the se
quences obtained from minks and those from the corresponding farm 
workers. In one case, transmission from minks to workers of the farm 
was observed. However, although some mutations were repeatedly 
observed among the sequences obtained in the different farms, none was 
consistently found in all of them. Van Dorp et al. (2020c) identified up to 
23 recurrent mutations including three non-synonymous mutations in 
the RBD that appeared independently in at least four occasions (Fig. 1A). 
These observations might indicate that the virus has explored several 
ways to adapt to a new host (MacLean et al., 2021). This might have also 
been the case during the phase of adaptation to humans. 

4.3. Recently emerged SARS-CoV-2 lineages 

As mentioned above, since the initial phases of the COVID-19 
epidemic, a major source of concern was the possibility that SARS- 
CoV-2 might mutate to acquire novel phenotypes and, possibly, 
increased virulence or transmissibility. Worries about the rapid spread 
of the 20E.EU1 lineage were soon tempered, but emphasized the rele
vance of genomic surveillance during the pandemic. This became even 
clearer at the beginning of December 2020, when routine epidemio
logical investigation for increasing incidence of COVID-19 in Kent (En
gland), together with analysis of sequences obtained by the COVID-19 
Genomics UK (COG-UK) consortium, revealed the presence of a large 
monophyletic cluster highly divergent from genomes sampled in the 
UK and worldwide. Almost half of the genomes sampled in Kent 
belonged to this new cluster (https://assets.publishing.service.gov.uk/g 
overnment/uploads/system/uploads/attachment_data/file/947048/ 
Technical_Briefing_VOC_SH_NJL2_SH2.pdf). Inspection of sampling 
dates indicated that the earlier genomes in the cluster were collected in 
September. The long branch (Fig. 2) separating these sequences from the 
others facilitated the identification of the new lineage, which was 
initially designated VUI-202012/01 (where VUI stands for variant under 
investigation) by Public Health England and then renamed VOC- 
202012/01 (here VOC is variant of concern) on December 18th (htt 
ps://assets.publishing.service.gov.uk/government/uploads/system/upl 
oads/attachment_data/file/947048/Technical_Briefing_VOC_SH_NJL2_ 
SH2.pdf). VOC-202012/01 is also referred to as B.1.1.7 (PANGO 
nomenclature) and 20B/501Y.V1 (Nextstrain nomenclature). As the 
long branch in the phylogenetic tree indicates, B.1.1.7 is characterized 
by an unusually large number of nucleotide substitutions, many of 
which are nonsynonymous changes or deletions in the spike protein 
(Rambaut et al., 2020b) (see below and Table 3). The surge in cases 
associated with B.1.1.7, as well as its biological features, prompted the 
UK Government to enforce strict control measures. Epidemiological in
vestigations during this time of high social distancing suggested that 
B.1.1.7 is more transmissible than pre-existing lineages with estimated 
ratios of reproduction numbers varying between 1.4 and 1.8 (Leung 
et al., 2021; Volz et al., 2020; Vöhringer et al., 2020; Davies et al., 
2021a). Alarmingly, B.1.1.7 also seems to be associated with higher viral 
loads and increased disease severity (Borges et al., 2021a; Davies et al., 
2021b; Kidd et al., 2021). By the end March 2021, the B.1.1.7 lineage 
had spread in 94 countries, although the coverage of genomic surveil
lance varies greatly across the globe (https://www.GISAID.org) (Fig. 3). 
Importantly, the proportion of B.1.1.7 increased significantly from 1 to 
70% over the course of the recent SARS-CoV-2 outbreak in Portugal 
(Borges et al., 2021b). Data from the USA, where B.1.1.7 was introduced 
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in October-November, however indicated that this lineage has spread at 
an unremarkable pace in California, whereas its diffusion in Florida was 
definitely faster (Larsen and Worobey, 2021). The reasons why B.1.1.7 
displays different epidemiological characteristics depending on the 
geographic area are presently unknown, but may relate to the specific 
control measures that are in place in distinct regions. 

B.1.1.7 carries an in-frame deletion in the N-terminal domain (NTD) 
of the spike protein (HV69-70Del). An apparently unrelated lineage 
(B.1.375) with the same deletion was detected in multiple locations in 

the United States (Moreno et al., 2021; Larsen and Worobey, 2020, 
2021). B.1.357 most likely originated in mid-September 2020 and, in 
addition to the deletion, carries fewer mutations compared to lineage 
B.1.1.7. (Fig. 1A, Table 3). At present, there is no indication that B.1.357 
has peculiar characteristics in terms of disease severity or trans
missibility (Larsen and Worobey, 2020; Moreno et al., 2021. Notably, 
the 69–70 deletion is found in yet another lineage, B.1.258, which has 
now been reported at considerable frequencies in several locations, 
especially in Europe (https://cov-lineages.org/lineages/lineage_B.1 

Fig. 1. Mutations observed in emerging SARS-CoV-2 lineages, in mink clusters, and in immunocompromised patients with long-term infection. (A) Schematic 
representation of the coding regions of the SARS-CoV-2 genome. The furin cleavage site in the S protein is represented with an elongated red triangle. Mutations are 
represented with colored triangles, as per legend. Variants possibly associated with increased mortality were derived from a previous work (Hahn et al., 2020). 
Subjects with long-term infection were described in the following works: immunosuppressed individual treated with CP (Kemp et al., 2020), Immunocompromised 
individual with cancer and treated with CP (Avanzato et al., 2020), Immunocompromised individual treated with Regeneron (Choi et al., 2020), lymphoma patient 
(Bazykin et al., 2021). (B) Mutations found in lineages B.1.1.7 (orange), B.1.351 (blue), and P.1 (green) are mapped onto the three dimensional structure of the spike 
protein. Mutations shared by two lineages are in chocolate, those shared by three lineages in dark red. The 3D structure corresponds to Swissmodel P0DTC2, which 
includes amino acids that are disordered in the spike crystallographic structures. For clarity, mutations are mapped on one monomer only. 

Fig. 2. Maximum likelihood phylogeny of 457 SARS-CoV-2 genomes. Twenty sequences belonging to lineages B.1.1.7, B.1.351, P.1, P.2, B.1.1.28, B.1.375, and 
B.1.429 were downloaded from GSAID. The complete genomes of 16 cluster V viruses were also obtained, together with 300 randomly selected SARS-CoV-2 genomes 
collected from January 2020 to March 2021 (Supplementary Acknowledgement Table). In particular, 20 sequences/month were included. Sequence alignments were 
generated using MAFFT (v7.427) (Katoh et al., 2019; Polack et al., 2020; Walsh et al., 2020) The phylogenetic tree was constructed using RAxMLversion 8.2.12 
(Stamatakis, 2014) and visualized with FigTree (http://tree.bio.ed.ac.uk/). 
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Table 3 
Mutations defining emerging SARS-CoV-2 lineages (B.1.1.7, B.1.351, P.1, and B.1.375). Gamage et al., 2020; Liu et al., 2021; Starr et al., 
2021; Young et al., 2020. 
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.258.html). Lineage B.1.258 is characterized by an additional mutation 
(N439K) in the RBD of the S protein. Although this mutation increases 
ACE2 binding affinity, B.1.258 does not seem to spread faster than other 
lineages. However, the N439K has been recently reported to confer 
resistance against several neutralizing monoclonal antibodies and to 
reduce virus sensitivity to convalescent plasma (CP) (Thomson et al., 
2021). 

Unfortunately, these are not the only lineages to generate concern in 
this phase of the pandemic, as the Network for Genomic Surveillance in 
South Africa reported the emergence of a distinctive SARS-CoV-2 line
age (lineage 501Y.V2 or B.1.351) in October 2020. Just like B.1.1.7, this 
lineage is defined by a substantial number of mutations, only a minority 
of which are shared with the B.1.1.7 lineage (Fig. 1, Table 3). Epide
miological evidence suggests that B.1.351, which emerged in early 
August in Nelson Mandela Bay, has been displacing other lineages in 
several provinces in South Africa (Tegally et al., 2021). B.1.351 has been 
isolated from people infected with SARS-CoV-2 from more than 50 
different countries across the globe (https://www.GISAID.org). Very 
preliminary data from the Centre of Mathematical Modelling of Infec
tious Diseases (CMMID COVID-19 working group, London School of 
Hygiene and Tropical Medicine) indicated that B.1.351 is possibly more 
transmissible or less susceptible to cross-protection from previous 
exposure (or both) (https://cmmid.github.io/topics/covid19/sa 
-novel-variant.html). 

Even more recently - i.e., in December 2020- a resurgence of COVID- 
19 cases in Manaus, Brazil, prompted a genome sequencing program 
that led to the identification of another novel lineage (P.1) (Sabino et al., 
2021; Faria et al., 2021a). Specifically, Manaus experienced a high 
attack rate, which was estimated to be approximately 75% by October 
2020 (Faria et al., 2021a). The P.1 lineage was absent in samples 
collected until November 2020, but its prevalence raised to 41% during 
December 2020. P.1, a descendant of lineage B.1.1.28, is phylogeneti
cally distinct from pre-existing strains circulating in Brazil and else
where (Fig. 2). In analogy to the two novel lineages described above, it 
carries a number of mutations, particularly in the spike protein. Some of 
these are shared with B.1.1.7 and B.1.351 (Fig. 1, Table 3) (Faria et al., 
2021a). The progenitor of P.1, lineage B.1.1.28, has been circulating in 
Brazil since the early pandemic phase (February–March 2020) (Resende 
et al., 2020). In addition to the P.1 lineage, B.1.1.28 also originated 
another independent sub-lineage (P.2) (Fig. 2), which shares one 

mutation (E484K in the RBD of the S protein) with P.1 (Naveca et al., 
2021). Both P.1 and P.2 have been associated with cases of re-infections 
in Brazil (Naveca et al., 2021; Vasques Nonaka et al., 2021; Resende 
et al., 2021). Notably, a recent update from Public Health England re
ported the detection of the E484K mutation in a small subset of se
quences belonging to the B.1.1.7 lineage, suggesting multiple 
independent acquisitions of this change (https://assets.publishing.ser 
vice.gov.uk/government/uploads/system/uploads/attachment_data 
/file/957504/Variant_of_Concern_VOC_202012_01_Technical_Briefin 
g_5_England.pdf). 

Finally, on January 19th, 2021, the California Department of Public 
Health dispatched a note about a SARS-CoV-2 variant carrying the 
L452R mutation. This lineage, now referred to as B.1.429, caused mul
tiple large COVID-19 outbreaks in Santa Clara County and other regions 
(https://www.cdph.ca.gov/Programs/OPA/Pages/NR21-020.aspx) and 
is now detected as majority lineage in California and Nevada (htt 
ps://outbreak.info). B.1.429 is defined by four non-synonymous sub
stitutions, three of which in the spike protein (S13I, W152C, L452R). 
Among these, the L452R mutation is located within the RBD. Epidemi
ological and in vitro analyses have suggested that B.1.429 has increased 
infectivity and transmissibility, as well as the ability to escape neutral
ization by CP and vaccine-induced antibodies (Deng et al., 2021; Li 
et al., 2020b). At the end of January 2021, a descendant lineage of 
B.1.429 carrying additional variants including Q677H (S protein) was 
detected in Colorado (Tomkins-Tinch et al., 2021). Substitutions at po
sition 677 are notable because they seem to have arisen independently 
in multiple lineages, either as Q677H or as Q677P. The proximity of this 
position to the polybasic cleavage site might be consistent with a func
tional relevance for the proteolytic processing of the spike protein 
(Hodcroft et al., 2021). 

4.4. Genomic features and possible origin of emerging SARS-CoV-2 
lineages 

Clearly, one of the most notable features of the emerging lineages, 
especially B.1.1.7, B.1.351, and P.1, is the large number of nucleotide 
substitutions they carry (Table 3, Fig. 1). This is readily visualized by the 
long phylogenetic branches separating these clusters from the other 
SARS-CoV-2 variants (Fig. 2). As mentioned above, the estimated sub
stitution rate for SARS-CoV-2 is around 10− 3 substitutions per site per 

Fig. 3. Number of complete SARS-CoV-2 genomes sequenced in different countries. Data on 836,000 high-quality, complete genomes were retrieved from GISAID 
(https://www.gisaid.org/). Countries are colored according to the number of sequenced genomes, as per legend. 
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year (Duchene et al., 2020; van Dorp et al., 2020a; Ghafari et al., 2020). 
Thus, circulating viruses accumulate on average ~2 substitutions per 
month. The large number of changes on the emerging lineages is thus 
highly unexpected and represents a new twist in the evolutionary tra
jectory of SARS-CoV-2. Moreover, the nature of these changes and their 
location are strongly suggestive that some form of selective pressure 
underlies the origin of the novel lineages. In fact, evolutionary analyses 
indicated that the emergence of the three lineages carrying the N501Y 
substitution (B.1.1.7, B.1.351 and P.1) was accompanied by a shift in the 
strength of natural selection and all of them carry a number of sites that 
show evidence of ongoing adaptation (Martin et al., 2021). Most sub
stitutions in these lineages are either missense, nonsense or indels (in
sertions/deletions) that alter protein sequences (Table 3), and the 
majority of them are located in the spike protein, which accounts for 
only ~13% of the coding capacity of SARS-CoV-2 (Fig. 1). Importantly, 
some of the spike protein changes have been associated with increased 
infectivity (e.g., N501Y, HV69-70Del), escape from immune responses 
(e.g., E484K, K417N/T, HV69-70Del), or spillover to mink farms 
(N501T) (Table 3). Several mutations in the S protein are also predicted 
to affect conformational epitopes (Fig. 4). It is also clear that sub
stitutions at positions N501, K417, and E484 arose independently on 
multiple lineages, suggesting convergent evolution or recurrent mu
tation (Faria et al., 2021a). Indeed, recent observations indicate that a 
substantial fraction of mutations that define the emerging lineages occur 

in protein regions of remarkable evolutionary plasticity in sarbecovirus 
genomes (Garry et al., 2021). In fact, a spike protein alignment of 
representative sarbecoviruses detected regions that, along the evolu
tionary history of this virus subgenus, have accumulated micro-deletions 
and insertions. Such regions include the polybasic furin cleavage site, 
where P681H is located, but also exposed loop regions, which are most 
likely tolerant to change and subject to immune selection (e.g., the one 
where K484 lies). Overall, these observations were taken to imply that 
the selective pressures that have shaped the evolution of spike proteins 
in sarbecoviruses are driving the ongoing evolution of SARS-CoV-2 in 
humans, or at least contributed to the emergence of the highly divergent 
lineages (Garry et al., 2021). This hypothesis is also in line with pre
liminary analyses of B.1.351 sequences indicating that both the entire S 
gene and several mutated sites show evidence of positive selection 
(Kosakovsky Pond et al., 2020; Tegally et al., 2020). 

Whereas all these lines of evidence suggest an underlying selective 
pressure, the question remains as to which factors or circumstances 
prompted SARS-CoV-2 to accrue mutations and originated the emerging 
lineages. At present, the most widely accepted hypothesis involves pa
tients with chronic or long-standing SARS-CoV-2 infection. This is 
because highly divergent SARS-CoV-2 genomes that carry multiple 
mutations have been sequenced from immunocompromised subjects 
with long-term COVID-19, either treated or not with CP or therapeutic 
antibodies (Bazykin et al., 2021; Avanzato et al., 2020; Choi et al., 2020; 

Fig. 4. Relationships between amino acid substitutions and conformational epitopes in the SARS-CoV-2 spike proteins. Conformational epitope may induce the 
neutralizing antibody against various viruses (Aso et al., 2019). Therefore, to estimate the vaccine’s efficacy, the relationships between conformational epitopes and 
amino acid substitutions of the S protein in the B.1.1.7 and B.1.351 lineages were examined. Detailed procedures of these examinations were made as previously 
described (Aso et al., 2019). The changes detected in the two lineages (red) affected partially overlapping epitopes (blue). Particularly, amino acid substitutions 
(E484K and N501Y) in conformational epitopes were found in the RBD of the S protein (yellow). Reports suggested that amino acid substitutions of the confor
mational epitopes lead to viral reinfection and changes of vaccine efficacy (Russi et al., 2018). Thus, our in silico study suggests that the mRNA vaccine efficacy 
partially changes against the variants (Russi et al., 2018; Sahin et al., 2020), although this should also be examined in vitro and in vivo. 
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Kemp et al., 2020). Moreover, some of the mutations observed in these 
samples correspond to those identified in the B.1.1.7, B.1.351, and P.1 
lineages (Table 3, Fig. 1). As of March 2021, four cases of long-term 
infections (up to four months) have been described in immunocom
promised COVID-19 cases, two with haematological malignancies and 
two receiving immunosuppressant therapies (Bazykin et al., 2021; 
Avanzato et al., 2020; Choi et al., 2020; Kemp et al., 2020). In all pa
tients, highly divergent viral lineages emerged, irrespective of symptom 
severity and disease outcome (two deceased and two recovered) (Fig. 1). 
Three of these patients were treated at least once with either CP or 
antibody cocktails (Regeneron). Longitudinal sequencing revealed a 
progressive accumulation of mutations, as well as the appearance of 
dynamic viral populations, indicative of intra-host evolution of SARS- 
CoV-2 (Avanzato et al., 2020; Choi et al., 2020; Kemp et al., 2020). In 
particular, Kemp and coworkers noted that a viral population carrying 
the VH69-70Del and D769H mutations emerged after the first CP 
administration, fell to low frequency in a few days, and then increased 
again after a second CP treatment. This observation suggests competi
tion among intra-host viral populations and supports the idea that CP 
treatment exerts a selective pressure that favours specific mutants. 
Indeed, using in vitro assays they found that the VH69-70Del+D769H 
variant was less sensitive to neutralization by CP (Kemp et al., 2020). 

Overall, these data raise the possibility that, in immunocompromised 
hosts, long-term infection and reduced immune control allow intra-host 
virus evolution, and that treatment with CP or therapeutic antibodies 
selects for specific mutations. It is however worth mentioning that a 
recent report on a patient with lymphoma and long-term COVID-19 also 
described the emergence of a highly divergent lineage carrying, among 
others, the VH69-70Del mutation. The patient did not receive CP or 
antibodies and did not develop neutralizing responses against SARS- 
CoV-2 (Bazykin et al., 2021). It is thus possible that long-term viral 
replication in the context of an immunocompromised host, irrespective 
of the treatment regime, creates the conditions to generate high viral 
diversity and novel lineages. This has previously been suggested for 
other viruses, including norovirus and influenza A virus (McMinn et al., 
1999; Karst and Baric, 2015; Memoli et al., 2010; Rogers et al., 2015), 
although in the latter case the interpretation is complicated by the 
administration of antivirals to chronically infected patients. In this 
respect, it is also interesting to notice that long-term infections with 
SARS-CoV-2 (more than 2 months) were previously shown to occur in 
immunocompetent hosts and, when genome sequencing was performed, 
limited viral genetic diversity was observed (Li et al., 2020c; Abu-Rad
dad et al., 2020). 

More abundant data on short-term infections indicate that, within 
the host, SARS-CoV-2 accumulates mutations at a pace consistent with 
its estimated substitution rate (i.e., ~1 mutation per genome every two 
weeks) (Tonkin-Hill et al., 2020). Thus, diversity remains low and viral 
evolution is mainly shaped by purifying selection (Abu-Raddad et al., 
2020; Valesano et al., 2021; Popa et al., 2020; Tonkin-Hill et al., 2020; 
Lythgoe et al., 2021). Nonetheless, variability in the number of detect
able viral variants was observed among patients with short-term in
fections (Popa et al., 2020), and still limited data indicate that SARS- 
CoV-2 intra-host diversity might increase with age (Al Khatib et al., 
2020) and in cancer patients (Al Khatib et al., 2020; Siqueira et al., 
2020). Intense monitoring of viruses transmitted by these (and other) 
patient categories will thus be required to assess whether they can 
transmit genetically diverse viral genomes. 

In summary, given the limited evidence available to date, the most 
likely explanation for the emergence of the new, highly divergent line
ages is that their evolution was accelerated by some specific circum
stances (possibly infection of an immunocompromised host) and onward 
transmission introduced them back in the human population. This is also 
in line with an analysis of B.1.1.7 genomes (collected up to November 
30th, 2020), which indicated that, since its detection in the UK, this 
lineage has been evolving with a substitution rate similar to that of other 
SARS-CoV-2 lineages (Rambaut et al., 2020b). 

4.5. Recombination in SARS-CoV-2 

New evidence points at the occurrence of recombination in SARS- 
CoV-2 (Jackson et al., 2021; Latinne et al., 2020; VanInsberghe et al., 
2021). This is not a novelty in coronaviruses (Gribble et al., 2021) and 
previous analyses have shown that recombination has played an 
important role in the evolution of SARS-CoV-2 from its ancestors 
(Andersen et al., 2020; Boni et al., 2020; Kirtipal et al., 2020; MacLean 
et al., 2021; Wells et al., 2021). Some recombinant sequences detected in 
the UK involve a breakpoint near the 5’ end of the spike gene from 
B.1.1.7 variants (Jackson et al., 2021) but there has been no indication 
of changes in their phenotypic properties nor an increase in their fre
quency above the threshold for gaining the assignment of a new PANGO 
lineage. Nevertheless, in light of the possible epistatic effects of muta
tions in different portions of the SARS-CoV-2 genome (McCallum et al., 
2021a), it will certainly be necessary to closely watch the emergence and 
possible spread of recombinant genomes of this virus. 

5. Possible impact of SARS-CoV-2 variants on the performance of 
molecular testing methods 

Since COVID-19 has reached pandemic status causing a serious 
global health threat, a widespread availability of diagnostic testing is 
crucial to detect SARS-CoV-2 in a variety of specimen types collected 
from both symptomatic and asymptomatic patients. Many academic and 
commercial clinical microbiology laboratories and companies have 
worked around the clock to develop molecular tests that are fast, highly 
accurate, and inexpensive to meet testing demands. In addition, more 
accessible and scalable testing is a critical component in managing the 
COVID-19 pandemic. Molecular tests detect genetic material and they 
are sensitive enough to be able to pick up very small amounts of viral 
RNA very early in an infection. Molecular tests are considered the gold 
standard diagnostic test for SARS-CoV-2 detection. Molecular tests use 
two major techniques known as reverse transcription polymerase chain 
reaction (RT-PCR) and isothermal amplification. Another emerging 
molecular technology is the clustered regularly interspaced short 
palindromic repeats (CRISPR). The Sherlock™ CRISPR SARS-CoV-2 kit 
is the first CRISPR-based diagnostic test receiving an EUA by the FDA. 
This assay is intended for the qualitative detection of the SARS-CoV-2 
virus in upper respiratory tract specimens from patients suspected of 
having COVID-19. 

The COVID-19 molecular tests have been designed and developed 
based on genomic information of SARS-CoV-2. Although molecular tests 
can provide rapid and accurate diagnosis on the infection, there is a 
considerable risk of misdiagnosis due to genomic variations, which may 
have a critical impact on the test performance. Molecular tests often use 
different primer/probe sets targeting different regions of the SARS-CoV- 
2 genome. To safeguard against potential mutational drift in the SARS- 
CoV-2 genome, many molecular tests were developed to amplify and 
detect at least two conserved regions. Molecular tests designed to detect 
multiple SARS-CoV-2 genetic targets are less susceptible to the effects of 
genetic variation than tests designed to detect a single genetic target. 
The Xpert Xpress SARS-CoV-2/Flu/RSV test targets the N2 and E genes 
of SARS-CoV-2. The BioFire COVID-19 test consists of three independent 
and non-overlapping assays targeting the ORF1ab and ORF8 sequences. 
In the Simplexa COVID-19 Direct assay, two different regions of the 
SARS-CoV-2 genome, ORF1ab and S gene, are amplified. The Panther 
Fusion SARS-CoV-2 test detects two conserved regions of the ORF1ab 
gene, the two regions are not differentiated and amplification of either 
or both regions leads to a fluorescence signal. A recent study performed 
the in-silico reassessment of the previously published primers and probes 
for COVID-19 diagnosis using a total of 17,026 SARS-CoV-2 sequences. 
Mutations or mismatches on primer/probe binding regions were 
discovered in seven out of 27 molecular assays. While the US-CDC-N-1 
probe in the US CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel 
showed only one mismatch with 1.6% viral sequences, the CN-CDC-N 
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forward primer (developed by China CDC, China) had three mismatches 
with 18.8% of viral sequences. The reverse primer of NIID-JP-N 
(developed by National Institute of Infectious Diseases, Japan) also 
showed one mismatch with all the sequences (Khan and Cheung, 2020). 

Since single nucleotide polymorphisms (SNPs) of the SARS-CoV-2 
genome are now a regular occurrence, with more discovered every 
day, it is unrealistic to avoid all SNPs on different primer/probe binding 
sites. However, many molecular tests can tolerate a few single nucleo
tide mismatches, which can have little to no impact at all on their per
formance. Lefever at el. discovered that single mismatches located >5- 
bp from the 3’ end have a moderate effect on the target amplification 
and can be tolerated. In addition, four mismatches in a single primer 
block amplification almost completely, whereas three mismatches in 
one of the primers must be combined with at least two mismatches in the 
other primer to achieve the loss of target hybridization (Lefever et al., 
2013). Recently, Ziegler and co-authors reported a case tested with the 
Xpert Xpress SARS-CoV-2 assay with a cycle threshold (CT) value of 22.7 
for the E gene, but a negative result for the N2 gene. However, other 
platforms including the Allplex SARS-CoV-2 assay, the Charité protocol 
(Charité - Universitätsmedizin Berlin Institute of Virology, Germany) 
and the US CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel 
revealed positive results for all designed targets, including the N gene 
with CT values of 26.2-27. Sanger sequencing of the two independent 
PCR amplicons revealed three SNPs compared with the SARS-CoV-2 
strain Wuhan-Hu-1 reference genome (Ziegler et al., 2020). 

Given the high frequency of SNPs occurrence, the FDA alerts clinical 
laboratories that false negative results may occur with any molecular 
test for the detection of SARS-CoV-2 if a mutation occurs in the part of 
the virus’ genome assessed by that test. Since primer/probe sequences of 
most commercial assays are not revealed, the FDA monitors closely the 
potential negative impact of genetic variation in molecular tests that 
have received Emergency Use Authorization (EUA). Based on the FDA’s 
analysis to date, the Accula SARS-CoV-2 test performance may be 
impacted when a SARS-CoV-2 strain having a genetic variant at position 
28,881 (GGG to AAC) is tested. Other two molecular tests, the TaqPath 
COVID-19 Combo Kit (which may also be labelled as the TaqPath 
COVID-19 Combo Kit Advanced) and the Linea COVID-19 Assay Kit, 
have significantly reduced sensitivity due to certain mutations, 
including one of the mutations in the recently identified VOC 202112/ 
01 variant (lineage B.1.1.7 or 20I/501Y.V1). Since this test is designed 
to detect multiple genetic targets, the overall test sensitivity should not 
be impacted. However, the pattern of detection when certain mutations 
are present may help with early identification of new variants in patients 
to reduce further spread of infection. Be aware of the pattern of detec
tion associated with certain mutations, including the B.1.1.7 variant, 
specifically a pattern of 2/3 positive targets showing the S-gene drop out 
(reduced sensitivity with the S-gene target, also denoted as SGTF, S gene 
target failure), when using the TaqPath COVID-19 Combo Kit, and a 
pattern of 1/2 positive targets showing the S-gene drop out when using 
the Linea COVID-19 Assay Kit. Recently, the FDA reports that the 
Cepheid tests are impacted by a single point mutation in the target area 
of the test. Two independent single point mutations reduce the test’s 
sensitivity for detecting the N2 target. This observation is unexpected, 
and the FDA’s analysis suggests that the impact of a single point muta
tion on the test performance is associated with the unique chemistry of 
the Cepheid tests. The E target is still detected when enough virus is 
present, leading to a “presumptive positive” result in the Xpert Xpress 
SARS-CoV-2 and Xpert Xpress SARS-CoV-2 DoD tests. Detection of the E 
target without detecting the N2 target will be reported as “positive” in 
the Xpert Omni SARS-CoV-2. The FDA also recommends considering 
repeat testing with a different test (with different genetic targets) if 
COVID-19 is still suspected after receiving a negative test result. (https 
://www.fda.gov/medical-devices/letters-health-care-providers/geneti 
c-variants-sars-cov-2-may-lead-false-negative-results-mole 
cular-tests-detection-sars-cov-2; https://www.fda.gov/medical-devic 
es/coronavirus-covid-19-and-medical-devices/sars-cov-2-viral-muta 

tions-impact-covid-19-tests). 
Viruses often mutate, and SARS-CoV-2 is no exception. As a conse

quence, there is the urgent need for continued surveillance of viral 
evolution and for fast, accurate and sensitive detection methods. Viral 
metagenomics has emerged to be a powerful method to detect SARS- 
CoV-2 mutants. The Illumina COVIDSeq test (Illumina, Inc.) is the first 
next-generation sequencing (NGS) test approved for use under the EUA. 
This amplicon-based NGS test can amplify up to 98 targets on SARS- 
CoV-2 genome for highly accurate detection. Other NGS in vitro diag
nostic tests under EUA include Clear Dx SARS-CoV-2 test on the Oxford 
Nanopore GridION Sequencer (Clear Labs, Inc.), Guardant-19 on the 
Illumina NextSeq 500 & NextSeq 550 Sequencing Systems (Guardant 
Health, Inc.), and Helix COVID-19 NGS test on the Illumina NovaSeq 
6000 Sequencing System (Helix OpCo LLC) https://www.fda.gov/medi 
cal-devices/coronavirus-disease-2019-covid-19-emergency-use-authori 
zations-medical-devices/vitro-diagnostics-euas#individual-molecular). 
These high-throughput assays should be considered when clinical lab
oratories want to further characterize the clinical specimen with genetic 
sequencing when the above-mentioned pattern of detection associated 
with certain mutations is identified. 

6. Implications of new variants for immunity and vaccination 

6.1. Characterising the immune response to SARS-CoV-2 and the 
determinants of immunopathology 

To understand the likely impact of new variants and facilitate vac
cine design, we first need to understand the natural immune response 
and the way the immune responses differ between asymptomatic, mildly 
and severely infected individuals. Typically for viral infections, IgG and 
IgM antibodies are seen after symptom onset, and neutralising anti
bodies are correlated with resolution of disease (Long et al., 2020). 
Asymptomatic individuals show long periods of viral shedding and have 
low levels of antibody-mediated immunity (Long et al., 2020). The 
magnitude of the neutralising antibody response is positively correlated 
with disease severity, as is the slow decline of antibody levels (Seow 
et al., 2020). The major target of these neutralising antibodies is the S 
protein, both the S1 (containing the RBD) and S2 domains (Jeyanathan 
et al., 2020). The roles of T cells are key, including for memory re
sponses, with CD4+ T helper cells stimulating the production of anti
bodies and CD8+ cytotoxic T cells (Grifoni et al., 2020; Sharma et al., 
2020). Cytotoxic CD4+ and CD8+ T cells are also known to be associ
ated with disease outcome (Sette and Crotty, 2021). CD4+ T cells are 
generated in high amounts in COVID-19: mild disease and the acute 
phase of infection have been associated with high SARS-CoV-2 specific 
CD4+ T cells, while these have been absent where the outcome has been 
fatal (Rydyznski Moderbacher et al., 2020). 

Early expression of Type 1 interferons will induce an anti-viral state 
and promote a pro-inflammatory response through inflammatory cyto
kines and chemokines. The SARS-CoV-2 virus is associated with delayed 
Type 1 IFN production, the innate immune response is suppressed, and 
this delayed response causes an inability to control viral replication, 
leading to immunopathology, cellular damage of airway epithelia and 
the lung parenchyma, sometimes resulting in Acute Respiratory Distress 
Syndrome (ARDS) and an eventual lethal inflammatory cytokine storm 
(Jeyanathan et al., 2020; Varghese et al., 2020). 

COVID-19 tends to be most severe in elderly patients, those with 
underlying health complications and South Asian and Black people have 
a higher chance of COVID-19 related death than white people, only 
partly accounted for by comorbidities (Williamson et al., 2020). With 
age, both innate and adaptive immunity undergo cellular and functional 
changes, known as ‘immunosenescence’, characterised by higher base
line inflammatory responses, so that even healthy elderly have a 
continual low-grade inflammation known as ‘inflammaging’. They have 
low numbers of naïve T cells, and although they have good memory T 
cell populations, the diversity of the T cell repertoire is reduced. The 
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efficient adaptive immune response seen in the young, associated with a 
good prognosis to COVID-19, is not seen in the aging population, where 
the poor adaptive response fails to control viral replication (Rydyznski 
Moderbacher et al., 2020). Heightened innate immunity results in 
release of cytokines and an inflammatory storm, which may cause tissue 
damage, ARDS, and ultimately prove lethal (Cunha et al., 2020). 

6.2. Approaches to vaccination: efficacy, protection and severity 

Hundreds of vaccines are under development, and a thorough review 
of these is beyond the scope of this article. For most all vaccines under 
development, the major protein target is the S-protein with its direct 
involvement in infection, and as a major target of the immune response. 
The development of vaccines against COVID-19 has seen unprecedented 
use of a large number of platforms for design and development, which 
are already well reviewed, together with antigen selection, route of 
delivery and regimens (Jeyanathan et al., 2020; Grifoni et al., 2020; 
Sharma et al., 2020; Flanagan et al., 2020). 

Examples of well progressed vaccines, that have been through clin
ical trials and are now being delivered to the general population, include 
the Pfizer/BioNTech, Moderna, and Oxford/AstraZeneca vaccines 
(Jeyanathan et al., 2020). It is from these first vaccinations that we are 
beginning to collect empirical data to understand immunity and vaccine 
efficacy, including with respect to new variants. The Pfizer/BioNTech 
and Moderna vaccines are both based on mRNA synthesis. These are 
lipid nanoparticle mRNA vaccines, coding for the RBD of the S-protein, 
showing very high efficacy and almost identical results in phase III trials. 
Reports of trials recorded high titres of neutralising antibodies, CD4+
and CD8+ T cell responses (Laczkó et al., 2020; Mulligan et al., 2020; 
Sahin et al., 2020.). Notably both these vaccines appeared to confer 
similar protection in both young and old age groups. 

The Oxford/AstraZeneca vaccine is a non-replicating recombinant 
viral vector (ChAd) expressing the S protein. Phase I – III clinical trials 
have taken place in the UK, South Africa, the USA and Brazil with an 
overall efficacy of 71% and induction of neutralising antibodies and T 
cell responses (Folegatti et al., 2020; van Doremalen et al., 2020; Ziegler 
et al., 2020). It is notable that whichever vaccine is employed, and the 
reported vaccine efficacy, no severe cases have been found amongst 
vaccinated people to date. Most recently, The AstraZeneca US phase III 
trial (astrazeneca.com, 22nd March 2021) with 32,499 participants and 
141 cases of symptomatic COVID-19 reported 79% vaccine efficacy at 
preventing symptomatic COVID-19, 100% efficacy against severe or 
critical disease and hospitalisation and comparable efficacy across 
ethnicity and age. 

6.3. Predicting the immune response and new SARS-CoV-2 variants 

As of March 2021, there is a paucity of empirical evidence in the 
peer-reviewed literature concerning the relevance of new variants on 
the ability to mount an effective immune response, to correlate with 
immunopathology or to reduce the protective immunity conferred by 
vaccination. However, the lack of information is rapidly changing, with 
preprints appearing relevant to the variants of concern (lineages B.1.1.7, 
B.1.351, and P.1) in 2021. It is envisaged that during the next few 
months, data-driven analysis will be performed to review current vac
cines and potential modifications to account for loss of efficacy due to 
new escape variants. 

The vast literature that exists on the analysis of viral variants, arising 
during the pandemic, is covered elsewhere in this article. Based on the 
very large databases of viral sequences, along with time of origin and 
details of sampling, predictive tools have been proposed to assess the 
likely effects of new variants: not only which variants will be selected for 
and spread through their increased transmissibility and those which 
result in increased virulence, but also for understanding effects relevant 
to immunity and vaccination (Tomaszewski et al., 2020). Interest in 
predicting the likely development and impact of new variants and 

combinations of variants has often, but not exclusively, focussed on the S 
protein and the variable RBD. For instance, bioinformatics and machine 
learning methods have been applied to predict epitope targets for CD4+
and CD8+ T cell response (Sette and Crotty, 2021) and also to select for 
T and B cell epitopes in vaccine design (Kalita et al., 2020; Kiyotani 
et al., 2020). These predictions have been helpful to identify experi
mentally the T cell targets and hence to investigate the effects of virus 
mutations on the immune response. Such predictions, on both T-cell and 
B-cell epitopes, have been used together with the information pertaining 
to the likelihood of viral variants undergoing antigenic drift (Koyama 
et al., 2020). 

A major hurdle to develop vaccines that specifically induce T cell 
responses is the design of a heterogeneous set of epitopes that can be 
used to cover the vast heterogeneity of MHC genotypes in humans. In the 
context of other viral infections, such as DENV, Influenza and HIV, 
several strategies have been developed to achieve an optimal set of 
epitopes, and these approaches are likely to be underway in COVID-19 
vaccine development as well. The use of animal models in our under
standing of new SARS-CoV-2 variants and their relevance to vaccine 
development can be difficult and they are certainly not essential (Fla
nagan et al., 2020). Interestingly, and potentially benefiting protection 
through cross reaction, some epitopes from S and N proteins map 
identically in SARS-CoV-1 and SARS-CoV-2 (Ahmed et al., 2020). 
Identification of SARS-CoV-2 specific T cell epitopes, including those 
encompassing the new variants, as well as epitopes recognised by T cells 
potentially cross reactive with related viruses will be key for under
standing immunity and immunopathological sequelae, which will 
impact on vaccine design (Flanagan et al., 2020; Ahmed et al., 2020; 
Olvera et al., 2020). 

6.4. Empirical data: immunity, immunopathology, vaccine efficacy and 
new variants? 

Considering the widespread variants, SARS-CoV-2 D614G became 
dominant globally in early 2020, but despite greater infectivity and 
transmission, it is not thought to result in greater severity of disease 
(WHO.int, 2020). This suggests no marked change in overall immunity 
to this new variant. 

Early information on SARS-CoV-2 lineage B.1.1.7, originated by VOC 
202012/01, suggested that this variant shows increased transmissibility 
but again no greater severity of disease, as measured by hospitalisation 
and 28-day fatality, in a study matching 1769 variant cases with 1769 
wild-type control cases. Similarly, reinfection rates did not appear to 
differ between the 2 groups with 2 reinfections in the variant case group 
compared to 3 in the wild-type case group (Public Health England, 
Investigation of novel SARS-CoV-2 variant, Variant of Concern 202012/ 
01 Technical briefing 2- 28 December 2020. PHE: London; 2020). 
Conversely, the most recent data for the B.1.1.7 lineage suggests that it is 
associated with increased disease severity. In a large study of COVID-19 
cases in England, Davies et al. (2021b) considering 4,945 deaths, used S 
gene target failure as a proxy for infection with B.1.1.7. After controlling 
for confounding variables, they found an increased mortality rate 
associated with B.1.1.7: for men in the age range of 55 to 69, the risk of 
death from COVID-19 increases from 0.6% to 0.9%, and overall there is a 
61% higher hazard of death (Davies et al., 2021b). This VOC has also 
been associated with increased viral loads in respiratory samples, as well 
as with longer duration of infection and of viral shedding (Calistri et al., 
2021; Kidd et al., 2021; Kissler et al., 2021; Borges et al., 2021a), these 
latter findings helping to explain its increased transmissibility. 

Since the substitution N501Y in the RBD of the S-protein is common 
to the three rapidly spreading B.1.1.7, B.1.351 and P.1 lineages, and is a 
substitution shown to infect mice more efficiently (Gu et al., 2020) 
(Table 3), efforts are underway to test the substitution specific neu
tralisation activity of sera from recovered patients and vaccinated peo
ple to assess the likely impact on vaccine performance (who.int, 2020). 
BNT162b2 (Pfizer Inc. and BioNTech SE) is an mRNA-based vaccine 
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encoding the full length prefusion S protein (Polack et al., 2020; Walsh 
et al., 2020). The vaccine has been shown to elicit virus neutralising 
titres similar to those from recovered patients (Walsh et al., 2020). 
Isogenic N501 and Y501 SARS-CoV-2 strains were generated and tested 
against sera from 20 participants of the vaccine trial. The sera had 
equivalent titres of neutralising antibodies to the 2 viruses (Gu et al., 
2020; Xie et al., 2021). No reduction in neutralising activity against the 
virus carrying the Y501 variant was noted to be consistent with pre
served neutralisation of 15 pseudoviruses with other mutations found to 
be circulating (Sahin et al., 2020.). However, another study (Wang et al., 
2021), which used a similar in vitro approach, found that the activity 
against the N501Y variant of plasma from vaccinees with either 
BNT162b2 or mRNA-1273 (Moderna) vaccines was slightly but signifi
cantly reduced; and two further studies on sera from BNT162b2 vacci
nated individuals detected only a minor reduction in efficacy against the 
B.1.1.7 variant compared to the prototypic strain (Muik et al., 2021; 
Hoffmann et al., 2021; Muik et al., 2021). Finally, an in vivo study using 
hamsters as model organisms indicated that the ChAdOx1 vaccine 
(AZD1222, Oxford/AstraZeneca) is protective against the B.1.1.7 line
age (Fischer et al., 2021). Overall, these results suggest that most 
available vaccines should retain an acceptable efficacy against the 
B.1.1.7 variant. 

Patients with lineage B.1.351, variant 20H/501Y.V2 originally 
detected in South Africa, which is now spreading rapidly albeit not yet 
globally, show a greater viral load which is in line with its increased 
transmissibility and greater disease burden. However, there is no clear 
evidence of greater disease severity in patients infected with this variant 
(who.int, SARS-CoV-2 Variants-Disease Outbreak News, 31st December 
2020). Information is needed on cross neutralisation, where antibodies 
to an infecting strain might provide protection to a different strain. 
Faulkner et al. (2021) reported that antibodies elicited during B.1.1.7 
infection had reduced recognition and neutralising ability of parental 
strains or B.1.351, and that this drop in cross reactivity was greater 
following infection with B.1.1.7 than parental strains (Faulkner et al., 
2021). The rapid spread of B.1.351, containing multiple S protein mu
tations, is a cause for concern, not only because of its increased infec
tiousness but also because there is a suggestion that it could compromise 
vaccination (Sahin et al., 2020; Tegally et al., 2020). In particular, the 
E484K substitution is found in B.1.351 and also in P.1 lineages (Tegally 
et al., 2020) (Table 3, Fig. 1). This mutation is in the RBD recognised by 
neutralising antibodies. Greaney et al. (2021) longitudinally sampled 
polyclonal convalescent plasmas, and looking at the 3 main epitopes of 
the RBD (443-450, RB Motif, and 494-501) found binding of 11/11 
samples was reduced at F456 and 9/11 reduced at E484. The most 
important site was E484 where neutralisation by some plasma was 
reduced >10 fold (Greaney et al., 2021). However, the impact of epitope 
variation on responsiveness varied amongst individuals and temporally 
in the same individual. E484K was predicted to be an immune escape 
variant by Andreano et al. (2020) and has been described to be present 
after reinfection (Resende et al., 2021; Vasques Nonaka et al., 2021). 
Experimentally SARS-CoV-2 was grown in the serum from a conva
lescing patient, selecting for mutations that were avoiding the antibody 
repertoire. Three mutations were picked up, one of which was E484. 
This mutation was missed by the patient’s neutralising antibodies. We 
might expect the E484K mutation to have a greatly reduced suscepti
bility to neutralisation in some individuals (Tegally et al., 2020). 

Additional studies further emphasise the need for vigilance with 
implications for immunity and vaccination against strains carrying 
combinations of new variants, particularly since there is conflicting data 
appearing in the literature. Wibmer et al. considering the mutations in 
SARS-CoV-2 B.1.351 demonstrated the complete escape of this lineage 
from therapeutically relevant monoclonal antibodies (Wibmer et al., 
2021). Each mutation K417N and E484K, both in the ACE2 RBD, failed 
to bind 3 such antibodies, and the same antibodies were unable to 
neutralise respective pseudovirus. This lineage also showed substantial 
or complete escape from neutralising antibodies in COVID-19 plasma. In 

their study of antibody and memory B cell responses of 20 volunteers 
who had received either of the mRNA vaccines, described above, Wang 
et al. (2021) showed high IgM and IgG anti-S, RBD titres after a second 
vaccination and RBD neutralising antibodies and memory B cell re
sponses similar to those seen after natural infection, but RBD neutral
ising activity against E484K- and N501Y-carrying variants, or the SARS- 
CoV-2 B.1.351 combination K417N:E484K:N501Y, showed a small but 
significant decrease (Wang et al., 2021; Wibmer et al., 2021). In further 
monoclonal antibody studies, examining B cell memory, 26% of the 
antibodies showed at least a 5-fold decrease in binding to at least one of 
the RBD mutants tested, which included E484K. The K417N-E484K- 
N501Y combination is also found in the Brazilian P.1 lineages, re
ported by Faria et al. (2021b) as ~1.4-2.2 fold more transmissible and 
25-61% more likely to evade protective immunity elicited by previous 
infection with non-P.1 lineages (Faria et al., 2021b). Recently, Wu et al. 
reported the neutralising capacity of sera of humans and non-human 
primates after vaccination with the Moderna BNT162b2 vaccine (Wu 
et al., 2021). When testing against the lineage B.1.1.7 S protein, 
including VH69-70del and N501Y, in a pseudovirus system, there was 
no significant impact on neutralising activity. However, there was a 
significant reduction in neutralising activity when testing against the 
B.1.351 lineage in pseudoviruses containing K417N-E484K-N501Y. 
Similar results were reached by Hoffmann and co-workers, who 
showed that the B.1.351 and P.1 variants are resistant to therapeutic 
monoclonal antibodies and to the neutralization activity of plasma from 
BNT162b2 vaccinated individuals (Hoffmann et al., 2021; Muik et al., 
2021). Finally, a double-blind, randomized, controlled trial with ChA
dOx1 in South Africa showed that the vaccine offered limited protection 
against mild and moderate COVID-19 caused by B.1.351 (Madhi et al., 
2021). 

Research on neutralising antibodies has focussed initially on the 
RBD. However, antibodies binding outside this region will also play a 
part in control of infection. McCallum et al. (2021b) generated mono
clonal antibodies from memory B cells recognising the N-terminal 
domain. A subset of these antibodies had potent neutralising effects. 
Using a Syrian hamster model, they mapped neutralisation escape mu
tants and produced an NTD antigenic map. Similarly, although neu
tralising antibodies, including those recognising the RBD and NTD, will 
control infection per se, T cell responses will determine later stages of 
infection, determining disease severity, and are particularly relevant to 
observations made on cross strain protection and vaccine efficacy. Re
ports on T cell responses appearing in the literature include studies on 
model organisms and using cells from convalescent subjects. The Ox
ford/AstraZeneca vaccine efficacy against B.1.1.7 and B.1.351 was 
tested in a Syrian hamster model (Fischer et al., 2021). Whilst neutral
ising antibodies were much reduced in vaccinated hamsters against 
B.1.351 compared to B.1.1.1.7, nevertheless the vaccine was effective 
against clinical disease caused by either variant. This is likely due to 
protection against severe COVID-19 being mediated by T cells, since T 
cell epitopes are not affected by the substitutions in these lineages, 
though mild infection, prior to T cell activity, still occurs. Tarke et al. 
(2021) reported on CD4+ and CD8+ T cell responses in convalescent 
subjects, and Moderna and Pfizer/BionTech vaccinees, recognising the 
ancestral strain compared to variant lineages including B.1.1.7, B.1.351 
and P.1; and concluding that T cell responses in convalescent subjects 
are not substantially affected by mutations in SARS-CoV-2 variants 
(Tarke et al., 2021). 

6.5. Ongoing investigations concerning host immunity 

Since variant strains are rapidly occurring and their novel genetic 
composition includes new substitutions as well as indels, emphasis in the 
coming months will need to be placed on identifying specific genomic 
alterations that significantly impact viral evolution, transmission, and, 
notably, immune responses, which are critical for successful vaccines. 
Effort is needed to associate particular mutations, and also their 
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combinations, with prevalence and transmissibility, for instance by 
identifying within novel variants changes in antigenic epitopes. While 
the majority of antigen epitopes lie within the S protein, a broad set of 
epitopes for T cells have also been discovered along the entire length of 
the genome (Sette and Crotty, 2021). It seems likely that mutations 
outside the S region may impact the immune response. Population data 
so far are encouraging as it seems that mutations are not notably 
impacting the immune response, and disease severity has not been 
markedly different in people infected with different strains to date. 
Consortium groups will be required to study the threats from new SARS- 
CoV-2 variants, such as the one at Imperial College in London, 
announced in January 2021. 

However, recent laboratory findings suggest caution is needed and 
the complex problems associated with ’immune escape’, particularly for 
vaccination and therapeutics are real (Kupferschmidt, 2021). More in
vestigations are required to test the effect of novel variants on immune 
recognition and response, for instance identification of viral epitopes 
recognised in both recovered patients and vaccinees, which may shed 
some light on the extent of immune escape. Monitoring will also be 
required to understand whether novel variants may affect reinfection or 
vaccine failure. It is possible that vaccines will need to be adjusted 
annually, as is the case for vaccinating against influenza. Preparations 
for providing boosters adjusted for new variants are already underway 
(Kupferschmidt, 2021). Developers of new vaccines are reporting on 
efficacy against new variants within the approval phase; e.g., data is just 
appearing for the Novavax S-protein vaccine. Although it is currently 
thought that immunity to SARS-CoV-2 will last for months after the 
initial infection at a minimum, insufficient individuals have been stud
ied and time elapsed to firmly establish the duration and nature of im
munity to infection or current vaccines. 

7. Importance of large-scale sequencing and surveillance 

Since the early identification of SARS-CoV-2 a large effort has been 
made to characterize the global evolving genetic diversity of the virus. 
As of March 2021, more than 830 thousand full-genomic sequences of 
SARS-CoV-2 have been made available on public databases. Genomic 
characterization and analysis provide valuable tools for the global effort 
to control the pandemic. Specifically, sequence analysis has been used 
for phylogenetic classification into clades or lineages using slightly 
different approaches, such as the GISAID clades (https://www.gisaid. 
org/) and the PANGO lineages (https://cov-lineages.org/index.html; 
https://pangolin.cog-uk.io/) (Rambaut et al., 2020a), as detailed 
above. PANGO classification of newly sequenced viruses can be per
formed online through the pangolin website (https://pangolin.cog-uk. 
io/). 

Genomic sequencing and analysis have been used for many purposes 
as for example to identify the geographic origin of SARS-CoV-2 trans
mission, to uncover the patterns of virus dispersal, to quantify the levels 
of virus importation, to infer transmission dynamics, and to estimate 
whether contacts identified by phylogenetic analysis were in accordance 
with those identified by contact tracing. Specifically, Worobey et al. 
investigated the temporal and geographic origin of SARS-CoV-2 in
fections at the early stage of the pandemic in Europe and North America 
suggesting that the origin of the virus in Washington state and Italy was 
from two independent sources from China (Worobey et al., 2020). In a 
study in Brazil, Candido et al. suggested that the majority of viruses were 
introduced from Europe during late February – beginning of March and 
that during the early phase of the pandemic virus spread within the 
country (Candido et al., 2020). Thereafter, several transmissions from 
large urban centres were detected across the country, which coincided 
with the increase in national air travel (Candido et al., 2020). In one of 
the earliest studies in Iceland, Gudbjartsson et al found that the founder 
strains in Iceland were separated from the original haplotype in Wuhan 
by 5 mutations (Gudbjartsson et al., 2020). They identified the number 
of distinct viral clades among those who had travelled abroad, and 

provide a lower bound of virus importation events, and the putative 
geographic origin of the infections. Importantly, they also found that the 
contacts identified through molecular analyses and contact tracing were 
highly concordant, thus suggesting that the latter approach can be used 
for the accurate identification of contacts at highest risk and prevention 
of SARS-CoV-2 transmission (Gudbjartsson et al., 2020). Multiple mo
lecular epidemiology studies from Europe (i.e. Austria, Scotland, Italy, 
Romania, Austria, the UK, the Netherlands, Greece, France) (da Silva 
Filipe et al., 2021; Di Giallonardo et al., 2020; du Plessis et al., 2021; 
Oude Munnink et al., 2020; Popa et al., 2020; Spanakis et al., 2021; 
Surleac et al., 2020), the Americas (Franco et al., 2021; Lemieux et al., 
2021), Asia (Ko et al., 2021), or globally (Mastriani et al., 2021) 
investigated the origin of SARS-CoV-2 transmission during the first 
pandemic wave, the patterns of viral dispersal, and the dynamics of 
SARS-CoV-2 lineages (Dellicour et al., 2020). 

Genomic surveillance is of particular importance for SARS-CoV-2 for 
many reasons, including the detection of new variants with biological 
importance, as is the case of the novel lineages, to monitor their local or 
global spread; this issue becomes of higher importance during vacci
nation and afterwards, when the emergence of immune escape variants 
is highly likely. Moreover, as shown by previous studies, genomic 
analysis is of relevance to better understand the spatiotemporal char
acteristics of SARS-CoV-2 transmission, thus providing an added value 
to traditional epidemiology for the control of the pandemic. In this 
respect, genomic epidemiology can be regarded as a tool to inform 
public-health decisions and containment strategies. 

8. Conclusions and perspectives 

The COVID-19 pandemic has triggered an unprecedented interna
tional effort at multiple levels. From the perspective of viral genomics, 
since its initial phases, the spread of SARS-CoV-2 has been described in 
real-time, through the phylodynamic analysis of viral genomes. The 
speed and scale of sequencing programs has been extraordinary: as of 
March 23rd 2021, more than 836,000 high-quality, complete genomes 
have been sequenced and deposited in public databases (Fig. 3). These 
efforts have proved to be pivotal for the early identification of novel 
variants and emerging lineages. However, genomic surveillance strate
gies and resources are highly heterogeneous across geographic areas, 
with the overwhelming majority of sequences coming from a few 
countries (Fig. 3) (The Lancet, 2021). Moreover, the top 10 countries 
(UK, USA, Denmark, Germany, Canada, Japan, Switzerland, Australia, 
Netherlands, Italy) produced 83.5% of sequences despite only having 
35% of worldwide cases (data from the WHO, https://covid19.who. 
int/table). This implies that a large portion of the genetic diversity of 
SARS-CoV-2 remains unsampled and that, should new lineages emerge 
in regions where surveillance is leaky, they may remain undetected for a 
long time, with clear consequences on their spread and possibility of 
control (or lack thereof). Thus, it is essential to raise the bar on genomic 
surveillance, both in already active areas and in regions where 
sequencing efforts have lagged behind. Overall, there is a need to 
improve genomic sequencing capabilities to characterize the genetic 
diversity of SARS-CoV-2 isolates that are circulating in populations 
worldwide, in line with WHO guidelines (https://www.who.int/publi 
cations/i/item/WHO-2019-nCoV-genomic_sequencing-2021.1). This 
capability shall enhance diagnostic, therapeutic and preventive strate
gies. Active surveillance will be even more important in the coming 
months, when the deployment of large-scale vaccination campaigns and 
the use of monoclonal antibodies may subject the virus to novel selective 
pressures and possibly favour antigenic drift. 

Finally, as noted elsewhere (Cyranoski, 2021), genomic epidemi
ology has transformed into an essential tool for adopting informed 
public health measures quickly, but its full potential will only be realized 
when embedded in surveillance programs that are widespread, stan
dardized and incorporated into national programmes for pandemic- 
prevention. 
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Glossary 

Antigenic drift: accumulation of mutations in viral protein regions 
that are recognized by the immune system (antigens). 

Backward mutation: a mutation that acts on a previously mutated 
site restoring the original nucleotide (C → A → C). 

Convergent evolution: in general, the evolution of similar traits in 
two or more distantly related organisms. In this context, the indepen
dent acquisition of the same mutation by different viral lineages. 

Monophyletic cluster: in this context, a group of sequences that 
descend from a common ancestor. 

Parallel mutations: Mutations that appear repeatedly and inde
pendently in different lineages. 

Positive selection: the increase in frequency of a beneficial muta
tion in a population. In coding sequences, positive selection is often 
detected by searching for genes or sites that show an excess of non- 
synonymous changes compared to synonyms substitutions. 

Reproduction number: the expected number of secondary cases 
produced by a single infected individual. 
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F. González-Candelas et al.                                                                                                                                                                                                                   

https://doi.org/10.1016/j.meegid.2021.104869
https://doi.org/10.1016/j.meegid.2021.104869
https://doi.org/10.3390/pathogens9070529
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0010
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0015
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0015
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0015
https://doi.org/10.3390/v12030254
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0025
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0025
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0025
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0025
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001410
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001410
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0035
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0035
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0040
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0040
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0040
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0045
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0045
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0045
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0045
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0045
https://virological.org/t/emergence-of-y453f-and-69-70hv-mutations-in-a-lymphoma-patient-with-long-term-covid-19/580
https://virological.org/t/emergence-of-y453f-and-69-70hv-mutations-in-a-lymphoma-patient-with-long-term-covid-19/580
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0055
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0055
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0055
https://doi.org/10.2807/1560-7917.ES.2021.26.10.2100130
https://doi.org/10.2807/1560-7917.ES.2021.26.10.2100130
https://virological.org/t/tracking-sars-cov-2-voc-202012-01-lineage-b-1-1-7-dissemination-in-portugal-insights-from-nationwide-rt-pcr-spike-gene-drop-out-data/600
https://virological.org/t/tracking-sars-cov-2-voc-202012-01-lineage-b-1-1-7-dissemination-in-portugal-insights-from-nationwide-rt-pcr-spike-gene-drop-out-data/600
https://virological.org/t/tracking-sars-cov-2-voc-202012-01-lineage-b-1-1-7-dissemination-in-portugal-insights-from-nationwide-rt-pcr-spike-gene-drop-out-data/600
https://doi.org/10.1016/j.ijid.2021.03.005
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0075
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0080
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0080
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0080
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0080
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0085
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0085
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0085
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0090
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0095
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0095
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0095
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0100
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0100
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0105
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0105
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0105


Infection, Genetics and Evolution 92 (2021) 104869

17

Cyranoski, D., 2021. Alarming COVID variants show vital role of genomic surveillance. 
Nature 589, 337–338. 

da Silva Filipe, A., Shepherd, J.G., Williams, T., Hughes, J., Aranday-Cortes, E., 
Asamaphan, P., Ashraf, S., Balcazar, C., Brunker, K., Campbell, A., Carmichael, S., 
Davis, C., Dewar, R., Gallagher, M.D., Gunson, R., Hill, V., Ho, A., Jackson, B., 
James, E., Jesudason, N., Johnson, N., McWilliam Leitch, E.C., Li, K., MacLean, A., 
Mair, D., McAllister, D.A., McCrone, J.T., McDonald, S.E., McHugh, M.P., Morris, A. 
K., Nichols, J., Niebel, M., Nomikou, K., Orton, R.J., O’Toole, Á., Palmarini, M., 
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F. González-Candelas et al.                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0605
https://doi.org/10.1016/S0140-6736(21)00183-5
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0615
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0620
https://doi.org/10.1016/j.cell.2021.01.007
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0630
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0630
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0635
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0635
https://doi.org/10.1101/2020.08.26.267831
https://doi.org/10.1101/2020.08.26.267831
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0645
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0645
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0645
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0645
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0650
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0650
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0650
https://doi.org/10.1002/jmv.26778
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0660
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0660
https://doi.org/10.1126/science.abf9302. Epub 2021 Jan 25
https://doi.org/10.1126/science.abf9302. Epub 2021 Jan 25
https://doi.org/10.3390/life10080152
https://doi.org/10.3390/life10080152
https://doi.org/10.1093/nsr/nwaa036
https://doi.org/10.1101/2021.02.27.433180
https://doi.org/10.1101/2021.02.27.433180
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0685
https://doi.org/10.1038/s41591-021-01255-3
https://doi.org/10.1038/s41591-021-01255-3
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0695
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0700
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0705
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0705
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0705
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0705
https://virological.org/t/detection-of-the-recurrent-substitution-q677h-in-the-spike-protein-of-sars-cov-2-in-cases-descended-from-the-lineage-b-1-429/660
https://virological.org/t/detection-of-the-recurrent-substitution-q677h-in-the-spike-protein-of-sars-cov-2-in-cases-descended-from-the-lineage-b-1-429/660
https://virological.org/t/detection-of-the-recurrent-substitution-q677h-in-the-spike-protein-of-sars-cov-2-in-cases-descended-from-the-lineage-b-1-429/660
https://doi.org/10.1101/2020.12.23.424229
https://doi.org/10.1101/2020.12.23.424229
https://doi.org/10.1101/2021.01.19.427330
https://doi.org/10.1101/2021.01.19.427330
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0725
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0730
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0730
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0730
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0730
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0735
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0735
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0735
https://doi.org/10.1101/2020.11.16.384743
https://doi.org/10.1101/2020.11.16.384743
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0745
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0745
https://doi.org/10.1101/2020.08.05.238386
https://doi.org/10.1101/2020.08.05.238386
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0755
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0755
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0755
https://doi.org/10.3201/eid2705.210191
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0765
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0765
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0765
http://refhub.elsevier.com/S1567-1348(21)00166-0/rf0765


Infection, Genetics and Evolution 92 (2021) 104869

21

Virological.org. https://virological.org/t/lineage-specific-growth-of-sars-cov-2-b-1- 
1-7-during-the-english-national-lockdown/575. 

Volz, E., Swapnil Mishra, S., Chand, M., Barrett, J.C., Johnson, R., Geidelberg, L., 
Hinsley, W.R., Laydon, D.J., Dabrera, G., O’Toole, A., Amato, R., Ragonnet- 
Cronin, M., Harrison, I., Jackson, B., Ariani, C.V., Boyd, O., Loman, N.J., McCrone, J. 
T., Gonçalves, S., Jorgensen, D., Myers, R., Hill, V., Jackson, D.J., Gaythorpe, K., 
Groves, N., Sillitoe, J., Kwiatkowski, D.P., The COVID-19 Genomics UK (COG-UK) 
consortium, Flaxman, S., Ratmann, O., Bhatt, S., Hopkins, S., Gandy, A., 
Rambaut, A., Ferguson, N.M., 2020. Transmission of SARS-CoV-2 Lineage B.1.1.7 in 
England: Insights from linking epidemiological and genetic data. Virological.org. 
https://virological.org/t/transmission-of-sars-cov-2-lineage-b-1-1-7-in-england-i 
nsights-from-linking-epidemiological-and-genetic-data/576. 

Volz, E., Hill, V., McCrone, J.T., Price, A., Jorgensen, D., O’Toole, Á., Southgate, J., 
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