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A	framework	for	voxel-based	assessment	of	biological	effect	after	

proton	radiotherapy	in	pediatric	brain	cancer	patients	using	

multimodal	imaging	

Abstract	

Introduction	

The exact dependence of biological effect on dose and linear energy transfer (LET) in human tissue when 

delivering proton therapy is unknown. In this study we propose a framework for measuring this 

dependency using multi-modal image-based assays with deformable registrations within imaging sessions 

and across time. 

Materials	and	Methods	

3T MRI scans were prospectively collected from 6 pediatric brain cancer patients before they underwent 

proton therapy treatment, and every 3 months for a year after treatment. Scans included T1-weighted with 

contrast enhancement (T1), T2-FLAIR (T2) and fractional anisotropy (FA) images. In addition, the planning 

CT, dose distributions and Monte Carlo-calculated LET distributions were collected. 

A multi-modal deformable image registration framework was used to create a dataset of dose, LET and 

imaging intensities at baseline and follow-up on a voxel-by-voxel basis. We modelled the biological effect of 

dose and LET from proton therapy using imaging changes over time as a surrogate for biological effect. 

We investigated various models to show the feasibility of the framework to model imaging changes. To 

account for inter- and intra-patient variations we used a nested generalized linear mixed regression model. 

The models were applied to predict imaging changes over time as a function of dose and LET for each 

modality. 
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Results	

Using the nested models to predict imaging changes, we saw a decrease in the FA signal as a function of 

dose; however, the signal increased with increasing LET. Similarly, we saw an increase in T2 signal as a 

function of dose, but a decrease in signal with LET. We saw no changes in T1 voxel values as a function of 

either dose or LET. 

Conclusions	

The imaging changes could successfully model biological effect as a function of dose and LET using our 

proposed framework1. Due to the low number of patients, the imaging changes observed for FA and T2 

scans were not marked enough to draw any firm conclusions. 

Keywords: Multi-modality registration; Diffusion MRI; Radiobiology of protons; Proton therapy; MRI 

response assessment 
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Introduction	

Proton therapy takes advantage of the finite range of protons, enabling sparing of normal tissue at the 

distal end of the treatment beam2,3. There are, however, a number of geometric uncertainties related to 

treatment delivery, such as range- and setup-uncertainties4–7, which may limit the clinical benefit. In 

addition, there are indications that the clinical standard assumption of a constant relative biological 

effectiveness (RBE) across the beam is not accurate, but rather depends on the local linear energy transfer 

(LET)8, as has been shown in in-vitro studies9–11. More recently, clinical observations have supported this 

conjecture, for example using Monte Carlo simulation12, retrospectively evaluating radiographic 

abnormalities in the chest wall13, and modelling post-treatment image changes as delineated by a 

physician14,15. The available data suggest that the biological effect of protons increases as the LET increase, 

typically towards the end of the beam. This may negate part of the beneficial effect of proton therapy 

unless properly accounted for in planning. 

Various models have been suggested to describe a variable biological effect9,10,16. However, these models 

are based on in-vitro data, and the clinical data to validate them are missing. To transfer our understanding 

of variable biological effects to clinical treatment plan optimization, we need better estimates of the 

relationship between local effect, dose and LET, based on in vivo data. This includes dependence on tissue 

type, fractionation, alpha/beta ratio and other effects. To accurately model this, a framework for in-vivo 

assessment of local biological effect is needed.  

Imaging has been used as a marker for radiation damage in a number of settings, for example to assess 

treatment response17,18, outcome predictions19 or for adaptive treatments20,21. These studies use a variety 

of MRI, PET and CT images, and have been able to relate a per-voxel radiation dose to a local response. As 

LET has varying localized effects in-vivo and because of inhomogeneous dose distributions, using imaging to 

investigate a variable biological effect of protons is an ideal choice. Fractional anisotropy (FA) imaging maps 

myelinated white brain matter, and it has been shown that FA maps loose signal due to radiation damage22–
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24 and that FA changes are associated with cognitive impair after trauma25. A link between damage of white 

matter, following combined surgery and proton radiation and measured with FA maps, and cognitive 

performance has also been shown26. It is plausible that the FA maps can serve to measure relevant 

components of the biological damage of radiation.  

We therefore aimed to develop a multimodal imaging framework for modelling imaging changes over time 

on a voxel-by-voxel level, thus being able to link imaging changes (as a surrogate for biological 

effectiveness) to the dose and LET distribution. The framework takes inter- and intra-variation between 

patients into account by using a sophisticated deformable registration strategy between template 

timepoints, where a template consists of different relevant imaging modalities acquired at the same 

timepoint. Our proposed method supports multimodal imaging, which we demonstrate using different 

magnetic resonance imaging (MRI) sequences and CT images.  

Materials	and	Methods	

In brief, we enrolled patients in a prospective study to longitudinally assess normal tissue imaging response 

after proton therapy. A complex series of rigid and deformable registrations provided us with a voxel-by-

voxel data set. Finally, three models of LET and dose dependence were chosen to show the ability of the 

imaging framework to describe imaging changes over time. We chose to use T1, T2 and FA MRI images in 

this study. 

Patient	cohort	and	image	acquisition	

For image-based quantification of local effect as a function of dose and LET, a robust data acquisition 

protocol is required. Pediatric brain cancer patients from the Capital Region of Denmark were prospectively 

included in a clinical study, approved by the regional Scientific Ethics Committee (H-3-2014-135). They were 

enrolled prior to referral for proton therapy, which was delivered at the MD Anderson Cancer Center, 

University of Texas, Houston, USA. Radiotherapy and chemotherapy protocols were in line with 

international standards for each cancer type27,28. All patients were treated with passive scattering proton 
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therapy. Initial assessment, adjuvant treatment, and follow-up were conducted at Rigshospitalet, Denmark. 

After informed consent by the patient or the patient’s guardian, we acquired dedicated study MRI scans of 

the patients before and after their proton therapy, alongside standard clinical imaging. The scans were 

acquired two weeks before proton therapy was initiated (baseline), and at follow-ups two months after 

proton therapy completion and then at three-monthly intervals for a year. The dedicated study MR 

protocol included the following standard clinical structural sequences: a T1 weighted magnetization-

prepared rapid acquisition with gradient echo (MPRAGE, 1mm x 1mm x 1mm voxel size) with contrast 

agent (gadolinium), and an axial T2 and coronal Fluid-attenuated inversion recovery (Flair, 0.7188mm x 

0.7188mm x 6mm voxel size). In the remainder of this paper, we will refer to these two sequences simply 

as “T1” and “T2”. Additional clinical sequences varied on a patient specific basis, for example T2 dark fluid 

sequences were included where appropriate. Further, we performed study protocol-specific MR diffusion 

tensor imaging (DTI) designed to measure myelinated white brain matter. The latter was made by 

measuring directional diffusion in thirty main directions. All other DTI parameters were equal with b value = 

1,000 mm−2, repetition time/echo time = 4900/ 90ms, field of view = 230mm x 230mm x 190mm, acquisition 

matrix = 128x128x37 voxels, flip angle = 90°. The three-dimensional directional diffusion images were used 

to create a FA map18. MRI scans were performed on a 3T Siemens Prisma Scanner (Siemens, Erlangen, 

Germany) using a 64-channel head coil or at a 3T Siemens Biograph mMR (Siemens, Erlangen, Germany) 

with a similar protocol. Corrections for motion and eddy currents of the FA map were done using FSL 

python library for DTI brain imaging data.  As part of the proton treatment planning, all patients received a 

CT scan for dose calculations which was also included in the study. The planning CT scan was used for dose 

planning and LET calculation. One patient (patient 2) was also enrolled in a study of [18F]FET PET/MRI 

examinations of patients with pediatric CNS tumors29 approved by the regional Scientific Ethics Committee 

(H-6-2014-095) and had two of his MRI scans performed at the PET/MRI scanner to reduce the number of 

scanning procedures. Example imaging and treatment information for one patient can be seen in Fig. 1.  
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Figure 1. An example of the scans acquired at each timepoint (the CT, dose and linear energy transfer (LET) is only acquired at 

baseline) for patient 6. a) sagittal T1-weighted MRI, b) T2-weighted MRI, c) fractional anisotropy (FA) map, d) baseline CT with 

corresponding brain, CTV receiving 24 Gy (purple) and CTV boost (of 16 Gy, in blue) delineations, e) dose distribution and f) LET for 

that plan. 

Dose	and	LET	calculation	

All treatment plans were recalculated using Monte Carlo in order to produce dose and LET distributions. 

Clinical treatment plans were extracted from the Eclipse treatment planning system (v9.0) in DICOM format 

and then used as input for an in-house Monte Carlo system. The system, called MC2, uses the DICOM files 

to generate geometry specifications and other files describing the beam arrangement and delivery 

parameters. The files are then used as input for simulation with the Monte Carlo code MCNPX, as has been 

described previously 30,31. The Monte Carlo code used a simulated number of particles that ensured an 

acceptable uncertainty (+/- 2%) of the dose distribution. 

Physical doses per beam were summed to create a single dose distribution per patient and per voxel (for all 

beams in multi-phase plans). Similarly, per-beam LET maps were summed using the per-beam dose map as 

weighting factors, to create a single dose-weighted LET map per patient. Across the included patients the 

average dose per fraction was 1.73 Gy (1.6-1.8 Gy). Opposing beams or multiple beams equally spread out, 

with angles chosen individually for each patient, were used.  

Image	registration	

The framework for image registration between time-points was a combination of rigid and deformable 

image registrations, designed to minimize the impact of patient positioning variations and anatomy 

changes over time and to be able to include multiple scans as required to assess the biological effect of 

radiation on a voxel-by-voxel basis. We used a previously published multi-modality image registration 

algorithm32,33. At each timepoint, separately for each patient, all scans acquired were rigidly registered 

within each timepoint to create a timepoint “template” of all included modalities. The rigid registration 

used the scan with the highest resolution in each template as the reference, which in our study was the T2 
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MRI. Between each follow-up and corresponding baseline templates, a deformable image registration was 

carried out. This registration was iterative between all scans in each template, i.e. each individual scan in 

the moving template was deformably registered to all the scans of the fixed template, iteratively updating 

the combined template registration matrix for each combination. This process was repeated until 

convergence of the combined template registration matrix was reached. As the CT scan was included in the 

baseline template for each patient, dose and LET were thus also mapped for each voxel. The result was a 

dataset of imaging intensities relative to baseline, dose and LET on a voxel-by-voxel basis for each follow-

up. The voxel-size in the templates was 1x1x1 mm3. An overview of the registration process can be seen in 

Fig. 2. 



 

10 

 

 

Figure 2. An overview of the registration process. The blue boxes represent scan sessions, called a template, taken at baseline and 

follow-ups at three-month intervals after completed radiotherapy. In each template the scans are rigidly registered to the T2-

weighted MRI scan. Between each template, a deformable registration is carried out using information from all scans in both 

templates. This process leads to a voxel-by-voxel dataset of imaging changes since baseline of T1, T2 and fractional anisotropy (FA) 

MRI scan values as well as the dose and linear energy transfer (LET) of those voxels. 

Data	processing	

Processing of the imaging signal was done to reduce the amount of noise in each scan and to focus on 

relevant regions of interest for data analysis. Two masks were created, one for FA MRI scans and one for 

T1/T2 weighted MRI scans. Both masks were initially restricted to cover only the brain as outlined on the CT 

for treatment planning (see Fig. 1), and further requirements were specified for each of the masks. In the 
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FA image, we isolated voxels where the baseline image showed a white matter tract signal, i.e. where the 

FA scan value was above the noise level. Specifically, we used a gaussian fit to the lower values of the voxel 

value frequency histogram for baseline FA images on a per-patient basis to filter out noise (see 

Supplementary Figure 1). A two-sigma cut-off was chosen for noise removal in the FA mask. The FA mask 

was then restricted to only include voxels with a baseline FA value above this cut-off (described in 

Supplementary Figure 1) and additionally restricted to voxels receiving doses above 35 Gy. This latter 

criteria was used as it has previously been shown that low doses do not appear to elicit a dose-response 

signal on FA imaging24. An additional explorative analysis used varying dose thresholds (5 and 20 Gy). The 

T1/T2 mask had the same requirement of 35 Gy, but no further signal restrictions. Masks were created 

based on the baseline scans but applied to follow-up data after registrations. 

Data	analysis	

We analyzed the data using nested generalized linear mixed regression models to relate dose and LET to 

variation in image signal. This was done separately for the three MRI modalities, T1, T2 FLAIR and FA 

images. The general regression model was34: 

Follow-up(,*,+ = 𝑎 ∙ Baseline(,+ + 𝑏 ∙ f8dose(,+: + 𝑐 ∙ LET(,+ ∙ f8dose(,+: +	𝛼(,* (1) 

where the i-subscript refers to an individual patient, while the j-subscript refers to the different follow-up 

sessions for that patient, and the n-subscript refers to a specific voxel for the patient. Follow-up and 

Baseline represent the image voxel values of the scans, f(dose) represent a function of the dose for that 

voxel and LET the linear energy transfer. Note that this model is the same as: 

Follow-up(,*,+ = 𝑎 ∙ Baseline(,+ + 𝑏 ∙ f8dose(,+: ∙ 81 + 𝑑 ∙ LET(,+:	+	𝛼(,*  

Where d=c/b. In other words, assuming LET=0 for photons gives RBE = 1 + c/b∙LET. This is the form used for 

many pre-clinical studies, and one can therefore directly compare our results to published RBE models. To 

account for any potential non-linear effects of dose, we tested three different functional forms: 
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f8dose(,+: = dose(,+
f8dose(,+: = ln8dose(,+:

f8dose(,+: = dose(,+
C

   (2) 

The αi,j factor in equation (1) represents the random, mixed effects per patient and per follow-up session, 

accounting for heterogeneity of patients and scan sessions. Thus, the b and c indicate how much a change 

in image voxel value can be contributed to the dose or dose-LET interaction term, respectively; the model 

form corresponds a linear dependence of biological effect on LET. This model fully utilizes data from all 

patients and all time points in one fit. 

The optimal model was subsequently determined by examining residuals for each model fit, but with 

preference to the linear model in close calls. Models for each modality - T1, T2 and FA - were fitted 

separately. The regression model with the optimal functional form for dose was used to predict image 

changes as a function of dose (spanning the dose range in 50 equal steps) with a fixed baseline voxel value 

(FA=0.26, T1=396 and T2=411, chosen as representative normal values for each scanning modality), five 

different fixed LETs (LET=0.9, 1.1, 1.5, 2.5 and 5 keV/µm) and 186 days to follow-up. To illustrate the impact 

of LET on imaging changes, we also compared predicted changes with varying LET values – but a constant 

dose – to the ‘normal variation’ in each of the imaging modalities. To obtain the range of ‘normal variation’, 

we created a mask for each patient of normal appearing white matter (NAWM) on the baseline scans. This 

mask was based on the FA signal, using the noise cut-off described in the data processing, but further 

excluded the GTV delineation. Mean and standard deviations of voxel values across all patients were 

acquired as estimates for NAWM for each modality. 

To assess the inter- and intra-patient variation in dose and LET dependence over time, we conducted 

separate regressions for each follow-up session, i.e. using the adjusted model: 

Follow-up(,*,+ = 𝑎(,* ∙ Baseline(,+ + 𝑏(,* ∙ f8dose(,+: + 𝑐(,* ∙ LET(,+ ∙ f8dose(,+: (3) 
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Which provides a separate estimate for the b and c parameters for each patient and follow-up session. For 

simplicity, we only fitted this using the functional dependence of dose that was found optimal in the 

general model. 

All data analysis was conducted in R (version 3.6.0) and all image registration and data preparation were 

done in Matlab (version 9.6.0.1135713 (R2019a) Update 3). 

Results	

A total of six patients were included between the ages of 6 and 17, who all received standard clinical proton 

therapy and four follow-up MRI sessions each. All patients were treated with passive scattering proton 

therapy. Further details on the patient treatment can be seen in Table 1. 

Patient Age Gender Cancer type Previous 

treatment 

Proton therapy treatment Other 

treatment 

1 12 F Plexus 

choriodea 

carcinoma 

Surgery + 

chemo 

36 Gy 

20 fractions 

Adjuvant 

chemo 

2 6 M Ependymoma Surgery + 

chemo 

50.4 Gy + 3.6 Gy boost  

28 fractions + 2 boost 

fractions 

Chemo 

3 9 F Ependymoma Surgery 59.4 Gy  

33 fractions 

None 

 

4 15 M Intracereberal 

geminoma 

Stereotactic 

biopsy + 

chemo 

24 Gy + 16 Gy boost 

15 fractions + 10 boost 

fractions 

None 
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5 15 M Germcell 

tumor 

Chemo + 

surgery + 

chemo 

50.4 Gy + 3.6 Gy boost 

28 fractions + 2 boost 

fractions 

None 

6 17 M Bifocal 

intracerebral 

germinoma 

Chemo 24 Gy + 16 Gy boost 

15 fractions + 10 boost 

fractions 

None 

Table 1. An overview of the cancer type and treatment given to each patient. The prescription proton doses are given in Cobalt 

equivalent dose, which represents the physical proton dose multiplied with a relative biological effectiveness (RBE) of 1.1. 

Patient 1 received MRI scans not adhering to the study protocol and was thus excluded from the analysis. 

Of the remaining five patients, there were issues with ten follow-up sessions. Seven had to be excluded due 

to missing data, and for three others the standard registration pathway failed and the T2 sequence had to 

be excluded or replaced from the analysis. An overview can be seen in Table 2. An example of our image 

registrations can be seen in Fig. 3. 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

FU 1 (~2 months after ended RT) Ex x x x x   x* 

FU 2 (~5 months after ended RT) Ex x(*)   x* x x x 

FU 3 (~8 months after ended RT) Ex x x    

FU 4 (~11 months after ended RT)  Ex x     

Table 2. Available follow-up sessions for each patient. In each follow-up session a fractional anisotropy (FA) image, T1- and T2-

weighted image is available. The * denotes sessions where the T2 image is not included in the deformable image registration, but 

for the session denoted with (*) another T2 that was acquired the same day on a PET/MRI scanner was successfully used as a 

replacement. “Ex” are scans that were excluded from the analysis because the MRI protocols were different from the dedicated 

study protocol MRIs. The blank spaces represent missing FA data. 
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Figure 3. An example of the template deformable registration for one patient. In the middle is a mosaic plot of scans from the 

baseline template and a follow-up template. On the left, four baseline scans are shown as well as white squares to indicate which 

parts of the scans are shown in the middle mosaic. Similarly, on the right, scans from the follow-up template are shown with white 

squares corresponding to the locations in the mosaic plot 

The linear function of dose (f(dose)=dose) was selected based on simplicity as minimal difference was 

observed in residual analysis. Fig. 3 show predictions of image changes as a function of dose and LET. This 

figure also shows our averaged NAWM values for each modality.  We see a decrease in FA signal as a 

function of dose for all the investigated LET values. However, the signal increases as a function of LET, 

contrary to expectation35–37, but all predictions are within the NAWM band. The T1 predictions appear 

relatively constant as a function of dose and LET, except for the very high-LET region. The T2 predictions 

show the largest dependence on both dose and LET, but with opposite effects; as the dose increases so 

does the T2 signal, but a higher LET value leads to a lower T2 signal. 
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In Table 3, the parameters a, b and c are shown for each modality. All three modalities show a relevant 

dose dependence through the b parameter as b is of the order of a change in voxel value that is impactful 

for each modality – FA per definition is always between 0 and 1. The c parameter is a factor 10 lower, 

compared to the b parameter, for FA and T1, while of the same order for the T2 model. This indicates the 

dose*LET-term is less impactful when predicting imaging changes as compared to the dose-term for FA and 

T1. 
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Figure 4. The predictions of model 1 (linear dose dependence), pooled over all patient and follow-up scan values as a function of 

dose for LET = [0.9, 1.1, 1.5, 2.5, 5.0] keV/ µm. The y-axis is defined such that a decrease here over time represents a lower voxel 

value in the follow-up scans as compared to baseline. This prediction assumes a representative voxel value of the baseline scan 

across all patients. The prediction is what is expected to happen for a theoretical patient at a follow-up after 186 days. The top 

figure shows the predicted values for fractional anisotropy (FA) MRI, the middle for T1-weighted MRI and the bottom figure is for 

T2-weighted MRI scan values.  

Scan modality \ Model parameter a (Baseline scan) b (Dose) c (Dose*LET) 

FA 0.9973 ± 0.0006 -1.37·10-3 ± 1·10-5 2.44·10-4 ± 5·10-6 

T1 0.8171 ± 0.0006 -1.47 ± 0.01 0.582 ± 0.004 

T2 0.9042 ± 0.0008 7.23 ± 0.03 -2.45 ± 0.01 

Table 3. Parameter a, b and c after modelling Eq (1) using the complete nested dataset for a linear dependence on dose. The 

parameters are given separately for each of the three modalities considered, and with one standard deviation. 

We additionally predicted voxel value change for various LET values and a fixed dose to the voxel of 35 Gy 

for FA and T2, as seen in Fig. 4. For the T2 image, a continuous decrease in signal was seen and this signal 

was different from NAWM for LET > ~ 5.5 keV/µm. We investigated the predictions shown in Table 3, Fig. 4 

and Fig. 5 with different dose thresholds (5 and 20 Gy) with slightly varying results, see the summary in the 

supplementary material and Supplementary Figure 2-5 and Supplementary Table 1-2. 
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Figure 5. The predicted image change based on a linear dependence of dose for modalities fractional anisotropy (FA) (y-axis on the 

left) and T2-weighted MRI (y-axis on the right) as a function of linear energy transfer (LET). The predictions are made at 35 Gray and 

for a standard voxel value at baseline (FA=0.26, T2=411). The grey band indicate average normal appearing white matter value for 

both modalities with 1 standard deviation. 

The fit parameters b and c from equation (3) for individual follow-up sessions can be seen in Fig. 5. Here, 

points below the zero line indicate a decrease in voxel value over time, and points above indicate an 

increase over time. The y-axis is scaled to facilitate comparison between b and c: The limits on the y-axis 

are found as the minimal and maximal value of b and c after they have been multiplied by the (median 

dose) and (median dose*median LET) respectively. This way, the y-scale becomes a reflection of the 

median change in FU value compared to baseline that arises due to the (dose)- and (dose*LET)-term in the 

voxels. This normalization is done internally for each modality. Intra patient variations seemed small 

compared to inter-patient variations for all modalities as seen by the grouping internally for each patient 

among the same parameter value. The b-values are negative for the FA image indicating the expected 
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decrease in FA as function of dose. The c-values appear inconclusive and mostly smaller compared to the 

variations of the b-values, indicating that this dose*LET term did not have as great an impact on imaging 

changes as the dose. No clear conclusions or consistency could be seen in the T1 image, which was a 

general trend across all analysis made in this study.  

 

 

Figure 6. Fit parameters b and c to model (1), modelling the effect of dose and dose*LET, respectively (LET=linear energy transfer). 

These parameters are shown for all patients and all follow-ups as a function of days since baseline scan and for fractional anisotropy 

(FA) (top row), T1-weighted MRI (middle row) and T2-weighted MRI (bottom row) scans. To the right of each subplot, the b and c 

parameters are shown with error bars (one standard deviation) from five individual patient models; one for each patient including 

all follow-up data from that patient.  The range of the y-axis has been adjusted to an equal range between all plots in terms of 

impact on the follow-up scan value in equation (3).  
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Discussion	

3D imaging assays of radiation damage are promising to derive human tissue specific biological effects of 

radiation as function of dose and LET. The 3D in-vivo assay allows sampling across multiple dose levels and 

LET values in the same patient, thus avoiding the need to accrue large numbers of patients to observe the 

signal from dose and LET over the random variation across patients. Continuous predictors typically also 

have much more statistical power than a binary time-to-event endpoint of clinical manifest toxicity. 

On the downside, longitudinal imaging studies are hard to analyze in terms of image registration and in 

terms of statistical analysis of the high dimensionality data. Here we have tried to tackle those two 

problems by providing a framework for using longitudinal deformable image registrations and voxel-based 

statistical analysis, accounting for nesting of data on patient and follow-up session level, to assess the effect 

of dose and LET on the image assays across several patients and time points in each patient. Unfortunately, 

the number of patients accrued in our project is too small to draw firm conclusions. However, the expected 

dose response is derived on FA maps and we do provide means to assess the importance of LET compared 

to dose and interpatient variation. We observe substantial patient to patient variation in the internal model 

fits (i.e. sensitivity to dose and LET); in other words, inter-patient variation in radiation sensitivity may be a 

stronger factor than variation in biological effect across clinical proton beams.  

A handful of previous publications have examined the use of imaging changes as markers for radiation 

damage to assess biological effectiveness of proton beam irradiation as function of dose and LET14,38–40. In 

particular, two recent papers reported on radiation-induced brain lesions in adult patients, and related the 

presence of imaging changes to dose and LET on a voxel-by-voxel basis39,40. The paper by Bahn et al 

demonstrated a relationship between imaging changes and LET in 110 patients treated for low-grade 

glioma, while Niemierko et al were unable to find a LET dependence of necrotic changes in fifty patients 

treated for head and neck, skull base, or intracranial tumors. Conversely, they concluded that inter-patient 

variability in radio sensitivity was likely to overshadow any LET effect; much in line with our present 
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findings. Of note, neither of the two studies used deformable image registration or assessed imaging 

changes as continuous measures. 

We have deliberately chosen a formal statistical methodology testing the effect of dose and LET*dose using 

conventional statistical methods rather than some of the widely available models of RBE rooted in 

mechanistic or in-vitro modeling. The use of the pure statistical method here should ideally be compared to 

mechanistic modeling in larger series, but in terms of advantages the current method avoids the need to 

combine LQ modeling with RBE using formulas which may be stretched beyond clinical utility when applied 

to human tissue. Note, however, that our relatively simple functional form is equivalent to the linear 

dependence of RBE on LET used for a number of models based on pre-clinical data: RBE = 1+K*LET (where 

K=c/b for the current model). The ratio between the c and b parameters reported here thus provides an 

estimate of the dependence of the relative biological effectiveness on LET. Comparison using the methods 

proposed here could hopefully shed light on the question of the modifying effect of LET on the dose in 

proton therapy in future series. Other weaknesses in our data analysis include not taking fraction size 

effects into account, averaging dose and LET over multi-phase treatments for some patients, and assuming 

independence of the radiation response for adjacent voxels. 

In this study we rely heavily on imaging data and changes to measure a response, but many of the patients 

included in the study did not exhibit significant image changes during our follow-up period. This could 

explain the diverging results. Also, the correlation between image changes and clinically meaningful 

endpoints is often weak and the functional form not well established. For example, our choice of FA signal 

as imaging marker has been questioned since protocol initiation: A study from 201941 showed an increase 

in FA signal due to radiation damage and it was hypothesized that this increase was driven by an overall 

reduction in mean diffusivity. Another study23 showed that different white matter tracts are differently 

susceptible to radiation damage, with some tracts remaining unchanged, some showing an increase in FA 

signal, and some showing a decrease in FA signal. Additionally, the T1/T2 masks used in this study are very 
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general and include both white matter, grey matter and organs at risk, all of which can have very different 

responses to radiation that cannot be captured by our model. This points to a potential critical weakness in 

the imaging assays: If the imaging marker is a composite signal of unspecific changes due to radiation, it 

may fail to provide guidance to the relative effect of radiation as function of LET. However, given a 

sufficiently strong imaging marker, our framework can enable in-vivo studies of LET effects from radiation 

for specific tissues and/or regions. One could investigate specific structures, such as the brain ventricles, 

and create radiobiological models that account for intra-patient variations through our proposed regression 

analysis. We strongly suggest selecting imaging biomarkers which has been associated with a relevant 

clinical outcome. This framework should also be extended to include neighboring-voxel effects42 to improve 

accuracy of the models. 

The deformable registration part of the framework can be applied to almost any follow-up analysis without 

the need to fine-tune the algorithm. It uses standard values for the deformable registrations and is thus 

generalizable to other datasets from other centers. Although there are no requirements on the resolution 

of the included scans, to compare the results across multi-center datasets, we recommend using 

standardized protocols to avoid inconsistencies and inhomogeneities. 

Conclusions	

We have demonstrated a framework for voxel-based registration and phenomenological fitting of 

longitudinal image data versus dose and LET to derive estimates of the biological effect of high LET 

radiation. This framework is available online1. 
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Supplementary	Material	

 

Supplementary Figure 1. A histogram of the baseline fractional anisotropy (FA) voxel values for patient 2. The red line is a gaussian 

fit to the bins from 0 to the maximal frequency bin of the histogram. It is used to find the noise level of the FA scan. The black line is 

the cut-off value used, defined by the mean of the gaussian fit plus two standard deviations. 
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To investigate how the dose thresholds affected the results presented, we repeated the analysis including 

all voxels receiving more than 5 and 20 Gy into the model, respectively. For the 5 Gy threshold, all imaging 

changes were within the NAWM band and thus the model predicted no imaging changes for voxels 

receiving >5 Gy (Supplementary Figure 2 and 4). Similarly, parameter b and c of the model were lower 

across all modalities, indicating a small impact on imaging changes from the dose- and dose*LET -term 

(Supplementary Table 1). When we included all voxel receiving 20 Gy or more into the model, the predicted 

imaging changes were again within the NAWM-band (Supplementary Figure 3 and 5). Parameter b for a 20 

Gy dose cut-off was slightly lower for all modalities (Supplementary Table 2) as compared to the values 

presented in Table 3, while parameter c seemed to have a slightly larger impact on imaging changes for FA 

and T2 for the 20 Gy cut-off. 
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Supplementary Figure 2. The predictions of model 1 (linear dose dependence), pooled over all patient and follow-up scan values as a 

function of dose for LET = [0.9, 1.1, 1.5, 2.5, 5.0] keV/ µm. All voxels receiving 5 Gy or more were included in the model. The y-axis is 

defined such that a decrease here over time represents a lower voxel value in the follow-up scans as compared to baseline. This 

prediction assumes a representative voxel value of the baseline scan across all patients. The prediction is what is expected to 

happen for a theoretical patient at a follow-up after 186 days. The top figure shows the predicted values for fractional anisotropy 

(FA) MRI, the middle for T1-weighted MRI and the bottom figure is for T2-weighted MRI scan values. 
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Supplementary Figure 3. The predictions of model 1 (linear dose dependence), pooled over all patient and follow-up scan values as a 

function of dose for LET = [0.9, 1.1, 1.5, 2.5, 5.0] keV/ µm. All voxels receiving 20 Gy or more were included in the model. The y-axis 

is defined such that a decrease here over time represents a lower voxel value in the follow-up scans as compared to baseline. This 

prediction assumes a representative voxel value of the baseline scan across all patients. The prediction is what is expected to 

happen for a theoretical patient at a follow-up after 186 days. The top figure shows the predicted values for fractional anisotropy 

(FA) MRI, the middle for T1-weighted MRI and the bottom figure is for T2-weighted MRI scan values. 
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Supplementary Figure 4. The predicted image change based on a linear dependence of dose for modalities fractional anisotropy (FA) 

(black, y-axis on the left) and T2-weighted MRI (red, y-axis on the right) as a function of linear energy transfer (LET). All voxels 

receiving 5 Gy or more were included in the model. The predictions are made at 5 Gy and for a standard voxel value at baseline 

(FA=0.26, T2=411). The grey band indicate average normal appearing white matter value for both modalities with 1 standard 

deviation. 
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Supplementary Figure 5. The predicted image change based on a linear dependence of dose for modalities fractional anisotropy (FA) 

(black, y-axis on the left) and T2-weighted MRI (red, y-axis on the right) as a function of linear energy transfer (LET). All voxels 

receiving 20 Gy or more were included in the model. The predictions are made at 20 Gy and for a standard voxel value at baseline 

(FA=0.26, T2=411). The grey band indicate average normal appearing white matter value for both modalities with 1 standard 

deviation. 
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Scan modality \ Model parameter a (Baseline scan) b (Dose) c (Dose*LET) 

FA 0.9873 ± 0.0002 -4.61·10-4 ± 4·10-6 3.05·10-4 ± 2·10-6 

T1 0.8451 ± 0.0003 0.178 ± 0.005 -0.033 ± 0.002 

T2 -0.8054 ± 0.0002 1.58 ± 0.01 0.416 ± 0.004 

Supplementary Table 1. Parameter a, b and c after modelling Eq (1) using the complete nested dataset for a linear dependence on 

dose. The data in the model includes all voxels receiving a dose above 5 Gy. The parameters are given separately for each of the 

three modalities considered, and with one standard deviation. 
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Supplementary	Table	2	
 

Scan modality \ Model parameter a (Baseline scan) b (Dose) c (Dose*LET) 

FA 0.9913 ± 0.0003 -7.15·10-4 ± 7·10-6 4.30·10-4 ± 3·10-6 

T1 0.9006 ± 0.0004 -1.22 ± 0.01 0.234 ± 0.003 

T2 0.7926 ± 0.0004 6.15 ± 0.02 -3.72 ± 0.01 

Supplementary Table 2. Parameter a, b and c after modelling Eq (1) using the complete nested dataset for a linear dependence on 

dose. The data in the model includes all voxels receiving a dose above 20 Gy. The parameters are given separately for each of the 

three modalities considered, and with one standard deviation. 

 


