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Abstract: Temporal variability of NO2 concentrations measured by 28 Envirowatch E-MOTEs, 13

AQMesh pods, and eight reference sensors (five run by Sheffield City Council and three run by

the Department for Environment, Food and Rural Affairs (DEFRA)) was analysed at different time

scales (e.g., annual, weekly and diurnal cycles). Density plots and time variation plots were used to

compare the distributions and temporal variability of NO2 concentrations. Long-term trends, both

adjusted and non-adjusted, showed significant reductions in NO2 concentrations. At the Tinsley

site, the non-adjusted trend was −0.94 (−1.12, −0.78) µgm−3/year, whereas the adjusted trend was

−0.95 (−1.04, −0.86) µgm−3/year. At Devonshire Green, the non-adjusted trend was −1.21 (−1.91,

−0.41) µgm−3/year and the adjusted trend was −1.26 (−1.57, −0.83) µgm−3/year. Furthermore,

NO2 concentrations were analysed employing univariate linear and nonlinear time series models

and their performance was compared with a more advanced time series model using two exogenous

variables (NO and O3). For this purpose, time series data of NO, O3 and NO2 were obtained from a

reference site in Sheffield, which were more accurate than the measurements from low-cost sensors

and, therefore, more suitable for training and testing the model. In this article, the three main steps

used for model development are discussed: (i) model specification for choosing appropriate values for

p, d and q, (ii) model fitting (parameters estimation), and (iii) model diagnostic (testing the goodness

of fit). The linear auto-regressive integrated moving average (ARIMA) performed better than the

nonlinear counterpart; however, its performance in predicting NO2 concentration was inferior to

ARIMA with exogenous variables (ARIMAX). Using cross-validation ARIMAX demonstrated strong

association with the measured concentrations, with a correlation coefficient of 0.84 and RMSE of 9.90.

ARIMAX can be used as an early warning tool for predicting potential pollution episodes in order to

be proactive in adopting precautionary measures.

Keywords: ARIMA; ARIMAX; air quality modelling; low-cost sensors; air pollution; nonlinear

modelling; time series analysis; autoregressive; moving average; Sheffield

1. Introduction

Air pollution is one of the most serious environmental threats to health, killing 6.4
million people in 2015 worldwide both in developed and less-wealthy nations [1]. Out of
these, 2.8 million deaths were caused by indoor air pollution and 4.2 million deaths by
outdoor air pollution. Air pollution is causing various health problems including respira-
tory problems, cardiovascular diseases, lung cancer and asthma [2]. Walters and Ayres [3]
have also reported that air pollution, especially particulate matter and nitrogen dioxide
(NO2) pollution, may cause premature deaths and hospital admissions for conditions such
as cardiovascular problems, allergic reactions and lung cancer. It is reported that exposure
to air pollution is particularly harmful for children, people with existing health problems
and the elderly [4–6]. Evidence suggests that the negative impacts of air pollution are
dependent on the levels of air pollutants and length of exposure, higher levels and longer
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exposure resulting in more severe adverse effects [3,6]. Furthermore, air pollution may
reduce visibility, damage historical buildings and monuments, affect vegetation and reduce
crop yield and quality [4–7].

Air quality modelling is carried out for several purposes, including air quality predic-
tion, quantifying the impacts of air pollution, modelling the impacts of various factors on
air pollution, modelling pollution processes and transport, running and testing emission
scenarios, modelling the dispersion of air pollutants in the atmosphere, quantifying the
emissions of air pollutants from various emission sources, determining long-term trends
in air pollutant concentrations and producing high-resolution spatiotemporal maps of
air pollution [6–15]. In this study, the main purposes were to compare the performance
of different time series models and to develop a time series model for predicting future
NO2 concentrations in Sheffield, UK. Time series models are one of the popular tools for
predicting the future by understanding the past changes in air pollution concentrations [16].

Time series modelling is a useful tool for data analysis and has several benefits, which
include data cleaning, data understanding and forecasting [17]. Time series modelling can
help us filter out the noise and reveal the true signal in a dataset. Once a dataset is cleaned
and the time series is divided into its different components, it helps us understand the
true nature of the dataset. Finally, like other modelling approaches, time series modelling
helps us predict future levels with the help of present and past levels of the time series
(here NO2 concentrations) [17]. To build a time series model the time series data must be
stationary. For a time series to be stationary, the mean, variance and covariance of the time
series should not be a function of time [18]. If the time series is not stationary, it should be
stationarised first before fitting a model to it [18]. To stationarise a time series, it should be
detrended and deseasonalised using differencing and power transformations [16]. A time
series model can be linear or nonlinear depending on the relationship between current and
past observations [16]. The Autoregressive (AR) and moving average (MA) models are the
two widely used linear time-series models [19]. The AR and MA models can be combined
to form the autoregressive moving average (ARMA) and autoregressive integrated moving
average (ARIMA) models [20]. To model and predict a seasonal time series, the seasonal
autoregressive integrated moving average (SARIMA) model is used, which is a variation of
ARIMA [19]. ARIMA along with its various variations are also known as the Box–Jenkins
models because they are based on the Box–Jenkins principle [19]. Classification of time
series models is shown in Figure 1 [21–23].

Although air pollutant levels have decreased in the UK and Europe during the last
decade or so, some air pollutant levels still exceed air quality standards in many urban
areas [24] and 620 air quality management areas (AQMAs) have been declared across the
UK [25]. Out of these areas, five cities (Birmingham, Leeds, Southampton, Derby and
Nottingham) will not achieve the targets until 2025 and London will not comply until
2030 if additional control measures are not taken [24]. Most of the exceedances are due to
the high levels of NO2 and PM10 [26], emphasising that these air pollutants are a serious
problem in urban areas. Further actions are required to cut emissions and understand the
main drivers of high levels of NO2 and PM10 in urban areas. Air pollution modelling is a
part of these actions.

In first part of this article, NO2 concentrations measured by different grades of sen-
sors are compared graphically, whereas, in the second part, a comparison of time series
modelling approaches is made using measured time series data of NO2 collected at an
urban monitoring site in Sheffield. A comparison is made between linear and nonlinear
time series models and the better performing model is then compared with the ARIMAX
model, which, in addition to persistence, uses exogenous variables. The aim is to assess the
suitability of time series models for NO2 prediction and choose the best time series model
for air quality modelling in the urban environment.
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Figure 1. Classification of time series models. TSM, time series model; AR, autoregressive; MA, mov-

ing average; ARMA, autoregressive moving average; ARMAX, autoregressive moving average with

exogenous variables; ARIMAX, autoregressive integrated moving average with exogenous variables;

VARX, vector autoregressive with exogenous variables; VARMA, vector autoregressive moving aver-

age; NARX, nonlinear autoregressive with exogenous variables; NARMAX, nonlinear autoregressive

moving average with exogenous variables; SETAR, self-exciting threshold autoregressive; NNNAR,

neural network nonlinear autoregressive.

2. Methodology

2.1. A Brief Description of the Monitoring Network

In this study, NO2 concentrations (µg/m3) from a network of low-cost sensors (LCSs)
and reference sensors were analysed in Sheffield, United Kingdom. A network of LCSs
was made by the Urban Flows Observatory, University of Sheffield, UK, consisting of 28
Envirowatch E-MOTEs and 13 AQMesh pods. These are all urban traffic sites. In addition,
five reference air quality monitoring stations are operated by Sheffield City Council (SCC)
and three are operated by the UK Department for Environment, Food and Rural Affairs
(DEFRA), which are part of the Automatic Urban and Rural Network (AURN), the largest
air quality monitoring network in the UK. The locations of the air quality monitoring
stations (AQMSs) are shown in Figure 2 and their names, coordinates and annual mean
NO2 concentrations are given in Table 1. Data from these sensors were analysed from
August 2019 to September 2020.
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Figure 2. (a) The locations of air quality monitoring stations (AQMSs) in Sheffield; (b) annual mean

NO2 levels (µg/m3) measured by low-cost sensors (LCSs) and Automatic Urban and Rural Network

(AURN) and Sheffield City Council (SCC) AQMSs in Sheffield from August 2019 to September 2020.
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Table 1. Names, IDs and annual mean NO2 concentrations (µg/m3) measured by low-cost sensors

(AQMesh and Envirowatch E-MOTEs) and AURN and Sheffield City Council sites from August 2019

to September 2020.

Site Name Sensor Type Sensor ID NO2 (µg/m3)

Brightside Lane AQMesh 2003150 41.3
Saville Street AQMesh 2005150 46.9
Cundy Street AQMesh 2007150 19.8

off Endcliffe Crescent AQMesh 2008150 12.7
Sharrow Vale Rd AQMesh 2009150 25.1

Abbeydale Rd AQMesh 2450206 43.7
London Rd AQMesh 2001150 14.6

Prince of Wales Rd AQMesh 2006150 28.2
Maltravers Rd AQMesh 2004150 20.8

Hunter’s Bar School AQMesh 2450204 29.0
Malin Bridge PS AQMesh 1999150 22.6

Broad Lane AQMesh 1998150 19.2
Carter Knowle Bridge AQMesh 2450205 37.6

Tinsley AURN SHE 22.9
Devonshire Green AURN SHDG 19.1

Barnsley Road AURN SHBR 32.1
Regent Court, E-camp E_MOTE 711 41.7

Leavygreave Road, E-camp E_MOTE 712 34.2
Gell Street, E-camp E_MOTE 701 21.1

Upper Hanover/Henderson’s building E_MOTE 702 28.7
Behind Jessop West E_MOTE 703 23.7

Diamond/Bio-incubator E_MOTE 704 34.2
Broad Lane/St George’s Terrace E_MOTE 713 44.9
Portobello Street, Mappin Street E_MOTE 714 37.6

28 Portobello Street, EC E_MOTE 705 20.8
Howard Street, CC E_MOTE 731 41.2

Arundel Gate/Genting Club E_MOTE 732 115.6
Arundel Gate/Surrey Street E_MOTE 733 43.5
Harmer Lane/Pond Street E_MOTE 901 44.2
Harmer Lane/Sheaf Street E_MOTE 902 49.9

Pond Street/Sheaf Building E_MOTE 736 38.3
Howard Street/Science Park E_MOTE 734 39.0

Paternoster Rows E_MOTE 735 42.4
Sheaf Street/Sheaf Square E_MOTE 903 107.2
Railway Station Taxi rank E_MOTE 904 136.8

Upper Hanover St/Info. Commons E_MOTE 707 26.6
Leavygreave Road/Favell Road E_MOTE 708 25.7
Hounsfield Rd/Hicks Building E_MOTE 709 24.9
Sheffield Children’s Hospital E_MOTE 710 28.2

Robert Hadfield Building E_MOTE 706 25.2
Brook Hill/Firth Court1 E_MOTE 737 39.3
Brook Hill/Firth Court2 E_MOTE 738 42.9
Arts Tower Concourse E_MOTE 739 34.3

Arts Tower Concourse/Library E_MOTE 740 33.2
Firvale SSC GH1 25.0
Tinsley SSC GH2 24.1

Lowfield SSC GH3 24.6
Wicker SSC GH4 25.9

King Ecgbert SSC GH5 8.1

LCSs are compact, portable and use less power when compared to reference instru-
ments. LCSs range in price from a couple of thousand to several thousand pounds (for a
relatively sophisticated multi-pollutant and meteorological sensor with communication
capabilities). Reference sensors are expensive, both to purchase and maintain, and bulky,
but are the most accurate units, recommended for use by EU and UK government bodies
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for air quality (AQ) monitoring and complying with standards such as MCERTS in the UK.
A single reference unit costs in the region of 20,000 pounds to monitor a single gaseous or
particle pollutant. LCSs and reference sensors employ different techniques for air pollu-
tant measurement, which include optical particle counters, light scattering, metal oxide
semiconductor sensors, electrochemical sensors, nondispersive infrared sensors, ultraviolet
fluorescence, chemiluminescence, infrared photometry and photo-ionisation detection
sensors. For more detail, see [27,28]. The LCSs used in this project were either Envirowatch
E-MOTEs [29] or AQMesh pods [30]. The Envirowatch E-MOTEs are deployed in a local
mesh in a cluster, providing data via ZigBee, within a certain area for high-resolution
monitoring, no more than 100 m from each other, with a gateway providing an uplink
capability. AQMesh sensors are independent and can be deployed at both high and low
spatial resolutions. Both Envirowatch E-MOTEs and AQMesh pods are electrochemical
sensors, whereas the sensors used by DEFRA and SCC are reference sensors which use
chemiluminescent analysers for NO2 and an ultraviolet (UV) absorption analyser for O3

measurements. The reference sensors are more reliable and accurate than the electrochem-
ical sensors. The lowest detection limit for reference sensors and electrochemical sensor
is <2 µg/m3. Electrochemical sensors are smaller and cheaper to purchase and maintain.
Envirowatch E-MOTEs in a cluster communicate with a gateway by means of the Zigbee
protocol within a specific area for high-resolution monitoring. The use of this protocol
allows the individual units to communicate with each other and pass data from sensors that
are not in range or without line-of-sight of the gateway. Using GPRS, the gateway device
communicates the collected data over an internet connection to a cloud server operated
by Envirowatch. Each AQMesh pod independently sends data to a cloud server using
GPRS. For the reference sensors, the data logger is connected to the central management
and coordination unit (CMCU) central computer, which collects the data using a GPRS
mobile phone connection or wireless broadband.

2.2. Comparing NO2 Measured at Different Sites

In this study, we compared NO2 concentrations measured at different AQMSs using
LCSs and reference sensors from August 2019 to September 2020. For inter-site comparison,
density plots and time variation plots were used, which were developed in R programming
language [31] using the “openair” package [32]. Density plots, also known as kernel density
estimation (KDE) plots, showed the distribution of NO2 concentrations and are smoothed
versions of histograms. The peaks of density plots show where values of the variables are
concentrated. Furthermore, time variation plots were developed to show the temporal
variability in NO2 concentrations over different temporal scales; especially, they depict the
diurnal, weekly and annual cycles of NO2 concentrations.

2.3. Long-Term Temporal Trend Analysis

Quantification of temporal trends in air pollutant concentrations serves to assess
the effects of emission control strategies over a given period of time. In this study, the
temporal trend of NO2 concentrations was determined over the last 20 years (2000–2019)
at the Tinsley AQMS, which is part of the UK AURN. This is an urban background site
located at the Sheffield Tinsley Community Centre, approximately 200 metres east of
the M1 motorway. The temporal trend was also determined at the Devonshire Green
AQMS from 2014 to 2019, an urban background site, installed in Devonshire Green Park in
Sheffield within a self-contained air-conditioned unit, surrounded mainly by open land
and vegetation. To calculate long-term trend in NO2 concentrations, here we employed the
TheilSen function of the ”openair”’ package [32]. The TheilSen function is a non-parametric
approach and uses bootstrap simulations. This technique estimates all the regression
parameters through bootstrap resampling. The technique is not affected by outliers as it is
based on the median (not mean) and can be applied to a non-normal distribution.



Nitrogen 2021, 2 173

2.4. Time Series Model

To carry out time series modelling in this study, NO2, NO and O3 data were used
from the Devonshire Green AQMS in Sheffield. The site is part of the AURN network
and has been monitoring various air pollutants, including NO2, NO, NOx and O3, since
2013. Figure 3 shows the monthly average of pollutants, which exhibits a general trend of
higher NO, NO2 and NOx concentrations in winter and lower concentrations in summer.
In contrast, O3 concentrations were higher in spring and summer and lower in winter. In
winter the atmosphere is relatively static and the atmospheric boundary layer is shallower,
which is a hindrance in pollutant dispersions; whereas, in summer, the atmosphere is more
turbulent and both horizontal and vertical dispersion processes are active in dispersing
locally emitted pollutants. This is probably the main reason that the concentrations of NO,
NO2 and NOx were lower in summer and higher in winter. On the other hand, ground
level O3 is a secondary pollutant and is produced by the photochemical reactions of NOx
and volatile organic compounds (VOCs) in the presence of solar radiation. In summer,
high temperature and solar radiation lead to higher levels of O3 production than in winter,
when the weather in the UK is cold, not conducive to O3 formation. O3 concentration was
highest in May, when in addition to the weather conditions, O3 precursors were abundant,
in contrast to June and July when the precursors were relatively lower [33].

Figure 3. Monthly average concentrations (µg/m3) of NO, NO2, NOx and O3 in different months of

the year from the Devonshire Green AQMS in Sheffield, 2014–2019.

Time series data mainly have three building blocks: seasonality, trend and residu-
als [34]. Deconstruction (decomposition) of a time series is helpful in understanding the
behaviour of a time series. The seasonality (seasonal component) of the time series refers
to the fluctuations in the levels of pollutants related to seasonal factors. Seasonality is
always of a fixed and known period, normally twelve months. The trend component is
the overall long-term pattern of the time series and indicates if a pollutant concentration
is increasing or decreasing over time. The residual or error component of the time series
is the remainder part that cannot be attributed to seasonality and trend components. The
three components of the time series are shown below in Equation (1):

Y = Tc + Sc + Rc (1)
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In Equation (1), a time series (Y) is divided into three components, which are the trend
component (Tc), seasonal component (Sc) and residual or remainder component (Rc). For
dividing the time series into three components, seasonal-trend decomposition based on
loess (STL) was used, which was initially proposed by Cleveland et al. [35]. The process of
extracting these components from the time series is referred to as decomposition. The three
components of the NO2 time series are shown in Figure 4.

Figure 4. Three additive components obtained from seasonal-trend decomposition based on loess (STL),

decomposition of NO2 concentration (µg/m3) collected at the Devonshire Green AQMS, Sheffield.

In this study, air pollution data were analysed using four time series models: ARIMA,
ARIMAX, the self-exciting threshold autoregressive (SETAR) and neural network nonlinear
autoregressive (NNNAR). For more details on these models, see [36–38]. Time series model
development and application consist of three main steps [39]:

- model specification;
- model fitting (parameters estimation); and
- model diagnostic (testing the goodness of fit of the fitted model).

2.4.1. Model Specification

Model specification means choosing appropriate values for p, d and q for a given time
series, where p is the lag orders (i.e., the number of lagged values that NO2 is regressed on),
referred to as the autoregressive component, d is the degree of differencing (integration)
and q is the order of moving average. Differencing a series involves simply subtracting
its current and previous values’ d times. Often, differencing is used to stabilize a series
when the stationarity assumption is not met. For model specification (to specify the values
of p, d and q), firstly, the auto-correlation function (ACF) and partial auto-correlation
function (PACF) plots of the NO2 time series were used. The ACF plot (Figure 5a) displays
correlation between a series and its lags (previous values) and helps determine the order
of differencing (d). Furthermore, the ACF plot can help in determining the order of the
MA component. An MA component represents the error of the model as a combination of
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previous error terms [39]. The order q determines the number of terms to be included in the
model. The ACF plot of the NO2 series (Figure 5a) shows the properties of a nonstationary
series, as the ACF fails to die out rapidly with increasing lags. All ACF values are significant
(significantly greater than zero) and the only pattern is perhaps a linear decrease with
increasing time lag. This shows that NO2 series is nonstationary. Before a time-series
model (e.g., the ARIMA model) is applied, the time-series must be stationarised, which
means the variance, mean and auto-covariance of the time series need to be time invariant.
The ACF plots of the NO2 series differenced once and twice are presented in Figure 5b,c,
respectively. After differencing once, the pattern emerged much more clearly, suggesting
that the ARIMA model with difference 1 (d = 1) was probably a suitable model.

Figure 5. Auto-correlation function (ACF) plot of the NO2 (µg/m3) time series (not differenced) (a),

differenced once (b) and differenced twice (c); partial ACF plot (d) and once-differenced NO2 plot of

oscillating pattern around zero with no visible strong trend (e) showing that the series is stationary.

NO2 concentrations used here were collected at the Devonshire Green AQMS, Sheffield.
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The PACF plot (Figure 5d) displays the correlation between a variable and its lags that
is not explained by previous lags. PACF plots are useful when determining the order p
of the AR component, which specifies the number of lags used in the model; for example,
AR (2) or ARIMA (2,0,0) showed that the order of AR was 2. The PACF plot showed that
an AR (1) model should be considered (Figure 5d). The plot of differenced NO2 is shown
in Figure 5e, wherein the oscillating pattern around the zero shows that the series was
stationary after the series was differenced once. This suggested that differencing of order
1 terms is sufficient and should be included in the model. Sometimes, if the series is not
stationarised after differencing once, we need to difference it again. In addition to the
ACF and PACF plots, we also considered model selection criteria based on the value of
the Akaike’s information criterion (AIC). The time series model with a lower value for the
AIC showed a better fit. Based on the AIC values (Table 2), ARIMA (1,1,1) was selected.
Differencing, autoregressive and moving average components make up an ARIMA model.
ARIMA (1,1,1) showed that the model incorporated differencing of degree 1 and used an
AR term of first lag and an MA of order 1. Although some of the other models (Table 2)
had slightly lower AIC values, the difference was not significant and the model was more
complicated, which is against the principle of parsimony, meaning that the selected model
should use the lowest number of parameters providing adequate representation of the
time series. When the ARIMA (1,1,1) model was applied to the square root and log of the
NO2 time series in contrast to observed NO2 concentrations, the AIC values dropped to
3230.6 and 1117.5, respectively, which are much lower than the values presented in Table 2.
Therefore, log-NO2 was adopted in this study instead.

Table 2. Autoregressive integrated moving average (ARIMA) model specification and corresponding

Akaike’s information criterion (AIC) values of NO2 time series (µg/m3), where p represents the order

of the autoregressive, d represents the difference and q represents the MA.

AIC p d q

8910.88 1 1 1
9104.28 1 2 1
8910.53 2 1 1
8912.42 2 1 2
8944.8 1 0 0
8941.53 1 0 1
8904.29 3 1 1
8905.83 4 1 1

2.4.2. Model Fitting

Model fitting is basically parameter estimation. This study used the maximum like-
lihood estimation approach, which produces more accurate estimation of parameters in
comparison to least square estimation [39]. The main advantage of the maximum likelihood
estimation is that it uses all of the information in the data rather than just using the mean
and variance of the data, as is the case with least square estimation [39]. Using daily NO2

concentrations (2015 to 2019), the dataset was divided into training (70%) and testing (30%)
datasets, which were selected randomly. Time series linear models were fitted (trained)
with the TSA-package [40] and forecast-package [41] in R programming language [31].
The neural network nonlinear autoregressive and self-exciting threshold autoregressive
(SETAR) nonlinear models were implemented in R-package ”tsDyn” [38]. The model
performance was assessed using both training and testing datasets. The specified models
were run to estimate the model parameters.
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2.4.3. Model Diagnostic and Forecasting

Residuals of a model are defined as the difference between the actual (observed) and
predicted (modelled) values, as shown in Equation (2):

Residual = Actual values − Predicted values (2)

Residual analysis of the model was performed by graphical presentation using a plot
of standardised residuals, a quantile–quantile (Q–Q) plot and a histogram of the residuals.
For an adequate model, a plot of standardised residuals shows a rectangular scatter around
a zero horizontal level with no trends, whereas a Q–Q plot and histogram of the residuals
show the normality of the error terms.

The model performance was assessed by comparing predicted with observed NO2

concentrations both graphically, using time plots and scatter plots, and using several
statistical metrics, including correlation coefficients (r), root mean square error (RMSE),
factor of two (FAC2), mean biased error (MBE) and mean absolute error (MAE) [42,43]. The
Pearson correlation coefficient measures the strength of the linear relationship between the
measured and modelled concentrations. FAC2 is the fraction of predicted concentrations
within a factor of two of the measured concentrations. RMSE, MAE and MBE provide an
estimation of the error of the model prediction. However, RMSE and MAE do not define
the direction of the error, as they provide absolute error, whereas MBE, in addition to
the size, defines the direction of the error; i.e., negative MBE indicates under-prediction
whereas positive MBE indicates over-prediction of a model.

The fitted model was used to predicted NO2 concentrations, which were cross-
validated with the testing dataset. If the predicted value (forecast) is denoted by Ŷt
(l), where l is the lead time for forecast and time t is the forecast origin, then forecasting one
time-unit into the future (one step ahead) (Ŷt (1)) can be achieved as in Equation (3) (Cryer
and Chan, 2008):

Ŷt (1) = µ + φ (Yt − µ) (3)

where µ is the intercept and φ is the estimated parameter of the AR component. Equation
(3) shows that, to forecast the next step, a proportion φ of the current deviation from the
process mean is added to the process mean. To consider a general lead time l, we replace
time t by t + l in Equation (3) and take the conditional expectation of both sides, which
produces Equation (4) [39]:

Ŷt (l) = µ + φ [Ŷt (l − 1) − µ] for l > 1 (4)

Equation (4) is recursive in the lead time l and shows how the forecast for any lead
time l can be built up from the forecast for a shorter lead time l by starting with the initial
forecast as given by Equation (3). The forecast Ŷt (2) is then obtained from Ŷt (2) = µ + φ

[Ŷt (1) − µ], then Ŷt (3) from Ŷt (2) and so on. Equation (4) is also known as the ”difference
equation form” of the forecast [39]. An explicit expression for the forecast in terms of
the observed history of the time series for Equation (4) can also be given in the form of
Equation (5) [39].

Ŷt = µ + φl (Yt − µ) (5)

Equation (5) shows that the current deviation from the mean is discounted by a factor
φl, whose magnitude decreases with increasing lead time l. The discounted deviation is
then added to the process mean to produce the lead l forecast.

It should be noted that, in forecast, if an exogenous variable is used, then the number
of steps ahead are ignored and the number of forecast periods is set to the number of rows
of exogenous variables in the new data, which here is equal to the number of rows of the
testing dataset.
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3. Results and Discussion

3.1. Comparing NO2 Measured at Different AQMSs

3.1.1. Density Plots

NO2 concentrations (µg/m3) measured by different grades of sensors at different
monitoring stations in Sheffield were compared employing densities plots. Density plots
offer an easy way to compare the distribution of NO2 concentrations measured at different
monitoring stations. Figure 6 shows NO2 concentrations measured by Envirowatch E-
MOTEs. The performance of Envirowatch E-MOTEs was assessed by Munir et al. [44] by
comparing their concentrations with a nearby reference sensor in Sheffield. The sensors
were divided into four sub-groups based on the mean NO2 concentrations. In first group
of sensors (Figure 6a), the range of NO2 concentrations was 0 to 50 µg/m3 and the highest
density (mode) occurred at 10–15 µg/m3. This represents the group of sensors with the
lowest concentrations, which are deployed outside the city centre at the University of
Sheffield campus. The second group (Figure 6b) had mean values of 31–40 µg/m3 and
the highest density was recorded at 20–25 µg/m3. Most of the sensors in this group had
a range of 0 to 60 µg/m3, however some sensors recorded NO2 concentrations as high
as 120 µg/m3. The third group (Figure 6c) had mean concentrations of 41 to 50 µg/m3

and the concentrations ranged from 0 to 140 µg/m3. These sensors recorded mean values
over 40 µg/m3, exceeding annual air quality standard. The fourth group (Figure 6d)
recorded the highest NO2 concentrations, where mean concentration was greater than
100 (NO2 > 100 µg/m3). The highest density was shown at 70 to 80 µg/m3. In total, 11
sensors violated AQ standards (NO2 > 40 µg/m3). Three sites with mean NO2 levels
higher than 100 (µg/m3) were: (i) the Taxi Rank at the Sheffield Railway Station (NO2_904,
136.81 µg/m3), (ii) Arundel Gate opposite to the Genting Club (NO2_732, 115.56 µg/m3)
and (iii) the pedestrian crossing at Sheaf Street/Sheaf Square (NO2_903, 107.17 µg/m3).
The reason for recording higher NO2 concentrations is that these sensors are installed next
to busy locations in terms of road traffic flows and engine idling while stationary. The
taxi stand (E-MOTE 904) is a good example of how engine idling can result in worse air
pollution in urban areas. E-MOTE 903 is installed next to a pedestrian crossing on a busy
road. People coming out of the train station use the pedestrian crossing going towards the
high street, Sheffield Hallam University, and other parts of the city. The traffic light turns
red and green regularly, which cause congestions. When the lights are red, road traffics
stop but vehicle engines keep running. When traffic lights turn green, all vehicles try to
accelerate quickly. Therefore, idling of engine and sudden acceleration emit extra pollution.
E-MOTE 732 is installed in a typical street canyon, where the road has tall buildings on
both sides, hindering the dispersion of the pollutants emitted by the road traffics, causing
the pollution levels to go up. The other sites in the city centre where air quality standards
were violated were Paternoster Rows, Harmer Lane near Sheaf Street, Harmer Lane near
the bus station, Arundel Gate near Surrey Street, and Howard Street. Two E-MOTEs at
the University campus that exceeded air quality limits were Regent Court and Broad Lane
(near St. George’s Terrace).

The distributions of NO2 concentrations measured by different AQMesh pods are
compared using density plots in Figure 7. Most of the AQMesh pods were deployed in the
outskirts of the city (Figure 2). The distribution is mostly skewed right with heavy right
tails. Only three AQMesh pods exceeded AQ standards, which were NO2_206 (Abbeydale
Rd, 43.67 µg/m3), NO2_2003 (Brightside Lane, 41.34 µg/m3) and NO2_2005 (Savile Street,
46.91 µg/m3). The measurements seem realistic as these sensors are deployed on very busy
roadsides.
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Figure 6. Cont.
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Figure 6. Different density plots of hourly NO2 concentrations (µg/m3) measured by Envirowatch

E-MOTEs, August 2019–September 2020 in Sheffield.
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Figure 7. Density plots of hourly NO2 concentrations (µg/m3) measured by AQMesh pods from

August 2019 to September 2020 in Sheffield.

Density plots of NO2 concentrations measured by AURN sites and SSC sites are shown
in Figure 8a,b, respectively. The distributions are skewed right. AURN sites had mean
NO2 concentrations of 23, 19 and 32 µg/m3 at the Sheffield Tinsley, Devonshire Green
and Barnsley road AQMSs, respectively. The SSC sites Firvale, Tinsley, Lowfield, Wicker
and King Ecgbert had mean concentrations of 25, 24, 25, 26 and 8 µg/m3, respectively.
The concentrations measured at both AURN and SCC sites were well below the AQ
standards. The lowest concentrations were recorded at the King Ecgbert site, which is
located in a background location well outside the city centre. In this section, we consider
the distribution and annual mean of NO2 concentrations measured at different AQMSs of
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different grades. Density plots are a useful tool for understanding the distribution of NO2

concentrations and comparing the distributions of different monitoring sites. However,
density plots provide no information on the temporal variability of NO2 concentrations,
which are analysed in the coming section.

Figure 8. Density plots of NO2 concentrations (µg/m3) measured by: (a) AURN sites-Barnsley road

(brn), Tinsley (tin) and Devonshire Green (dg); and (b) SCC sites-Firvale (fv), King Ecgbert (ke),

Lowfield (lf), Tinsley (tins) and Wicker (wic), from August 2019–September 2020.
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3.1.2. Time Variation Plots

It is important to know how NO2 concentrations vary at different time scales. Time
variation plots show variations in NO2 concentrations on diurnal, weekly and annual
cycles. Such information is useful in understanding the emission sources of air pollutants.
In this section, temporal variabilities of NO2 concentrations are analysed by employing
time variation plots, using data from AURN, SSC, Envirowatch E-MOTEs and AQMesh
pods. NO2 concentrations measured by AURN and SCC sites are analysed first to set a
benchmark of temporal variation for the LCS.

Barnsley is a roadside (urban traffic) AQMS, whereas Tinsley and Devonshire Green
are urban background sites. Therefore, NO2 concentrations measured at Barnsley site
(NO2_brn) were higher than at the other two sites (Figure 9). Figure 9 shows that, on
diurnal cycles, NO2 concentrations were higher in the busy morning hours (07:00–09:00 h)
and busy afternoon hours (17:00–19:00 h) and lower at night and midday. Weekly cycles
showed that NO2 concentrations were significantly lower on weekends (Sunday being the
lowest) than on weekdays. Annual cycles of NO2 showed higher concentrations in colder
months (e.g., January, February, November and December) than the warmer months (e.g.,
June, July and August). All three AURN sites demonstrated the same temporal trends on
diurnal, weekly and annual cycles. Diurnal and weekly cycles of NO2 concentrations are
controlled by road traffic flow, whereas annual cycles in addition to emissions are controlled
by meteorological parameters. In winter, the temperature is low and the atmosphere is
stagnant, which hinders the dispersion of air pollutants emitted locally. In contrast, in
summer the atmosphere is more turbulent, encouraging both vertical and horizontal
dispersion of pollutants.

Figure 9. Time variation plots of NO2 concentrations (µg/m3) in Sheffield at the three AURN AQMS:

Barnsley, Tinsley and Devonshire Green.

Figure 10 shows the temporal variability of NO2 concentrations using data from five
SSC sites: NO2_fv (Firvale), NO2_ke (King Ecgbert), NO2_lf (Lowfield), NO2_tins (Tinsley)
and NO2_wic (Wicker). SCC AQMSs demonstrated a temporal trend similar to AURN
sites. In addition to some minor differences between different sites, NO2 concentrations
were significantly lower at the King Ecgbert site, which is a background site located outside
the city centre in a quite location.
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Figure 10. Time variation plots of NO2 concentrations (µg/m3) measured at SCC sites: Firvale, King

Ecgbert, Lowfield, Tinsley and Wicker, from August 2019–September 2020.

To demonstrate temporal variability in NO2 concentrations (Figure 11) measured by
Envirowatch E-MOTEs, four E-MOTEs were selected: NO2_904 (Railway Station), NO2_902
(Harmer Lane/Sheaf Street), NO2_731 (Howard Street) and NO2_738 (Brook Hill, near Firth
Court). These four sites were selected because NO2_904 presented an unusual time profile,
whereas NO2_902, NO2_738 and NO2_731 showed a typical time variations similar to
many other sensors. The diurnal, weekly and annual cycles followed almost similar pattern
as those shown by AURN and SSC sites. However, there were some minor differences
between various E-MOTEs installed at different locations within the city. Also, differences
in winter vs. summer and weekend vs. weekday concentrations were much prominent in
AURN sites than in E-MOTEs. NO2_904 demonstrated higher concentrations at all times,
even at nights and weekend, as the taxi stand next to the train station remains busy at all
times waiting for train passengers (probably with vehicles idle while waiting).

Figure 12 shows the diurnal, weekly and annual cycles of NO2 concentrations mea-
sured by four AQMesh pods. The four AQMesh sites were: NO2_1999 (Malin Bridge
School), NO2_2001 (London Rd), NO2_2003 (Brightside Lane) and NO2_204 (Hunter’s Bar
School). Here the diurnal and weekly cycles showed similar trends; however, the annual
cycles were different from each other and from the ones shown by AURN and SSC AQMSs.
The NO2_2001 annual cycle was particularly different as it showed higher concentrations
in summer months than in winter months. However, weekly cycles presented normal
trends, as expected and shown by AURN sites.
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Figure 11. Time variation plots of NO2 concentrations (µg/m3) measured by Envirowatch E-MOTEs.

Figure 12. Time variation plots of NO2 concentrations (µg/m3) measured by AQMesh pods.

3.2. Long-Term Trends in NO2 Concentrations

The temporal trend in NO2 concentrations was determined using the TheilSen function
for the last 20 years (2000–2019) at Tinsley and for the last six years (2014–2019) at the
Devonshire Green AQMS. Both of these sites are part of the AURN. Trends were expressed
in µgm−3/year. Both non-adjusted (non-deseasonalised) and adjusted (deseasonalised)
trends were calculated. Sheffield Tinsley demonstrated negative trends during the study
period. Both adjusted and non-adjusted trends were negative and highly significant. The
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non-adjusted trend was −0.94 (−1.12, −0.78) µgm−3/year, whereas the adjusted trend
was −0.95 (−1.04, −0.86) µgm−3/year (Figure 13). The temporal trend at the Devonshire
Green site was also negative and highly significant. The non-adjusted trend was −1.21
(−1.91, −0.41) µgm−3/year and the adjusted trend was −1.26 (−1.57, −0.83) µgm−3/year
(Figure 14).

Figure 13. Long-term temporal trend for NO2 concentrations (µg/m3) (2000–2019) at the Sheffield

Tinsley site, one of the AURN sites. *** shows that the trend is highly significant.
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Figure 14. Long-term temporal trend for NO2 concentrations (µg/m3) (2014–2019) at the Sheffield

Devonshire Green site. *** shows that the trend is highly significant.

At both AQMSs, NO2 levels decreased during the study period. The reduction in air
pollution levels could have been caused by reductions in pollutant emissions or changes in
climatic conditions. However, when the trends were adjusted for the effect of changes in
climatic conditions, the trends were still negative and slightly greater than the non-adjusted
trends (Figures 13 and 14). This probably proves that reduction in NO2 levels were due
to reductions in emissions, showing that, despite the fact that the number of vehicles
on roads has gone up, the amount of exhaust emissions has decreased. The reduction
in exhaust emissions was probably caused by the stringent emission policies of the UK
government. Although generally pollution levels have decreased, the reduction is not
uniform spatially and temporally. For example, the trend at the Tinsley site was lower
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(−0.94 µgm−3/year) than at the Devonshire Green site (−1.21 µgm−3/year). However, it
should be noted that at Devonshire Green the trend was determined for a shorter period.
When a shorter period was also considered for Tinsley, i.e., from 2014 to 2019, the trend
was −1.65 µgm−3/year. This probably shows that reductions in pollutant concentrations
have been greater more recently. However, the reductions are not enough and NO2 levels
still exceed air quality standards in several parts of the city. Therefore, more actions are
required to further improve air quality in Sheffield to comply with air quality guidelines.

3.3. Time Series Modelling

Comparison of Linear and Nonlinear Time Series

The performances of two univariate nonlinear persistent models, NNNAR and SE-
TAR, were compared to that of the linear ARIMA model. Several statistical metrics were
calculated to assess the performances of these models (Table 3). Comparing their perfor-
mances in Table 3, it can be observed that the ARIMA model performed better than the
two nonlinear models. Correlation coefficients (r-values) for ARIMA, NNNAR and SETAR
were 0.59, 0.45 and 0.44 and RMSE values were 8.61, 10.45 and 10.56, respectively, which
show that there is probably no need for the use of a more complicated nonlinear model
for air quality prediction, as ARIMA in this particular example performed better than the
nonlinear counterparts. The nonlinear models are not discussed further. For more details
on SETAR and NNNAR, readers are referred to Fırat [36] and Waheeb et al. [37].

Table 3. Comparing the performances of different models, including both linear and nonlinear

models, using the testing dataset (cross validation). MBE, MAE and RMSE are expressed in µg/m3. r

is the value of correlation coefficient.

Model FAC2 MBE MAE RMSE r

SETAR 0.90 −0.13 8.28 10.56 0.44
NNET 0.89 −0.29 8.12 10.45 0.45

ARIMA 0.91 −0.26 6.46 8.61 0.59

Here, we first discuss the univariate ARIMA model and then compare its performance
with ARIMAX. The estimated parameters of the fitted ARIMA (1,1,1) model are shown in
Table 4. The estimated parameters were used to predict NO2 concentrations. A comparison
of predicted and observed NO2 concentrations for the testing (held-out) dataset is shown
in Figure 15. As expected, the ARIMA model performed better when model performance
was assessed based on the training dataset with r-value 0.68, MBE 0.07 and FAC2 0.93 than
when the model performance was assessed using testing dataset having r-value 0.59, MBE
−0.26 and FAC2 0.91.

Table 4. Estimating the parameters of the ARIMA (1,1,1) model for the NO2 concentrations (µg/m3)

training dataset.

ARIMA Model Applied to Log_NO2 with p, d and q, Order of 1, 1, 1

Coefficients AR1 (φ) MA1 (θ)
0.5362 −0.9511

S.E. 0.0296 0.0117

Sigma square (σ2) estimated as 0.148: log likelihood = −556.75, AIC = 1117.5
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Figure 15. Predicted vs. observed daily average NO2 concentrations (µg/m3) using the ARIMA

(1,1,1) model. Model performance was assessed against held-out testing data, which was not used

for model fitting. No exogenous variable was used in the model. The solid line represents the 1:1

relationship, whereas the dashed lines represent the 1:0.5 and 1:2 relationships, between observed

and predicted concentrations. The dashed lines show the points that are within a factor of two

(FAC2).

Residual analysis was performed for the model. A plot of standardised residuals
showed a rectangular scatter around a zero horizontal level with no trends, which showed
the adequacy of the model. A quantile–quantile plot of the residuals showed that the data
points followed the straight line closely, which led us to accept the normality of the error
term. This was also confirmed by the histogram of the residuals, which appeared closed to
normal (Figure not shown for brevity).
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3.4. Outputs of ARIMAX Model

In addition to the autoregressive, moving average and differencing components used
by univariate ARIMA, the more advanced ARIMAX model incorporates external variables,
also known as exogenous regressors, into time series modelling. The exogenous variables
incorporated into the ARIMAX model should be strongly correlated with the modelled
variable. Here, in the first instance we used a single exogenous variable (NO concentrations)
for modelling NO2 concentrations and assessed how it improved the model performance
compared to the ARIMA model developed in the previous section, which did not use any
external variable. In the next step, NO and O3 were used as exogenous variables and their
effect was assessed on the model goodness of fit. Ideally, meteorological parameters such
as temperature, relative humidity and wind speed should have been used in the model as
well. However, due to data availability problems, they were not used as regressors in the
model.

The estimated parameters of the ARIMAX (1,1,1) model are shown in Table 5. Various
statistical metrics calculated for the fitted model and cross validation were significantly
improved as compared to ARIMA model. The values of r, RMSE, MBE, MAE and FAC2
were 0.85, 7.11, 0.07, 6.53 and 0.96, respectively, for the fitted model. However, when the
model performance was assessed using the testing dataset the values of r, RMSE, MBE,
MAE and FAC2 were 0.70, 10.15, 7.81, − 6.84 and 0.88, respectively (Table 6). For further
analysis, model diagnostics were carried out by analysing the residuals of the model. The
residual plots, Q–Q plots and histogram of error terms showed that the residuals were
normally distributed and that the model performance was adequate (Figures are not shown
for brevity).

Table 5. Estimating the parameters of the ARIMAX (1,1,1) model for the NO2 concentrations (µg/m3)

training dataset, with NO as exogenous variable.

ARIMAX Model Applied to Log_NO2 with p, d and q, Order of 1, 1, 1 and Xreg as NO

Coefficients AR1 (φ) MA1(θ) XREG
0.2533 −0.9689 0.4133

Sigma square (σ2) estimated as 0.056: log likelihood = 20.82, AIC = −31.64

Table 6. Model statistics showing the value of several metrics in assessed the model performance by

comparing observed and predicted NO2 concentrations (µg/m3) for testing and training data, using

NO as exogenous variables. MBE, MAE and RMSE are expressed in µg/m3.

Statistics FAC2 MBE MAE RMSE r

Training data 0.96 0.07 5.53 7.11 0.85
Testing data 0.88 −6.84 7.81 10.15 0.70

Finally, we added two exogenous regressors (concentrations of NO and O3) to the
ARIMAX model for predicting NO2 concentrations. The estimated parameters of the
ARIMAX model along with the AIC value are given in Table 7. The values of different
statistical metrics calculated for assessing the model performance are provided in Table 8,
where r-values were 0.90 and 0.84 and RMSE values were 11.75 and 9.90 for the training and
testing datasets, respectively. Graphical presentation showed a strong association between
predicted and observed concentrations (Figure not shown for brevity). This showed that
the exogenous variables helped improve the model performance significantly compared to
univariate persistent models.
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Table 7. Estimating the parameters of the ARIMAX (1,1,1) model for the NO2 concentrations (µg/m3)

training dataset, with NO and O3 as exogenous variables.

ARIMAX MODEL Applied to log_NO2 with p, d and q, Order of 1, 1, 1 and Xreg as NO and O3

Coefficients AR1 (φ) MA1(θ) XREG2 (NOx) XREG3 (O3)
0.21 −0.985 0.839 −0.108

Sigma square (σ2) estimated as 0.014: log likelihood = 866.86, AIC = −1721.73

Table 8. Statistical metrics assessing the model performance by comparing observed and predicted

concentrations for both the training and testing datasets, using NO and O3 as exogenous variables.

MBE, MAE and RMSE are expressed in µg/m3.

Statistics FAC2 MBE MAE RMSE r

Training data 0.65 −10.25 10.45 11.75 0.90
Testing data 0.73 −7.94 9.34 9.90 0.84

The above analysis showed that traditional time-series persistent models, e.g., ARMA
or ARIMA, are useful tools for air pollution analysis and prediction; however they only
depend on the behaviour of the past data without taking into account the effect of other
pollutants and meteorological parameters that interact with the modelled pollutant. There-
fore, these approaches fail to predict future levels accurately. The more advanced versions
of these models, like ARIMAX, are able to analyse the effect of environmental factors
and other pollutants and can result in better prediction by reducing the model error and
strengthening correlations between modelled and observed concentrations.

The association of the NO2 concentration with NO and O3 concentrations is shown in
the form of a scatter plot in Figure 16. The chemistry of NO2 with O3 and NO is shown in
Equations (6) and (7).

NO + O3 → NO2 +O2 (6)

NO2 + hν (+O2) → NO + O3 (7)

Equations (6) and (7) define the chemistry of NO, NO2 and O3. In Equation (6),
one molecule of O3 is consumed and one molecule of NO2 is produced. In contrast, in
Equation (7), one molecule of NO2 is consumed and one molecule of O3 is produced, so no
net chemistry occurs. NO2 is positively correlated with NO (r = +0.75) and NOx (r = +0.89)
and negatively correlated with O3 (r = −0.68). The negative association between NO2 and
O3 is well known [13,45,46]. It shows that NO2 concentration is strongly correlated with
O3 and other NOx species. Therefore, adding O3 and NO as exogenous regressors in the
model can explain a significant proportion of NO2 and improves the model performance.

Catalano et al. [47] developed an ARIMAX model and compared its performance to an
artificial neural network (ANN). They modelled NO2 concentrations at Marylebone Road,
London, using several exogenous variables: traffic volume, wind speed, wind direction,
temperature and lagged NO2 concentrations. According to Catalano et al. [47], the ARIMAX
model performed better than an ANN. The mean ratio of the predicted to the measured
concentrations was 0.89 for the ARIAMX model and 0.86 for the ANN. Both models had
the same correlation coefficient of 0.91; however, mean absolute percentage error (MAPE)
values were 18.62 and 16.53 for the ARIMAX mode and the ANN, respectively. This shows
that the prediction of the ARIMAX model is comparable with a neural network and can
be used for air pollution forecast in urban areas to provide timely warning of high air
pollution levels to the public.
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Figure 16. Scatter plot showing the association of NO2 with NO, NOx and O3 concentrations (µg/m3)

at the Devonshire Green AQMS in Sheffield.

4. Conclusions

We have a network of AQMSs in Sheffield consisting of low-cost and reference sensors.
Here, NO2 concentrations measured by Envirowatch E-MOTEs, AQMesh pods and AURN
and SCC AQMSs were analysed to characterise the temporal variability of NO2 concen-
trations. Density plots are a useful tool for comparing and analysing the distributions of
NO2 concentrations measured by various sensors. Time variation plots were employed
to characterise and compare the temporal variability of NO2 concentrations measured at
different monitoring sites. Time variation plots visualise how NO2 concentrations vary
during different time periods (e.g., diurnal, weekly and annual cycles) and help us under-
stand their emission sources. Long-term data for NO2 concentrations showed negative
trends at both the Sheffield Tinsley and Devonshire Green sites, indicating that pollutant
emissions decreased because of stringent emission policies. However, the reductions in
pollution varied both spatially and temporally. Moreover, further smart interventions are
required to cut emissions and improve air quality to comply with air quality guidelines.

NO2 concentrations were modelled from the Devonshire Green AQMS in Sheffield
using univariate linear and nonlinear and multivariate time series models with exogenous
variables. The addition of exogenous variables to the ARIMAX model significantly im-
proved the model performance. Model specification, fitting and diagnostics were discussed.
Model performance was assessed by calculating several statistical metrics, including r,
RMSE, MBE, FAC2 and MAE. The ARIMA model showed better performance than nonlin-
ear persistent models, showing that linear models were not only easy to apply and interpret
but also showed better performance than the more complicated models such as SETAR
and NNNAR. The best model fit was achieved when NO2 concentration was modelled
using ARIMAX with two exogenous variables (NO and O3). These variables were strongly
correlated with NO2. NO was positively correlated, whereas O3 was negatively correlated
with NO2.

Time series models with exogenous regressors can be successfully used to predict
future pollution concentrations, providing early warning for the public so that timely
precautionary measures can be adopted. The main weakness of the study was that we did
not provide full details of the low-cost sensors calibration. Ideally, several of these low-cost
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sensors should have been collocated with reference sensors for detailed comparison and
calibration. However, due to several practical problems (e.g., planning permission), this
was not possible and the only calibration carried out was described in Munir et al. [44].
They compared the measurements of Envirowatch E-MOTEs with the measurements of
an AURN site (Sheffield Devonshire Green). Future work will include installation of low-
cost sensors, collocated with reference sensors for over a year, and a comparison of their
measurements during different time periods. This study provides a detailed methodology
for time series modelling, which can be used as an early warning tool for air pollution
episodes, and compares different linear and nonlinear modelling approaches.
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