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Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes

mellitus. It leads to distressing and expensive clinical sequelae such as foot ulceration, leg

amputation, and neuropathic pain (painful-DPN). Unfortunately, DPN is often diagnosed

late when irreversible nerve injury has occurred and its first presentation may be with

a diabetic foot ulcer. Several novel diagnostic techniques are available which may

supplement clinical assessment and aid the early detection of DPN. Moreover, treatments

for DPN and painful-DPN are limited. Only tight glucose control in type 1 diabetes

has robust evidence in reducing the risk of developing DPN. However, neither glucose

control nor pathogenetic treatments are effective in painful-DPN and symptomatic

treatments are often inadequate. It has recently been hypothesized that using various

patient characteristics it may be possible to stratify individuals and assign them targeted

therapies to produce better pain relief. We review the diagnostic techniques which may

aid the early detection of DPN in the clinical and research environment, and recent

advances in precision medicine techniques for the treatment of painful-DPN.

Keywords: diabetic neuropathy, painful diabetic neuropathy, stratified medicine, diagnosis diabetic neuropathy,

painful diabetic neuropathy treatment

INTRODUCTION

Neuropathic syndromes are common complications of diabetes mellitus. By far the most prevalent
is chronic diabetic peripheral sensorimotor neuropathy (DPN), affecting up to 50% of people with
diabetes (1, 2). DPN is associated with increased mortality and leads to morbidity, principally as a
result of its two major clinical consequences, diabetic foot ulceration, and neuropathic pain (3–5).
Diabetic foot ulceration occurs as a result of a complex interaction of risk factors and patient
behaviors, but sensory loss secondary to DPN is most often the primary cause (6). Lower-limb
complications of diabetes are expensive and a substantial burden for patients, potentially leading to
devastating outcomes such as lower limb amputation and death (3, 4, 6). Furthermore, up to half
of patients with DPN suffer with painful neuropathic symptoms (painful-DPN) (7). These painful
symptoms are commonly severe and often lead to depression, anxiety and sleep disorders, and
reduced quality of life (8, 9).

Unfortunately, our understanding of the pathophysiology of DPN remains incomplete.
Consequently, we do not have any effective disease modifying pharmacotherapies with which to
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treat the condition. The mainstay of modern management is
to control risk factors for DPN, and prevent and manage its
complications (10). Similarly, although a number of differences
have been discovered between painless- and painful-DPN, the
specific mechanisms causing the condition are unknown (11, 12).
Disease modifying treatments are not widely used for painful-
DPN and the treatment remains largely symptomatic (11, 12).
Unfortunately, the available treatments for neuropathic pain
are often ineffective and poorly tolerated (13). It has recently
been hypothesized that by using certain patient characteristics
(e.g., clinical features, quantitative sensory testing [QST], genetics
and cerebral imaging) it may be possible to stratify individuals
and assign them targeted therapies to produce better pain
outcomes (14).

The prevalence of diabetes, DPN and foot amputations
continue to increase at an alarming rate. It is essential that the
condition is diagnosed early and accurately so that measures may
be implemented to reduce the risk of diabetic foot complications.
We review the recent advances in the diagnosis of DPN, which
may supplement clinical assessment and could aid the early
detection of DPN in the clinical and research environments, and
precision medicine techniques, which may be used to improve
the treatment of painful-DPN in the future.

THE CLASSIFICATION AND DEFINITION
OF DIABETIC NEUROPATHIES

Diabetic neuropathies are heterogenous in their clinical
presentation, risk factors and pathophysiology. The neuropathic
syndromes may be classified according to the nerve type
affected (sensory vs. motor vs. autonomic), site of nerve injury
(focal vs. multi-focal vs. generalized), and disease time course
(acute vs. chronic) (2, 10, 15). The neuropathic syndromes
may broadly be divided into typical DPN and atypical diabetic
neuropathies, the latter of which are outside the scope of
this review (16). The American Diabetes Association has
recently developed a simplified classification schema for diabetic
neuropathies, reproduced in Table 1 (10). Typical DPN is by
far the most prevalent form of neuropathy in diabetes and
characteristically affects both sensory and motor nerves in a
peripheral distribution (1). However, the relative impact on
small and large sensory fibers, and motor fibers varies among
individuals. The Toronto Diabetic Neuropathy Expert Group
defined DPN as “a symmetrical, length dependent sensorimotor
polyneuropathy attributable to metabolic and microvessel
alterations as a result of chronic hyperglycemia exposure (DM)
and cardiovascular risk covariates (16).”

PATHOLOGICAL CHANGES OF DIABETIC
NEUROPATHY AND MECHANISMS

DPN leads to degenerative and atrophic changes throughout the
peripheral and central nervous system (7, 17). The peripheral
end terminals of nociceptors, intra-epidermal nerve fibers, are
depleted in a distal symmetrical manner in DPN (7, 18).
More proximally, peripheral nerve changes have been well-
described and include; demyelination of myelinated nerve

TABLE 1 | Classification for diabetic neuropathies.

A. Diffuse neuropathy

DSPN

Primarily small-fiber neuropathy

Primarily large-fiber neuropathy

Mixed small- and large-fiber neuropathy (most common)

Autonomic

Cardiovascular: Reduced HRV, Resting tachycardia, Orthostatic hypotension,

Sudden death (malignant arrhythmia)

Gastrointestinal: Diabetic gastroparesis; Diabetic enteropathy (diarrhea);

Colonic hypomotility (constipation)

Urogenital: Diabetic cystopathy (neurogenic bladder), Erectile dysfunction,

Female sexual dysfunction

Sudomotor dysfunction

Distal hypohydrosis/anhydrosis

Gustatory sweating

Hypoglycemia unawareness

Abnormal pupillary function

B. Mononeuropathy (mononeuritis multiplex) (atypical forms)

Isolated cranial or peripheral nerve (e.g., CN III, ulnar, median, femoral, peroneal)

Mononeuritis multiplex (if confluent may resemble polyneuropathy)

C. Radiculopathy or polyradiculopathy (atypical forms)

Radiculoplexus neuropathy (lumbosacral polyradiculopathy, proximal

motor amyotrophy)

Thoracic radiculopathy

fibers, axonal degeneration and necrosis, Schwannopathy, and
microangiopathy (19). Furthermore, autopsy and more recent
advanced imaging studies have found spinal cord and cerebral
atrophy associated with DPN (20–23).

A precise understanding of the pathophysiology of DPN
remains elusive (24). A number of molecular pathways correlate
with functional nerve impairment and pathological neuronal
changes (Figure 1), including, but not limited to: polyol pathway
activation, oxidative stress, protein kinase C activation, and
advanced glycation end product formation (24, 25). However,
the exact causal links between hyperglycemia and clinical DPN
is uncertain. Our current understanding is that hyperglycemia,
as well as vascular risk factors, activate detrimental pathways
ultimately leading to downstream injury to the microvessel
endothelium, nerve support cells, and nerve axons (25).
Recent advances suggest that the cumulative effect of these
injurious events may lead to neuronal death via reactive oxygen
species generation and mitochondrial dysfunction. Furthermore,
mechanistic and pathological findings do not discriminate
between painful- and painless-DPN (12).

EPIDEMIOLOGY OF DPN

The prevalence of DPN, with or without pain, varies from
study to study and is heavily dependent on the population
selected, type of diabetes and case definition criteria used (26).
Dyck et al. found that two thirds of patients with diabetes had
objective evidence of some form of neuropathy (1). The most
common was DPN, affecting ∼50%. The duration of diabetes
and glycemic control are the most significant risk factors for
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FIGURE 1 | Hyperglycaemia-driven Schwann cell stress and neuronal damage. Hyperglycaemia and dyslipidemia lead to reduction of neuronal support from

Schwann cells and microvessels. Disruption of neuronal support by Schwann cells and the vascular system contributes to neuropathy, in conjunction with the direct

effects of hyperglycaemia on neurons. ER, endoplasmic reticulum; NADPH, Nicotinamide adenine dinucleotide phosphate; Ros, reactive oxygen species; Rns,

reactive nitrogen species. Reproduced and permission gained from Sloan et al. (7).

DPN (27). Other risk factors for cardiovascular disease are also
associated with DPN, including: obesity, hypertension, smoking,
and dyslipidemia (27–29).

Approximately 50% of people with DPN suffer with peripheral
neuropathic pain (5, 29). Many risk factors for painful-DPN
have been postulated such as the severity of neuropathy,
hyperglycemic burden, and obesity (12). However, recent studies
have demonstrated strong evidence that female sex is a risk
factor for painful-DPN (12, 30). Idiopathic neuropathy is
more prevalent in pre-diabetic states such as impaired glucose
tolerance (IGT) (31). This lends further weight to the importance
of vascular risk factors, such as the features of the metabolic
syndrome other than hyperglycemia, playing an important role
in the pathogenesis of peripheral neuropathy.

CLINICAL FEATURES OF DIABETIC
NEUROPATHY

DPN may present with a wide range of clinical symptoms
and signs. Some people may be entirely asymptomatic, where
a foot ulcer can be the first presentation. However, other
patients may experience one or a number of different symptoms
such as paresthesia (tingling/pins and needles), numbness and
neuropathic pain (often described as burning, lancinating,
shooting, or aching) which can range from mildly troublesome
to intractable, causing great suffering (32). These symptoms may

be sporadic or constant, and their natural history varies among
patients. Sensory symptoms may be present for only a short
period of time before they disappear entirely, or theymay become
chronic. Sensory symptoms and clinical examination signs begin
in the toes/distal foot symmetrically. On physical examination,
light touch and pin-prick of the distal foot is commonly impaired
first, followed by more advanced sensory (i.e., vibration and
proprioception loss) and motor (i.e., weakness, clawing of the
toes, ankle reflex loss, and loss of muscle bulk) abnormalities.
As the disease progresses, it spreads proximally up the leg
before impacting the finger tips and upper limbs. The physical
examination for patients with painful-DPN is generally indistinct
from those without neuropathic pain. However, some patients
may have a pure small fiber neuropathy which results in a
loss of small fiber modalities (i.e., pin-prick and temperature
sensory loss) with normal large fiber function (16). Additionally,
a small sub-set of patients have the so called “irritable nociceptor”
phenotype with “positive” sensory signs such as allodynia and
hyperalgesia (33, 34).

DIAGNOSIS OF DPN

The diagnosis of DPN is often made during diabetic foot
screening. Type 2 diabetes is often diagnosed after it has
been present for some time; therefore, patients with type 2
diabetes should be screened for DPN from diagnosis (10).
However, the risk of DPN is low at diagnosis of type 1
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diabetes, so foot screening should commence 5 years after
diagnosis. Subsequently, all patients should be assessed on
an annual basis for lower limb sensory and vascular deficits
(10). Once there is a clinical suspicion of DPN, a thorough
clinical assessment must exclude other causes of neuropathy,
and should involve a comprehensive history and examination
including: temperature/pinprick sensation testing to assess
small-fiber function; vibration sensation testing with 128-Hz
tuning fork and assessment of ankle reflexes to assess large
fiber function; and 10-g monofilament for the assessment of
protective sensation. Clinical scoring systems may also be
used to aid in diagnosing DPN e.g., Toronto Clinical Scoring
System (35). Routine biochemical assay should be performed
to determine the quality of glycemic and cardiovascular risk
factor control and rule out other causes of peripheral neuropathy
(e.g., coeliac disease, vitamin B12 deficiency, hypothyroidism,
infectious/inflammatory disease). When the clinical features are
atypical or the diagnosis is unclear then patients should be
referred for specialist assessment. Nerve conduction studies
remain the gold standard measure of large fiber function, but
QST and skin biopsy may be used for diagnosing small fiber
neuropathy (16).

Unfortunately, by the time clinical DPN is diagnosed
irreversible nerve injury has already taken place. More advanced
diagnostic techniques may be able to diagnose the condition at an
early stage. Additionally, these methods may play an important
role in clinical research as they may be more sensitive to changes
in nerve function than current clinical measures and could be
used as endpoints to assess the efficacy of pathogenetic treatments
in clinical trials.

SKIN BIOPSY AND QUANTIFICATION OF
INTRA-EPIDERMAL NERVE FIBER
DENSITY

Skin biopsy of the distal leg with quantification of
intra-epidermal nerve fiber density (IENFD) is the gold standard
technique to diagnose small fiber neuropathy (SFN) and it is
also recommended for diagnosing DPN (16, 36). The procedure
involves infiltration of subcutaneous local anesthetic and
removal of a small skin sample using a punch biopsy tool. The
sample must be immediately fixed, prepared and then epidermal
innervation is quantified using either immunofluorescent or
immunohistochemistry microscopy. The biopsy itself is quick
and easy to perform but it is necessary to have suitable laboratory
equipment and expertise to analyse. The technique is minimally
invasive with a low complication rate, infection occurs in ∼1
in 1,000.

IENFD correlates with other measures of neuronal function
and has a sensitivity of 61–90% and specificity 64–82.8%
for diagnosing DPN (37–43). The natural rate of epidermal
innervation depletion is accelerated in DPN and IENFD may act
as an early marker for DPN (44, 45). Despite being a measure of
nociceptor density in the epidermis, IENFD is not related to the
presence or intensity of neuropathic pain (7, 12). However, recent
studies indicate that IENF regeneration and dermal vasculature

differentiate painless- from painful-DPN (7, 45–47). Due to
its invasive nature, skin biopsy with IENFD quantification is
unlikely to be an appropriate screening tool for DPN. However,
it has utility in clinical and research environments as a diagnostic
tool. Moreover, IENFD has also been used as a clinical endpoint,
Smith et al. found that diet and exercise counseling of patients
with pre-diabetic neuropathy could lead to improvements in
IENFD which corresponded with improvement in neuropathic
pain (48). Further validation is required before IENFD can be
used as a suitable biomarker for clinical trials in DPN (49).

CORNEAL AND RETINAL INNERVATION

A number of different ophthalmic measures of neuronal
integrity have been proposed as surrogate measures of DPN
and other neurological diseases, including corneal confocal
microscopy (CCM), retinal nerve fiber layer thickness, and
pupil responsiveness (50–52). CCM is a rapid and non-invasive
modality for the study of corneal innervation and has emerged
as a technique for diagnosing DPN (53). It has a high sensitivity
(68–92%) and a specificity of 40–64% to diagnose DPN (54–56).
Furthermore, CCM measures correlate with IENFD on skin
biopsy (38). Pritchard et al. demonstrated that a reduced corneal
nerve fiber length was predictive of incident DPN (57).Moreover,
Dehghani et al. found that corneal nerve parameters rapidly
declined prior to the development of foot complications (58).

Optical coherence tomography (OCT) has been used to
identify the loss of retinal nerve fibers in a number of neurological
disease, including DPN (50). Retinal nerve fiber layer (RNFL)
loss is observed in patients with diabetes and correlates with
the stage of diabetic retinopathy (59, 60). However, reports have
shown that RNFL loss in patients with diabetes without diabetic
retinopathy (61, 62). Indeed, two recent studies have found that
measures of RNFL loss are associated with DPN (60, 63). OCT
and CCM measures hold promise as a reliable and repeatable
non-invasive measure which may be used to detect early DPN in
the clinical and research setting. However, they are not currently
widely available as they require specialist expertise and expensive
equipment to perform (50).

NEUROMETER

The Neurometer is a non-invasive neurodiagnostic, QST device
tomeasure current perception threshold (CPT) (64). It selectively
determines the functional status of three nerve types, large
myelinated (Aβ) fibers, medium-size myelinated (Aδ) fibers,
and unmyelinated (C) fibers by measuring CPT at 2,000,
250, and 5Hz, respectively (65). The device is quick, painless
and can detect hypo- and hyper-aesthesia (64). Studies have
found that measurement of the CPT using the Neurometer
detects milder DPN more sensitively than vibration perception
threshold (VPT) (66, 67) and Monofilament testing (66, 68). A
recent study enrolled 202 patients with type 2 diabetes mellitus
and compared clinical phenotyping using the CPT against
a clinical scoring system (Michigan Neuropathy Screening
Instrument; MNSI) and nerve conduction studies (NCS)
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(69). NCS variables differed across CPT clinical phenotypes.
However, the study found that NCS detected more cases of
subclinical DPN than the Neurometer. Furthermore, Matsutomo
et al. found that the neurometer identified dysfunction of
myelinated, but not unmyelinated fibers, in the diagnosis of
DPN (65). Additionally, Koo et al. found that although the CPT
correlated with neuropathic symptoms and signs it provides
little additional information compared with conventional testing
(70). As with other QST techniques, CPT abnormalities are
not specific to DPN, and the test may be influenced by other
psychological factors.

DPN-CHECK

DPN-Check is a handheld point-of-care device which provides
the sural nerve amplitude and conduction velocity without
the need for neuroelectrophysiologist expertise or expensive
equipment. It is user-friendly and requires only basic training
to use. The device stimulates the sural nerve orthodromically
with distal probes, as opposed to antidromically as in standard
NCS protocols, and records using a biosensor covering a wide
area of the lower limb proximally. It has a sensitivity of
95 and 71% specificity to diagnose DPN (71). Additionally,
it demonstrates inter-rater and intra-rater reliability and
performs well in comparison to clinical examination and laser-
doppler “FLARE” imaging (71, 72). The DPN-Check sural
nerve amplitude measurements demonstrate strong agreement
with standard NCS; however, DPN-Check over-estimates sural
nerve conduction velocity (71). Additionally, any sural nerve
amplitudes below 1.5 µV are adjusted to zero. Although further
work to determine the generalizability to the clinical and
research setting is required, this simple technique has potential to
accurately measure sensory nerve function quickly and cheaply
(73). A recent study by Binns-Hall et al. demonstrated that the
DPN-check was effectively used to detect early DPN during
combined eye, foot and retinal screening visits (74).

SUDOMOTOR TESTING

The foot sweat glands are innervated by sudomotor,
unmyelinated cholinergic nerve fibers which may become
impaired in DPN (16). Sudomotor dysfunction leads to foot
skin dryness which is associated with an elevated risk of
foot ulceration (75). There are several methods to determine
sudomotor function in DPN, including: quantitative sudomotor
axon reflex test, thermoregulatory sweat test and the quantitative
direct and indirect reflex test (16). Neuropad is a sudomotor
functional index test. It is a simple patch applied to the skin
whose color changes from blue to pink through chemical
reaction to evaluate sudomotor function (76). The presence of
neuropathy is determined by color change after the patch has
been adhered to the skin for 10min. It has a sensitivity ranging
from 86 to 95% but a specificity of only 45–69.8% for diagnosing
DPN (77–80). A more recent study found that automated
quantification of Neuropad improves the diagnostic ability of
the test, especially for peripheral small fiber neuropathy (81).

Neuropad is easy to use and provides a non-subjective result but
its relatively poor specificity limits its applicability.

A more recent sudomotor testing device is Sudoscan, which
is a non-invasive, FDA-approved device for the diagnosis
of DPN. It measures the electrochemical skin conductance
(ESC) of the hands and feet by reverse iontophoresis to
objectively measure sudomotor function (82). It is quick and
easy to perform and has a sensitivity ranging between 70 and
87.5%, and specificity 76.2–92%, to detect DPN (82–84). A
recent large cross sectional study found ESC as measured by
Sudoscan to be the most sensitive measure (Area under receiver-
operator characteristic curve plot 0.88) for the early detection
of DPN in comparison to VPT and clinical assessment (85).
Additionally, it has a similar diagnostic utility as skin biopsy
with IENFD measurement and it correlates with other measures
such as clinical neuropathy scoring systems, QST, autonomic
function testing and NCS parameters (82–86). However, a recent
systematic review concluded that there was insufficient evidence
to support that Sudoscan as a measure of sensory nerve fiber
function, listing conflicts of interests, inconsistent normative
values and insufficient sensitivity and specificity from pooled
data-sets (87). Further validation is required to determine the
value of sudomotor testing in predicting clinically relevant
outcomes such as foot ulceration to recommend as a suitable
diagnostic test for DPN.

TREATMENT OF DIABETIC NEUROPATHY

Prevention
There is a lack of treatments which reverse the underlying
nerve damage causing DPN. Therefore, prevention of DPN is
a key component of diabetes care (10). The ADA recommend
achieving optimal glucose control in type 1 and type 2 diabetes to
prevent or slow the progression of DPN. However, the evidence
for enhancing glycemic control in the prevention of DPN is
much greater for type 1 than type 2 diabetes (88). Meta-analyses
of large, well-conducted randomized controlled trials have
identified a clear benefit for optimizing glucose control in type
1 diabetes. For example, the Diabetes Control of Complications
Trial (DCCT)/Epidemiology of Diabetes Interventions and
Complications (EDIC) study found that intensive therapy
significantly reduced the risk of DPN (89). However, the
benefits for both glucose and multifactorial risk factor control
on DPN are inconclusive in type 2 diabetes (88, 89). Large
studies such as the ADDITION-Denmark, UKPDS, Steno-2,
and ACCORD trial found intensive glucose and multifactorial
treatment had little effect on the incidence of DPN (90–94).
However, the presence of multiple comorbidities and risk factors
may contribute to the inconsistent findings in these studies (89).
Additionally, the types of glucose lowering treatment used may
also impact on the results in these studies. Pop-Busui et al.
recently found that patients with type 2 diabetes treated with
insulin sensitizing therapies had a significantly reduced incidence
of DPN compared with insulin providing treatments (10, 95). A
meta-analyses of eight randomized studies concluded that there
was a trend toward intensive therapy reducing the incidence of
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DPN in type 2 diabetes, but this did not quite reach statistical
significance (p= 0.06) (88).

Pathogenetic Treatments
Pathogenetic treatments of DPN target the underlying disease
mechanisms to improve neuronal function. Pathogenetic
therapies have shown efficacy in some randomized controlled
trials, but the results of pre-clinical studies have largely not
translated into clinically meaningful results (96–100). Some
of these agents, α-lipoic acid, benfotiamine, actovegin, and
epalrestat, are used in some countries (101). However, further
robust evidence from clinical trials is necessary before these
therapeutic agents can be recommended worldwide (100, 101).

Symptomatic Treatment of Painful-DPN
The mainstay of neuropathic pain treatment in DPN is
symptomatic treatment. Unfortunately, pathogenetic treatments
and good glycemic control have not been shown to improve
neuropathic pain (11). Duloxetine and Pregabalin are the only
treatments which have received regulatory FDA approval for the
treatment of painful-DPN (10). Whereas, the United Kingdom
National Institute of Clinical Excellence recommend
Amitriptyline, Duloxetine, Pregabalin, and Gabapentin as
first line therapies for neuropathic pain (102). A treatment
algorithm is shown in Figure 2 (103).

The α2δ agonists, i.e., gabapentin and pregabalin, are widely
recommended, and prescribed agents for painful-DPN. These
agents enact their analgesic effect through modulation of the
α2δ-1 and α2δ-2 subunits of voltage-sensitive calcium channels
(104). Gabapentin is efficacious for the treatment of pain and
sleep interference in painful-DPN but has a high rate of side
effects, most commonly dizziness, and somnolence (105, 106).
The reported number needed to treat to achieve pain relief of
at least 50%, is 5.9 (4.6–8.3) (106). Moreover, a network meta-
analysis found gabapentin to be the most efficacious and safe
therapy for painful-DPN (107).

Pregabalin has linear pharmacokinetics, in contrast to
gabapentin, and may be titrated over a short period of
time (10, 11). It is the most studied drug for painful-DPN
and is recommended as a first line agent by all the major
treatment guidelines. It is effective for neuropathic pain
and has a side effect profile similar to gabapentin, i.e.,
dizziness, somnolence, and peripheral oedema (108). In
view of the risk of weight gain, and therefore theoretical risk
of worsening of metabolic control, Parsons et al. reviewed
glycemic/lipid parameters of 11 randomized controlled trials

and found no deterioration associated with pregabalin (109).
Recent statistics within England and Wales have found
an increased number of deaths linked to pregabalin and

gabapentin drug misuse prompting a reclassification in
the controlling of these medications (110). However, at

FIGURE 2 | Treatment algorithm for painful-DPN. Reproduced and permission gained from Tesfaye et al. (103).
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recommended doses the risk of addiction and dependence for
these medications is low in comparison to benzodiazepines,
alcohol, and opioids (111, 112). The evidence for other anti-
convulsant therapies (e.g., carbamazepine, oxcarbazepine,
phenytoin, lamotrigine, and lacosamide) in the treatment
of painful-DPN remains limited, but may be effective in
some individuals (103).

The other first line pharmacotherapeutic agents for
painful-DPN are commonly prescribed anti-depressants,
selective serotonin noradrenalin reuptake inhibitors (SNRI)
and tricyclic antidepressants (TCA). SNRIs increase the
synaptic availability of 5-hydroxytryptamine and noradrenaline
increasing the activity of descending pain inhibition pathways
(11). Duloxetine is the most widely used agent in this drug
class. A Cochrane Collaboration review concluded that at
doses of 60 and 120mg duloxetine is effective in treating
painful-DPN, with rare serious side effects (113, 114). The most
common side effects include nausea, somnolence, dizziness,
constipation, dry mouth, and reduced appetite, although
these are commonly mild and transient (104). One of the few
comparator drug studies in painful-DPN, the “COMBO-DN”
study, found that duloxetine had better efficacy than pregabalin
at standard doses (Pregabalin 300mg/day vs. Duloxetine
60mg /day) (114).

TCAs have a multimodal analgesic action, including blocking
of serotonin and noradrenaline reuptake from synaptic clefts
and varying degrees of anticholinergic receptor inhibition (115).
Amitriptyline is the most commonly used class of TCA and has
been used for neuropathic pain for decades. However, a recent
Cochrane Collaboration review andmeta-analysis concluded that
there is limited evidence for neuropathic pain relief and a poor
side effect profile (98, 116). Side effects include dry mouth,
constipation, postural hypotension and somnolence, and should
be used with caution in elderly patients and those with cardiac
disease. Despite its caveats, amitriptyline has been reported to
be more effective than placebo in a meta-analysis and remains
recommended as a first or second line treatment in all the current
guidelines (117).

There are several other treatments which have been studied
and are prescribed for painful-DPN with inconclusive evidence.
Opioid class medications are an effective means for the treatment
of painful-DPN; however, the risk of addiction, side effects and
psychosocial complications should limit their use (10). Topical
treatments have a theoretical benefit as there is a lower risk of
systemic side effects. Agents such as lidocaine patches, capsaicin
cream and topical vasodilators however have limited evidence to
suggest efficacy (50). For refractory cases of painful-DPN, small
studies have found intravenous lidocaine infusions to provide
relatively long lasting analgesia (118); however, patients require
cardiac monitoring and the treatment is not efficacious in all
cases. Open label studies have found vitamin D supplementation
to improve neuropathic pain in DPN in patients with vitamin
D deficiency (119, 120). Furthermore, non-pharmacological
treatments may be considered to complement drug
treatments, such as acupuncture, or used as a last resort
in resistant cases, such as electrical spinal cord stimulator
insertion (103, 121, 122).

Precision Medicine for Painful-DPN
Unfortunately, the current pharmacotherapeutic agents available
for neuropathic pain, including painful-DPN, remain inadequate
with the best agents offering only modest improvements in
pain which is often offset with significant side effects (13).
Traditional neuropathic pain treatments have been prescribed
according to disease etiology. However, the clinical features,
and perhaps underlying disease mechanisms, of neuropathic
pain may vary greatly from individual to individual (123).
Recent studies have explored whether stratification according
to patient characteristics can identify patients more likely to
respond to a particular treatment. The ultimate end goal is
“personalized medicine” which is currently only possible in rare
cases of neuropathic pain secondary to gene mutations. Over
recent years, the stratificationmethods employed for neuropathic
pain treatments include: detailed clinical assessment, sensory
profiling, psychology/co-morbidities, physiological changes (e.g.,
electrophysiology/neuroimaging) and molecular profiling (e.g.,
genotyping) (14).

Clinical Phenotype
Somatosensory phenotyping using detailed symptom based
questionnaires, such as the Neuropathic Pain Symptom Inquiry
(NPSI), or QST may be used to identify patient subgroups
reflecting underlying unique nerve mechanistic changes (124).
QST is a psychophysical testing method to assess the function
of a range of somatosensory modalities. Older techniques
such as VPT and thermal thresholds measure large and small
fiber function, respectively. However, more recent studies have
employed the German Research Network on Neuropathic
Pain (DFNS) protocol which quantifies 13 measures of small
and large fiber sensory loss and gain abnormalities against
normative datasets (125). Using this QST protocol three clusters
of somatosensory profiles have been found in neuropathies
of varying etiologies (126). Large studies using this QST
protocol in DPN have demonstrated sensory loss, particularly
thermal hyposensitivity, in painful- compared with painless-
DPN (33, 34). However, there is limited data as to whether
patient stratification into somatosensory profile clusters predicts
response to neuropathic pain treatments. One phenotype-
stratified study found that patients with peripheral neuropathic
pain and the “irritable nociceptor” phenotype (reserved thermal
sensation and gain of sensory function) responded better
to oxcarbazepine than those with a non-irritable nociceptor
phenotype (127). Moreover, cluster analysis of patient subgroups
from the COMBO-DN study using the NPSI found that the
addition of pregabalin to duloxetine was effective in patients
with pressing and evoked pain, but high dose duloxetine
monotherapy wasmore beneficial for relief of para/dys-aesthesias
(128). Additionally, one study showed that conditional pain
modulation, a bedside measure of inhibition of experimental
pain, predicted duloxetine efficacy in painful-DPN (129). Clinical
phenotyping for neuropathic pain, especially using DFNS QST,
is receiving enormous attention but further evidence such as
positive clinical trials with patient stratification at baseline are
required before such phenotyping can be integrated into clinical
practice (124).

Frontiers in Endocrinology | www.frontiersin.org 7 January 2020 | Volume 10 | Article 929



Yang et al. DPN Early Detection

Magnetic Resonance Neuroimaging
Central nervous system changes have been well-described
in chronic DPN using advanced MR techniques (17).
Selvarajah et al. demonstrated that patients with DPN,
even those with subclinical DPN, have a lower spinal cord
cross-sectional area compared to healthy volunteers and
patients with diabetes without peripheral neuropathy (22).
Moreover, DPN is associated with peripheral brain gray
matter volume loss localized to the primary somatosensory
cortex, supramarginal gyrus, and cingulate cortex (23).
Quantification of cerebral metabolites using proton MR
spectroscopy (1H-MRS) has demonstrated reduced N-acetyl
aspartate:creatine ratio suggesting neuronal dysfunction within
the thalamus in DPN (130). Additionally, an imbalance
of the cerebral neurotransmitters glutamate/glutamine and
gamma-aminobutyric acid has been found in the posterior insula
in DPN (131).

Neuroimaging has identified a number of neurochemical,
structural, neurovascular, and functional alterations secondary
to chronic pain diseases. In painful-DPN, studies have shown
increased thalamic microvascularity (132), impaired spinal
inhibitory function (133), and altered functional connectivity
between brain regions involved in pain processing (134).
Moreover, MR alterations are related to different clinical
phenotypes in painful-DPN (135). A recent study found
that patients with insensate painful-DPN, compared to
groups with painless-DPN and sensate painful-DPN, had
lower somatosensory cortical thickness and expansion of the
homuncular area representing pain. Limited studies have also
demonstrated that cerebral alterations may be predictive of
response to pain treatments (136). Watanabe et al. assessed the
cerebral blood flow of patients with and without painful-DPN
and longitudinally assessed flow changes after treatment with
duloxetine (137). They found that greater baseline cerebral
blood flow within the anterior cingulate cortex was associated
with better pain relief. However, a recent study found that
neurometabolites measured using 1H-MRS in painful-DPN
were not significantly altered between placebo and pregabalin,
but small differences were observed between pregabalin doses
(138). Although, cerebral alterations have been described in
painful-DPN, further study of biomarkers as clinical endpoints
is required (17, 49).

Genetic
The increased efficiency and availability in gene sequencing
technology has led to the exploration of potential genetic factors
predisposing to a number of chronic diseases. A meta-analysis
found that variants in several genes, e.g., HLA, COMT, OPRM1,
TNFA, IL-6, and GCH1, were associated to neuropathic pain
in at least one study (139). Moreover, genetic variants have
been associated with DPN and neuropathic pain in diabetes
(12). Genome-wide association studies have found a number
of gene polymorphisms related to painful-DPN (140, 141).
Moreover, rare voltage-gated sodium channel Nav 1.7 genetic
variants have been shown to be associated with small fiber
neuropathy and painful-DPN (142, 143). With the development
of the voltage-gated sodium channel Nav 1.7 research, more

mutation sites related to painful-DPN have been found, but the
mutation perhaps needs further validation (144). Interestingly,
Blesneac et al. found 10 out of 111 patients with painful-DPN
harbored rare Nav 1.7 variants and these patients reported
more severe pain and increased sensitivity to pressure stimuli
on QST (145). These findings indicate a link between clinical
phenotype and genetic variants which may predict response
to treatment. Furthermore, a recent study found that patients
with Nav 1.7 mutations and small fiber neuropathy treated with
the anticonvulsant lacosamide had significantly improved pain
compared with placebo (146).

CONCLUSIONS

The prevalence of diabetes mellitus is rising to epidemic
proportions. Consequently, there will be a dramatic rise in the
numbers of patients suffering with its chronic complications,
including DPN. The current management strategy for DPN is
focused upon early detection of the condition and prevention
of diabetic foot syndromes. New diagnostic techniques may aid
the clinical assessment in detecting clinical and subclinical DPN,
but further research is required to determine whether clinical
outcomes such as foot ulceration, amputation and cardiovascular
disease can be prevented with their routine use and whether they
may be used as surrogate end points for DPN.

Up to half of patients with DPN suffer with neuropathic
pain. Our understanding of why some patients develop painful
neuropathic symptoms is unclear. Our current treatments aim
to alleviated symptoms, but at best reduce pain scores by 30–
50% in about a third of cases. However, the failure of drug trials
may be as a result of the empirical use of treatments whereas
a more individualized approach by using patient characteristics
(e.g., clinical phenotypes, cerebral biomarkers or genotype,
etc.) to stratify patients may be more effective (14). However,
further validation is required before any of these factors can
be considered for stratification in clinical practice but there is
potential that it may improve patient outcomes in painful-DPN.
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