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Research on the human microbiome has mainly been restricted to the identification of
most abundant microbiota associated with health or disease. Their abundance may reflect
their capacity to exploit their niche, however, metabolic functions exerted by low-
abundant microrganisms can impact the dysbiotic signature of local microbial habitats.
This scoping review aims to map the literature regarding the management of low-
abundant microorganisms in studies investigating human microbiome samples. A
systematic literature search was performed in 5 electronic databases, as well as grey
literature. We selected clinical microbiome studies targeting human participants of any
age, from any body site. We also included studies with secondary data which originated
from human biofilm samples. All of the papers used next-generation sequencing (NGS)
techniques in their methodology. A total of 826 manuscripts were retrieved, of which 42
were included in this review and 22 reported low-abundant bacteria (LB) in samples taken
from 7 body sites (breast, gut, oral cavity, skin, stomach, upper respiratory tract (URT),
and vagina). Four studies reported microbes at abundance levels between 5 and 20%, 8
studies reported between 1 and 5%, and 18 studies reported below 1%. Fifteen papers
mentioned fungi and/or archaea, and from those only 4 (fungi) and 2 (archaea) produced
data regarding the abundance of these domains. While most studies were directed
towards describing the taxonomy, diversity and abundance of the highly abundant
species, low-abundant species have largely been overlooked. Indeed, most studies
select a cut-off value at <1% for low-abundant organisms to be excluded in their
analyses. This practice may compromise the true diversity and influence of all members
of the human microbiota. Despite their low abundance and signature in biofilms, they may
generate important markers contributing to dysbiosis, in a sort of ‘butterfly effect’. A
detailed snapshot of the physiological, biological mechanisms at play, including virulence
determinants in the context of a dysbiotic community, may help better understand the
health-disease transition.
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INTRODUCTION

Advances in high-throughput sequencing approaches have
revolutionised microbiology and enabled the characterization
of the complex ecological contents of microbial communities,
however, our understanding of the mechanisms impacting host-
microbial homeostasis remains limited (Hajishengallis et al.,
2012). Changes to the human gut microbial composition, for
example, can influence host health and diseases, and may affect
the microbiota at other body sites (Banerjee et al., 2018). A
concept of pathogenicity influenced by both microorganisms and
the host has been proposed in the damage-response framework
(Casadevall and Pirofski, 2003).

Research on the human microbiome has mainly been restricted
to comparisons of the most abundant organisms and the
identification of a “core” microbiota associated with health or
disease. Indeed, the core microbiome may reflect their capacity to
exploit their niche, being favoured by nutrients, O2 concentrations,
etc. to allow surface colonisation. However, opportunistic pathogens
may contribute to the compositional and or functional shift towards
dysbiosis and could be among the minority taxa. Key species could
therefore easily be overlooked in next generation sequencing (NGS)
analyses (Turnbaugh et al., 2007; Zerón, 2014).

Furthermore, studiesusinga16SrRNAmetagenomicapproachare
limited to the identification of bacteria and archaeae (arguably
accurately to the genus level), leaving the view of the richness and
diversity of the whole microbiome incomplete and underestimated
(Brooks et al., 2015). This is certainly true for Methanobrevibacter
smithii, a member of the Archaea domain in a relatively minor
constituent of the gut microbiome that contributes to bacterial
metabolism in ways that promote host dysbiosis (Hajishengallis
et al., 2012). This species and its methanogenic relatives, though in
low abundance, have been demonstrated to be capable of providing
conditions for the growth of pathogenic bacteria in periodontal sites,
driving to periodontitis (Lepp et al., 2004). The composition of the
microbial communities can be misinterpreted regarding the presence
ofvirus, archaea, andfungi,making it achallenge togainaholisticview.

Subsequently, low-abundant microrganisms could be considered
the “dark matter” of the human microbiome. Recent studies
(Hajishengallis and Lamont, 2016; Wang et al., 2017; Banerjee
et al., 2018; Stobernack, 2019; Berg et al., 2020; Xiao et al., 2020)
are paying more attention to these organisms, and increasingly taking
into account the “keystone species” concept, corresponding to
organisms which effect on the community is disproportionately
large compared to their relative abundance (Power et al., 1996). A
similar concept in macroecology suggests species in low abundance
have a major role in their respective community (Hajishengallis et al.,
2012). Abundance is the factor differentiating keystone
microorganisms from those that are dominant. A dominant species
might affect the environment exclusively by its sheer abundance,
while a keystone microorganism may influence metabolic functions
of the microbiome, despite its low abundance. Examples of keystone
pathogens are: Porphyromonas gingivalis associated with periodontitis
(Holt and Ebersole, 2005; Perez-Chaparro et al., 2014; Burmistrz et al.,
2015; Camelo-Castillo et al., 2015; Ai et al., 2017; Stobernack, 2019),
Klebsiella pneumonia, Proteus mirabilis (Garrett et al., 2010), and
Citrobacter rodentium (Bry et al., 2006) associated with intestinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
inflammatory diseases; and Fusobacterium nucleatum (Kostic et al.,
2013; Rubinstein et al., 2013) associated with colon cancer (Banerjee
et al., 2018). Furthermore, studies investigating Bacteroides fragilis, a
pro-oncogenic bacterium, have found it to be a minor constituent of
the colon microbiota in terms of relative abundance. Its unique
virulence characteristics, such as secretion of a zinc-dependent
metalloprotease toxin, alter colonic epithelial cells and mucosal
immune function to promote oncogenic mucosal events, in which
in addition to the intraluminal environment, enhance the oncogenic
process. This gave rise to the concept of “alpha-bugs”, due to its ability
to be directly pro-oncogenic but also to be capable of remodeling the
entire healthy microbiota (Sears and Pardoll, 2011; Hajishengallis
et al., 2012). Thus, the identification of low-abundant organisms
within amicrobial population associated with disease could be crucial.
Unless we have a more “complete” view of the microbiota, including
an accurate detection of low-abundant species, our understanding of
the microbiology remains limited, as well as our strategy to improve
therapy designs/interventions in diseases with polymicrobial cause.

Studies of the minority microrganisms may reveal unique
signatures, which could lead to diseases. Hence, a much deeper
characterization of their presence in the microbiome in which
they are involved is desirable. This scoping review aims to map
the literature regarding the management of low-abundant
organisms in studies investigating human samples. We aimed
to determine: 1) How researchers classify organisms as low-
abundant; 2) How they handled and processed NGS data of low-
abundant organisms bioinformatically and 3) The distibution of
low-abundant microorganisms among various body sites.

METHODS

Study Design
This is a scoping review to map the literature on low-abundant
organisms in the human microbiome, conducted using the
PRISMA Extension for Scoping Reviews (PRISMA-ScR)
checklist (Tricco et al., 2018).

Search Strategy
Systematic literature wide opened search was performed in
electronic databases, also including the grey literature (Figure
1). General controlled vocabulary (MeSH Terms) and keywords
were used and the searches had no language, year, or publication
type restriction. The main terms included “microbiota”,
“microbiome”, “human microbiota”, “low abundant”, “minority
species”, “keystone”. The search strategy and the results retrieved
in each electronic database are shown in Appendix 1. Duplicated
references were removed by the reference manager EndNoteWeb
(Clarivate Analytics, Mumbai) and then manually.

Eligibility Criteria
Studies were included if they satisfied all the following criteria: (1)
clinical studies where the target population consisted of humans of
any age who were donors of samples from any site; (2) the study
design was either a observational study, case series, or any other type
of clinical study or studies with secondary data originated from
humans; and (3) studies with any term related to low-abundant
organisms (e.g. keystones, minority species) in title or abstract.
May 2021 | Volume 11 | Article 689197
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Cena et al. Low-Abundant Human Microbiota
Studies were excluded if: 1) Studies did not apply next-
generation sequencing (NGS) methods to evaluate the
microbiota; 2) They were designed as intervention studies; 3)
They were literature review, conference abstracts, in vitro or
animal studies, or any other kind of study carried out without
human samples in a primary or secondary analysis; and 4) They
were written in a non-Latin alphabet.

Selection of the Manuscripts
Two reviewers, JAC and JYZ, independently screened the eligibility of
all identified titles and abstracts for inclusion in the full-text review at
the Rayyan QCRI® (Qatar Computer Research Institute, Qatar). Any
conflict that arose were resolved by a third reviewer. The same
reviewers evaluated full-text articles for inclusion using the same
inclusion and exclusion criteria. The list of selected articles was
analysed to identify manuscripts that could have been lost during
searches in the electronic database.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Data Extraction
Data extraction was performed by the two reviewers independently,
and included the following information: Author (year), country,
design of the study, range of age of patients, sampling site, type of
sample, the platform of sequencing; method of sequencing (16S
rRNA or metagenomics or metranscriptomics), method of data
analysis and bioinformatics; and abundance of species considered as
low-abundant/minority microrganisms. All extracted data was
checked by a third reviewer.

RESULTS AND DISCUSSION
Characteristics of the Selected Studies
The systematic literature search resulted in 826 manuscripts of
which 67 were considered for full-text review after removing
duplicates and applying the eligibility criteria. Following full text
reading, 42 studies remained (Figure 1; Table 1). Figure 2 shows
FIGURE 1 | Flow diagram for study selection according to PRISMA guidelines. *Some studies sampled multiple sites in one study.
May 2021 | Volume 11 | Article 689197
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TABLE 1 | Qualitative Data Synthesis of the Included Studies (n = 42).

Low-abundant microbiota

Porphyromonas gingivalis, Haemophilus haemolyticus,
Prevotella melaninogenica, and Capnocytophaga
ochracea were considered potential keystones.
Atopobium vaginae, Streptococcus devriesei,
Lactobacillus acidophilus, Weissella viridescens.

Saccharibacteria (TM7) and SR1.

s Porphyromonas gingivalis (2.22%),
Treponema denticola (1.10%) and Fretibacterium sp.
OT 361
(0.67%) in supragingival plaque;
Prevotella_intermedia (0.56%) in the saliva;
Porphyromonas endodontalis (plaque 0.89%; saliva
0.91%).
H. pylori-infected children harboured significantly
reduced proportions of three bacterial classes
(Actinobacteria, Bacilli, and Gammaproteobacteria),
three orders (Pseudomonadales, Actinomycetales,
and Lactobacillales) and four families
(Streptococcaceae, Moraxellaceae,
Actinomycetaceae, and Carneobacteriaceae)
compared with fluids from non-infected children, but
all with proportion >1%.
Desulfobulbus (especially D. propionicus) and Filifactor
(F. alocis) with the periodontal inflammation severity,
and a negative association of Anaeroglobus
(especially A. geminatus) and TM7.
Corynebacterium, Neisseria, Actinomyces, or Rothia,
among others, accounting for 9% of the reads.

At phylum level: Chlorobi, Chloroflexi, Deferribacteres,
Deinococcus-Thermus, Gemmatimonadetes, OP10,
Planctomycetes, Thermodesulfobacteria, WS3.
Thaumarchaeota.

Phylum (Verrucomicrobia, Tenericutes and
Fusobacteria);
Class (Verrucomicrobia, Mollicutes and Fusobacteria);
Order (Verrucomicrobiales, Bifidobacteriales,
Desulfovibrionales, Anaeroplasmatales,
Fusobacteriales, Rhizobiales, and Caulobacterales).

t Low abundance of Bifidobacteria and butyrate-
producing species in children with b-cell
autoimmunity..

(Continued)

C
ena

et
al.

Low
-A
bundant

H
um

an
M
icrobiota

Frontiers
in

C
ellular

and
Infection

M
icrobiology

|
w
w
w
.frontiersin.org

M
ay

2021
|
Volum

e
11

|
A
rticle

689197
4

Reference Sampling
site

N Platform of
sequencing

Method of sequencing Method of data analysis and
bioinformatics

Proportion considere
low abundant

(Ai et al., 2017) Oral 43 Illumina
sequencing

Secondary data from
metagenomics (Duran-
Pinedo and Yost)

TagCleaner, PRINSEQ, Deconseq e
FLASH, MetaPhlAn, GRAMMy, Network
analysis

NA

(Albert et al., 2015) Vagina 310 454 GS Junior
pyrosequencer

cpn60 PCR amplicon Reads were mapped using Bowtie 2,
microbial Profiling

4 species represented
less than 0.3% of the
overall reads mapped.Using Metagenomic Assembly pipeline

(mPUMA)
(Al-hebshi et al., 2016) Oral 12 454 GS FLX

pyrosequencer
16S rRNA (V1-V3) Uchime, SILVA-HOMD database,

ChimeraSlayer, BLASTN identity ≥98%
Together making up
0.77%

(Balan et al., 2018) Oral 24 Illumina MiSeq 16s rRNA (V4) UPARSE (97%), Uchime, RDP Classifier
v.2.2 against the Greengenes database,
alignment at SILVA 108, Identification of
keystone species was done using the
CytoHubba plugin.

>0.5%<5.28% (keystone
identification)

(Brawner et al., 2017) Stomach 86 Illumina
platform

16S rRNA (V4) UCLUST (100%), filter >10 reads, RDB
classifier, Multiple sequence, alignment
with PyNAST.

OTUs <1% were not
analysed.

(Camelo-Castillo et al.,
2015)

Oral 60 454 GS FLX
pyrosequencer

16S rRNA MG-RAST, Monthur, RDB classifier,
BLASTN (>97%).

<1%

(Camelo-Castillo et al.,
2019)

URT 56 454 GS FLX
pyrosequencer

16S rRNA (V1-V4) Prinseq, RDP database (80%),
OUT>97% identify.

OTUs <0.1% were not
analysed;
Low abundance at <1%

(Claussen et al., 2017) Gut 822 454 GS FLX
pyrosequencer

16S rRNA (V1-V2) Entropy Shifts of Abundance Vectors
under Boolean Operations (ESABO).

0.1%-0.4%

(Dame-Teixeira et al.,
2020)

Oral Ion PGM 16S rRNA Prinseq, USEARCH, UCLUST (97%);
RDP, SILVA 132.

≤0.035%

(Das et al., 2018) Gut 84 454 GS FLX
pyrosequencer

16S rRNA (V1-V5) UCLUST (97%); RDP; SILVA. 0.01%-0.05% in at least
50% of the samples.

(de Goffau et al., 2013) Gut 18 454 GS FLX
pyrosequencer

16S rRNA (V1-V3) RDP classifier, SILVA OTUs <0.005% were no
analysed;
Low abundance at <12%
d

.
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TABLE 1 | Continued

Low-abundant microbiota

Low abundance of Lactobacillus sp. in Necrotizing
Enterocolitis (NEC);
4 day of life (without NEC) = Firmicutes (13.14%) and
Actinobacteria (2.47%);
5-7 day of life (without NEC) = Bacteroidetes
(13.47%) and Actinobacteria (0.54%);
Fungi (Saccharomyceta class) = 0.38%, no virus or
archaea detected.
Cyanothece, Bacillus, Streptococcus; Salmonella,
Pantoea, Cupriavidus; Rothia, Faecalibacterium,
Acinetobacter.
The WGS approach was better at identifying
microbes with a low abundance.
Bacteroides fragilis and Bacteroides stercosis act as
keystone species.

74 fungi genera detected (7 in high abundance);
Authors declare that low-abundance genera may
represent environmental fungi present in the oral
cavity and could simply be spores inhaled from the air
or material ingested with food.
20 minor bacterial species in one subject with
completely negative culture;
Low-abundance taxa were detected in 4.5% of
cultures.
Candida krusei and Candida parapsilosis.

Gemmiger formicilis, Oscillibacter ruminantium,
Roseburia faecis and Faecalibacterium prausnitzii
were significantly higher in the controls than in
cirrhotic patients, being classified as keystone
species.
Unclassified Clostridiales (associated with the group
with focal or intense FDG uptake in the intestine).

Butyrate-producing bacteria, including
Bifidobacterium (B. adolescentis), Roseburia (R.
faecis), Faecalibacterium (F. prausnitzii), Gemmiger (G.
formicilis), Ruminococcus (R. bromii) and
Veillonellaceae (Dialister).
Uncultured OTUs were of low abundance (<0.8%
relative abundance) in the culture-independent
sequencing;
12 OTUs with relative abundances >0.1% were not
cultured from the donor samples and included
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Reference Sampling
site

N Platform of
sequencing

Method of sequencing Method of data analysis and
bioinformatics

Proportion considered
low abundant

(Dobbler et al., 2017) Gut 132 PGM Ion
Torrent;

16s rRNA (V4); BMP Operating System (BMPOS),
UPARSE, UCLUST (97%) method
against the Greengenes 13.5 database

>0.5 (16S rRNA)

Oxford
Nanopore
MinION.

Metagenomics. >0.38% (metagenomics)

(Feng et al., 2015) Ascites 7 Illumina Miseq 16S rDNA (v3) BLAST NCBI (98.5% similarity); NA

Illumina Hiseq Whole Genome
Sequencing (WGS)

NCBI mega-blast (90% identity).

(Fisher and Mehta,
2014)

Gut NA NA Secondary data from
metagenomics (Caporaso
et al.)

Data were obtained from the MGRAST
database;

NA

Learning Interactions from MIcrobial
Time Series (LIMITS).

(Ghannoum et al.,
2010)

Oral 20 454 GS FLX
pyrosequencer

ITS1F-ITS4A (mycobiome) BLAST Genbank (98%), Fungal ITS
sequences were compared with the
Assembling Fungal Tree of Life
(AFTOL).

OTUs <1% were not
analysed.

(Hauser et al., 2015) URT 54 454 GS FLX
pyrosequencer

16S rRNA (V1-V3) Uchime, BLAST SILVA, 111NR (95%) OTUs <1% were not
analysed.

(Heisel et al., 2015) Gut 11 Illumina MiSeq ITS2 of the 18S rDNA
fungal locus

UCLUST, USEARCH, alignment using
MUSCLE, Mothur (hash.txt and
fungalITSdatabaseID)

Present at <1.5% mean
abundance across all
samples.Validation with qPCR

(Iebba et al., 2018) Gut, blood 60 Illumina MiSeq 16S rRNA (V3-V4) Python v.2.7.11, Mothur v.1.38.1,
SILVA v.1.1961

≥0.5%

(Kang et al., 2017) Gut 1463 Illumina MiSeq 16S rRNA (V3-V4) USERCH 6.1 within the QIIME (97%
similarity).

OTUs <0.005% were not
analysed;
Low abundance = 4.1%.

(Kowalska-Duplaga
et al., 2019)

Gut 82 Illumina MiSeq 16S rRNA (V3-V4) QIIME2, DADA2, Greengenes database
(99% similarity).

Low abundance in
Crohn’s disease: 0.67%,
0.27%, 0.49%, 3.89%,
0.62%, and 0.35%,
respectively.

(Lau et al., 2016) Gut 5 Illumina MiSeq 16S rRNA (v3) Cutadapt, PANDAseq, AbundantOTU,
QIIME, Greengenes database (97%
similarity).

OTUs <0.01% were not
analysed;

Low abundance = <1%.
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TABLE 1 | Continued

Low-abundant microbiota

Cyanobacteria, Clostridia, Mollicutes, and
Bacteroidetes.
Buccal mucosa (Coriobacteriaceae Atopobium,
Prevotellaceae unclassified, Bacilli unclassified,
Lachnospiraceae Catonella).
Hard palate (Clostridiales Family XIII. Mogibacterium,
Lachnospiraceae Catonella).
Keratinized gingiva (Bacilli unclassified).
Palatine tonsils (Clostridiales Family XIII.
Mogibacterium, Firmicutes unclassified).
Saliva (Actinomycetales unclassified,
Porphyromonadaceae Tannerella, Neisseriaceae
Kingella).
Subgingival plaque (Firmicutes unclassified).
Supragingival plaque (Betaproteobacteria
unclassified).
Throat (Clostridiales Family XIII. Mogibacterium,
Firmicutes unclassified). Tongue dorsum
(Actinomycetales unclassified, Bacilli unclassified,
Peptostreptococcaceae Peptostreptococcus).
Anterior nares (Pseudomonadaceae Pseudomonas).
Stool (Streptococcaceae Streptococcus).
Keystone fungal genera (Bovista, Erysiphe,
Psathyrella, etc.)

Chloroflexi, Tenericutes, Proteobacteria and candidate
division TM7;
Mobiluncus.in low abundance (not described the %).
Collinsella aerofaciens and P. copri is a possible
keystones for cardiac valve calcification and coronary
artery disease.
Prevotellaceae in one of the groups of children.

Mycobiome is relatively low abundant;
ITS2 sequencing provided greater resolution of the
relatively low abundance mycobiome constituents.

Corynebacterium, Staphylococcus in some sites.

Phylum level: Tenericutes, Synergistes

(Continued)
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Reference Sampling
site

N Platform of
sequencing

Method of sequencing Method of data analysis and
bioinformatics

Proportion considered
low abundant

(Li et al., 2013) Oral, skin,
distal gut,
and vaginal

200 454 GS FLX
pyrosequencer

16S rRNA Taxonomic Variance, Binomial
Distribution qualify Presence and
Absence, Ubiquity vs. Abundance (Ub-
Ab) Plots, Ubiquity-Ubiquity Plots (U-U
Plots), HMP Consortium.

OTUs <0.01%/90%
ubiquity were not
analysed;
Definition of low
abundance <1% (minor
core taxa).

(Li et al., 2019) Oral 35 Illumina MiSeq 16 rRNA and ITS2 UPARSE (>97% identity), RDB
classifier, UNITE database.

Core mycobiome: OTUs
<0.1% were not analysed;
Key oral fungal microbiota:
OTUs with frequencies of
at least 50% and relative
abundances of ≥0.5%
were analysed.

(Ling et al., 2010) Vaginal 100 454 GS FLX
pyrosequencer

16s rRNA (V3) MOTHUR (versão 1.5.0), RDP Classifier
(80%), MEGA.

0.1-1.0% of total
sequences.

(Liu et al., 2019) Gut 119 Illumina MiSeq 16S rRNA (V4-V5) BIPES pipeline, AUCHIME, QIIME
(1.9.1) USEARCH, PyNAST,
Greengenes database, RDP Classifier.

OTUs with median in any
group <0.3% were not
analysed.

(Nakayama et al.,
2017)

Gut 43 454 GS FLX
pyrosequencer

16S rRNA (V6-V8) QIIME, USEARCH (97% identity), RDP
classifier.

<1%.

(Nash et al., 2017) Gut 147 Illumina MiSeq 16S rRNA (V3-V5) USEARCH, UCHIME, NCBI GenBank
Plant (including fungi) and
Environmental databases, SILVA
(bacteria), UPARSE, DIAMOND
(metagenomics).

–

18S rRNA (ITS2)
Metagenomics(fungi)

(Ozkan et al., 2019) Skin ocular 104 Illumina MiSeq 16S rRNA (V4) UNOISE, USEARCH, Silva 128. OTUs <1% across all
samples were not
analysed.

(Rocas et al., 2016) Oral 10 Illumina MiSeq 16s rRNA (V4) Mothur v.1.36.1, Silva, UCHIME, RDP
classifier (80%)

<0.1% not shown
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TABLE 1 | Continued

Low-abundant microbiota

Genus level: Megasphaera, Hawardela, Slakia,
Filifactor, Parviromonas, Tannarella, Scardovia, others.
Bifidobacteria and lactobacilli in low abundance in few
samples.
Tannerella, Olsenella, Filifactor, and Treponema
(dentin carious lesions);
Streptococcus mutans (enamel and dentin carious
lesions);
Porphiromonas (enamel carious lesions).
Bacterioides;
Prevotella in the group >70 years-old.

Cyanobacterial, Chloroplast, Firmicutes,
Asteroleplasma, Proteobacterial, Thalassospira,
Burkholderia, Comanonadaceae, Bacteroidetes,
Prevolellaceae, Actinobacteria, Mobiluncus, Sutterella,
Bacteriodetes, Prevotella, Fusobacteria,
Fusobacteriales.

A high abundance of Proteobacteria and Fusobacteria
was observed in most septic shock patients, whereas
low abundance was observed in healthy subjects.

Haemophilus spp., Neisseria spp., Rothia sp. A.
aphrophilus, Bergeyella sp. clone oral AK152, and S.
rubneri were in low abundance in both the caries
group and the transitional group after the 6 month
follow-up.
Streptococcus and Rothia (0.68%) keep low
abundance in orofarynx microbiota of children ≤1 year
old;
Oropharynx: Atopobium, Moraxella (0.42, 0.51%).
A lower relative abundance for Faecalibacterium
(Faecalibacterium prausnitzii), Ruminococcus
(Ruminococcus sp_5_1_39BFAA), Corprococcus,
Eubacterium rectale, and Dorea was observed in the
centenarians;
Description of the Archaea domain;
Methanobrevibacter was enriched.

On family level (Ruminococcaceae and
Christensenellaceae abundance lower in ileal Crohn’s
disease group).
Low abundance of butyrate-producing bacteria
(Lachnospiraceae, Ruminococcaceae,
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Reference Sampling
site

N Platform of
sequencing

Method of sequencing Method of data analysis and
bioinformatics

Proportion considered
low abundant

(Sakwinska et al.,
2016)

Breast milk 90 Illumina MiSeq 16s rRNA (V4); Mothur, Silva, RDP classifier (80%). 0.03%-0.5%.
Confirmation by qPCR.

(Simón-Soro et al.,
2014)

Oral 13 454 GS FLX
pyrosequencer

16S rRNA Uchime, assigned to Ribosomal
Database Project with 97% identity;
RDP pyrosequencing pipeline;
BLASTN>99%

0.02%- 1%

(Singh and Manning,
2016)

Gut 200 454 GS FLX
pyrosequencer

16S rRNA (V3-V5) QUIIME, USEARCH, Greengenes
database,

No cuttoff defined in the
methods, but OTUs with
0.03% were described.

(Son et al., 2015) Gut 59 Illumina MiSeq 16S rRNA (V1-V2 and V1-
V3)

Uchime, Silva. OTUs with a maximal
relative abundance
<0.0001 and with a
prevalence <0.01 were
culled;
Low abundance (at the
genera level) threshold of
significance FDR<0.1

(Wan et al., 2018) Gut 30 Illumina MiSeq 16S rRNA (V3-V4) QIIME, Monthur. No cuttoff defined in the
methods, but OTUs with
0.12% were described;
Low abundance described
as 3.53%, 0.12%.

(Wang et al., 2017) Oral 41 PacBio RS II 16S rRNA (V1-V9) Pacbio circular consensus sequencing,
Mothur v.1.36.1, UCHIME, QIIME (97%
similarity).

OTUs with a median
relative abundance
<0.01% were not
analysed.

(Zhang et al., 2018) URT 98 Illumina MiSeq 16S rRNA QIIME. No cuttoff defined in the
methods, but OTUs with
0.42% were described.

(Wu et al., 2019) Gut 59 Illumina HiSeq Paired-end metagenomic
sequencing.

MetaPhlAn2. Relative abundance lower
than 5 in the centenarians;

Low-abundant genera
were summed into one
group to plot.

(Zakrzewski et al.,
2019)

Colon 73 Illumina MiSeq 16S rRNA (V3-V4) QUIIME, Greengenes database (97%
identity), UCLUST, UCHIME.

NA

(Zeng et al., 2019) Gut 141 Illumina HiSeq
2500

16S rRNA (V4) QIIME, Greengenes database (97%
identity), DADA2.

<0.1%
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the distribution of the papers by sampling site. Within them, the
gastrointestinal tract and the oral cavity were the most studied
ones. It may be due to the higher number of dysbiosis-related
diseases or higher bacterial diversity in those sites, since only 10
out of the 42 articles exclusively analyzed samples from healthy
individuals, and another 2 did not describe the status of health or
disease, as they involved analysis of secondary data. The other
sites included the vagina, respiratory system, skin, and blood.
According to Hamady et al. (Hamady and Knight, 2009), the
majority of microbiome studies describe the use of 16S rRNA
gene sequencing for archaea and bacteria, and 18S rRNA gene
sequencing for eukaryotes, which have limitations for the
accurate identification to the species level.

Figure 3 shows the distribution of sequencing platforms
used in the 42 selected articles. The most routinely used
sequencing platforms were Illumina, followed by 454/Roche.
Although these platforms are different in terms of biochemistry
and in the way the matrix is generated, their workflows are
conceptually similar (Shendure and Ji, 2008). A study of gut,
mouth and skin samples from two subjects found that the
composition of the gut and oral communities were not
significantly dissimilar when either 454/Roche or Illumina
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FIGURE 3 | Distribution of studies by platforms of sequencing.
FIGURE 2 | Distribution of the literature papers of low abundant organisms
by sample’s sites.
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(Figure 3) were used, albeit the communities of the skin were
significantly different. This difference was attributed to bias
associated with the primers (Caporaso et al., 2011).

Low-Abundant Bacteria (LB)
Out of 42 articles, 20 were excluded from the summary of sample
site-related low abundant bacterial species, because the data on
microbial abundance were unavailable or no information on low
abundance rate was provided. In the remaining 22 studies, low-
abundant bacteria (LB) have been reported in the biofilm samples
taken from 7 body sites (breast, gut, oral cavity, skin, stomach, upper
respiratory tract (URT), and vagina). LB were determined and
displayed as the relative abundance of a given operational
taxonomic unit (OTU), relative to the total sequencing reads. In
total, 4 studies reported LB at abundance levels between 5 and 20%,
6 studies reported between 1 and 5%, and 16 studies reported below
1%. Here we summarized the information of those LB detected at
abundance levels below 1%. The information on bacterial phyla can
be extracted from all 22 studies, hence it is possible to summarize
the major phyla of LB per sample site.

Table 2 summarizes how frequent a phylum was reported as
LB (<1%) per site in the 22 studies. The frequency is indicated by
the number of studies which have reported LB. In total, 6
different phyla have been reported as LB in more than 2
different studies or in more than 2 different body sites. Gut
and oral cavity are the most examined body sites. Out of 6
different phyla, 5 phyla were reported in gut and 6 were reported
in oral cavity. Actinobacteria and Firmicutes were the most
frequently reported LB among various body sites .
Actinobacteria has been found as LB in 6 different body sites.
Firmicutes and Proteobacteria were found as LB in 5 different
body sites. Compared to the gut, the oral cavity contains a site-
specific LB phyla, Spirochaetes.

Table 3 shows the bacterial taxa at the genus level within the
major LB phyla (Actinobacteria, Bacteroidetes, Firmicutes and
Proteobacteria) (<1% abundance). The oral cavity and gut were
the most studied body sites, where a low-abundant genus was
detected in more than two studies. The reported LB at the genus
level in gut was generally different from those of the oral cavity.
Only 3 LB genera have been found in both gut and oral cavity,
namely, Bifidobacterium, Prevotella and Streptococcus. No LB
genus can be reliably identified either in the gut or the oral cavity,
since the listed genera were only reported by 1 or 2 studies, which
may infer on the diversity of the LB in the human body, or could
be biased by sequencing/analysis methods employed.

Actinobacteria were most often reported as a low-abundant
phylum among all body sites. In the gut, Actinobacteria are
relatively scarce, but have a high degree of ecological connection
and are positively correlated with the diversity of the intestinal
microbiome, playing an important role in the biodegradation of
complex starch. It may be involved in the prevention of dysbiosis
in patients with inflammatory bowel disease (Trosvik and de
Muinck, 2015). When very abundant, Actinobacteria are
associated with obesity (White et al., 2009). In the oral cavity,
members of this phylum are part of the healthy microbiota and
their abundance varies at each oral sites, however in dental
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
plaque, for example, their abundance is less than 1% (Peterson
et al., 2013; Palmer, 2014).

Low-Abundance of Other Organisms
Archaea and fungi (eukaryotes) are usually reported in low
abundance, however, this detection should be viewed with
caution and further studies are always encouraged to validate
and confirm the data. From the 42 selected articles, only 15
mentioned fungi and/or archaea, and from those only 4 (fungi)
and 2 (archaea) showed data regarding the abundance of these
domains. Ghannoum et al. (2010) described that low-
abundance genera may be transient, and represent
environmental fungi present in the oral cavity and could
simply be spores inhaled from the air or material ingested
with food (Ghannoum et al., 2010). They have shown several
species not described before in the oral cavity. Heisel et al.
showed Candida krusei and Candida parapsilosis in >1.5%
mean abundance in all analysed faecal samples (Heisel et al.,
2015). Wu et al., 2019, using shotgun metagenomics, identified
methanogenic archaea within the core microbiota, enriched in
individuals aged >100 years old (Wu et al., 2019). This
technique may therefore be preferrable to 16S rRNA to
identify this domain of microrganisms.

The low abundance related to these domains in other studies
may be linked to the sample collection method, detection probe,
pair of primers used, sequencing technique, and low number of
sequences registered in current databases (Ghannoum et al., 2010;
Heisel et al., 2015; Dame-Teixeira et al., 2020). Furthermore, the
study of the microbial community through the use of 16S rRNA
sequencing and shotgun metagenomic methods allows analysis of
the composition and genetic capabilities of the microbiota, but not
the particularities of the role of low abundance in the microbial
community, and of microbial community interactions (Centanni
et al., 2018). Microbial communities are complex and constantly
changing in response to their environment, influenced by various
factors such as diet, use of antibiotics, exposure to transient
microorganisms. In this case, other OMICS techniques can be
used to understand how microbes react to the environment,
including metatranscriptomics, proteomics and metabolomics.
Those approaches give a holistic view of the sample content, and
a clearer idea of inter-domain interactions within the
human microbiome.

Bioinformatics and Data Analysis
on Low-Abundant Organisms
Since 1977, DNA-sequencing technology has evolved at a fast
pace, and is reshaping our understanding of biology (Srivastava,
2011). Next generation sequencing (NGS) was introduced for
the first time in 2005, extending the previous advantages
achieved by Sanger sequencing, and facilitated the increase in
generated data, while decreasing the cost of sequencing
(Buermans and Den Dunnen, 2014). NGS is marked by the
construction of libraries, enabling massively parallel sequencing,
which has been increasingly simplified, and a higher throughput
compared to Sanger sequencing (Ekblom and Galindo, 2011;
Muzzey et al., 2015).
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Nevertheless, NGS has some limitations including issues with
alignment of short read sequences, detection of artifacts and
microbial contaminants present in samples, in addition to the
presence of human nucleic acids in clinical samples, thus limiting
the analytical sensitivity of microbial detection (Davis et al.,
2018). One solution to this limitation was presented as the use of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
targeted sequencing of the 16S rRNA gene. This gene is now
considered as a reference in microbial ecology studies. However,
the use of 16S rRNA-based molecular methods do not allow for a
high resolution of microbiota identification, because there are
biases introduced into molecular community analysis by many
factors, such as sample handling, DNA extraction, PCR and
TABLE 2 | Number of studiesa reported low abundant taxa (relative abundance <1%) at the level of phylum.

Phylum Number of studies per site (n) Total
(n)

References

Breast Gut Oral
cavity

Skin Stomach URT Vagina

Actinobacteria 1 3 3 0 1 1 1 10 (Li et al., 2013; Simón-Soro et al., 2014; Albert et al., 2015; Son et al., 2015;
Rocas et al., 2016; Sakwinska et al., 2016; Brawner et al., 2017; Das et al., 2018;
Camelo-Castillo et al., 2019; Kowalska-Duplaga et al., 2019)

Bacteroidetes 0 2 4 0 0 0 0 6 (Li et al., 2013; Simón-Soro et al., 2014; Son et al., 2015; Rocas et al., 2016;
Nakayama et al., 2017; Balan et al., 2018)

Firmicutes 1 4 3 0 1 0 1 10 (Li et al., 2013; Simón-Soro et al., 2014; Albert et al., 2015; Son et al., 2015;
Rocas et al., 2016; Sakwinska et al., 2016; Brawner et al., 2017; Kowalska-
Duplaga et al., 2019; Zeng et al., 2019)

Fusobacteria 0 3 1 0 0 0 0 4 (Son et al., 2015; Rocas et al., 2016; Das et al., 2018; Wan et al., 2018)
Proteobacteria 0 2 2 1 1 1 0 7 (Li et al., 2013; Son et al., 2015; Rocas et al., 2016; Brawner et al., 2017; Das

et al., 2018; Wan et al., 2018; Camelo-Castillo et al., 2019)
Spirochaetes 0 0 2 0 0 0 0 2 (Simón-Soro et al., 2014; Rocas et al., 2016)
athe phylum reported by at least 2 different studies or found in at least 2 different body sites was included.
TABLE 3 | Number of studies which reported low abundant taxa (relative abundance <1%) collected from gut and oral cavity.

Taxa identified Number of studies per
site (n)

References

Phylum Genus Gut Oral cavity

Actinobacteria Actinomyces — 1 (Simón-Soro et al., 2014)
Atopobium — 1 (Li et al., 2013)
Bifidobacterium 1 2 (Simón-Soro et al., 2014; Rocas et al., 2016; Sakwinska et al., 2016; Kowalska-Duplaga et al., 2019)
Mobiluncus 1 — (Son et al., 2015)
Olsenella — 1 (Simón-Soro et al., 2014)
Unclassified 1 1 (Li et al., 2013; Das et al., 2018)

Bacteroidetes Prevotella 2 2 (Son et al., 2015; Rocas et al., 2016; Nakayama et al., 2017; Balan et al., 2018)
Tannerella — 2 (Li et al., 2013; Simón-Soro et al., 2014)
Unclassified 1 1 (Li et al., 2013; Son et al., 2015)

Firmicutes Catonella — 1 (Li et al., 2013)
Dialister 1 — (Kowalska-Duplaga et al., 2019)
Faecalibacterium 2 — (Kowalska-Duplaga et al., 2019; Zeng et al., 2019)
Filifactor — 1 (Simón-Soro et al., 2014)
Lachnospira 1 — (Zeng et al., 2019)
Oscillospira 1 — (Zeng et al., 2019)
Peptostreptococcus — 1 (Li et al., 2013)
Roseburia 2 — (Kowalska-Duplaga et al., 2019; Zeng et al., 2019)
Ruminococcus 1 — (Kowalska-Duplaga et al., 2019)
Staphylococcus — 1 (Rocas et al., 2016)
Streptococcus 1 1 (Li et al., 2013; Simón-Soro et al., 2014)
Unclassified 2 1 (Li et al., 2013; Son et al., 2015; Zeng et al., 2019)

Proteobacteria Burkholderia 1 — (Son et al., 2015)
Kingella — 1 (Li et al., 2013)
Ochrobactrum — 1 (Rocas et al., 2016)
Pseudomonas — 1 (Rocas et al., 2016)
Sutterella 1 — (Son et al., 2015)
Thalassospira 1 — (Son et al., 2015)
Unclassified 2 1 (Li et al., 2013; Son et al., 2015; Das et al., 2018)
—, indicates that the genus was not reported in this body site.
The genera in bold are those identified in both gut and oral sites.
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partial sequence of the 16S rRNA gene (ranging between the V1
and V4 regions) (Case et al., 2007). To reduce contamination
with sequence artifacts or low accuracy of read alignment, some
studies remove sequence reads attributed to low-abundance
operational taxonomic units (OTUs) obtained by amplicon
sequencing of the 16S rRNA gene. However, it is necessary to
perform the analyses with caution, because sequence data
associated with these low-abundant taxa may be biologically
significant. Therefore, it may not be recommended to exclude
these data even if the distinction between expected and
unexpected sequences is not always straightforward (Lazarevic
et al., 2016).

While microbiome studies generally describe the
taxonomy, diversity and abundance of the highly abundant
microbes, low-abundant species have been overlooked. Most
studies included in this scoping review select a cut-off value at
<1% for an organism to be considered low abundant, although
some studies have reported OTUs representing 0.003% of the
relative abundance (Table 3). The choice of such cut-off value
were attributed to low read count and or other considerations
such as technical artefacts, contaminations, and the presence
of transient species. However, by excluding these OTUs from
the analysis, the full richness and diversity of the microbiota is
underestimated. Camelo-Castillo et al. (2019) stated that only
the OTUs representing over 0.1% of the total sequences of each
sample were considered for their analysis, as low-frequency
reads, including singletons, are more likely to represent
sequencing errors, contaminants, or transient organisms
without a biological role at the niche under study. Although
artifacts and errors are expected, important signals from low-
abundant members of microbial community, including
keystone organisms, may be lost due to the current technical
limitations provided by this strategy. As affirmed before, low-
abundant species can be responsible for major functions on the
microbial community such as processing certain secondary
metabolites. An example comprises organisms from the
Archaea domain, that can be detected with 16S rRNA deep
sequencing but in very low abundance. Those microrganisms,
particularly the methanogens, play a unique role by using
hydrogen to produce methane, modulating the environment
and were previously described as keystone pathogens
associated with periodontal diseases (Camelo-Castillo
et al., 2019).

To overcome this limitation, an interesting approach was
applied by Li et al (2019), that defined a core microbiome based
on high ubiquity taxa in conjunction with a characteristic of
high abundance such that the significance of both
measurements can be made with a sufficient degree of
confidence across and within samples. Using this approach,
they were able to classify OTUs with low abundance (<1%) that
were highly prevalent across the samples. The authors proposed
that larger sample size and sequencing depth are necessary, so
that the detection of low abundant taxa may be considered non-
spurious across the donors (Li et al., 2019). We believe that
defining the ubiquity of the low-abundant microrganisms is a
good strategy that should be better explored. A clearer cut-off
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
point to confirm the presence and importance of such species
should urgently be defined (minimum values of the sample size,
as well as the ubiquity).

Another approach was recommended by Liu et al. (2013), and
based on single-read-based, instead of assembly-based
classification which has a higher resolution for the
characterization of the composition and structure of
microbiota, especially for species in low abundance. Their
composition and phylogeny-based algorithm uses the strategy
of composition comparison, and is capable of classifying millions
of very short reads relatively quickly (Liu et al., 2013). Zhang et al
(2019) also described two DNA extraction methods (using
prolonged lysis and homogenizing methods) which presented
marked differences specifically to the low abundance genera
(Zhang et al., 2019), and might represent an important
improvement in the field.

Metagenomic studies produce high-throughput sequence data
that attempt to classify the taxonomy and function of all
microbial communities and are greatly affected by the presence
of sequencing errors that may influence the estimation of
taxonomic diversity (Keegan et al., 2012). There are noise and
errors in the sequencing data that can be influenced by the type of
platform used. In the studies included in this review, the most
commonly used platform was Illumina. With this platform, when
errors occur, they are predominantly substitution-type and the
error percentage for most Illumina sequence reads is
approximately 0.5% (1 error in 200 bases) (Mardis, 2013). The
Ion Torrent PGM and 454 GS Junior platforms produced a higher
error rate associated with homopolymers around 1.5 and 0.38
errors per 100 bases, respectively (Loman et al., 2012). All
platforms are considered suitable for metagenomic sequencing,
but no instrument can generate completely accurate data sets,
each technology has advantages and disadvantages (Luo et al.,
2012). The length of reads generated, sequencing depth and error
rates may be taken into account when choosing the most
appropriate platform to use. For example, longer reads as those
provided by MiSeq (Illumina), Ion Torrent, PacBio and Oxford
Nanopore Technologies, are important to consider when carrying
out 16S rRNA metagenomics, or genome sequencing (Winand
et al., 2020).
CONCLUSION

There is currently no consensus in the literature on the
classification of low-abundant organisms. Some studies have
described such organisms being detected at less than 1%
relative abundance, however, most studies use the same cutoff
point (i.e. <1%) to exclude them, due to the risk of contamination
or artifacts. This practice may compromise the identification of
the true diversity of human microbiota. Domains other than
Bacteria are neglected due to the cut-off, excluding OTUs with
relative abundance lower than 0.1% or 1%. Representatives of
Archaea, Fungi or Viruses are little explored. There is growing
interest in developing new bioinformatics tools, such as single-
read-based, instead of assembly-based, classification to obtain a
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higher resolution of the taxonomic analysis. Also, the ubiquity
classification associated with the abundance could be a good
strategy to identify the low-abundant microbiota. To achieve
this, higher sequencing depths should be used in future
microbiome investigations, as well as more holistic approaches
including shotgun metagenomics should be employed to have a
better view of the richness and diversity at play in health, disease
and dysbiotic stages.
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