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1. Introduction

At the Last Glacial Maximum (LGM), the North Sea sector of the Eurasian Ice Sheet complex was at the 

confluence of two ice sheets, the British-Irish Ice Sheet (BIIS) to the west, and the Fennoscandian Ice Sheet 

to the east (Clark et al., 2012; Hughes et al., 2016; Sejrup et al., 2015). The North Sea sector is a shallow 

marine basin, which is topographically dominated by the Norwegian Channel, a deep (∼200–600 m) trough 

on the southwestern Norwegian coast (Figure 1). The North Sea sector hosts an archive of palaeo ice sheet 

dynamics with marine, lacustrine, and terrestrial margins. Therefore, this sector has the potential to pro-

vide an analog for contemporary ice sheets and to inform long-term behavior of ice sheets with different 

marginal settings. For example, the northern marine margin may have been vulnerable to similar marine 

processes that are in effect in contemporary West Antarctica (Favier et al., 2014; Joughin et al., 2014; Shep-

herd et  al.,  2001). These marine sectors are prone to instabilities of retreat, which represent the largest 

source of uncertainty for future sea level projections (Edwards et al., 2019). Therefore, understanding the 

deglaciation of marine ice sheet sectors is a key challenge of glaciology. Ice sheet evolution over the North 

Sea basin is also important in understanding the Relative Sea Level (RSL) change of the basin since the last 

deglaciation (Bradley et al., 2011). Furthermore, the history of glaciation is a key cause of the complicated 

stratigraphic record that needs to be understood to plan economically viable offshore wind farm develop-

ments in the North Sea (e.g., Emery et al., 2019). All considered, the requirement to better understand the 

deglaciation of the North Sea sector of the Eurasian Ice Sheet complex has motivated several previous em-

pirical and modeling studies (e.g., Boulton & Hagdorn, 2006; Dove et al., 2017; Patton et al., 2016; Roberts 

et al., 2018; Sejrup et al., 2016).

Abstract The record of the confluence and collapse of the British-Irish Ice Sheet and the 

Fennoscandian Ice Sheet is obscured by the North Sea, hindering reconstructions of the glacial dynamics 

of this sector of the Eurasian Ice Sheet complex during the last glacial cycle. Previous numerical 

simulations of the deglaciation of the North Sea have also struggled to capture the confluence and 

separation of the British-Irish and Fennoscandian Ice Sheets. We ran an ensemble of 70 experiments 

simulating the deglaciation of the North Sea between 23 and 18 ka BP using the BISICLES ice sheet 

model. A novel suite of quantitative model-data comparison tools was used to identify plausible 

simulations of deglaciation that match empirical data for ice flow, margin position, and retreat ages, 

allowing comparisons to large amounts of empirical data. In ensemble members that best match the 

empirical data, the North Sea deglaciates through the collapse of the marine-based Norwegian Channel 

Ice Stream, unzipping the confluence between the British-Irish Ice Sheet and the Fennoscandian Ice 

Sheet. Thinning of the Norwegian Channel Ice Stream causes surface temperature feedbacks, rapid 

grounding line retreat, and ice stream acceleration, further driving separation of the British-Irish and the 

Fennoscandian Ice Sheets. These simulations of the North Sea deglaciation conform with the majority 

of empirical evidence, and therefore provide physically plausible insights that are consistent with 

reconstructions based on the empirical evidence, and permit a quantitative comparison between model 

and data.
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Despite previous work, the deglaciation dynamics of the North Sea sector remain poorly understood. In-

deed, Hughes et al.  (2016) suggests that the North Sea and the eastern Barents-Kara Sea, are the “most 

ambiguous sectors” of the Eurasian Ice Sheet complex. The marine nature of the catchment makes em-

pirical work challenging and studies of the controls of retreat are limited (e.g., Cotterill et al., 2017; Dove 

et al., 2017; Emery et al., 2019; Phillips et al., 2018; Roberts et al., 2018). With limited empirical data, pre-

liminary reconstructions of the BIIS suggested the ice sheet had extensive marine sections and confluence 

with the Fennoscandian Ice Sheet (Geikie, 1863). As evidence grew in the second half of the 20th century, 

reconstructions of the BIIS and Fennoscandian Ice Sheet did not suggest ice sheet confluence in the North 

Sea (Boulton et al., 1985). However, more extensive offshore work in the 1990s and 2000s revealed glacial 

sediments in shallow marine cores, and interpretations from seismic reflection surveys across the North 

Sea (Graham et al., 2007; Sejrup et al., 1994), once again suggested confluence between the two ice sheets. 

The southern limit of the ice sheet is constrained with a combination of terrestrial and marine data, limits 

in Norfolk (Evans et al., 2019), the Bolders Bank (Roberts et al., 2018), and Denmark (Houmark-Nielsen 

& Kjær, 2003). These limits are consistent with a marine margin across Dogger Bank (Sejrup et al., 2016). 

Improved bathymetric data has also been used to map ice sheet flow and margin features in the North Sea 

(Bradwell et al., 2008; Sejrup et al., 2016).

An extensive confluence between the BIIS and Fennoscandian Ice Sheet is now broadly accepted (Gra-

ham et al., 2007; Sejrup et al., 1994), but the mechanism and timing of the subsequent separation of the 

ice sheets is unclear. For example, using evidence from high resolution geomorphological mapping Sejrup 

et al. (2016) suggested the deglaciation of the North Sea was triggered by the retreat of the large Norwegian 

Channel Ice Stream (NCIS), leading to the debuttressing of adjacent ice, and an “unzipping” of the BIIS 

and Fennoscandian Ice Sheet along the Norwegian Channel. However, other studies (Bradwell et al., 2008; 

Carr et al., 2006) suggest the initial separation of the two ice sheets occurred to the west of the Norwegian 

Channel, initially retreating back into the deeper bathymetry of the Witch Ground Basin, forming a calving 
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Figure 1. The bathymetry of the North Sea and locations mentioned in the text. Approximate ice margins are shown 
which indicate variation in reconstructions regarding the location of initial separation starting the collapse of North Sea 
ice from Carr et al. (2006) (at 18–16 ka BP), Bradwell et al. (2008) (undated), and Sejrup et al. (2016) (at 18.5–17 ka BP).
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bay (Figure 1). In this scenario, the NCIS remained fully advanced to the continental shelf edge while parts 

of the North Sea deglaciated.

A reconstruction of deglaciation based on the DATED-1 database followed the reconstructed Bradwell 

et al. (2008) calving bay, suggesting the initial ice sheet separation was to the west of the Norwegian Chan-

nel (Hughes et al., 2016). In this reconstruction, a large embayment in the north of the North Sea sector 

developed, while confluence between the BIIS and Fennoscandian Ice Sheets remained in the south of the 

North Sea, and the NCIS remained extended to the trough mouth. However, the sparsity of dates in the 

North Sea means that these reconstructions are tentative (Hughes et al., 2016). For example, there is un-

certainty and conflicting evidence of the timing of retreat of the NCIS (King et al., 1998; Sejrup et al., 1994; 

Svendsen et al., 2015). Additionally, the formation of a large embayment in the north of the North Sea while 

the NCIS remained extended and active is enigmatic, and potentially glaciologically implausible (Clark 

et al., 2012; Hughes et al., 2016), as there is no contemporary analog for an ice stream laterally unbounded 

along one flank. Overall, although empirical constraints on the deglaciation of the North Sea have im-

proved, considerable uncertainty remains regarding both the location of initial separation of the BIIS and 

Fennoscandian Ice Sheets (Bradwell et al., 2008; Sejrup et al., 2016), and subsequent evolution and speed of 

ice retreat in the southern North Sea (Dove et al., 2017; Roberts et al., 2018).

Numerical modeling has not resolved the uncertain deglaciation dynamics of the North Sea either. Boulton 

and Hagdorn (2006) simulated the confluence of the BIIS and the Fennoscandian Ice Sheet, and found that 

due to a diminished ablation area after initial confluence the ice sheet thickness increased rapidly to form 

an ice divide running east-west across the North Sea. This has implications for ice flow, meaning it is unlike-

ly the NCIS flowed the ∼700 km length of the Norwegian Channel concurrently. This numerical modeling 

work helped to address some uncertainties in regard to the confluence of the BIIS and Fennoscandian 

Ice Sheets, but does not simulate the subsequent deglaciation of the North Sea sector. Furthermore, these 

shallow ice approximation simulations did not account for the longitudinal stresses needed to accurately 

simulate ice stream evolution (Hindmarsh, 2009) or grounding line migration (Schoof, 2007), likely to have 

been important to the deglaciation of the North Sea.

More recently, a series of simulations investigated the advance (Patton et  al.,  2016) and retreat (Patton 

et al., 2017) of the Eurasian Ice Sheet complex. Despite broadly matching empirical data across other sec-

tors of the Eurasian Ice Sheet complex, the simulations are unable to simulate North Sea deglaciation if 

the maximum extent is consistent with empirical evidence of full glaciation. Therefore, there have been no 

previous simulations of the North Sea deglaciation that are broadly consistent with empirical evidence. We 

hypothesize that this is because of the limitations in the climate forcing or ice flow physics previously used.

Recent advances in ice sheet modeling permit new simulations of the North Sea deglaciation. In particular, 

the L1L2 physics and adaptive mesh of the BISICLES ice sheet model allow accurate simulation of marine 

sectors of ice sheets (Cornford et al., 2013), such as the northern North Sea. A new basal sliding scheme 

coupled with a hydrology parameterization also allows the simulation of spontaneous ice stream generation 

and evolution during ice advance and retreat, with good match to empirical evidence (Gandy et al., 2019). 

This means that two important controls on the North Sea deglaciation—marine dynamics and the influence 

of the NCIS—can be accurately simulated for the first time.

Here, we present an ensemble of simulations of the deglaciation of the North Sea, using the state of the art 

BISICLES ice sheet model. We aim to simulate deglaciation in a manner that conforms with the majority 

of empirical evidence, and through this determine the likely mechanisms and style of deglaciation of the 

North Sea. Two research questions, motivated by the considerable uncertainty of deglaciation style in the 

North Sea, frame the analysis of the work;

1.  What was the role of the Norwegian Channel Ice Stream in the deglaciation of the North Sea?

2.  How do ice stream dynamics interact with other mechanisms driving deglaciation of the North Sea?
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2. Methods

We use the BISICLES marine ice sheet model to simulate the North Sea sector of the Eurasian Ice Sheet 

complex. BISICLES is an ice sheet model with L1L2 physics simplified from the full Stokes flow equations 

(Schoof & Hindmarsh, 2010), using an adaptive mesh to allow the horizontal resolution to be increased at the 

grounding line, at the margin, and at regions of high velocity (Cornford et al., 2013). This means BISICLES 

can simulate grounding line migration without parameterization, unlike models previously used to simu-

late the deglaciation of the North Sea (Patton et al., 2017). BISICLES has previously been successfully used 

to simulate the evolution of contemporary (Cornford et al., 2016; Favier et al., 2014; Gong et al., 2017) and 

palaeo (Gandy et al., 2018, 2019) ice sheets. We set-up BISICLES in a manner similar to Gandy et al. (2019), 

in that an idealized basal hydrology scheme is coupled to a Coulomb sliding law dependent on ice and basal 

water pressure, in order to simulate regions of ice streaming. This method has successfully simulated the 

majority of ice streams of the BIIS during advance and retreat of the ice sheet (Gandy et al., 2019). For the 

majority of experiments, we set a 16 × 16 km grid refined once in the North Sea sector to produce a horizon-

tal resolution of 8 × 8 km, except in the high-resolution experiments subsequently described, which have a 

maximum horizontal resolution of 1 × 1 km.

Initially, a 10,000-year spin-up step simulates the growth and confluence of the BIIS and Fennoscandian 

Ice Sheet from limited ice extent to extensive glaciation. The spin-up process is described in detail in the 

supplementary information. Of particular note is that a negative Surface Mass Balance (SMB) anomaly 

is imposed in the Southern North Sea to help simulated margins to resemble the reconstructed margins. 

Without this forcing, the margin advances considerably further south than is reconstructed from empirical 

data, meaning the deglaciation simulations would not start from a reasonable extent, and hence would be 

unlikely to produce a realistic deglaciation pattern. More details on the implementation and motivation of 

this correction are provided in the supplementary information.

2.1. Deglaciation Ensemble

The end of the spin-up step produces an ice sheet in good agreement with ice extent reconstructed for 23 ka 

BP (Bradwell et al., 2019; Roberts et al., 2018), which is used as the starting point for a 70-member deglacia-

tion ensemble. Each ensemble member is then run for a 5,000-year deglaciation phase, where seven param-

eters are varied (Table 1). SMB is calculated every 25 years using the PyPDD model (Seguinot, 2013), forced 

using contemporary surface temperature and precipitation data (Fick & Hijmans, 2017) corrected with the 

anomaly from climate simulation snapshots of the deglaciation. The snapshot simulations are described 

by Morris et al.  (2018), run with the HadCM3 coupled atmosphere-ocean-vegetation general circulation 
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Not. Parameter Standard value Unit Ensemble minimum Ensemble maximum

C Weertman coefficient 1,000 Pa m−1 500 2,000

f Coulomb friction coefficient 0.5 – 0.4 0.6

W0 Maximum till water depth 2.0 m 2.0 5.0

– PDD factors 3.0 (snow) and 8.0 (ice) mm K−1 Standard − 2.0 Standard + 2.0

ssm Subshelf melt adjustment 0.0 m y−1 K−1 Melt rate − 50.0 Melt rate + 150.0

γ Lapse rate 5.1 km−1 4.5 8.0

– Precipitation From HadCM3 experiments mm y−1 25% of standard 175% of standard

ρ Ice density 9.18 kg m−3 – –

g Acceleration due to gravity 9.81 m s−2 – –

m Weertman exponent 1 – – –

α Till pressure factor 0.99 – – –

D Till water drain factor 0.005 m y−1 – –

Note. Only the first seven parameters (Weertman Coefficient-Precipitation) are varied in the deglaciation ensemble.

Table 1 
Key Parameter Values and Ranges of Values Used for the Simulations
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model (Gordon et al., 2000; Pope et al., 2000; Valdes et al., 2017), and are a refinement of those previously 

reported by Singarayer et al. (2011) with updated boundary conditions including ice mask, ice orography, 

bathymetry, and land–sea mask (Ivanovic et al., 2016). An east-west precipitation gradient is imposed using 

the same pattern employed by Patton et al. (2016, 2017) that aims to capture the influence of the Eurasian 

Ice Sheet complex on precipitation patterns. The modeled ice sheet surface is used to correct surface air 

temperatures every 25 years through the deglaciation, linearly interpolating based on an environmental 

lapse rate (γ). Using the same GCM results as used to calculate SMB, subshelf melt rate is derived from Sea 

Surface Temperature (SST) values, using a linear relationship between SST (T) and subshelf melt rate (ssm) 

(Rignot & Jacobs, 2002);

 ssm 10T (1)

Using the unadjusted SST values from the GCM produces a subshelf melt rate of 63.2 m y−1 adjacent to the 

Norwegian Channel Ice Stream at 28 ka BP. This is an idealized parameterization to calculate subshelf melt 

rates, and in reality, the melt rate is dependent on the stratification of vertical evolution of the water column 

(e.g., Alvarez-Solas et al., 2019; Ezat et al., 2014). Accurately calculating subshelf melt rates is a significant 

challenge, and this motivates the idealized approach in tandem with using a wide range of adjustment val-

ues in the ensemble. To recreate isostatically adjusted bed topography, we modify modern topography using 

reconstructions from a Glacio-Isostatic Adjustment model, similar to Bradley et al. (2011), with updated 

ice-loading based on new margin reconstructions (Roberts et al., 2018) and resulting ice thicknesses from 

the ICESHEET ice sheet model (Gowan et al., 2016). GEBCO (Becker et al., 2009) provides modern offshore 

bathymetry, and SRTM (Farr et al., 2007) provides onshore topography. The RSL change is updated every 

1,000 years, and topography is linearly interpolated between these points.

2.2. Model-Data Comparison

In order to determine which of the 70 ensemble members simulate behavior consistent with the available 

empirical data, we use new quantitative model-data comparison tools (Ely et al., 2019a, 2019b). Model-data 

comparison tools are used to identify ensemble members that match empirical data. The Automated Prox-

imity and Conformity Analysis (APCA) tool (Li et al., 2007; Napieralski et al., 2007) is used to compare 

modeled ice sheet margins and empirically mapped moraines. A subset of 132 moraines larger than 32 km 

long is used (Clark et al., 2018; Dove et al., 2017; Sejrup et al., 2016). Smaller moraines are ignored because 

it is unlikely the coarse model resolution could provide a conformity match in a meaningful manner. A 

model-data match is defined when both the proximity is below a threshold of 16 km (two model gridboxes), 

and conformity is below a threshold of 8 km (one model gridbox). These values are chosen as the ability of 

the model to match margins is limited by horizontal grid resolution.

The Automated Timing Accordance Tool (ATAT) (Ely et al., 2019a, 2019b) is used to identify matches be-

tween modeled deglaciation ages and geochronological data (in calibrated years before present). Geochron-

ological dates with a quality control rating of Green or Amber by Small et  al.  (2017) were used, along 

with additional offshore dates from (Bateman et al., 2018; Bradwell et al., 2021; Callard et al., 2018; Evans 

et al., 2018, 2019, 2021; Roberts et al., 2018, 2019), resulting in 131 geochronological dates for comparison 

with modeled deglaciation ages. ATAT calculates the wRMSE between modeled deglaciation ages and ge-

ochronological data, accounting for the uneven spatial distribution of dates. ATAT also calculates the per-

centage of ice-free dates agreed within error, which is used to rank the ensemble members.

The Automated Flow Direction Analysis (AFDA) tool (Li et al., 2007) is used to identify matches between 

mapped flowsets, which are derived mostly from drumlins, and modeled flow direction. Flowsets larger 

than 256 km2 (4 gridboxes at model resolution) are taken from Greenwood and Clark (2009) and Hughes 

et al. (2014), resulting in 83 flowsets for comparison with the modeled flow directions. AFDA calculates 

the mean residual angle and variance of offset between modeled and empirically derived flow directions. A 

model-data match is when both the mean residual vector within a flowset is below a threshold of 15°, and 

the mean variance is below a threshold of 0.06. These values are more lenient than previously set (e.g., Ely 

et al., 2019a, 2019b), due to the coarser horizontal resolution, but matching of modeled and mapped flow 

directions within 15° still provides a strong constraint on ice geometry and flow. AFDA can also determine 
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how often cross-cutting flowsets are replicated with the correct relative timing. This is a difficult test for 

ice sheet models, and previous applications to the BIIS did not match any cross-cutting relationships (Ely 

et al., 2019a, 2019b). Given this, and the reduced sample of cross-cutting once smaller flowsets are removed, 

this feature of AFDA was not used here.

We define Not Ruled Out Yet (NROY) simulations as those that match more than 75% of moraines using 

APCA, more than 60% of dates using ATAT, and 50% of flowsets using AFDA. These thresholds were decid-

ed through an analysis of the distributions of scores (Supporting Information S5) and exercising our expert 

judgment of what data we would not expect the model simulations to match. Matching moraines is the 

least stringent of the comparisons (Ely et al., 2019a, 2019b), hence the higher threshold. Conversely, some 

deglaciation ages and flowsets are difficult for the model to match in any simulations, particularly smaller 

flowsets, so a more lenient threshold is set.

3. Results

3.1. Ensemble Results

The ice advance starts with separate ice sheets covering the BIIS and Fennoscandian Ice Sheet (Figures 2a 

and 2b). After 6,000 years of advance, there is confluence between the BIIS and the Fennoscandian Ice 

Sheet. The initial confluence occurs north of Dogger Bank, while the NCIS is already well advanced in the 

Norwegian Channel. The straight southern margin in the North Sea is caused by the SMB anomaly imposed 

to allow the margin extent to resemble empirical reconstructions.

In the deglaciation ensemble, the majority of ensemble members (59/70) simulate the separation of the BIIS 

and Fennoscandian Ice Sheets. In those simulations, the final separation of the BIIS and the Fennoscandian 

Ice Sheet occurs in the southern North Sea, near the Jutland Bank (Figure 1). All 59 simulations that have 

ice sheet separation have a common deglaciation pattern. Beginning with full confluence of the BIIS and 

Fennoscandian Ice Sheet (Figures 3a and 3b), there is an initial retreat of the NCIS, with ice remaining to 

the east and west of the Norwegian Channel. As the grounding line of the NCIS continues to retreat in the 

Norwegian Channel, there is limited margin retreat to the west in the North Sea. In all simulations, ice cover 

remains on the Shetland Islands while the NCIS has considerably retreated (Figures 3e–3h).

In the majority of ensemble members, considerable NCIS retreat is concurrent with retreat of the western 

portion of the BIIS, resulting in limited ice cover in Ireland and a retreat of the Barra Fan Ice Stream (Fig-

ures 3g–3j). Meanwhile, margin retreat in the southern North Sea and the Fennoscandian Ice Sheet is lim-

ited. This deglaciation pattern results in a narrow marine-based ice cap forming north of the Dogger Bank 

(Figures 3k and 3l). This narrow cap is slow flowing and entirely recedes within 1,000 years.

The point of separation between the BIIS and the Fennoscandian Ice Sheet is near the Jutland Bank (Fig-

ure 1) and is consistent across the 59 ensemble members in which the separation occurs. The legacy of this 

separation style is that the modeled BIIS ice is often extensive in the North Sea, while significant deglacia-

tion of the western margin of the BIIS has already occurred. This is consistent with the deglaciation pattern 

reconstructed along the Yorkshire and Lincolnshire coast (Bateman et al., 2015; Clark et al., 2012), and the 

required damming of proglacial lakes like Glacial Lake Pickering (Evans et al., 2017), explained through a 

North Sea Lobe feature (Bateman et al., 2015; Sutherland et al., 2020). The deglaciation style in the majority 

of ensemble members causes a Dogger Bank ice dome (Figures 3g–3l). Ice streaming down the Yorkshire 

and Lincolnshire coast occurs in the majority (64/70) of simulations, and in 22 simulations this ice stream 

terminates with a lobate margin.

A simulated Dogger Bank ice dome still covers a large portion of the North Sea in the later stages of degla-

ciation (Figures 3g–3l), and therefore ice remained north of the Dogger Bank for 1–2 ka. By the end of the 

deglaciation simulation (at 18ka BP), the North Sea is fully deglaciated in 11.9% of the simulations, there is 

no British Isles ice cover in 7% of simulations, a small Scottish Ice Cap in 12.6% of simulations, and Fennos-

candian ice cover in all simulations.
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Figure 2. Snapshots at various stages during the spin-up stages of the experiments. (a–b) Ice surface elevation and velocity (respectively) at the end of the 
build-up stage. (c–d) Ice thickness and velocity during the advance stage, just after initial confluence between the BIIS and the Fennoscandian Ice Sheet, 
6,000 years into the advance stage. (e–f) Ice thickness and velocity at the end of the ice dynamics perturbation phase for ns_034. Red line marks the position of 
the modeled palaeo shoreline, or the ice sheet grounding line where the ice sheet terminates in a marine sector. BIIS, British-Irish Ice Sheet.
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Figure 3. Pattern of North Sea deglaciation in one of the ensemble members ns_016 (from the identified NROY 
simulations), showing the evolving ice thickness (panels a, c, e, g, i, k) and velocity (panels b, d, f, h, j, l) and 1ka 
timesteps. ns_016 is representative of the NROY simulations generally. The red contour shows the grounding line and 
palaeo coastline. Note that the Norwegian Channel Ice Stream never exists as a continuous track from the Skagerak 
Strait to the shelf edge, but rather it’s footprint translates up ice as the grounding line retreats. It is this ice stream that 
forces the separation of the two ice sheets. NROY, Not Ruled Out Yet.
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3.2. Model-Data Comparison

As expected, the quantitative model-data comparison tools show considerable variations in scores of mod-

el-data match (Figure 4). The APCA tool calculates that for the 70 ensemble members on average 74.0% 

of moraines are matched, with the poorest matching ensemble member matching 46.9% of moraines, and 
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Figure 4. Data-model comparisons for moraines, chronology and flow direction. (a) A snapshot of ice thickness 
during the deglaciation with a point of grounding line (red contour) and moraine (yellow) match shown, and (b) the 
percentage of ensemble members that match each moraine. (c) Modeled deglaciation age of ensemble member ns_016, 
with deglaciation ages shown in points of the same color map, and (d) the percentage of ensemble members that match 
each deglaciation age. (e) Ice flow velocity and direction of ensemble member ns_031 at 21,750 BP, with an empirically 
mapped flowset shown in red, and (f) the percentage of ensemble members that match each mapped flowset.
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a best matching ensemble member matching 94.6% of moraines. Of the entire ensemble, 39 simulations 

matched more than 75% of moraines.

ATAT provides a value of both the percentage of dates where model-data agreement occurs, and the wRM-

SE of model-data difference for ice-covered dates where model-data agreement occurs. The wRMSE values 

are important because it is possible to “match” a high percentage of deglaciation ages, but have a high error 

on each age. The wRMSE values calculated here are low compared to uncertainties in the empirical data, 

with a mean wRMSE of 816 years (and a maximum of 1,023 years). In comparison, the errors on a Terres-

trial Cosmogenic Nuclide date is in the order of 800 years (Small et al., 2017). On average, each ensemble 

member matches 52.7% of dates, with the poorest matching ensemble member matching 16.7% of dates, 

and the best matching ensemble member matching 74.5% of dates. The poorest matching ensemble mem-

bers do not deglaciate sufficiently, resulting in the majority of geochronological dates remaining ice covered 

at the end of the simulation. Some early deglaciation ages in central Scotland are never matched while also 

matching the majority of later (post-18 ka BP) deglaciation ages (Figures 4c and 4d). Of the entire ensemble, 

20 simulations matched more than 60% of the deglaciation ages.

Finally, the AFDA tool provides a percentage match between empirically mapped flowsets and modeled 

flow directions. This is the most stringent of the three quantitative tests because flow direction depends 

on a number of uncertain controls, such as the ice sheet thermal structure, the ice margins, evolution 

history, and the palaeo topography. The average match over the ensemble is 43% of mapped flowsets, with 

the poorest ensemble member matching 16% of flowsets, and the best scoring ensemble member matching 

70% of flowsets. Of the entire ensemble, 24 simulations matched more than 50% of flowsets. Of these, 17 

simulations matched more than 75% of margins and 60% of deglaciation ages too, meaning that these 17 

simulations form the NROY subset of simulations (Figure 5).

There is no clear distinction between the parameter values of the NROY simulations and those of the rest 

of the ensemble (Figure S4.1), indeed the range of values for each of the seven parameters is almost the 

same in the full ensemble as within the subset of NROY simulations. This is partly because all parameters 

are varied in tandem and the parameter effects can compensate each other. As an example, a simulation 

with low precipitation (causing rapid retreat) may also have a high lapse rate (slowing retreat), meaning 

that NROY simulations appear to be unconstrained in the parameter space. In particular, the full range 

of values for PDD corrections, lapse rates, Weertman friction coefficients, and Till water depths are repre-

sented in the NROY ensemble members. Some limited regions of the parameter space are never or rarely 

represented in the NROY simulations, such as the lowest values of the Coulomb friction angel (i.e., <0.44), 

high subshelf melt rates, and negative precipitation corrections. Gaussian process emulation of the model 

output as a function of the input parameters could be used to investigate the effect of individual parameters 

on ice sheet behavior.
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Figure 5. The percentage of ensemble members (panels a-e) and NROY simulations (panels f-j) with ice cover through 
the deglaciation experiment. NROY, Not Ruled Out Yet.
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3.3. High-Resolution Snapshot Results

The initial 70 ensemble members have a minimum horizontal resolution of 8 km and provide evidence of 

rapid retreat periods in the North Sea sector. However, for grounding line dynamics to be accurately sim-

ulated, the horizontal resolution at the grounding line must be 1 km or finer (Gladstone et al., 2012). One 

ensemble member from the NROY simulations (ns_016) has two periods of rapid grounding line retreat of 

the NCIS, behavior which is also represented in the other NROY simulations. We re-simulate these two pe-

riods of rapid retreat using 1 km horizontal resolution at the grounding line to better capture the dynamics 

of the rapid retreat. The BISICLES mesh refinement allows 1 km horizontal resolution within the regions 

shown in Figures 6b and 6c, and not for the rest of the domain. Other than the higher horizontal resolution, 

the experimental design is identical to the design of the coarser resolution ensemble members.

The simulations are rerun from 21.9 and 20.6 ka BP, for 320 years and 240 years respectively. The model 

mesh is refined down to 1 km at the grounding line at the regions shown in Figures 6b and 6c. The results 
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Figure 6. High-resolution snapshot simulations of grounding line retreat indicative of Marine Ice Sheet Instability over retrograde slopes in the Skagerrak 
Stait. (a) The locations of plots in panels (b) (green box) and (c) (orange box) and the transects used in panels (d and e). (b) The NCIS just before a rapid 
grounding line retreat, with transect shown in panel (d). (c) The NCIS in the Skagerrak Straight just before a rapid retreat, with transect shown in panel (e). 
Transects are shown every 20 years in panels (d and e). NCIS, Norwegian Channel Ice Stream.
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show rapid grounding line retreat in regions of retrograde bed slope (Figures 6d and 6e), indicative of Ma-

rine Ice Sheet Instability. The simulated retreat is rapid; in both snapshot simulations, the grounding line 

has a maximum retreat rate of 2–3 m y−1 (Figures 6d and 6e). This grounding line retreat rate is comparable 

to simulations of future Thwaites Glacier grounding line retreat (Cornford et al., 2015). Both simulations, 

and the later simulation in particular, show considerable thinning of the ice sheet upstream of the ground-

ing line during the period of rapid retreat. In the later retreat period, there is upstream thinning of ∼2–3 m 

y−1 through the rapid retreat, which is comparable to observed thinning rates of the contemporary Pine 

Island Glacier (Shepherd et al., 2001; Wingham et al., 2009).

The behavior of the high-resolution simulations and the lower resolution ensemble member is broadly 

consistent, in that it demonstrates a period of rapid retreat, starting and concluding in the same regions 

of the Norwegian Channel. The simulated grounding line retreats at the same rate, though in most areas 

the grounding line retreats slightly further (<10 km) in the finer resolution simulations (Figure S6). This 

provides confidence in the validity of the periods of rapid retreat simulated in the other ensemble members. 

However, using high-resolution simulations, more detailed behavior of the grounding line is simulated.

4. Discussion

4.1. Combined Instabilities

The simulations show the fast retreat of the NCIS is driven by the interplay of ice flow, surface lowering, and 

marine ice sheet instabilities. At the beginning of the deglaciation ensemble, with full ice extent over the 

North Sea, the NCIS has an effect on the surface profile of the ice sheet, causing a large (∼500 m) depression 

in the surface of the ice sheet (Figure 7a). This is similar to the surface expressions of similar contemporary 

ice streams, like Pine Island Glacier and Thwaites Glacier (Howat et al., 2019).

This large surface depression is important because it causes feedbacks between ice dynamics, further sur-

face lowering, and ice geometry. The initial depression means that at the start of the deglaciation exper-

iments the NCIS was vulnerable to surface melting (Figure  7b), allowing the surface of the NCIS to be 

lowered further. This has four effects. First, the lowering of the ice stream surface compared to neighboring 

ice allows ice stream acceleration (Robel & Tziperman, 2016), driving further lowering. Second, the thin-

ning exacerbates the lapse rate feedback that allows further surface melting as the surface lowers. Third, 

any thinning of the ice stream (which is located in a deep marine trough) means the ice stream becomes 

more vulnerable to rapid retreat as it approaches buoyancy. Finally, any grounding line retreat into a region 

of retrograde bed slope can cause marine ice sheet instability. The NROY simulations spanning a wide area 

of the parameter space (Figure S4.1) suggests these interacting mechanisms are the primary influence on 

deglaciation.

Notably, the NCIS remained grounded past the Skagerrak Straight by 18 ka BP in only four ensemble mem-

bers. Those simulations show an advance of the BIIS and Fennoscandian Ice Sheets in other sectors. In 

the remaining ensemble members, the combined instabilities of ice flow, surface elevation feedbacks, and 

marine influence mean that once the NCIS begins to retreat it is likely to continue to retreat fully. However, 

the NCIS does not experience an uninterrupted retreat for the entire length of the Norwegian Channel. 

There are periods of rapid grounding line retreat, and periods of grounding line stability. This behavior is 

supported by the mapping of grounding zone wedges in the Norwegian Channel (Morén et al., 2018) and by 

the variable ice rafted debris fluxes along the northern North Sea margin (Becker et al., 2018).

This variability of ice flux is evident in the simulations even with a comparatively smooth climate and ocean 

forcing. Including a more temporally variable atmosphere and ocean forcing, as used in previous simula-

tions (e.g., Hubbard et al., 2009; Patton et al., 2017), would further increase the variability of retreat rate. 

Warm water intrusion into the Norwegian Channel would be sensitive to relatively small changes in the 

vertical thermal structure of the ocean and relative sea level. The sensitivity of the Bjørnøyrenna Ice Stream 

(a large marine ice stream between Norway and Svalbard) to subshelf melt forcing has been demonstrated 

(Petrini et al., 2018), and given the relative proximity of the NCIS and Bjørnøyrenna Ice Stream it is likely 

both ice streams were subject to similar variability of marine forcing.
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4.2. Styles of Deglaciation

As discussed, empirical reconstructions of the separation of the BIIS and Fennoscandian Ice Sheet do not 

provide a consensus on the style of deglaciation. Bradwell et al. (2008) suggested that the separation began 

with the formation of a calving bay to the west of the Norwegian Channel, forming a large embayment in 

the northern North Sea. In contrast, Sejrup et al. (2016) suggested that deglaciation of the North Sea begun 

with the initial retreat of the NCIS, which debutressed the BIIS to the west, causing no initial significant 

margin retreat of the BIIS in the northwest while the NCIS retreated significantly, leading to an “unzipping” 

between the BIIS and the Fennoscandian Ice Sheet. The ensemble of simulations presented in this manu-

script allows us to test the plausibility of each deglaciation scenario.

Here, none of the ensemble members began deglaciation of the North Sea through the formation of an em-

bayment in the Witch Ground Basin while the NCIS remained extended. Instead, there are key similarities 

between the “unzipping” scenario and the majority of simulations described here. In all simulations, the 

retreat of the NCIS precedes retreat into the Witch Ground Basin. In the 17 NROY simulations, the NCIS 

retreats past the Skagerrak Straight (Figure 1) before BIIS North Sea Ice has entirely receded (Figure 5). Al-

though the Witch Ground Basin is a major topographic depression in the context of the relatively flat North 

Sea, it is a minor depression in comparison to the neighboring Norwegian Channel, and no simulation in 

our ensemble demonstrates ice retreating in the Witch Ground Basin but remaining stable in the Norwe-

gian Channel. Previously, it has been suggested that because the NCIS was more vulnerable to marine and 
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Figure 7. Ice sheet surface elevation and Surface Mass Balance at 23 ka BP (a and b) and 21.5 ka BP (c and d) in 
ensemble member ns_002.
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climate forced retreat, initial retreat into the Witch Ground Basin while 

the NCIS remained fully extended is “enigmatic” (Clark et  al.,  2012; 

Hughes et al., 2016). Our findings also suggest that this deglaciation style 

is unlikely.

In contrast, there are similarities between the style of deglaciation in 

the NROY simulations and the deglaciation reconstructed by Sejrup 

et  al.  (2016). Both the reconstruction and the simulations presented 

here suggest a key role of the NCIS, initially retreating before the rest 

of the North Sea. However, while simulations here place the final point 

of confluence before separation as in the Jutland Bank region, Sejrup 

et al. (2016) place it further North, to the west of the Norwegian Channel.

The simulations presented here were computationally costly, therefore 

only the deglaciation was included in the 70-member ensemble, rather 

than a full glacial cycle. Starting these ensemble experiments from the 

end of a single advance and confluence simulation rather than a stable 

maximum extent in part helps represent the transient nature of the last 

glacial cycle, but it would still be preferable to run an ensemble of tran-

sient advance and retreat simulations, if computational cost permitted. 

With the current experiments, it is not clear how sensitive the deglaci-

ation style is to different styles of ice sheet build-up. As computational 

costs reduce, an ensemble of a transient advance and retreat experiments 

would be advantageous. Alternatively, a computationally cheaper mod-

el can be used to simulate a full glacial cycle of the Eurasian Ice Sheet 

complex (Patton et al., 2016, 2017), but so far such models are not able to 

simulate deglaciation of the North Sea in a manner consistent with the 

empirical record.

4.3. Western North Sea Deglaciation

A combination of geomorphological and geological evidence, and dating 

has resulted in the reconstruction of a so-called North Sea Lobe, flow-

ing south from the Firth of Forth in Scotland and nearly parallel to the 

east English coast and extending down to the north Norfolk coast (Dove 

et al., 2017; Evans & Thomson, 2010; Sutherland et al., 2020). Specifically, 

the presence of such a North Sea Lobe helps to explain dates showing ice 

free conditions across central England, while deglaciation is later along 

the Yorkshire and Lincolnshire coast (Bateman et al., 2015). Such an ice 

margin is also necessary to dam reconstructed proglacial lakes in north-

ern and central England (Bateman et al., 2015; Davies et al., 2019; Evans 

& Thomson, 2010).

Although ice streaming down the Yorkshire and Lincolnshire coast is 

simulated in numerous ensemble members, a feature as prominent as the 

empirically reconstructed North Sea Lobe is never simulated. Instead, in 

the majority of simulations a Dogger Bank ice dome forms during degla-

ciation, where ice remains in the North Sea, and retreating roughly radi-

ally from the point where the BIIS and the Fennoscandian Ice Sheets dis-

connect. This dome is the remnants of the ice divide that forms across the 

North Sea at maximum extent, and it is what remains when the majority 

of surrounding ice has retreated. Compared to empirical reconstructions of the last stages of deglaciation 

in the North Sea (Figures 8a and 8b), the simulated ice margin extends further east toward the Norwegian 

Channel (Figure 8c).
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Figure 8. Prior reconstructions of North Sea Ice extent from Clark 
et al. (2012), split into (a) Scenario one with a southward flowing North 
Sea lobe down the east coast and which retreated to the north, and 
(b) Scenario 2 with retreat mostly directed toward the west following 
separation of the two ice sheets and loss of a southern North Sea ice dome, 
and (c) compared to the simulated Dogger Bank ice dome in our ice sheet 
modeling.
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A North Sea ice dome would require a low equilibrium line and should be evident from relative sea level 

records around the North Sea (Hughes et al., 2016). Topographically or climatically, the southern North 

Sea is not an intuitive area to reconstruct an ice dome. Despite this, the empirical data in the North Sea is 

sufficiently sparse to not exclude these simulations from the NROY subset. The simulations are likely not 

reproducing the actual deglaciation pattern, but cannot entirely be ruled out by the data.

5. Conclusions

We completed an ensemble of simulations of the deglaciation of the North Sea sector of the Eurasian Ice 

Sheet complex, using the BISICLES ice sheet model, simulating deglaciation in a manner that conforms 

with the majority of empirical evidence for the first time. We used a suite a quantitative model-data com-

parison tools to compare simulations to a large amount of empirical evidence. The simulations show that 

the Norwegian Channel Ice Stream was influential in the separation of the British-Irish Ice Sheet and the 

Fennoscandian Ice Sheet, retreating through the interaction of Marine Ice Sheet Instability, elevation-lapse 

rate effects, and ice dynamics feedbacks. The retreat of the Norwegian Channel Ice Stream has effects on 

the surrounding ice masses, and facilitates further retreat of the BIIS. The simulations are consistent with a 

reconstructed style of deglaciation beginning with retreat of the NCIS, and suggest retreat to the west of the 

Norwegian Channel while the NCIS remains extended is unlikely.

In the later stages of deglaciation, all NROY simulations produce a Dogger Bank ice dome, where ice re-

mains extensive in the North Sea while the BIIS has significantly retreated in the west. We find this to be a 

plausible alternative to the North Sea lobe, and hypothesize that a remnant Dogger Bank ice dome formed 

as a consequence of deglaciating an ice divide in the North Sea. The progress made here in simulating de-

glaciation dynamics that conforms with the majority of empirical evidence is possible because of improved 

simulation of marine ice sheet dynamics and the evolution of ice streams. This demonstrates the impor-

tance of using an ice sheet model of sufficient skill when simulating the future evolution of marine based 

ice sheets.

Data Availability Statement

We used a branch of the BISICLES ice sheet model, revision 3776 (https://anag-repo.lbl.gov/svn/BISICLES/

public/branches/slc_dev_2018). Output files and an example input file to reproduce the experiments have 

been archived independently (https://doi.org/10.17632/54hms3rsb7.1).
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