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Abstract: This paper provides an overview of multi-criteria decision analysis (MCDA) applications
in managing water-related disasters (WRD). Although MCDA has been widely used in managing
natural disasters, it appears that no literature review has been conducted on the applications of
MCDA in the disaster management phases of mitigation, preparedness, response, and recovery.
Therefore, this paper fills this gap by providing a bibliometric analysis of MCDA applications
in managing flood and drought events. Out of 818 articles retrieved from scientific databases,
149 articles were shortlisted and analyzed using a Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) approach. The results show a significant growth in MCDA applications
in the last five years, especially in managing flood events. Most articles focused on the mitigation
phase of DMP, while other phases of preparedness, response, and recovery remained understudied.
The analytical hierarchy process (AHP) was the most common MCDA technique used, followed by
mixed-method techniques and TOPSIS. The article concludes the discussion by identifying a number
of opportunities for future research in the use of MCDA for managing water-related disasters.

Keywords: multi-criteria decision analysis (MCDA); water-related disaster; floods; drought; disaster
management plan (DMP); systematic literature review (SLR); PRISMA

1. Introduction

Water-related disaster (WRD) events create complex problems, and solving these
problems requires knowledge and expertise from various disciplines, including the envi-
ronmental, economic, and social domains. Due to its multidisciplinary nature, multi-criteria
decision analysis (MCDA) is a popular way to analyze these problems. In this paper, we
first introduce WRDs and MCDA, followed by an analysis of MCDA techniques in manag-
ing disasters, explicitly focusing on flood and drought events.

A recent report from the United Nations Office for Disaster Risk Reduction (UNISDR)
stated about 90% of all natural disasters are WRDs. These disasters are caused by en-
vironmental control (climate variability), management control (inappropriate land use),
and socio-economic pressure (development and construction in high-risk areas) [1]. The
occurrences of various types of natural disasters from 1995 to 2014 are as follows: flood,
43%; storm, 28%; earthquake, 8%; extreme temperature, 6%; landslide, 5%; drought, 5%;
wildfire, 4%; and volcanic activity, 2% [2]. The impact of WRDs includes economic and
environmental damages, fatalities, reconstruction costs, aesthetic damage, disruption of
normal activities, loss of assets, and long-term or permanent loss of species [3]. For ex-
ample, social impacts include loss of life, population displacement, and other adverse
effects such as those on physical, mental, and social well-being. Losses and damages to
infrastructure and assets and discontinuation of services are among the impacts on the
economy. During the 2000–2010 period, Gopalakrishnan reported that WRDs resulted in
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87% of all total disasters, with 37% of the fatalities and 76% of the overall economic losses
from all disasters combined [4]. Flood and drought events have caused damages that cost
more than USD 0.4 billion, as recorded by the Centre for Research on the Epidemiology
of Disasters (CRED) [5]. Based on various studies, the impact of climate change, together
with improper land use planning, will amplify both events in frequency and intensity in
the future, which will cause more significant impacts on the economy, environment, and
human life [6,7].

From a management perspective, a disaster management plan (DMP) can be catego-
rized into four phases: mitigation, preparedness, recovery, and response [8,9] (these phases
are introduced and discussed in the next section in detail). In each DMP phase, the objective
to achieve is different, thus requiring a different set of criteria for a better actionable plan
and subsequent decision. However, criteria are often conflicting with each other. For
example, several social and environmental criteria may require high costs and too many
resources, which might not be possible due to financial and technical constraints. Therefore,
it is crucial to find the best possible trade-offs or compromises between these conflicting cri-
teria and objectives. In this context, MCDA offers techniques that support decision-making
when there are multiple conflicting criteria involved. They are practical and powerful tools
that facilitate the scientific integration of quantitative and qualitative analyses [9]. MCDA
has been used in various applications to manage natural disasters, such as in resilience
index estimation [10], flood hazard assessment [11], risk index estimation [12], and policy
development [13].

This study aims to review the literature and perform a critical assessment of MCDA
techniques used in flood and drought management. It provides in-depth information on
MCDA techniques for both events and identifies new potential research opportunities
according to the DMP phases for disaster management.

This paper is structured as follows: Section 2 describes this study’s background;
Section 3 explains the methodology; Section 4 reviews MCDA techniques for the manage-
ment of flood and drought events. Criticism of existing literature and future potential
research is provided in Section 5, followed by an overview of the conclusions in Section 6.

2. Study Background

The term “disaster” refers to an event causing destruction and suffering. More formal
definitions are provided by the Centre for Disaster Epidemiology Research (CRED) [14] and
the United Nations Office for Disaster Risk Reduction (UNDRR) [9]. These are provided
below for reference:

Definition by CRED: “a situation or event that overwhelms local capacity, requiring a request
for external assistance at the national or international level where an unforeseen and often sudden
event causes significant damage, destruction, and human suffering caused by nature or human.”

Definition by UNDRR: “a severe disruption to the functioning of a community or society
at any scale due to hazardous events interacting with conditions of exposure, vulnerability, and
capacity leading to one or more of the following: human, material, economic and environmental
losses, and impacts.”

Although the first definition focuses more on destruction and suffering, the second def-
inition has more emphasis on disruptions to communities. Nevertheless, both definitions
highlight the negative impact of these disasters.

The Asian Development Bank (ADB) reported that floods and droughts are considered
WRDs caused by climate change, temperature, and extreme precipitation [15].

2.1. Water-Related Disaster Events

Flood and drought events have been classified as the most frequent WRDs resulting
in damage to the economy and properties and loss of life [1–3]. Based on the WRD
events recorded by the Emergency Events Database (EM-DAT) of the Centre for Disaster
Epidemiology Research (CRED) [4], there were 1906 occurrences of floods and droughts
recorded worldwide between 2010 and 2020 (Table 1 shows the number of events yearly).
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In this period, 1732 of these occurrences were flood events. Approximately 30% of the
world’s population is estimated to reside in areas routinely impacted by floods or droughts.
The number of people at risk from floods alone is projected to rise to 1.6 billion in 2050 [2].
Therefore, efforts to minimize the impact and risk of floods and droughts should proactively
be taken by decision-makers.

Table 1. Number of flood and drought events (2000–2020).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flood 184 156 136 148 137 161 159 126 128 196 201
Drought 21 16 18 9 20 26 14 9 16 16 9

Based on studies and reports, disaster management control measures such as the
development of the risk assessment framework [5], policy-making [6], vulnerability assess-
ment [7], and early warning systems [8] indicate the urgency of managing these impacts. A
disaster management plan (DMP) offers various control measures such as decision-making
processes, assessment, evaluation, policy-making, data management, and technology
emergence to reduce and minimize flood and drought impacts.

2.2. Disaster Management Plan (DMP) Phases

There are two types of measures to minimize or prevent disaster hazards: struc-
tural and nonstructural. The United Nations Office for Disaster Risk Reduction (UN-
DRR) defined structural measures as the physical construction or application of engineer-
ing/technology to achieve disaster resistance and resilience. Dams, levees, flood control
reservoirs, floodwalls, rainwater harvesting systems, and runoff collection (surface and
underground) are examples of structural measures. Nonstructural measures focus more on
using expert knowledge, practices, or agreements to reduce disaster risks and impacts [9].
Developing flood risk maps and zoning maps, conducting assessment and evaluation,
preparing projection data, and developing early warning systems are examples of non-
structural measures that decision-makers can take to minimize and prevent the impact of
floods and droughts.

As a reactive measure, the four phases in DMP (mitigation, preparedness, response,
and recovery) have been referred to as a process to deal with the negative effects and pre-
vent disasters [10]. The mitigation activities focus on eliminating or minimizing disasters’
impact and risk through proactive measures before a disaster happens, such as policy
development, building codes, disaster-prone area identification, and vulnerability/risk
assessment. The objective of the mitigation phase is long-term planning [12,13]. Prepared-
ness activities reduce disasters’ impact in advanced planning with actionable measures
such as preparedness plans, emergency exercises/training, and implementation of early
warning systems. The aim is short-term planning and preparation to deliver an effective
response [12,13]. In the event of a disaster, immediate action is what is required in the
response phase. Recovery is the final phase in which the actions and measures are taken to
emphasize reconstruction and preserve life to support post-disaster continuity.

Through DMP activities, decision-makers are faced with a problem in identifying and
selecting the best activities and measures to be implemented in the management of floods
and droughts. Table 2 shows common problems and challenges faced by decision-makers.

Therefore, setting up objectives and identifying expected outputs or outcomes in
managing drought and flood events could be supported by identifying relevant criteria
using MCDA. Criteria obtained from the combination of experts’ knowledge and dataset
could improve flood and drought management by applying MCDA techniques.



Water 2021, 13, 1358 4 of 27

Table 2. Problems and challenges in decision-making for managing disasters.

No. Problem and Challenges DMP Phase Measure Type Example of Activities

1 Understanding disaster trends and
patterns (past and future disasters) Mitigation and Preparedness Nonstructural

Research and assessment
(development of inundation map
and projection events)

2
Understanding and choosing base
criteria, factors, and attributes for

the DMP
Mitigation and Preparedness Structural and

Nonstructural

1. Research and assessment
(development of hazard
and zoning maps);

2. Development of floodwall,
dams, wetlands, drainage
infrastructures, and others.

3 Development of indicators or
index for disaster risk reduction Mitigation Structural and

Nonstructural

Research and assessment
(vulnerability, readiness, and
adaptation index)

4
Factoring disaster risk

management and setting priorities
into policy development

Mitigation Nonstructural
Research and assessment
(identify, select, and rank
the criteria)

5

Data management and integration
(data collection, data accessibility,
and data availability) limiting the

capability and usability in
supporting decision-making

Preparedness Structural and
Nonstructural

1. Research and assessment
(feasibility study);

2. ICT infrastructure
preparedness.

2.3. Multi-Criteria Decision Analysis (MCDA)

MCDA can be described as a collection of techniques for comparing, ranking, and
selecting alternatives using quantifiable or nonquantifiable criteria [16,17]. MCDA has
been designed to address four types of problems [18,19]:

1. The choice problem, in which MCDA is used to select the best option from a set of
alternatives.

2. The sorting problem, in which MCDA is used to assign a set of alternatives to prede-
termined categories.

3. The ranking problem, in which MCDA is used to order the alternatives partially or
completely.

4. The description problem, in which MCDA is used to define alternatives, construct
a set of criteria, and determine all or some alternatives’ performance for the criteria,
considering additional information.

There are many academic discussions on the application of MCDA techniques in differ-
ent fields and domains. Kumar [13] explained MCDA as a process for assessing real-world
situations based on different qualitative/quantitative criteria in certain/uncertain/risky
environments to find a suitable course of action, choice, strategy, or policy among several
viable options. Zavadskas et al. [14] concluded that the implementation of MCDA is useful
in helping researchers and practitioners to solve real-life problems. Velasquez and Hes-
ter [15] provide detailed guidance about implementing MCDA techniques in various social,
economic, and environmental domains such as energy, water management, transportation,
medical, and public policy.

The most widely used MCDA methods are described as follows:

• Analytical hierarchy process (AHP): Formulates the decision into a hierarchy of criteria
and uniquely uses pairwise comparisons provided by experts’ judgments to elicit
preferences [20]. These preferences are then aggregated to provide recommendations.

• Analytic network process (ANP): Technique used to model a problem (hierarchic or
a network structure) to represent the problem, as well as pairwise comparisons to
establish relations within the structure [21].

• Data envelopment analysis (DEA): Linear programming technique used to measure the
relative efficiencies of alternatives [22]. The method can be used to find the efficiency
of the combination of multiple inputs and multiple outputs of a problem [20].

• Weighted sum model (WSM): A simple method for evaluating alternatives with
different criteria that are expressed in the same units [20]. The value function is
established based on a simple addition of scores for each alternative with respect
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to each criterion, multiplied by criteria weights [23]. This method is also known as
simple additive weighting (SAW).

• Weighted product model (WPM): Similar to WSM/SAW, except that multiplication is
used for aggregation instead of addition [24].

• Goal programming (GP): An analytical approach devised to address decision-making
problems where targets have been assigned to all the attributes and where the decision-
maker (DM) is interested in minimizing the nonachievement of the corresponding
goals [25].

• Elimination and choice translating reality (ELECTRE): A family of methods that utilize
outranking relations to select, sort, or rank alternatives [23].

• Multi-attribute utility theory (MAUT): A methodology to incorporate risk preferences
and uncertainty into multi-criteria decision support methods [26].

• Simple multi-attribute rating technique (SMART): A method very similar to WSM
where all performance scores are measured/rated on a scale of 0 to 100 and then
aggregated using the weighted sum approach [15].

• Preference ranking organization method for enrichment of evaluations (PROMETHEE):
A family of methods that utilize outranking relations for identifying: partial rank-
ing (I), complete ranking (II), interval ranking (III), complete or partial ranking (IV)
for a continuous solution, segmentation constraints problems (V) and human brain
representation (VI) [27].

• Technique for order preferences by similarity to ideal solutions (TOPSIS): Used to
identify an alternative that is closest to an ideal solution and farthest from a negative
ideal solution. The distances are usually measured in terms of Euclidean distance [23],
although other distances are also possible.

• Simulated uncertainty range evaluations (SURE): Allows the decision-maker to pro-
vide minimum, maximum, and most likely values for each alternative with respect to
each criterion. The WSM method and simulations are used to calculate distributions
that represent the strength and uncertainty of each alternative [28].

Based on the strengths and weaknesses of MCDA techniques summarized in Table 3,
the choice for MCDA techniques may depend on the objective and complexity of the
problem. Decision-makers should consider factors such as the type of problem, decision
goal, data volume, number of criteria, ease of use, consistency, and type of analysis during
MCDA technique selection. This study investigates which of these techniques will work
better in managing disaster events according to four phases of the disaster management
plan (mitigation, preparedness, response, and recovery). This is an important research area
that requires investigation to improve questions in (a) criteria identification and selection,
(b) MCDA technique selection, and (c) MCDA technique application in the DMP phases. In
total, 149 articles were reviewed to investigate this question. We discuss our methodology
used to conduct this study in the next section.
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Table 3. Strengths and weaknesses of MCDA techniques.

MCDA
Techniques Strengths Weaknesses

Analytic hierarchy process (AHP) [15,20,23,29]

1. Formulates the problem into a hierarchical
structure that is easy to understand
and communicate;

2. Allows inconsistencies in judgments
and comparisons.

1. The threshold of 0.1 for rejecting inconsistent
judgments remains questionable;

2. Prone to rank reversal;
3. The number of pairwise comparisons required

can be high for medium to large
decision problems.

Analytic network process (ANP) [20]
1. Independence among elements is not

required (unlike AHP);
2. Is considered more accurate than AHP for

eliciting preferences.

1. Even more pairwise comparisons are required
than AHP from the decision-maker due to the
network structure;

2. Uncertainty is not supported;
3. Difficult to understand and communicate due to

complex interactions among criteria
and alternatives.

Data envelopment analysis (DEA) [15,20,22]
1. The relation between inputs and outputs is

not necessary;
2. Inputs and outputs can have very

different units.

1. Measurement errors can drastically affect the
model and the results;

2. Not suitable for large problems due to
increased complexity;

3. Does not deal with imprecise data.

Weighted sum model (WSM), or simple additive
weighting (SAW) [15,20]

1. Ability to compensate among criteria (as
with AHP);

2. Easier to comprehend due to simple
arithmetic operations.

1. Susceptible to the trap of averages [30];
2. All criteria must have the same units (or must

be translated into the same units).

Weighted product model (WPM) [20] 1. Ratios are used so there is no dependence on
the unit of measurement.

1. Does not support 0 in the weights; all criteria
must have nonzero weights.

Goal programing (GP) [15,20,26] 1. Handles large numbers of variables,
constraints, and objectives.

1. Setting of appropriate weights;
2. Needs to be combined with other MCDA

methods to weight coefficients.

Elimination and choice translating reality
(ELECTRE) [15,20,23,26]

1. Takes uncertainty and vagueness into
account;

2. Supports the idea of veto, which is not
possible in other methods.

1. Its process and outcomes are usually difficult to
explain to nontechnical people;

Multi-attribute utility theory (MAUT) [15,26,29] 1. Takes uncertainty into account. 1. Preferences need to be precise.

Simple multi-attribute rating technique
(SMART) [15,29]

1. Considered simpler than other methods;
2. Requires less effort by decision-makers.

1. The procedure may not be convenient
considering the framework.

PROMETHEE [15,26,27] 1. Supports indifference;
2. Supports visual aid (called GAIA).

1. Does not provide a clear method by which to
assign weights.

Technique for order preferences by similarity to
ideal solutions (TOPSIS) [15,23]

1. Takes into account both the best possible and
worst possible options/scenarios;

2. Supports any form of distance measures
(Euclidean, Manhattan, Chessboard, etc.).

1. Does not consider the attributes correlation;
2. Each dimension has different units, so

combining different dimensions
needs justification.

Simulated uncertainty range evaluations
(SURE) [28]

1. Able to visualize the strength and uncertainty
of each alternative;

2. Simple method to understand.

1. The decision-maker may still need to make a
choice of which alternative to select if there are
many overlapping uncertainties.

3. Methodology

There is a vast amount of literature on MCDA techniques and applications for natural
disasters in general, and WRD has been discussed in many academic papers and govern-
ment reports. Based on a broad and extensive search, this paper discusses the current
development studies published between the years 2000 and 2020. The publication article
selection aligns with the issues related to managing water-related disasters, specifically
flood and drought events. These issues have been discussed, debated, and reported at
international and national levels. The articles discussed in this paper are selected from
published journals, articles presented at conferences, and articles published in proceedings.

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
was used in this study based on its structured and well-organized process flow, which is
evidence-based with minimum criteria set [16–19,31]. A comprehensive set of articles was
collected based on the study setting, but some papers were likely unintentionally missed
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during the search process. A thorough article search was conducted based on four phases:
identification, screening, eligibility, and inclusion, as illustrated in Figure 1.
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3.1. Identification of the Key Research Question

This paper aims to ascertain the current development and application of MCDA tech-
niques in managing flood and drought events over 20 years, providing a comprehensive
study to explore new research opportunities in the future. MCDA trends in managing
floods and droughts can be identified by analyzing the findings based on the MCDA
techniques in the DMP phases. This study explores new research opportunities in ap-
plying the new MCDA techniques, MCDA application in the DMP phases, and criteria
identification and selection, which will be of benefit to the MCDA research and disaster
management domains.

3.2. Identification of Relevant Articles

The Web of Science (WoS) database was queried using 10 combinations of keywords
related to the topic. Table 4 shows the list of keywords used for the online search queries.
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The keywords were selected to cover a broad investigation related to MCDM, MCDA,
natural disasters, floods, and droughts.

Table 4. Keywords and syntax used for online article query.

No. Keyword Keyword Code

1 “MCDM” AND “flood” KW1
2 “MCDA” AND “flood” KW2
3 “MCDM” AND “drought” KW3
4 “MCDA” AND “drought” KW4
5 “Multi-criteria decision making” AND “drought” KW5
6 “Multi-criteria decision analysis” AND “drought” KW6
7 “MCDA” AND “natural disaster” KW7
8 “MCDM” AND “natural disaster” KW8
9 “Multi-criteria decision making” AND “flood” KW9

10 “Multi-criteria decision analysis” AND “flood” KW10

The initial online search resulted in identifying 818 articles based on the keywords in
Table 4. The identification phase is shown in Figure 1 at the first phase on the top of the
flow diagram. Citations of the identified articles were automatically extracted and exported
into EndNote for further analysis. EndNote identified that 356 articles were duplicates;
these articles were excluded, leaving 462 articles remaining.

3.3. Selection of the Relevant Articles: Inclusion and Exclusion Criteria

As mentioned earlier, PRISMA was used to carefully select the relevant articles for
this study. Figure 1 illustrates the flow process, which summarizes the phases adopted to
select the research articles eligible for detailed analysis.

In the screening phase, the titles and abstracts of the shortlisted 462 articles were
manually read and assessed, out of which 309 articles were found to be out of the scope of
this study, and thus only 153 remaining articles were considered for further analysis. A
detailed analysis was carried out for these 153 articles by carefully examining the whole
text. This detailed analysis identified four more articles that were not relevant to this study
as they were not related to the use of MCDA techniques for flood and drought events; thus,
they were also excluded. The final number of relevant publications used for this study was
149 articles.

3.4. Reporting and Summarizing the Results

As a first step, the metadata on the 149 relevant articles were extracted and compiled.
This metadata included the authors’ names, publication title, year of publication, MCDA
techniques mentioned, the DMP phases, and the criteria. A detailed analysis of these meta-
data was conducted using both quantitative and qualitative approaches. The descriptive
statistics were gathered to identify patterns and trends, while the qualitative and narrative
approaches were used to present and discuss the results. All these analyses are presented
in Sections 4 and 5 below.

4. Findings

The literature review identified an upward trend in using MCDA techniques for
managing floods and droughts, specifically in the mitigation phase, based on their usage
and popularity in decision-making. Most of the MCDA techniques have been applied as a
single method; however, mixed-method techniques have increased in popularity. There is
a significant gap between MCDA technique applications according to DMP phases where
future works should be considered. Examples include MCDA technique selection (single
or mixed-method approach), MCDA criteria selection and identification (quantity versus
quality), selection of disaster events for the future case study, and MCDA application in
other DMP phases.
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4.1. Trends of Articles Based on 10 Keywords from 2000 to 2020

The keyword search shown in Figure 2 shows an upward trend of publications from
2017 to 2020. The trend of eligible articles shows the same pattern; the number of articles
related to MCDA techniques for flood and drought events is expected to increase, as shown
in Figure 3. In 2020, fewer articles were produced, despite the number of flood and drought
occurrences increasing in 2020 (Table 1). The reason fewer articles were produced in 2020
might be due to the COVID -19 pandemic and change in the research focus. There might
be a number of reasons for the decreased number of publications, which we believe is an
area of further investigation.
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Figure 2. Trend of article distribution based on 818 articles (Identification Phase).

Based on the findings, it is evident that the MCDA techniques have been applied
extensively to assist decision-makers in the flood and drought management processes. It is
worth highlighting that there is an enormous growth in the number of publications from
2015 onward. This might be linked to the United Nations Sustainable Development Goals
(SDG 2030), set in 2015; however, there is no study establishing or verifying this link.

The distribution of the articles is shown in Table 5, where rows represent different sets
of keywords used for search while columns represent the years of publication. The table
highlights that KW7 and KW8 did not retrieve any relevant articles for this study. Please
note that these keywords did return a number of articles, but all were filtered out after
running through the selection and eligibility criteria. This is perhaps due to the use of the
generic term “natural disaster” in KW7 and KW8, which returned a high number of articles
but was too broad in the sense that it might discuss some other natural disaster instead of
flood or drought. In some cases, the article was filtered out because it was not discussing a
specific case study. Nevertheless, it is still subjective and open to further investigation of
the factors that might influence MCDA applications for flood and drought management.
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Table 5. Distribution of eligible articles based on search keywords.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

KW1 [32] [33] [34,35] [36,37] [38–40] [41–52]

KW2 [53] [54] [55] [56] [57–65]

KW3 [66] [67] [68] [69]

KW4 [70] [71] [72]

KW5 [73] [74] [75] [76,77] [78] [79] [80]

KW6 [81] [82] [83] [84] [85]

KW7

KW8

KW9 [86] [87] [88] [89,90] [91] [92,93] [94,95] [96] [97–100] [101–105] [106–112]

KW10 [113] [114] [115] [116] [117,118] [119–130] [131–142] [143–149] [150–160] [161–176] [177–180]

4.2. Trends of Articles Based on WRD and DMP

This study shows that 87% (129 articles), as shown in Table 6, focused on applying
MCDA techniques in flood management events compared to droughts. The number of
flood events recorded, together with the potential increase and reoccurrence of flood events
in the future, might contribute to the selection of disaster events in previous studies. There
are a great number of studies on the mitigation phase, with 70% (104) of the articles focusing
on this phase (as shown in Table 7). There is still a lack of literature on MCDA techniques
for both disaster events in other DMP phases (preparedness, response, and recovery). In
this paper, the findings might be influenced by the results and outcome of mitigation action,
which affected the application of the MCDA technique in other DMP phases in reducing
and minimizing the disaster risks and impacts.

Table 6. Categorization of articles based on WRD events.

WRD No. of Articles Articles

Flood 129 [32–65,86–180]
Drought 17 [66–70,73,74,76–85]

Drought and Flood 3 [71,72,75]
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Table 7. Categorization of articles based on DMP.

DMP Phase No. of Articles Articles

Mitigation 104

[33–35,40,41,45,49–52,54–58,60–65,70,71,73,74,76–78,80,82–
91,94,95,97–100,102,103,108,109,111–114,116–

128,130,133,136–138,141,143–152,154–157,159–163,165–
169,171,172,174,175,177–179]

Preparedness 30 [36,38,39,43,44,46–48,53,61,66,67,69,79,81,104–
107,110,129,131,132,134,135,139,140,142,164,170]

Response 13 [32,37,72,75,92,93,96,101,115,158,173,176,180]
Recovery 2 [68,153]

Although there is no correct sequence of phases to be followed in the DMP, under-
standing the requirements and impacts of each phase is important. It is imperative to
consider the importance of each phase equally to support decision-makers in the man-
agement of flood and drought events. Even though mitigation is the most prominent
phase focused on by decision-makers, it can be argued that studying other DMP phases
(preparedness, response, and recovery) is also important and might improve the decision-
making processes for managing these disasters. Therefore, MCDA applications in other
DMP phases are discussed separately in Section 5.1 in detail.

4.3. MCDA Technique for WRD Events

Based on the analysis shown in Figure 4, the application of a single MCDA technique
is more preferred compared to the combination of multiple techniques. This paper has
identified AHP, mixed-methods, and TOPSIS as the top three MCDA techniques applied
to manage floods and droughts. These techniques represent 80% (120) of articles, which
indicates that the strengths and weaknesses of the MCDA techniques might influence the
selection of MCDA techniques in flood and drought management. For instance, numerous
studies use the AHP technique, and it can be argued that this generates a herd behavior
where other researchers also tend to choose the AHP technique due to its wide use. This
will allow replication and expansion of this technique in other studies.

Meanwhile, mixed-method techniques are attracting attention due to their ability to
improve and better justify the decisions related to managing flood and drought events.
However, identifying a correct combination among MCDA techniques for the mixed-
method approach would be an interesting area to investigate further.

Table 8 shows the classification of MCDA techniques based on WRD events. Details
on the distribution pattern for AHP, mixed-methods, and TOPSIS techniques based on
WRD for the last 20 years are shown in Figure 5. Due to the higher frequency of events and
their severity, floods are the most researched disaster event, resulting in a lack of references
on the MCDA technique for drought management. It is interesting to explore two potential
areas of study from this finding. Firstly, the study of the viability of other MCDA techniques
such as ELECTRE, NAIADE, and CBD in flood and drought management (feasibility and
compatibility study) and the possibility of utilizing the same flood management criteria in
drought management will benefit countries experiencing both extreme events in terms of
data (availability, quantity, and quality), time (data collection, process, and analyzing), and
cost associated with managing flood and drought events. Secondly, if further research on
the application of the MCDA techniques for drought is undertaken, it could be beneficial
in managing the disasters.

4.4. MCDA Application Based on DMP

Table 9 shows the MCDA techniques’ mapping according to the DMP phases and
events in this study. The findings show that the top three MCDA techniques identified in
this study focus on the mitigation phase compared to other phases. Out of 104 articles on
mitigation, 43 articles were related to AHP and 8 were related to TOPSIS. Interestingly, 21
of these articles discussed the use of mixed-methods. There is a significant gap in MCDA
applications between mitigation among other DMP phases (preparedness, response, and
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recovery). It can be concluded that mitigation has been receiving attention from decision-
makers as part of long-term strategic planning in managing these disasters.
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In the DMP context, it is questionable whether the MCDA techniques should be
implemented in all DMP phases as a structured and cohesive approach to improve overall
decisions in disaster management. Although there is a lack of studies conducted on other
phases, it is important to explore the possibility of integrating MCDA in other phases of
DMP to make a collective and comprehensive disaster management plan. Equal attention
should be given to all DMP phases for better planning and strategizing. Decision-makers
should explore the potential of incorporating the MCDA technique into each phase of DMP
in order to improve the decision results.
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Table 8. Classification of MCDA techniques based on WRD events.

MCDA Technique No. of Relevant
Articles Flood Drought Drought and

Flood

Analytic hierarchy
process (AHP)

Flood: 57
Drought: 9

Drought and Flood: 2

[40,47,48,51,52,55,57–59,61,62,
90,95,101,106,108,109,111–

113,115,117,121,124,125,127,
131,133,135,136,139,141,144–

149,151–154,157–159,161–
164,166,167,170–172,178–180]

[66,76–81,84,85] [71,75]

Mixed-methods
Flood: 33

Drought: 6
Drought and Flood: 0

[34,36,38,42–46,49,50,53,63–
65,88,89,93,97,98,102,105,107,

122,123,128–
130,140,156,160,165,176,177]

[67–69,73,74,83] -

Technique for the order of
prioritization by similarity
to ideal solution (TOPSIS)

Flood: 13
Drought: 0

Drought and Flood: 0

[39,41,91,94,96,99,100,116,134,
138,142,155,173] - -

Analytic network
process (ANP)

Flood: 7
Drought: 0

Drought and Flood: 0
[33,37,87,103,104,110,174] - -

Preference ranking
organization method for

enrichment of evaluations
(PROMETHEE)

Flood: 6
Drought: 0

Drought and Flood: 1
[35,60,118,126,143,175] - [72]

Compromise programming
(CP)

Flood: 5
Drought: 0

Drought and Flood: 0
[56,86,114,119,120,132] - -

Simple additive weighting
(SAW), or weighted sum

model (WSM)

Flood: 4
Drought: 0

Drought and Flood: 0
[32,54,137,150] - -

Entropy
Flood: 2

Drought: 0
Drought and Flood: 0

[168,169] - -

Choose by
disadvantages (CBD)

Flood: 1
Drought: 0

Drought and Flood: 0
[56,86,114,119,120,132] - -

VIKOR
Flood: 1

Drought: 0
Drought and Flood: 0

[92] - -

Elimination and
choice translating
reality (ELECTRE)

Flood: 0
Drought: 1

Drought and Flood: 0
- [82] -

Novel approach to
imprecise assessment

and decision
environment (NAIADE)

Flood: 0
Drought: 1

Drought and Flood: 0
- [67–70,73,74,83] -

From criteria identification and selection perspectives, the concept of data analytics,
especially on big data, could be further explored to understand the impact (quantity vs.
quality) of numerous criteria on the MCDA results. New data creation such as projection
data, social media data, structured and unstructured data might influence decision-makers
to identify and select criteria in MCDA technique application for managing disaster events.

4.5. Application of MCDA Mixed-Method Techniques

Although the most common and popular MCDA techniques are single techniques
such as AHP and TOPSIS, mixed-method techniques have been becoming prominent in
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disaster management applications in the last five years, as shown in Table 10. In this study,
39 out of 149 articles discussed the MCDA mixed-method technique application, where
61% (24 articles) of these mixed-method technique articles focus on the mitigation phase.
Table 11 shows the mapping of mixed-method techniques in the mitigation phase, while
Table 12 shows the mapping of mixed-method techniques applications for preparedness,
recovery, and response phases.

Table 9. Overall classification of MCDA techniques based on WRD events and DMP.

MCDA
Technique

Flood Drought Drought and Flood

MIT. PREP. REC. RESP. MIT. PREP. REC. RESP. MIT. PREP. REC. RESP.

AHP

[40,51,52,55,57,
58,61,62,90,95,
108,109,111–

113,117,121,124,
125,127,133,136,

141,144–
149,151,152,154,

157,159,161–
163,166,167,171,

172,178,179]

[47,48,59,106,
131,135,139,

164,170]
[153] [101,115,

158,180] [76–78,80,84,85] [66,79,81] - - [71] - - [75]

Mixed methods

[34,42,45,49,50,
63–65,88,89,97,
98,102,122,123,

128,130,156,160,
165,177]

[36,38,43,44,
46,53,105,107,

129,140]
- [93,176] [73,74,83] [67,69] [68] - - - - -

TOPSIS [41,91,94,99,100,
116,138,155] [39,134,142] - [96,173] - - - - - - - -

ANP [33,87,103,174] [104,110] - [37] - - - - - - - -

CBD [56] - - - - - - - - - - -

CP [86,114,119,120] [132] - - - - - - - - - -

ELECTRE - - - - [82] - - - - - - -

Entropy [168,169] - - - - - - - - - - -

NAIADE - - - - [70] - - - - - - -

PROMETHEE [35,60,118,126,
143,175] - - - - - - - - - - [72]

SAW/WSM [54,137,150] - - [32] - - - - - - - -

VIKOR - - - [92] - - - - - - - -

Note: MIT—mitigation; PREP—preparedness; REC—recovery; RESP—response.

Table 10. Distribution of MCDA mixed-method techniques from 2000 to 2020.

Year 2000–2005 2006–2009 2010–2015 2016–2020

No. of Articles 0 1 10 28
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Table 11. Application of mixed-method techniques in the mitigation phase.
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[160] x x x
2 [88] x x x x x
3 [89] x x
4 [97] x x x
5 [98] x x
6 [102] x x x
7 [165] x x x
8 [122] x x x x x x
9 [123] x x
10 [177] x x x x x
11 [128] x x
12 [156] x x
13 [34] x x
14 [130] x x
15 [42] x x
16 [45] x x
17 [49] x x
18 [63] x x
19 [64] x x
20 [50] x x x
21 [65] x x

22

D
ro
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ht [73] x x

23 [74] x x
24 [83] x x

Table 12. Application of mixed-method techniques for preparedness, recovery, and response phases.

No.

D
M

P
Ph

as
e

W
R

D

A
rt

ic
le

A
H

P

T
O

PS
IS

SA
W

/W
SM

PR
O

M
ET

H
EE

C
P

EL
EC

T
R

E

V
IK

O
R

A
N

P

D
EM

A
N

T
EL

O
W

A

W
PM

M
A

U
T

C
R

IT
IC

1

Pr
ep

ar
ed

ne
ss

Fl
oo

d

[38] x x
2 [140] x x
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The findings suggest that the mixed-method techniques help address the limitations of
a single method. For example, the techniques of AHP [93], TOPSIS [156], and VIKOR [165]
had been used individually in the past for investigating flood hazard susceptibility in
order to identify flood-prone areas, but recently, Arabameri et al. [103] proposed the use
of mixed-method techniques for this purpose. They used AHP to weight the importance
of criteria and applied TOPSIS and VIKOR to assess the flood-prone areas [103]. Another
example is the use of SAW/WSM for criteria weighting while using PROMETHEE to
evaluate and rank the criteria in determining the optimal measures for flood risk [130].

In a mixed-method technique, a combination of the MCDA techniques could be ex-
plored further. Although AHP is the most commonly used technique to combine with other
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techniques, other techniques such as PROMETHEE, MAUT, and composite programming
were also used in the mitigation phase. We also found that ANP, CRITIC, and WPM were
rarely applied in preparedness, response, and recovery. Therefore, in applying the mixed-
method technique, decision-makers need to consider suitable combinations of techniques
to ensure the best results based on mixed methods. It is also important to understand
the practicality of using a mixed-method technique based on criteria perspectives such as
relevance and uncertainty, data availability, and stakeholder and expert opinions.

There were few mixed-method technique applications in other DMP phases. Decision-
makers should consider introducing and applying the MCDA techniques in other DMP
phases. This approach will provide a systematic solution in each step of the DMP to
improve the overall decision-making outcome.

4.6. Criteria Selection in MCDA Application

As MCDA considers multiple criteria, criteria identification and selection are impor-
tant to support decision-making. In this study, the number of criteria used was found to
range from 2 to 54, where for flood events, the minimum number of criteria used was 2, and
the maximum was 54. Meanwhile, for drought events, the minimum number of criteria
was 3, and the maximum was 17. Based on the number of criteria used in MCDA, criteria
quantity and quality (relevance, certainty, and uncertainty) could affect the decision result;
thus, decision-makers must identify and select the most relevant criteria to be applied
in MCDA.

Types of criteria are also critical based on decision problems. In this study, gener-
ally, most of the criteria were selected from hydrology or environment domains such as
rainfall, land use, river network, and water storage. Concurrently, other criteria such as
population density, gender, age, education, disaster policy, disaster loss, gross domestic
product (GDP), economic activities, and technology have also been used for flood and
drought management.

Due to various criteria being covered in managing these disasters, criteria identifi-
cation and selection based on macrodomain and microdomain analysis for each disas-
ter would improve the selection of criteria in terms of quantity and quality of criteria.
Thus, it would ensure that the decision result is more efficient and effective in managing
the disasters.

5. Discussion and Research Opportunities

The findings discussed in Section 4 show that most MCDA techniques have been
applied to manage flood events. The high number of flood events recorded and their
impacts may influence the pattern of MCDA techniques in this study. The selection of the
MCDA technique may affect the decision results. Therefore, understanding the strengths
and weaknesses of these MCDA techniques should help decision-makers improve the
quality of their decisions. This study has provided an overview of the use of the MCDA
techniques for managing flood and drought events, intending to enhance the understanding
and exposure of MCDA techniques for concerned decision-makers.

Based on DMP phases, the findings highlighted MCDA techniques’ application con-
centrating on the mitigation phase compared to other phases. As mitigation focuses on
prevention for long-term planning, this phase is significant to assist decision-makers in
developing comprehensive and collective strategic planning. In contrast, preparedness,
response, and recovery are focused on short-term planning, which focuses more on opera-
tional planning. It can be argued that the lengthy process of structuring decision problems
is only suitable for long-term planning. In contrast, most short-term planning decisions
might have deadlines and other constraints that end up in making quick and intuitive
decisions. On the contrary, it can also be argued that these short-term planning decisions
can be improved by developing a process based on historical data on previous similar deci-
sions and creating MCDA structures based on these historical data. This will make MCDA
techniques useful even for situations where time is of critical importance. Considering



Water 2021, 13, 1358 17 of 27

the latter argument, disaster management can be improved with MCDA techniques for
strategic and operational planning.

5.1. Research Opportunities

The findings show a lack of study on several areas of MCDA application for flood and
drought management. First of all, only a handful of MCDA techniques have been applied
in this area, leaving a number of other techniques still to be explored and used. Then there
is an issue of using only a handful of criteria in these case studies; that is, most of the
studies were limited to the environmental and social factors (or criteria). It can be argued
that these case studies should be revisited by considering other important factors such as
economic, technical, and political criteria. Another important finding is that most of the
studies focused on the mitigation phase of DMP. The other three phases were relatively
less explored and studied within the context of MCDA applications. Last but not least, our
analysis suggests that case studies on drought events are almost nonexistent, which is an
important gap to be filled in this area.

To summarize, four areas of study can be considered as opportunities for future
research, namely (a) using other MCDA techniques, (b) considering more criteria, (c) using
MCDA in other DMP phases, and (d) investigating drought events. These four areas are
discussed below in more detail.

5.1.1. Using Novel MCDA Techniques

Although AHP, mixed-method techniques, and TOPSIS have dominated the types
of MCDA techniques used for flood and drought disasters, further studies should be
conducted to explore the possibility of other techniques that might improve decision results.
In the mixed-method techniques, the feasibility and compatibility of other techniques to be
combined together would be an interesting area to be explored. This will allow the decision-
makers to see the effectiveness of combined techniques in the quality of the decision results.
Regardless of either single or mixed-methods techniques being applied, a comparative
study can continuously be conducted to see the resulting effectiveness based on different
MCDA techniques. For instance, understanding the selection of MCDA technique (what
and why) in flood or drought management using the MCDA approach could be further
explored to understand how MCDA could improve decision results in flood and drought
management.

Table 13 summarizes the pros and cons of using different MCDA techniques in man-
aging water-related disasters. The table rates each method against a list of important
characteristics. There are X and × symbols used to highlight whether the method sup-
ports or doesn’t support these characteristics. For example, looking at the first row and
first column, AHP is considered a suitable method when communicating to non-technical
people, however, looking at the next column, ANP is considered an unsuitable method
for this purpose. Please note that the boldified tick symbol X is used to emphasize on
methods that are highly suitable. For example, in the second row, AHP, ANP and SURE are
highly suitable methods for situations where inconsistencies should be allowed in human
judgments. The table might help relevant decision experts to choose the most appropriate
MCDA techniques for their decision problem in their environment and context.

5.1.2. Considering More Criteria

Selecting criteria to be applied in MCDA required a thorough investigation. Selecting
relevant and rightful criteria would affect the decision result; thus, it is important to identify
and select the suitable criteria for flood and drought disaster management. For instance,
a study to understand the relevance criteria for flood and drought management could
expand decision-makers’ options for criteria selection in the MCDA approach. The number
of criteria should be considered, and data that would support the criteria also need to be
inspected. The criteria quality and quantity used in MCDA can be studied further from
both a microdomain and macrodomain viewpoint. Criteria analysis using analysis models



Water 2021, 13, 1358 18 of 27

such as strengths, weaknesses, opportunities, and threats (SWOT) or political, economic,
social, technological, environmental, and legal (PESTEL) could be used to identify the
most relevant and suitable criteria based on expert’s opinion and judgment and finite data
availability.

Table 13. Pros and cons of using different MCDA techniques in managing water-related disasters.

A
H

P

A
N

P

D
EA

W
SM

W
PM G
P

EL
EC

T
R

E

G
re

y

M
A

U
T

C
B

R

SM
A

R
T

PR
O

M
ET

H
EE

T
O

PS
IS

SU
R

E

Communicating to nontechnical people X × × X . × × . X . X × X X

Allows inconsistencies in human judgments X X . . . . . X . X . . . X

Robust against rank reversal × . . × . . X . . . × . . ×

Criteria can have different units of measurement X X X × X X X X X X . X . X

Takes uncertainty into account . . . . . . . X . X . . . X

Supports indifference and vetoes × × . × × . X . × × × X . ×

One criterion compensates for others X X . X X . × . X X × X X

Robust against the trap of averages × × . × × X X . × X × X X ×

Easier to compute × × . X X . × . X . X × X .

Can be applied to any size of problem × × X X X X × X X × X . X X

Can adapt to slight changes X X . . . . . X . X . . . .

Can be supported with visual aid X . X X X . × . . × X X X X

5.1.3. Considering Other DMP Phases

MCDA applications in the DMP phases focused more on the mitigation phase for
both disaster events. Future research could be conducted on MCDA application in other
DMP phases as a structured disaster management approach. A study on uniformity
for criteria analysis technique might be applied in every phase of DMP to improve the
decision result regardless of the MCDA technique. With a homogeneous criteria analysis
technique applied throughout the DMP phases, it could be an interesting area to investigate
how MCDA could impact the decision result in disaster management. For example, a
comparative and feasibility study could be conducted to analyze and identify effective
and suitable techniques for managing floods or droughts in all phases of DMP. This would
give the decision-makers a basis to decide the potential MCDA technique to be applied in
flood and drought management based on the availability of finite datasets, opinions, and
stakeholders’ judgments.

5.1.4. Investigating Drought Events

While flood events are gaining more attention as a case study in disaster management,
the focus on MCDA for drought events also can be expanded for future reference by other
studies. Replication and extension of MCDA for flood events could be applied to drought
events, such as selecting and ranking drought-prone areas, developing a drought risk
map, and setting criteria of drought vulnerability. Since drought and flood will mostly
be using the same criteria, the study on drought events could be conducted with slight
adjustments to criteria such as pattern changes in rainfall and temperature and alternative
water (groundwater alternative). Despite a lack of studies focusing on drought events, there
are opportunities to explore drought management based on the other phases of DMP. For
example, a potential study of MCDA techniques such as PROMETHEE, ELECTRE, compro-
mise programming, or ANP in managing drought events for preparedness, response, and
recovery phase could be investigated further on the feasibility and effectiveness of MCDA
techniques. These studies would be of interest to academics working in decision-making,
policymaking and governance, MCDA techniques, environment, or engineering areas.

Adaptation of MCDA techniques may support decision-makers in both operational
and strategic planning. MCDA techniques may be applied directly or indirectly in the
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context of DMP for structural or nonstructural measures. Table 14 summarizes the possible
measures (structural and nonstructural) identified in this study. The examples of the MCDA
type of problem shown in Table 14 give an idea and overview of how the MCDA techniques
can be implemented to solve weightage, ranking, and prioritizing the type of problem
for managing flood and drought events. The possible measures listed in Table 14 are not
finite; further study on other possible measures is required, which involving policymakers,
hydrology, environment, social, and economic experts to produce and develop more
constructive flood and drought measures. This will help decision-makers to improve the
decision to reduce risks and impacts of these disasters in the future.

Table 14. Possible measures according to DMP.

No. DMP Phase Probable Flood and Drought Measures Example of Type MCDA Problem

1 Mitigation

Flood and drought hazard mapping

1. To choose flood and drought plain maps to be used for
recovery action;

2. To sort the best-suitable flood and drought maps to be used for
long term planning;

3. To rank the flood and drought maps based on criteria set by
decision-makers.

Possible advanced and strategic planning
(example: forecasting, projection, prediction,
and real-time disaster information collection)

1. To choose the best-fit forecasting data to be used in the
development of inundation and hazard maps;

2. To select the most suitable developed hazard and inundation maps
to be used in managing disaster events;

3. To rank the best possible projection data to be used in
index assessment;

4. To rank the best-fit hazard map to be implemented.
Possible disaster risk and reduction assessment
Examples:

1. Flood/drought vulnerability index;
2. Flood/drought inundation maps;
3. Flood/drought readiness index;
4. Flood/drought adaptation index and

hazards maps).

To choose, sort, rank, and describe criteria, factors, indicators, and
parameters to be used in conducting the assessment

Development of zoning map To choose, sort, and rank the zoning maps for operational and strategic
planning (short term and long-term plan)

2 Preparedness

Future-looking scenarios to plan Choice of data to be used in developing the future-looking scenarios
Natural disaster insurance—the incentives
provided should be appealing and
disseminated for homeowners and businesses

1. Choice and rank of the area of high risk to be covered;
2. Choice and rank of insured to be covered for preparedness action.

Building awareness, education, and
capacity-building culture around risk Choice and selection of the high-risk area to conduct the program

Setting up an evacuation place Choice and selection of highly recommended areas to build evacuation
place based on criteria sets

3 Response
Warning, evacuation, and search and rescue To select and rank high-risk location earlier response plan
Immediate assistance, loss, and
damage assessment,

To choose, select, and rank most vulnerable areas or communities that
need an immediate response from authority bodies

4 Recovery

Plan and policy adaptation (financial and
nonfinancial) to increase the resilience to WRD

1. To choose and sort significant factors to be incorporated into
policy development;

2. To rank recovery action required based on the WRD disaster
impacts (prioritizing recovery actions to be taken).

Assessment for the reconstruction of repeat loss
infrastructure and properties—buy-out
or mitigate

1. To choose and sort identified infrastructure for reconstruction
based on a set of factors;

2. To rank the most impacted infrastructure worth
being reconstructed.

Up-front option and plan information To choose, sort, and rank significant and relevant options and plans to be
implemented based on WRD disasters’ impact

6. Conclusions

By investigating MCDA techniques for managing flood and drought events in the
21st century, we have identified an increasing trend in applications. By referring to articles
published in journals, conferences, and proceeding papers, this paper reviewed 149 articles
on MCDA techniques for flood and drought management published between 2000 and
2020. The substantial impacts of the flood events have attracted more studies and have
become the most focused events studied by decision-makers in the DMP. Mitigation is
the widest phase used for strategic and operational planning, with AHP being the most
commonly used MCDA technique.
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There is a significant gap in the number of other MCDA techniques applied to manage
drought and flood events. The application of these techniques also shows a substantial gap
according to DMP phases. With the current impacts of climate change, which increases
the frequency and magnitude of flood and drought events, studies on MCDA applications
could be explored further.

According to the findings and discussion (Sections 4 and 5), the MCDA technique,
criteria selection, application according to DMP phase, and the type of disaster event
(in this study, drought) are all potential areas for further study to extend the results and
findings available in the literature. The findings of this paper suggest the importance
of using other MCDA techniques to enhance flood and drought disaster management,
either as a single approach or as a combination of MCDA techniques in a mixed-method
approach. The analyses on the MCDA technique selection could be beneficial in MCDA
application to improve the decision results based on the technique’s effectiveness in solving
the problem. Criteria identification and selection is an important component to support
decision-making; thus, strategic analysis can be undertaken to assist decision-makers in
focusing on pivotal criteria that are relevant and significant to improve the management of
flood and drought events.

An exploratory study on applying the MCDA technique as a uniformity approach in
each phase of the DMP would offer a more structured mechanism in the decision-making
process, potentially having substantial effects on decision results. More studies on applying
MCDA techniques in drought disasters are needed. An analysis of the MCDA technique for
drought events would provide additional information to assist decision-makers in selecting
and strategizing on the MCDA technique and applying the MCDA technique in the DMP
phases and criteria selection.

While addressing the various topics of potential study interest, this paper provides
valuable and significant information to justify and recommend prospective studies. Ex-
ploring these areas will enhance macro- and micro-environmental decision-making by
considering all criteria and factors in flood and drought management.
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