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We study the relations of the positive frequency mode functions of Dirac field in 4-dimensional
Minkowski spacetime covered with Rindler and Kasner coordinates, and describe the explicit form
of the Minkowski vacuum state with the quantum states in Kasner and Rindler regions, and ana-
lytically continue the solutions. As a result, we obtain the correspondence of the positive frequency
mode functions in Kasner region and Rindler region in a unified manner which derives vacuum
entanglement.

I. INTRODUCTION

Quantum entanglement is one of the most important features of quantum physics, which is a concept essential to
quantum information theory, technology, and related topics. Quantum entanglement plays an important role not only
in discussions of quantum optics but also in discussions of quantum field theory in curved spacetime, as exemplified
by the Unruh effect and the Hawking effect. The research into these effects of quantum fields in curved spacetime
might give us a hint for unifying the gravity theory and quantum mechanics. The Unruh effect is the well-known
theoretical prediction that a uniformly accelerated observer (Rindler observer) sees the vacuum state in an inertial
frame (Minkowski vacuum state) as a thermally excited state characterized by the temperature proportional to the
acceleration a of the Rindler observer [I, [2]. Topics related to the Unruh effect have been studied well due to its
importance and simplicity (see, e.g., [3] for a review).

To demonstrate the Unruh effect, various experiments have been proposed [4HI3]. One of the big questions in these
topics is whether a uniformly accelerated object coupled to a quantum field (the Unruh-de Witt detector) would emit
radiation or not [I4HIG]. This point is carefully discussed in many works (see, e.g., Refs. [I7THI9]). Authors of Ref. [I§]
showed that the radiation would be cancelled in the 141 dimensional case. This result would appear to agree with
our intuition that there is no radiation when the detector is in a thermal equilibrium state. However, the analysis of
the 1+3 dimensional case [I7, 20 21] gives a counter-intuitive result: there is some quantum radiation induced by a
non-local correlation of the quantum field in the Minkowski vacuum state due to the vacuum entanglement between
the left (L) and right (R) Rindler wedges. The Minkowski vacuum state of a scalar field is described by an entangled
state between the quantum states on the left (L) and right (R) Rindler wedges [I} 2] heuristically expressed as follows:
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Here |n;)g(v) is the nj-th excited state on the R(L) Rindler region (see Fig. |1)) with an acceleration a, and j = (w,k_1)
schematically denotes a mode specified by energy w and momentum k, perpendicular to the direction of acceleration.
The roman letters “R” and “L” denote the right Rindler region and the left Rindler region, respectively. This
expression is often used to describe the Unruh effect. Because a uniformly accelerated observer in the R region is
causally disconnected to the events in the L region, we take the partial trace of the density operator with respect to
the Hilbert space of the L region to obtain the reduced density operator in the R region. This leads to a reduced
density operator representing the thermal state at the Unruh temperature Ty = a/27.

Some of the authors of the present paper examined the description of the Minkowski vacuum state of a scalar field to
extend the expression Eq. to the future (expanding) Kasner spacetime (F region) and the past (shrinking) Kasner
spacetime (P region). This is done by analytic continuation of the mode functions in the F(P) region into the R
region and the L region [20]. This work yielded a result generalizing the work by Olson and Ralph [22], which claimed
a time-like entanglement in the F region and the P region in the case of the two-dimensional massless scalar field to
that in the general four-dimensional case. Furthermore, the authors of Refs. [20, 21] analyzed the quantum radiation
produced by a uniformly accelerated Unruh-de Witt detector coupled to a scalar field. The property of the quantum
radiation is entirely different from the usual radiation locally generated: the quantum radiation is interpreted to be
induced by the quantum entanglement, which is behind the Unruh effect. The entanglement-based description of the



Minkowski vacuum state is important for analyzing the theoretical predictions for the quantum radiation associated
with the Unruh effect. It is important to extend the analysis of the Minkowski vacuum entanglement to the whole
region, including the F and P regions since the observer in the F region will receive information from the R region
where the uniformly accelerated object is. When we consider experimental models related to quantum radiation, the
relation between the modes in the four quadrants of the field needs to be taken into account.

In the present paper, we consider the entanglement-based description of the Minkowski vacuum state of a Dirac
field. Some papers in the literature investigate a Dirac field in Rindler spacetime [3, 111, 23] [24]; Ref. [23] treats
this field in Kasner spacetime. These papers discussed the entanglement-based description of the Minkowski vacuum
state of the Dirac field with the use of the quantum states in Rindler spacetime. Alsing et al. found that the
entanglement between two Rindler modes of a free Dirac field is degraded by the Unruh effect [24], from the viewpoint
of quantum information theory. In the present paper, we extend the previous work in Ref. [20], which investigated the
entanglement-based description of the Minkowski vacuum state for a scalar field in a unified manner by connecting
the quantum states in the Rindler spacetime and the Kasner spacetime to the Dirac field. Our results show that
modes associated with the Minkowski vacuum entanglement between the R and L regions are analytically connected
to those in the F region and the P region. The results also indicate the time-like entanglement between the F region
and the P region. In particular, we show these relations in an explicit manner, and it enables us to obtain fundamental
quantities such as the thermal spectrum in all (F,P,R,L) regions covering the entire Minkowski spacetime. As far as
we know, such an explicit demonstration of the analytic continuation-property of the general 4-dimensional spinor
field has not been achieved so far.

The rest of the paper is organized as follows. In Sec. IT the massive Dirac field is quantized in the R region, the
L region, the F region and the P region, where the explicit forms of the mode functions are given. In Sec. III it is
demonstrated that the solutions to the Dirac equation in the F region in terms of the Hankel function of the second
kind are indeed the positive-frequency modes for the Minkowski vacuum state. The analytic continuation of the mode
functions from the F region to the R and L regions is presented, together with that from the P region to the R and L
regions. Subsequently, the relations of the mode functions between the F region, the R region, the L region and the
P region are obtained. In Sec. IV, using the Bogoliubov transformation between the two sets of the modes in the F
region, we find the entanglement-based description of the Minkowski vacuum state. Combining the results of Sec. III,
we find the entanglement-based description of the Minkowski vacuum state in the R region, the L region, the F region
and the P region in a unified manner. Sec. V is devoted to a summary and conclusions. In Appendix A, we present
the matrices to transform the spinor between local Lorentz frames. In Appendix B verification of an ansatz for the
Minkowski vacuum state adopted in Sec. IV is presented. In Appendix C, a summary of equivalent mode functions is
presented.

II. ANALYSIS OF SOLUTIONS OF MASSIVE DIRAC FIELDS IN THE R,L,F,P-REGIONS

In this section, we derive the Dirac spinors from the Dirac equation defined in each region with the spin connection
coefficient. We consider a four-dimensional massive Dirac field in the four coordinate systems covering the entire
Minkowski spacetime. The action of the massive Dirac field with a mass m is given by

S= / dhar/ =g DAV, — m), ()

where v are the gamma matrices in the curved spacetime. Here %) is a Dirac 4-spinor written in Dirac representation,
which satisfies

) 0
[Wu((?x*‘ +T,) - m] =0, (3)
where the spin connection coefficient is written as
1 a’YV v oA
Ly= 1 <axu + Xy >a (4)

and Dirac gamma matrices satisfy the Clifford algebra {’y", ’y”} = 2g"¥. In this section, we follow the basic procedure
to derive Dirac spinors in curved spacetimes that can be found in many literatures (see Refs. [11} [25] for the derivation
of the spinors). In Sec. we show a different way to derive Dirac spinor in each region from Minkowski mode.
Minkowski spacetime is described by the global coordinate (¢, x,y, z) with the line element

ds* = dt* — dx® — dy* — d2*>. (5)



FIG. 1: Minkowski spacetime and the coordinates for the R region, the L region, the F region, and the P region.

The right Rindler region (R region) is described by the coordinates (7r,&r), which are related to the Minkowski

coordinates (t, z) by
1 agn g 1 e
t = —e®Rginharg, z= —e*%coshary.
a a
The left Rindler region (L region) is described by the coordinates (71,,&1,) defined as
LTI 1
t = —e®tginhamn,, z=—-e*%coshary,.
a a
The future Kasner region (F region) is described by the expanding-Kasner spacetime (ng, (r) defined as
1 1 .
t = —e" coshalr, z = —e®" sinhalp.
a a

The past Kasner region (P region) is described by the shrinking-Kasner spacetime (np, (p) defined as

1 _ 1 _ .
t=——e " coshalp, z=—e " ginhalp.
a a

(6)

9)

Each coordinate system covers a quarter of the Minkowski spacetime, as shown in Fig. The coordinate variables
in each region are related by the analytic continuation summarized in Table I. The analytic continuation is unique in
the following meaning (see also Appendix in [20]). We first note that, because positive-frequency solutions behave like

e~ W IRIPEm Gt i implicit that upon analytic continuation, we must treat ¢ as t — ie, € > 0, so that any k-integration
involving them converges for large |k|. Then, the analytic continuation of the coordinate variables are determined in
such a way that the Minkowski time coordinate ¢ has an infinitesimal negative imaginary part because we perform

the analytic continuation of the positive frequency mode solutions in each region.



region variable 1 variable 2
T T
R+—F TRZCFf— gR:nF+7
2a 2a
m i
R+—P TR=—C—5- &=
2a 2a
T
R+—L TR:_TL_E fszL
) m
F+—L F=—-TL— — L=mnF+
2a 2a
e m
P«+«—L CP:TL+— nP—_fL_i
2a 2a

TABLE I: Analytic continuation of variables

A. Dirac Fied in R,L-Rindler Region

We start from a brief review of the solution of the Dirac equation in the R,L region where the line element is
ds® = 28 dr? — da® — dy? — >0 de3, (A =TRor L). (10)

Here, (1R, &R) are the right Rindler coordinates, while (1,,&r,) is the Left Rindler coordinate, defined in Eqgs. @ and
@. Also, note that we use Greek letter Lambda A = R, L to denote R region or L region. We use it to denote the
expression which is valid for both of R and L region. Also, we use the notation v to denote the Dirac matrices in R,
L Rindler region, and y* for Dirac matrices in flat spacetime, respectively. Using the property of the gamma matrix
in Minkowski spacetime, (7°)? = 1 and (v')? = (v%)? = (73)? = —1, we have the relation between 74 and v*:

W=e"%0 Al =91, R =97, 7} =%
The spin connection coefficient Eq. in R,L region is derived as
a
L, = diag.(§7073,070, 0). (11)

By adopting the notation 7%/ = a;, 7% = 3, the Dirac equation on the R,L region reduces to

) - 0 0 .0 .a a n
z% + 1€ 5A(Oq% JrOézafy) JFZOZSE +’L§Oé3 —e€ 'EAﬂm wﬁ:lu =0. (12)

Explicit forms of the matrices in Dirac equation with Dirac representation take following forms:

0001 0 0 0 —2 0 0 1 0 10 0 O

0010 0 0 2 O 00 0 -1 01 0 O
ap = , Qg = . , g = , B=

0100 0 -0 0 1 0 0 O 00 -1 0

1000 i 0 0 0 0-10 0 00 0 -1

We set up the ansatz for four spinors of the Dirac equation in Rindler spacetime as

1/&?:;1 (Taép, 1) = ffj\,’& (En)ekrmremiom, (13)

where n = u denotes the up spin while n = d denotes down spin. The mode expansion of the Dirac field in the R,L
region is written as

o0 o0
TERORRED S | d%(éﬁ;zlwﬁ;zgm,smm+dﬁ;zjwﬁ;zgm,smm))(}), (14)
0 —00

n=u,d

where 1C is the spinor which is corresponding to the anti-particle, obtained by charge conjugation of v defined by
© = iy%p*. We integrate the positive range of w, since w is energy in the Rindler region as is shown by the ansatz
apparently, i.e. we focus on the positive frequency mode. We require the creation and annihilation operators of
the Dirac fermion and anti-fermion to satisfy the following anti-commutation relations:
AN ATAN / /
{Q2 Q }=0(w—wHo(k, — K\ )onn, (15)

w,k "Wk
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with all other anti-commutators vanishing. Here, Q K, 1s operators like ¢ c k or d | inEq. . The normalization
condition of mode functions takes the following form with the Dirac inner product

(05,0 o = | S AR = 8 =3l ~ K)o (16)

where we use the overline to denote Dirac conjugate, ww ke, = (wﬁ’,zl )T70. Here (-, -)p denotes the Dirac inner product.

We define dX,, = d¥n,,, where d¥ denotes the 3D spatial volume element on the Cauchy hypersurface ¥ to determine
the time slice where the normalization condition of the spinor is defined, and n, is the normal vector vertical to 3.
Plugging the ansatz Eq. into the Dirac equation yields

wf %, (€a) = [7 mesr — z;ag - zcm% + %8 (k) + 042162)] fﬁ”& (&n). (17)

In order to describe Dirac equation in more detail, we define the solution as 2 spinors which takes the form

(éa)
e o0- () -

In terms of the two spinor, the Dirac equation is described as the following two equations:

8 A,n
ata An 4 3 A . 30X2

WX = me T —is oG, — o £y + ekt + e koo
0
wXS’n = —meaEAX 1203X/1\ o (2)(511\ + e kot ™4 eagAkZUZX?’n

These equations reduce to the same equation when we take the massless limit of the Dirac equation, resulting in the
Weyl equation. After combining these equations, we obtain the following second order differential equations:

1 8 An KJ2 2a 1 w2 An w 3 An
a2 852 Xi{2y = | 2°¢ Nt 4 Xi{2y — w° Xa{1} (19)

where « is the effective mass: kK = \/m? + k:i Note that this corresponds to Egs. (3.92) and (3.93) in Ref. [3]. The
braket {} after the suffix implies that the form of Eq. is unchanged under the swap of suffix 1 and 2, but x; and
x2 are still mixed. In order to obtain independent equations, we define

An
A(en) = A0 (en) Tl (En) = [ % 60 ) (20)
S+ (fA)

The spinors ¢i’"(§ A) corresponds to those in the Weyl representation. This reflects the general relation between the
Dirac matrices in the Dirac and Weyl representations: 1wey1 = U%¥pirac, Where

1 (11
U_ﬁ<1 —1)'

We can reproduce the form of Dirac spinor in the Dirac representation as

Q%n(ﬁ/\) + Q{%’n(éA)
no_ L] " (€n) + <2 (6n)
o =51 n ; (21)
ki T2 —Q%’ (§A)+Q§7 (€a)
=< (€a) + <2 (€n)
by plugging definitions Eq. and Eq. . Equation written in terms of (b[j\:’"(f/\) is
1 02 K2 o, 1 w? n w n
a6 = [t 4 g - S |otnien) £ Lo e (22)

Thus, we obtain the following Bessel-type differential equations:
1 02 K2 W 2
a& fﬂ
2 0E2 0" (€r) = [26 b+ ( . ) 01" (6n),

1 02 2 1\?] A
?@Qt (£A) = |:22 2ala + (w 2) :|§:/|:\ (€A)

a



Solutions of these differential equations are written in terms of modified Bessel functions Kiw/ail/Q(geafA ), Iiw/ail/Z(gea@‘ ).
The solution written in terms of I, /q+1 /2(26“51‘) cannot be normalized since diverges in the limit {4 — oo. Therefore,

we need to choose the following solutions:

() = YKoy i1 2(an)  02"(Er) = ™Y Kiwja1/2(an)

(23)
n n(A ,n n(A
AEn) = N Kiwamijalan) » <27(€n) = 4™ Kiwjasr o(an) |
where
qr = EeG‘&R’ qL = EeagLv (24)
a a

as solutions of quantum field theory. Here, we add the coefficients to each solutions since Bessel differential equations
after Eq. are independent. These coefficients have information of the spin direction and are also constrained by
the normalization condition. By plugging Eq. with the four solutions defined by Eq. into the Dirac equation

, one finds

—c?(A)m — c’;(A)m — cZ(A)(kl —ike) =0,
c?(A)(k’l +iks) — cg(A)m — cZ(A)m =0,
Wi — W B2 (kg — iky) =0,

—e M (k) 4 iky) — O+ Wik = 0.

If k1 # 0, then the first two equations are equivalent to the last two. Thus, there are two linearly independent

n(A n(A n(A n(A
nA) ) () ()

,Co . Two linearly independent solutions can be chosen as

solutions for the vector (c
(&™), 5™, ™ MY = (1, im )k, —i(ky + ika) /K, 0), (25)
and
(™. ™ W W) = (0. (kr — ik2) [, m ), ). (26)
This choice gives the solutions in Eq. , which are confirmed to be orthogonal. One can also choose
(™, ™. 5™, V) = (/. 0,0, (ks + ika) ), (27)
and
(CT(A),CS(A), cg(A),ci(A)) = (—(k1 —ika)/K,0,i,m/K). (28)

This choice gives the solutions in Eq. , which are orthogonal. These solutions are valid also for k; = 0. The other

solutions can be obtained in a similar manner. The coefficients {c[™, 3™ 2™ 1M} are not arbitrary since the
functions in Eq. have to satisfy the Dirac equation though each of solutions in Eq. are derived from four

independent Bessel type differential equations. In addition, when we have the coefficients {c?(A), CZ(A), C;L(A), cZ(A)},

the other set of coeflicients {c?(A)7 C;L(A), cg(A), CZ(A)} can be obtained after taking the charge conjugation of the spinor,
here the overline on the index n denotes the swap of the spin up and down.

Solutions of the Dirac equation in four-dimensional Rindler region have been found previously, and was given in
other paper (see, e.g., Refs. [26] [27]). They can be reproduced with certain choices of the coefficients in Eq. .

Here, we further simplify the solutions in R region by the following form:
P (€n) = Aue ST, (€0)- (29)

Here A, i, are the real and positive normalization constants determined by the orthonormal condition , and
Si 712 (€a) are linearly independent spinors which have internal degrees of freedom corresponding to the spin direction.
Two linearly independent and orthogonal spinors can be chosen as follows:

SEw (Er) = st K jar1jo(ar) + s K ja—1/2(ar), (30)



where we define

1 m 0 k1 — ko
u —,u ] - ] . — 1
s 0 s = | = (k1 +iko) L sthd = 1 PG mo| (31)
+ —1 - K m + 0 - K | k1 — iko
0 k1 + iks 1 -m

Then, the normalization constant is

1 [kcoshmw/a
Avk, ==\ —5— 2
kT o 2m2a (32)

The choice of the base of mode expansion Eq. is arbitrary, though we here assign spinors as the solution of
the R region for simplicity. On the other hand, we assign the other choice of two linearly independent and orthogonal
spinors

SE (L) = 35 Ko a2 (ar) + 35, K ja—1/2(ar) (33)

for the solution in L region. Here, we define

1 3 _ 1 B
i LY IRt [ B I RSN o
k -m 1 R kl — ’LkQ 0
kl + Zk’g 0 m _1
We write the corresponding spinor mode functions as
LZJE:ZJ_ (L, &L, 1) = fi::gj_ (fL)eikL'wLe_i"ﬂL, (35)
fi,’;cl (€r) = Ak, SI:”ZL (éL). (36)

The normalization constant is the same as before Eq. , and sets of the spinor are orthogonal, (S’R’" g )p =

w,k " Mwk

(SE:ZL , Sbjzl )p = 0. The form of the spinor are related by the following linear equations:

u M (Ru ki + ik
Sk, (60) = S50, (6n) +im——80% (6w, (37)
ki — ik " M _R.
S, (60) = == 505, (€1) + i85 (6n), (38)

thus, we can use the spinor form " as an base of the solution in R region actually. We can describe any solutions in
4 dimensional Rindler region with the combination of bases of the mode, and we can realize any 2 or 3 dimensional
solution by setting k; = 0 (j = 1,2) appropriately.

B. Dirac Field in the F(P)-Kasner Region
In this subsection, we derive Dirac spinors in F and P region covered by Kasner coordinates. The line element of
the F(P) region is
F region : ds® = *dni — dx? — dy* — **"" d(E, (39)
P region : ds* = e 2" dnd — da? — dy? — e 2" d(E, (40)

with local coordinates defined by Egs. and @D Using the property of the gamma matrices in Minkowski spacetime,
(7%)? =1 and (v)* = (v*)? = (y°)* = —1, we have the gamma matrices in the F(P) region vy p, as

Fregion : 79 =e"%"  qp=9', i =7, B =79, (41)
P region : 3 =e"y°, yp =", g =97 7p =" (42)



The spin connection is given as

F region : T', = diag.(0,0,0, %7073) , (43)

P region : T', = diag.(0,0,0, —gvofy?’) . (44)

The Dirac equation takes the following form:

F region : [z;; + e’ (al(% + o Z?y) +iag 6? + 25 (”’Fﬁm] 1/1;’Z(LF) 0, (45)
P region : [Z(‘?ap + ie M’P(ozlag + g 3y) + 2'063% - i% - e_anpﬁm} ¢;’Z(LP) 0. (46)

We describe the ansatz for four spinors of the Dirac equation in Kasner spacetime as
SO e,Co L) = fo0 D (ne)eih Tt eivte, (47)

where © means “F” or “P”. We distinguish two different orthonormal bases of the solution by the label “=” which
denote “M” or “K”. The label “M” denotes the Minkowski mode, which is clearly expressed with Hankel functions

1(/1)7 H£2). In contrast, the label “K” denotes Kasner modes which is actually connected to the Rindler mode later,
both of them certainly satisfy the Dirac equation in each region. We clarify the correspondence of modes in four

regions in the latter part of this paper. Also, “©” denote F region or P region just as K denoted R and L region

Kn(©) |

in previous subsection. Later in this subsection, one can find that 17 is certainly written with Bessel function

Jy(x), while wM ”(6 is written with Hankel functions. Then the Dlrac ﬁeld is expanded in this region as

Bocoer) = 3 [ dw [ (g @l ® 4 il

n=u,d“
= Y e [ e (RO S W), (49
n=u,d

We require the creation and annihilation operators of the Dirac fermion and anti-fermion to satisfy the following
anti-commutation relations:

{OZ07, Q2 = 8w - )6k = K1), (49)
where QE’Z(@) = dM£(®)7bM:(e), o Z(@) or CZK’Z(@), with all other anti-commutators between operators in same
w,k | w,k w,k W,k w,k

mode expansion, i.e. either in the first or second line of (48)), vanishing. This requirement leads to the following
normalization conditions:

Ol / 08,05 1 O oy U = 8w — )6 (KL — K)o (50)
b

By substituting Eq. into Dirac equation, we obtain

F region : z—f"n(F)( F) = ['yomea"F — ig — agw + e (ar kg + 062]{32):| i’:iF)(nF), (51)
P region : z—f“ n(P)( p) = [vome_anp + ig — asw+ e " (arky + Otzkz):| fi’:ﬁp)(np). (52)

We express the solution in the Dirac representation in the following form:

( ) X (ne)
S (ne) = Caty : (53)

X2,w,kL (779)



Then the Dirac equation gives the following two simultaneous equations:

.0 =aF E,n(F .4 = n(F =,n(F =,n(F
z%xl :f(kj = me*" x] S(kj —i5X) )Ekj w03X2 ;l(,ﬂ) + e (ko + kyo? )X g(kj
F region :
; SEn(F) _ En(F) _ @ =n(F) 3. En(F) 1 2y En(F)
zanF 2,3'@ = —meanFX2 gkL —i5Xa, S,ﬂ wox; :}LM + ¥ (kyo! + koo )Xl,g,m
.0 =ar _ =0 (P En(P E E,n(P
t Xl.ﬁ(k) =me”"""x] ﬁ(k:) t1 *Xl ,:j(k) - "JU?’XQL;(I@) +e " (ko' + koo )XQ’:}(k:)
P region : 63P . o2 ) B
. En(P) _ - E.n(P) =,n(P) 3. En(P) - 1 E,n(P)
ZWX2,UCL,kL__m6 anPXQUZLkL+Z2X2LZLkL_wU Xl(jkl_Fe anp(kla +k20. )Xlskl
By combining these simultaneous equations, we obtain the following second order equations:
. 1 9% =, K 1 w?] =am W 3 =n(F)
F region : ?@Xl{%,w,h =_ a2€ anr _ 1 + 7 | X142} w.ks 2 Xo{1},wky (54)
- 1 9% =) K, 1 w2 (S W 3 =n(P)
P region : ?877123 X1{2},w ky — ﬁe - 1 +— a2 Xi{2}wk, T ;U X2{1},w,ky " (55)
In order to obtain two independent equations from simultaneous equations (54)), we define:
() =n(0) L Zn(©) o2%) (ne) 56
¢iwlﬂ(77®) Xiwk, T Xowk, = | En(® . (56)
Stowky (ne)

The signature £ influences the auxiliary variable in the Bessel function, which construct the solutions, as is shown
later. By using this equation in Eq. we find

=00 Z,n(0
ik S
2n(0) } §+ Wk + G:"w k, (57)
whi =g | _En®) £ |
Opwk —w,k
=Z2,n(O =2,n(0)

“Shwkl TS wkl

Equation written in terms of ¢£Z;(ki (ne) is

. 1 = K2 e L W] sy W g =)

F region : 0728172(;&“””:7 =€ nF,Z 72¢iw,ﬂ a 0 0L ke, s (58)
. 1 9% =@ K2 o 1 =n(®) W 3 Zn(P)

P region : ﬁ%qﬁi,w,h =—| 3¢ o 1 + — <;Si wki T 0 Pt ok, (59)

Then, we obtain the differential equations,

. 8 A HZ w 1 ? =,n F
. a2 37’2 O w(k)i () = [— 2€ e2amr 4 (a 2) o W(ICL (nr),
e 1 & =nr zw 1\* = (60)
( )( ) — 2(177F —_ - n(F ) )
a2 5772 Sk, 1TF a2 . 2 %wlu .
1 3 =n(P —%a w 1 =n
P regi o ° o2k () = [ o (a ) ]Qi e, (1e), (61)
region :
i 82 H”n(P) ( ) fi —2anp + 7&] :l: - H,n(P) ( )
GZan St,w,ky TP a26 . 5 SRS

which can be solved in terms of the Bessel and related functions. The solutions of these equations can be written in
terms of the Bessel functions as

K K,
. Q+7Z(£)i - 05(F)Jw[—zw/a 1/2] (QF) y 0 Z(F)L = CG(F)Jw[—zw/a+1/2]( )
F region : Kon(F)  n(F) X ’n(’F) n(F) (62)
+wkl C7 J [—iw/a—1/2] (QF) S_wkl CS Jw[—iw/u+1/2](qF)7
K,n(P P K ;n(P n(P
. o) w(ki = " Jiwjarryz(ap) o 0" w(ki 8™ Jstivsja—1/2)(ap)s
P region : K n(P) n(P) Kom(P) _ n(P) (63)
§+wk'4 - C7 J [zw/a+1/2](QP) » S_wk, — €8 Jw[iw/a—1/2](qP)a
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or the Hankel function of the second/first kind as

M,n(F) _ n(F) (2) M,n(F) n(F) 17(2)
F . . +w,kl T Hw[zw/a+1/2]( ) ’ —w,k _CG Hw[zw/a 1/2]( ) 64
region Mn(F) n(F)H(Q Mn(F) _ n(F) pr(2) (64)
+w,k = C w[lw/a+l/2]( ) —wk, = C& wliw/a— 1/2]( )
M,n(P) _ n(P) (1) M,n(P) _ (P) 1)
L +awky He oo 1/2]( ) 0k, = H_ zw/a+1/2]( ap);
P region : M,n(P) n(P)H(l) M,n(P) n(P)H(l) (65)
+,w,kl T Cor w[—iw/a— 1/2]( ) » S wokl T Cgr w|[— zw/a+1/2](qp)
where
gr = Ze¥ | gp = Zemom, (66)
a a
Here, we have defined @ = sgn(w) = | - Each of these two sets of solutions form the “positive frequency” subspace

of solutions. (See, e.g., Ref. [28] for an explanation of the “positive frequency” subspace of solutions.) Again, the set
of coeflicients are not arbitrary, and there are only two linearly independent spinors. We use the following formula to
derive the relations between the coeflicients in Eq. and from the Dirac equation :

x;l—le,(x) =taZ,71(z) Fvi,(z), (67)

where Z,(z) = J,(z) , H" (z) or H? (2).
Similarly to the case of the R(L) region, we express the solutions in the following form:

21O (g) = A% gZn(©) ). (68)

ka ka

We note that AUEJ(,(Z) is a real and positive constant which is determined by orthonormality condition , and
§=n(®) (ne) is the spinor which specify the spin state. With Bessel function J, (), we can describe linearly independent

w kL
and orthogonal spinors can be chosen as follows:

. K,n ,n —-,n
F region : Sw,kjF)(ﬁF): R wol—iw/a—1/2] (@ )—wséL )Jw[—iw/a+1/2](qF)7 (69)
P region : Sf,’;fp)(ﬁP)—SiL Ry wliw/a— 1/2](‘]13)+wsgeL’n)Jw[iw/a-i-l/Q](QP)- (70)

We note that si W and sﬁ’d) are already defined by Eq. in the previous subsection The normalization
constant is

1 K
AKE) k) _ /M 71
w,k wki T 9n 8acoshmw/a .

We used the formula J,(2)J_,41(2) + Ju—1(2)J_,(2) = 2sin (v7)/(7z) to determine the normalization constant.
These spinors may be called the Kasner mode in the F(P)-region since it is derived as the solution of Kasner regions,
and they construct an orthonormal basis. We can say that these are Rindler modes since we verify that these spinors
are virtually connected to Rindler modes in the R and L regions later. We note that w is the energy in the R(L)
region satisfying w > 0, while w is a momentum-like variable in the F(P) region, which can take all real values. A
linearly independent and orthogonal set of two solutions in the F(P) region, given in terms of the Hankel function of
the second kind can be described as

. M,n(F n 2 n

F region : S%kf )(77];‘) zsgcL )H;[)M/GH/Q]( F) — zwsgcl )H;[)M/a 1/2]( qr), (72)
. M,n(P n 1 n 1

P region : Sw,,ﬂ( )(T}P) (+ )i [) iw/at1y2(@P) — zws}c )i [)_W/a 1/21(@p); (73)

where the normalization constant is

M(F) _ ,M(P) 1 =el [K
Aw,kL - Cw,ky T 8776 2a gv (74)

which is determined from the normalization condition and using the mathematical formula Hl(,l)(z)H,Ei)l(z) -

H &)1( VH, 152)( ) = 4i/(7z). Mode functions which construct the normal base with the Hankel functions are called the
Minkowski modes (one can find that spinors like Eq. (72]) and (73]) are certainly the Minkowski mode by the discussion
in Sec. [III A]). Therefore, annihilation operators assomated Wlth the mode functions written with the Hankel functions



11

give the Minkowski vacuum state. We may call them Minkowski mode in the F(P) region. Mode expansions by the
orthonormal base written with Hankel functions and Bessel function .J,, (z) describe the same Dirac field. After using

the formula J_, (2) = 1 [e””Hl(,l)(z) + e‘””H,@(z)] ,H(_l,z (z) = e”iHl(,l)(z) , H(_Q,z(z) = e“’”Hl(,2)(z) and defining

1
Bw = ’
\/ 2coshw/a (75)

one obtain the relations of basis of solutions in terms of the Bessel functions and Hankel functions as follows,

K,n(© @ xlel Mn(© 1, Mmme
S o) =S¢ 5.5V (ne) — 5 (TS ) (ne). (76)
i.e.
K,n(© mlwl  M,n(© _rlel MmO
Ui @ = Bylwe s g — e 5 ()T, (77)

for —0o < w < oo. These relations are nothing but the Bogoliubov transformation because the spinor is associated
with the annihilation operator in the mode expansion, and the annihilation operator defines the vacuum state. Thus,
we can express the Bogoliubov transformation in terms of the spinors, operators, and quantum states with the brief
deformation. After plugging Eq. (77) into the second line of Eq. , we find

(© n(© n(©)f n(©
S [ [T (O R )

n=u,d”
= 5 [ [T (e g R T o
n=u,d
mlw K,n(© _ ‘ ‘AKn@ M,n(©
+(we2a RO - AT i@,

The comparison between coefficients of mode functions in the first line and the second line indicates the following
relation of operators:

U = (e ) - e‘"ﬁi’c?K;Z(@,zi) )
L = (= B ) )

These formulas can be derived by using the orthonormality of spinors defined with Dirac inner product as following.
We note that there is another way to derive the Bogoliubov transformation, which uses the orthonormality of spinors
in the mode expansion. This procedure can be found in other literature (see, e.g. [24] 27]). Here, we briefly review
the derivation of the Bogoliubov transformation of operator with orthonormality condition and confirm the
consistency.

w,k i whky
_ / do / &2k, efj;j;;,j@) (2@ w5 dSnd O (wle ), (wf:f;;{@)C)D} 7 (80)
b 7 = (WL )e ‘I’)D
/ du’ / &K, cfjﬁci@) (@2 e @) +dins o (wlinhe, (wf/l,f@))c)])} . (81)
Thus, Bogoliubov coefficients are derived as the following Dirac inner product:

(w2 @ w5 ?) | = @Bue ™ 6w = w)d(ks = k) (52)

(V2@ WSR) | = =Bue™ 5 6(w +w)olkL + K )onm (83)

(@SS = =Bue™ H 6w+ )ik + K )onm (84)

(@SOS @) | = @Bue™ 5w — )0k — K)o, (85)
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where B, = [2cosh (7w /a)] ~2 n the calculus of these inner product, the formulae: JV(Z)H,EJr)l( )— JV+1(2)H1(,1)(z) =

—2i/7z, J,(z )H,E%r)l( ) Jl,+1(z)Hl(,2)(z) = 2i/7z, may be helpful. By plugging these inner product into the previous
relations Egs. (80), , we obtain the Bogoliubov transformation which are exactly the same form as Egs. and
).

III. ANALYTIC CONTINUATION OF THE SPINORS

In this section, we demonstrate the procedure of analytic continuation of the spinor solutions. Namely, we clarify
how the solutions in the four regions of Minkowski spacetime are related to one another. The procedure is almost the
same as that for a scalar field, as demonstrated in Ref. [20]. An additional process is necessary to the spinor field as
demonstrated in Appendix [A]

A. Positive frequency modes for the Minkowski vacuum in the Kasner regions

We first demonstrate that the solutions for the Dirac equation in the F region in terms of the Hankel function of the
second kind are indeed the positive-frequency modes for the Minkowski vacuum state. We start from the following
positive-frequency solutions in the standard coordinate system in the Dirac representation with momentum k:

1/’;1:[’71 = u;n)efikot“k'“’, n=u,d, (86)
where
m+ ko — ks ki —iko
ul — ! (k1 k) | 1 m+ ko — ks &)

2(ko — k3) | m — ko + ks 2(ko — k3) ky — ko
kl+ik’2 —m+k0—k3

Here, ko, k1, ko, ks are the contravariant components, i.e., they are the 4-momentum components with the upper
indices. These solutions satify the following normalization conditions:

WA 0 = [ deutet
= 2ko(2m)36" §(k — K'). (88)
Next we define the global-defined solutions

i1/2 0 dks (ko + ks —iw/2a ‘ ‘
\IJM,n _ / < > u(n)efzkotj%k-m‘ ]9
“wki T 2a(2m)? ) oo ko \ ko — ks k (89)

Here the parameter w takes any real value. We change the integration variable from k3 to the rapidity,

1 ko + k;g
0= 71 90
Then these solutions can be written as
M,n n + ,n 7 -
O () = (ot ESR, (2 + oV ELD, (8 2)] e (91)

where

1 K
) .0, — ) I i (‘hu)’ 92
Yk 87r2\/cm (K 82 \/;S’” (92)
T ,

(—w) _ (k1 + ik by +iks | = ——— \/E (=) 93
vy 7r2\/7;<m7 1+ tka),m, ky + ik RVt TH (93)

(+,d) _ K (+.d)
Yk 87r2\/7 (0’ 5,0, K) ~ 8n2 \/;SkL ’ (94)

_ T 1 K (—
(=d) _ : _ (—=,d)
N 8772@ ki1 — ko, m, k1 — zk27—m> =52 \/;s,CL , (95)
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and

w,k1

FS) (¢ 2) = 1/2 / d0 e (/9EL/20 oy (—i(k cosh 0)t + i(k sinh 0)z) . (96)

. M .
The solutions ¥, ’,:L are normalized as

(M My = 5 S (w — W) (kL — k). (97)

wk1? T w k|

We note that the charge conjugation of the spinor W is defined by WC = iy2¥*,
(£n)

It is useful for later purposes to discuss some properties of the constant spinors v, *. By defining @ = d and
d = u, we find
+,n)C +.7
U(—lu) = U,(CL ), (98)
—,n)C -
v(f,u) = —v,(n ), (99)
We also note that a3v,(i’n) = ¥v,(i’"). Hence
+.n +n
exp(bag)v,(CL ):eXp($b)v,(ﬂ ), (100)

for any number b. It is also useful to note that the multiplication by exp(bas) and the charge conjugation commute
because [a3,7%] = 0 and because as is a real matrix.

It is now straightforward to express the solutions \Il}:)/[,?l in each four regions. We start with the F and P regions.

We first find the functions Fugj;c)L defined by Eq. by substituting (,z) = (a~1e" cosh alr,a~ e sinh alr) in

the F region and (¢,2) = (a=! !

(8.421 of Ref. [29)):

e~ " coshalp,a e~ sinhanp) in the P region and by using the following formulas

—00

for |Rev| < 1 and x real. We also used the fact that e*”“/zH,El)(x) is even in v in Eq. 1) Let the function Fb(ﬁcl
in the F and P regions be denoted by FLFICT) and ka’f) respectively. Then, we find

FJT = —imeme/2eemivtrmate/2g D) | (q), 103
‘f‘é:) — 7Te7ro.)/2aefiu.)CFeaCF/2]_[1_(3)/(171/2(qF)7

P, . ; 1
u()’kir) — ,m_eﬂ-w/QaeszP eaCP/QH(_i)w/a_l/z (QP),

P,— ; - 1
Fag,lu) = —mem/relre aCP/QHEi)LAJ/a+1/2(qP)'
The y-matrices for the spinor components obtained by substituting Eqs. (103)-(106) into Eq. correspond to
the cartesian coordinates. As discussed in Appendix [A] these spinors expressed in the coordinate systems used for
M,n(F)

the F and P regions, denoted by Yok, and \Ifi\f’,:fp), respectively, are

\I/M’n(F) _ e_agF%/z\I/M,n

w,k w,k

o B ) o} s ] b a0
Mn(P) _ _alrasz/2qM,n
wky ¢ ras/ \IIW,kU_

- {v,gj’")e*“@ﬂFf,;j) + v;j”)eaCF/?Ff,;ﬂ ek (108)
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where we have used Eq. l) Here, by using the formulae, HS? (z) = e*™/2H?)(z) and H" (z) = e=*"/2HY) (2),
we obtain

\I/ul\i/[IZ(F) = mem/2ae e [ “’H n)Hz(j)/a+1/2(qF) + Ul(c?n)Hz‘(j)/a—uz(QF)} ek

— e~ Tw/2a,—iw(r [ (+,n) H(2<)M/a+1/2>( F) — ka,m H(2<)w/a 1/2)( )} L (109)
e = —memer e [T HY) L o(ae) o HE, s alae)| €5

= —me /gl [vlgt?n)Hl(:))/aJrl/Q(qP) - w,(u n)Hz(i)/a 1/2(QP)} etk (110)

Hence the charge conjugation is

‘I’li/lwn(ka)f = —me /e Tiwr [—iv( )Hz(i)/a+1/2(qF) +Ul(s: ’ )Hz(i)/a 1/2(%)} s

= mem /2t O ae) = il T ()] e (111)
WS = memmelect [P HE) () o T HE L alae)]

= —remel2ugiete [oEMEE) ) — vk T HE) o (ae)] e (112)

We note that these results give similar forms as the spinors in Sec. [[TB] i.e. they are related by

W) = g s 0), WM = i w0 > 0), (113)
e = il O w < 0), W =~y P (w < 0), (114)
e =M w > 0), B = M (W > 0), (115)
W = i (w < 0), BN = M w0 <), (116)

B. Analytic continuation

Subsequently, we consider the analytic continuation of the spinors in the F region and the P region into those in
the R region and the L region. The coordinate variables of the four regions are related by the analytic continuation
in Table I. This table is applicable only for the positive-frequency solutions in Minkowski spacetime. As is shown
in the case of the scalar field, one needs to take into account the difference in the analytic properties between the
positive frequency and negative frequency modes at the boundaries of the four regions where they are singular [20].
In addition, the components of the spinors analytically continued from one region to another do not satisfy the Dirac
equation in the latter region. The reason is that the components of the spinors depend on the tetrads, which are
chosen differently in the four regions. We have to consider the continuation of the spinor solutions taking the direction
of the tetrads into account, which is explained in Appendix A. This gives an additional complication to make the
relation between the spinor solutions in the four regions compared with the case of a scalar field.

Let us express the spinor solutions \I/i\)/[,;l in the R and L regions. We substitute (¢, z) = (a~'e%® sinh arg, a~le®®

coshatg) in the R region and (¢, 2) = (a~'e%" sinh a7y, —a~'e* cosh ary,) in the L region into Eq. to find F(i)
using 8.432.1 in Ref. [29]:

/ e Vlemmeoshl g — 9K, (z). (117)

— 00

Let the functions Fugik)L in the R and L regions be denoted by Fu()}?k’f) and FU(JI’J,;T), respectively. Then

F(E;P:;Jr) eﬂ-w/Qae_iWTRe_aTR/QKiw/a+1/2(qR)7 118
F(R ) 7rw/2a ZwTReaTR/2Kiw/a—1/2 (qR); 119

L TW a ZUJT aT]
F( +) = 2je~™/2 e 2K s 2 (qL),s

L7 e Tw/2a WTL, ,— QT
FLEJ k:i) /2 erte L/2K1w/a 1/2(qL)
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Then the spinors \I/ ., can readily be found using Eq. . We need to make corrections due to different choices
of the y-matrices, Wthh depends on the tetrad, before comparing them to the solutions found in Sec. II. Thus, we
define spinors that can be compared to those found in the R and L regions (see Appendix as

M,n(R)

Uy = exp(—amras/2) ULy (122)
‘I/}:/I,}Z(L) =35 exp(aTLa3/2)\I/w ’,2:

= exp(—arLa3/2)y s Vo (123)

respectively. The second expression in Eq. (123 follows because the matrices v3v5 = diag(1,—1,—1,1) and a3
anti-commute. Thus, we obtain

\I!LIL/[;LL(R) 2w/ 20T IWTR {v,(ct’")Kiw/aHp(QR) + iv1(¢177L)Kiw/a—1/2(QR)} e (124)
XI,:L(L) e~ TW/2agIWTLAS A [iv,(ct’n)Kiw/aH/g(qL) +U,(c1’n)Kiw/a71/2(QL)} elres, (125)

We note that the following relation is useful to find relations to the solutions in Sec. II.

o
(+,u) _ (=)
P = g (m0.00) = 5 [2 (120)
T
(=) _ : _ L R
A3 V5V, | 7T2\/7<m k1 + iko, —m, k1 +zk2> = W\/;slu , (127)

(+.d) _

_ ¢ (=)
st 8w2\/ﬁ 0, fs()/-s) W[ 59, (128)

. T 1 R _(4,d
Pt = 8772@ (I = ik, =m, =y = i), =m) " = _sﬂ\/;‘g& - (129)
By using Egs. and we find

\IlllﬂwnlE:R) e—ww/a(\yy7ﬁgj))cj (130)
M,n(L rw/a/qM,n(L
ML) /o (g MAL))C (131)

Thus, we find that globally-defined solutions \I!i\d/[,:l given by Eq. become in the R and L regions

M,n(R i
s, (320 R esion -
wk —e—mw/a(pM: "(L) )€ = \I/M’I:(L) (L region) ’
w,—k1 W,k

v M) T (133)

—w,kL
—wkL

M.n(A) e—ww/a(\PM,ﬁ(R))C — \IJE/I:?](J? (R region)
(L region)

We define the global modes, which are defined in all the regions by analytic continuation and by making the
correction due to the difference of the tetrad, by

Ln(X) _ T|w|/2a Mn(X) e~ Tlwl/2a M,7(X) \C
w0 = By (e e /e (M7 )0, (134)
ILn(X) _ rlwl/2 Mn(X) —rlwl/2a /7 MA(X) \C

vl = B, ( wl/2ag M0 o rlel /20 (g MO0 ) (135)

with X = F, P, (R/L) to denote different expressions in each region
In the R and L region, we find that the functions and (| reduce to

1+ e2mlwl/a xpffu]",jf) (R region)
Ln(R/L) _ ’

|<.u| k:i

(136)
0 (L region)
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and

0 (R region)
ILn(R/L) _
\I’Mnlu (137)

14 e2mlwl/a \I/I\_A"Zl(f;cl (L region)

In the F region, from Eqgs. (134]) and (135)), we find that these modes yield

In(F —ilw n . (—m ik, x
\I/\w\,(ki = 21 Bl {”l(et )Jf(i\wl/a+1/2)(qF) —“fz(u )J(iw/al/z)(QF)}ekL ., (138)
Vi = 2w Bl [—' (Tn)Jw/a+1/z(qF>+vz(eg")Jw/a1/2(@)} etk (139)

for w > 0 and w < 0, respectively. In the P region, Egs. and - ) give
\I'|Iw7(li = —2mBe Il {_W J\w|/a 1/2(qp) —l—vkL J|w|/a+1/2(CIP)} etkrms (140)

II,n(P i|w s . (=, ik -
Uiih) = —2mBuellr {vz(i ™ Jitalfar12(ap) — vy, n)Jiw/a—l/Q(qP):| etkrme (141)

for w < 0 and w > 0, respectively.

C. Summary of the Analytic continuation

In the previous subsection, we introduced the global modes by Egs. (| and (|135] -7 whose explicit expressions are
given by (|136] - . The global modes are the solutions analytlcally contlnued in the entire region of Minkowski
spacetime and corrected the difference due to the tetrad. We find the relations to the solutions found in Sec. II, which
are summarized as follows:

v =t w>0) F v =i w>0) F
Lu ) glu®R/L) _ Yok, (W>0) R rd  _ ) gramsm) _ Whh, (w>0) R A
/ww,ki_ w,k ’ ’ ww,kL_ w,k ’ ’ (1 2)
0 (w>0) L 0 (w>0) L
Lu(P) _ . Ku(P Ld(P K,d(P
v =™ w>0) P o =l ws0) P
and
=it (w<0) F Pl A (w<0) F
Lu _ mu®/L) _ J O (w<0) R d _ mdr/L) _ J O (w<0) R
={w , ={w 143
Vol ek b we<0) L Vel Ttk T el w<0) L (143)
W) = 0 <o) p e =Y w<o) P
or equivalently,
ILu(F . Ku(F ILd(F K,d(F
vt = -0, w>0) F e =K w0 F
ILu 1u(R/L) 0 (w>0) R nd _ mdr/L) _ ) 0 (w>0) R
=< v = =< Vv 144
ww,m w,—k ¢£:EkL (w > O) L ) wW,kL w,—k —%I::im (w > 0) L ( )
ILu(P K,u(P ILd(P S K,d(P
vt = =i w>0) P e = ST (w>0) P

We note again that \1119 "( ) is constructed by the function \Il k, n Eq. , which is globally defined by a linear

combination of the po&twe—frequency modes of the Mlnkovvskl coordlnates and by applying the local Lorentz trans-
formation from the local Lorentz frame of the Minkowski coordinates to that in each local coordinates of the regions
F, P, L, R, to take the difference of the tetrad into account. Therefore, wi:ZL represents the solutions analytically
continued across different region, whose explicit expressions are summarized in Appendix C.
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The Dirac field operator in the F region is written as

= ¥ [t [ s (00w - a0 ) (195
n=u,d
= % [T [T (SO0 @)+ S SO )
n=u,d
+ 3 / dw / &k <AK"<F> K () + dS Kgf”,zgx))(i). (146)
n=u,d

Here, x denotes the coordinate (¢, ) in the Minkowski spacetime. From the behaviour of the solution near the Rindler

horizon in the F region, we refer wf’:(F)( ) with w > 0 and wK . F)( ) with w < 0 the left-moving wave modes and

the right-moving wave modes, respectively. Similarly, we refer 1 ’"(P)( ) with w > 0 and ¢K "(p)( ) with w < 0
the right-moving wave modes and the left-moving wave modes from the behaviour near the Rindler horizon in the
P region. The results of the analytic continuation show that the left-moving wave modes in the F region and the
right-moving wave modes in the P region are analytically continued to the Rindler modes in the R region and to zero
in the L region, which are represented by T/Ji},?;n- Furthermore, the right-moving wave modes in the F region and the
left-moving wave modes in the P-region are analytically continued to the Rindler modes in the L region and to zero in
the R region, which are represented by d)g ,Z Thus, the expression of the Dirac field operator can be extended
to the entire region of Minkowski spacetime as

=Y X [ [T ekl @+ d i @)°), (147)

Y=L1I n=u,d

where the mode functions characterized by the index “I” and “II” are defined by Eqs. (142) and (144), and the
creation and the annihilation operator satisfy the anti-commutation relations

{ehm @iy — (gon L vy ;;,T} = §(w—w)0(kL — K )Spn b9y, (148)

w,k w’k’

with all other anti-commutators vanishing. Comparing the expressions of the Dirac field operator, Egs. (146]) and
(147) with the use of the expressions (142)) and (144)), we have the following relations in the F region

LK, u(F LK, d(F L1, LK, u(F L LK, d(F R
C,u() Cu C,() 1,d P u(F) CIIu (F) 7CIId

Wkt kL wky Yok, —w,—k, — ¥, C w,—k, = Cuk, (149)
JEuE)T dI 0 JOAOT _ L dt 0 gKu(®)F L uT AT dH dT )
w,k:J_ wk:J_ w,ku_ - v w,k:J_ —w,—ku_ wk:J_ —u},—kJ_ wa_

and in the P region

AKa) _ o Kd(P) & Ku(P) Jn LK d(P) _I1d

Kk(P) oy i "Wkt S R A R G (150)
u u ’ K, u u .

dw k., Zd dw k., _dw ko d—w,—ku_ = _dw, k. d—w -k, — Zdw kL

IV. EXPRESSION OF THE MINKOWSKI VACUUM STATE AND THE UNRUH EFFECT

The Minkowski vacuum state of a scalar field is described by an entangled state (see e.g. [20], cf. [30] for the
gravitational wave). We focus on the Minkowski vacuum sate of a Dirac field using the analytic continuation-property
of the general 4-dimensional Dirac spinor developed in the previous section. We first focus on the vacuum structure
in Kasner regions, which can be extended to the entire region of the Minkowski spacetime. We also discuss the Unruh
effect of the Dirac field after discussing the description of the Minkowski vacuum.

In order to derive the Minkowski vacuum state for the Dirac field as an entangled state, we start with adopting the

anzatz for the Minkowski vacuum state
oMy = H TTIT 10550 (151)

20 ki n

in Kasner regions with
K,n(© K (e
} jc e e TS (152)

ka w,k 7w,7
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FIG. 2: Relations of the mode functions in each region. This figure shows the equivalence of \I!I n(F) (l ft-
Ln(R/L)
w kJ_

ol n(F) | (right-moving wave modes in the I region), \I/gi(kpi/ L)(left

moving wave modes in the F region), ¥ (right Rindler modes), and ol n(P)(rlght—movmg wave

modes in the P region). Similarly, ¥

Rindler modes), \115 on(P) | (left-moving wave modes in the P region) are equivalent.

where \€K7n )C and [£* ”(9 ) denote the ground state (¢ = 0) or the one particle state (¢ = 1) for a particle of

—w,—
the index "¢” with the momentum (w, k) and for an anti-particle of the index ”d” with the momentum (—w, —k_).
Namely, we may define the ground state by

AKn

K,n(©
wk:L ()>

ka

an =0, dip @l @) =0 (153)

and we write the one particle excited particle state (¢ = 1) for particle and anti-particle

|1K,n(®)>c _ K n(@)T|OK n(®)>c ’ |1K n(®)> g5 n(@)TlOK n(®)> ) (154)

w,k w,k w,k

The ansatz Eq. (151]) comes from the anti-commutation relation to obtain the maximally entangled state (see Appendix

NOVV we find the relation of the states, which are related by the Bogoliubov transformation and ( . To
find the coefficient C[ in the ansatz Eq. .7 we substitute the ansatz and the Bogoliubov tranbformatlon into the

relation aM "(®)|O ') =0, which leads to

. M,n(© mlwl /20 Kn(©) _ —m|w| /20 JKT(O)F s
wkf )|0ka>_B ( lol/2 w,k J(_ ) hel/2 d—w,(—k)l)zcwwku_ —w—kgL>
- B, (wew|w|/2acl —7lwl|/2a ¢ >|OK n(@)> | KT _kL>d —0. (155)
The result gives the following relation for the coefficients
Oy = we /a2y, (156)

Therefore we find that the Minkowski vacuum state is written in the form (151f) with

M,n 1 K,n(0)\ ¢ K, (O —rlwl /a1 K,n(® K,n(©
0%, = s (0 A0S, ) o e M )T, ) ), (157)
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where the constant Cy was determined by the normalization condition, (0™ \0 o ) =1,as|Co|* = [e=2mlwl/a 4 1)1

Furthermore, with the fact

ka

Mn@) Bw wlw|/2a jK,n(© —rlw|/2a K,n(O)T
B |07w7h>:—W(w /20 Kn(©) _ /2 Mﬁ))

K,n(© —rlwl /a1 K,(© c11K,n(©
(1057 <105yt = e mlellap K 7S] yepiSt@))

w,k w,k
=0, (158)
where we used the antl commutatlon relation between dK "ie) and éI_{:(_@k)L to derive the second equality, we conclude
that Eq. ( with ( is indeed the Minkowski vacuum state for anti-fermions too. It is important to note that
the expression of the vacuum state is valid in both of F-region and P region. Thus the Minkowski vacuum of a Dirac
field is described by the entangled state between particle labelled by “ ¢ 7 and anti-particle labelled by “ d ” with
momenta opposite to each other in the F region as well as in the P region.

Using the equivalence of the mode functions presented in the last part of the previous section, i.e., the equivalence
between the left-moving (right-moving) wave mode in the F region and the right (left) Rinder mode and the right-
moving (left-moving) wave mode in the P region, we can extend the expression to the modes labelled by the indices
I and II. Because Eq. is rewritten as

) = H ITIT005%)

20 ki n
K,n(© d —rw/aj1 K,n(©) K,n(©
= T T g (1080 ) /oS, o)
w>0 k; n
K,n(©)\ ¢ nK,2(© —nw/aj1 K,n(©) K,n(©
@ (052505 TN — e e SN, (159)

therefore we can rewrite the Minkowski vacuum state of the Dirac field (151 as

M I,n cinll,n d —nw/aj1,n ciq 1L d
0 = TT TTTT s (055 09007 el penth?, )

w>0 Kk, n
II,n \c|nl,m —rw/aj11,n
@ (005 10T ) = e/ )L, )), (160)

where we defined the ground state by

A, 2, d
w2¢|0wkl>c_0 dwrl::L|0wa_> =0 (161)
and the one particle excited state by
9, 0, &, 9, 9,
|1w,ZL>C = w,zz‘ow,zl>c7 |1w,zl> - dw21| ka> . (162)

In the derivation of Eq. from Eq. , we used the fact that the modes labeled by (—w > 0,k ) in the F region
correspond to the modes II with (w > 0,k ), which comes from the relations , as well as the relations .
The modes I and II are defined in the entire Minkowski spacetime, and that the modes labelled by I vanish in the L
region, while other modes labelled by II vanish in the R region. This is the important property of the four-dimensional
case even for the massless case. This is the contrasting property to the two-dimensional massless case [24]. These
properties are common to those of a scalar field [20].

Using the above results, let us discuss the Unruh effect of a Dirac field. An observer in the R region is disconnected
to the L region, thus we take the partial trace over the density matrix of the Minkowski vacuum with respect to the
modes in the L region specified by 11

ph = Trr [JOM) (0M]]

= > > ITIIIT »eon, oMoMie, ), (163)

p=c,df=0,1w>0k; n

which reduces to

an 1N 101 oo (164)

w>0 ki n
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with
1
AT - ILn \cc/nlin —2nw/aj1Lm \ccy/qLin
pw,kmnie—%w/a—kl (|0w7’n> <0w,’ﬂ|+e |1kai> <1“7kl|>
In I,n —27nw/a|q,n In
® (1045 )08, |+ e72/2 1l Y1l 1) (165)

The Fermi-Dirac distribution function is derived as an expectation value of the number operator corresponding to
particles as follows

A 1

Int ALn _
Trd[cw,kLcw,k:Lp] - e2mw/a + 1

(166)

This is the result of the Unruh effect. Thus, we have explicitly demonstrated the relations for the vacuum state of a
quantized Dirac field in 4-dimensional Minkowski spacetime covered with Rindler and Kasner coordinates.

V. SUMMARY AND CONCLUSION

We investigated the solutions of a Dirac field in the four-dimensional Minkowski spacetime covered with the Rindler
and Kasner coordinates. We demonstrated the construction of the mode functions in the F region, the R region, the
L region, and the P region, and the properties of the analytic continuation of the positive frequency solutions are
explicitly demonstrated. The Bogoliubov transformation between the different two sets of the mode functions is
also demonstrated in the Kasner region in an explicit manner. The Bogoliubov transformation in the Kasner region
is extended to the entire region of Minkowski spacetime, using the analytic continuation of the positive frequency
solutions. The relation between the quantum states constructed in association with the mode functions is developed,
which led to the entanglement-based description of the Minkowski vacuum state. This description is useful to formulate
the Unruh effect of the Dirac field. This is an extension of the previous work for a scalar field in Minkowski spacetime
[20] to the case of the Dirac field. A unified analysis of the four-dimensional Dirac field including the correct analytic
continuation is presented for the first time.
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Appendix A: Matrices to relate spinor components in curved and Minkowski coordinates

The spinor components are tied to the local Lorentz frame or the tetrad used to define them. To relate the spinor
solutions in the four regions found in Sec. II to one another, it is necessary to express them in a common local Lorentz
frame. We choose it to be the standard one, with the basis vectors pointing along with the coordinate directions in
cartesian coordinates. The tetrad in a spacetime point in each region is related to this standard tetrad by a boost
in the z-direction. Therefore, it is useful to recall how spinor components transform under such a local Lorentz
transformation. If the local Lorentz frame of the spinor components 1curveq is obtained from those in the standard
frame, ¥\, by the boost with velocity tanh b in the z-direction, then

wM = exp(bz)wcurvcd or wcurvcd = exp(_bE)va (Al)
where
_ 1 1
== [7&,71%4] =503 (A2)

The velocity in the four regions can be found in the four regions can be found from Egs. (6), (7), and (9) as
dz/dt on the timelike world line parametrized by the time variable in each region. They are (9z/07r)/(0t/0TR) =
tanhatg (R region), (0z/0m,)/(0t/0m,) = —tanhar, (L region), (9z/0nr)/(0t/Onr) = tanha(r (F region) and
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FIG. 3: Local Lorentz frame in each region which indicates the deviation of direction.

(0z/0np)/(0t/Onp) = —tanh alp (P region). Thus, by writing the spinor solutions we found in the section II as ¢,
Y1, Yr and ¥p, and the corresponding ones with the standard tetrad as ¥nym), ¥m), YMr) and Pyepy, respectively,
we find

YR = exp (—%0[3) UM(R) (A3)
Y1 =75 exp (%043) Uy, (Ad)
g = o (- 5F ) i, (45)
¥p = exp (%@3) NGSR (A6)

For the spinors in the L region, we further need to include the matrix v3vs to take into account the fact that the
direction of the coordinate £, in the L region is opposite to the one of the standard Minkowski coordinate.

Appendix B: Ansatz of The Minkowski Vacuum State for Fermion and Anti-fermion in Kasner Region

In this Appendix, we verify the validity of the ansatz for the Minkowski vacuum state Eq. (151) with (152). In
general, we may assume the form

Z Clom [ (57O} KT(O) 1y (B1)

wk:i wk:i —w,—k:L
£,m=0

Then, the Bogoliubov transformation for the operator is expressed in the form

a9 = el @ 4 pdt QY (B2)

w,k —w,—ki’

where a and [ are the non-zero Bogoliubov coefficients depending on w, k; and n. When we substitute the Bogoliubov
transformation into the following relation, definition of the Minkowski vacuum,

AMn
wkl ‘Oka>7O’ (B3)
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with the above assumption (B1f), we get the following form

AMn@)

K,n(©)
ka |Oka> o

K,n(© K,n(© K,n(© K,n(© K,n(©
Kn©nelofmO) Yy (adyy + BC00) |05 1 eI ) — B [1E @)y TE) )

an|O
=0.

Here we note that we have used the anti-commutation relation between ¢ kie)f and dTK n(@) . Each term is expressed

as an independent vector in the Fock space, therefore, each coefficient mubt be zero, and We obtaln
_ B
Cio=0 y Ci1 = _ECOO. <B4)

From the property of the state of fermion,

AM n(O)T|1u1\j[7,’;nJ_> _ 2a*5*001|1K,n((~))>c|0K,ﬁ((~)) >d -0,

ke wk —w,—ky
which yields
Co1 = 0. (B5)
Here, we used the definition of the one particle excited state and Eq.
|1M,n ) = 4 ™Mn(©)

w,k ka | ka>
= (a*Coo — B*C11) |15 ye gk

wki

n(© * n(©
)t Con 1RO [1879) )y =0 01 (9)e0K ) ),

—w 7kL wki

We again used the anti-commutation relation between ¢ ’,Z(@) and dK ”(ek) to derive the second equality. Then, we

obtain the ansatz for the Minkowski vacuum state, Eq.

Appendix C: Explicit form of spinors in each region

We here summarize the explicit form of the mode functions defined by Eqs. (142)) and (144]). The left moving wave
modes in the F-region are analytically continued as

ghu® gh®
Lu PR L Id CliR/L)
ww’akL = \I}u;,kEJ_) R ) ww’,ku = \IlwdkéJ_) R ? (Cl)
Lu(P Ld(P
\Ilw,kL P \Ilw ki p

where these modes are zero in the L region. Their explicit forms are described as follows,

J—zw/a 1/2((1F) — i J—zw/a+1/2(qF)

k
\I/LukEF)(xp) 1 \/>B efszFezkl - 1Jr 2J_lw/a+1/2(qF) , (02)
L 4 _szw/a 1/2(qF) — i szw/a+1/2(qF)
kl—:kz szw/a+1/2(qF>
Kija+1/2(qr) + 12 K 7a—1/2(qr)
- k1+ik
\I/LukER/L)(fﬂ ) _ i E ;lefiw‘rReikL»mL _'L%Kiw’/a—l/Z(qR) , (03)
@ 4m2V a —Kiwjat1/2(qr) + 12 Ky 7a—1/2(qr)
k1+1k2 sz/a 1/2(qR>

—iJiwja—1/2(qP) + T Jiw/av1/2(qP)

1 , , _kitiks g
\Iji;ukgf) (xP) -~ \/EBweszp ezklmL . P le/T(:L-‘,-l/Q (qP) ’ (04)

’ dmV a ZJiw/a—l/Q(qP) + " Jiw/at1/2(qP)
kl+7,;k2Jiw/a+1/2(qP)
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and

—ikl%{ihj—m/a-s-l/z (qr)

\Ill’d(F)(xF) _ 1\/EBwe—mcFeiln-a:L inw/a71/2(q'F) — i J _iwja+1/2(qr) , (C5)
wkL AV a —ik=t g a2 (qR)
Jiwsa—1/2(qr) + 2T iy av1/2(qr)
ikﬁ%Km/a—l/Q(QR)
\III,d(R/L) (xR) _ i E —le—inReik'L»wL Kiw/a+1/2(gR) + Z'%—Kviw/a—l/Z(qR) (06)
whkL a2\ a ¥ =2 K012 (gR) ’
Kiwjari/2(Gr) — 1% Kiyja—1/2(qR)
%Jm/aﬂ/z(%)
\III,dkEP)(xP) _ 1 \/EBwe_i“CPe““'“’i _iJiw/a—l/g(qP) + 2 Jiw/at1/2(qp) , (1)
wikL A\ a B2 oo jat1/2(qp)

—iJiwja—172(aP) = " Jiwjat1/2(qp)

where g, gr and gp are defined by Egs. and , B, is defined by Eq. , and £ = y/m? + k3. The right
moving wave modes in the F region are analytically continued as follows

Wy W90y
ILu _ ITu(R/L) ILd _ ITd(R/L)
ww,ku = qlwv_(kJ) L 3 ww’kL = \IIWVE(ij L 3 (CS)
IT,u(P I1,d(P
\I’%*ku P \I’w7fkl p

where these modes are zero in the R region. The explicit expressions are given as follows,

=i _iwjat1/2(qF) + 2T _iwja—1/2(qr)

1 ) ) kitiks 7
\IILI:E(kFE (mF) _ 4\/EBwezw§Fe—zku_~mJ_ . P szw/an:l/2 (QF) 7 (09)
Ty a i iwjat1/2(ar) + T iwja—1/2(qr)

7h+7,.jbj—iw/a—1/2(qF)

1K ja—1/2(qL) + 2 Kiwjat1/2(qL)

ki+iko
W ) = L[S B etk | e () » (C10)
; 472\ iKiw/a—1/2(qr) — 2 Ky jat1/2(qr)

—kdike 10t 2(qL)

Jz‘w/a+1/2(qE) - i%Jiw/afl/Z(qP)
‘I]H,E(kpl) (zp) = _1\/EBweiw<Pe—ikL'93J_ _i%‘]iw(aflﬂ(qp) ; (C11)
- a —Jiwjat1/2(ap) =% Jiwja—1/2(qp)
itk g1 2(qp)

and

7@:}_1“/@_1/2((]}?)

\I,H,d(F) (xF) _ 1\/EBw6iwCF6ikLmi _iJ—iw/a+1/2(QF) + %J—iw/a—l/2(QF) (012)
w,—ky 4\ a _kl_ﬁlkz inw/a71/2(qF)

_it]fiw/a+1/2<QF) - %inw/afl/Z(qF)

— k=t 1 a2 (an)
\I’ILd(R/L)(IL) — i E 71€7iw7LefikL-wL _Z.Kiw/a—l/lQ(qL) - %Kiw/a—i-l/Q(qL) (Cl?))
w,—k1 472\ a ¢ "01;17% Kiwjat1/2(qu) ,
iKiw/a71/2(qL) - % iw/a+1/2(QL)
itk a1 2(qp)
\IlH’d(P)(wp) _ 1\/;B piwCp ik @1 Jiw/a+1/2(qP) - i%Jiw/a—l/Q(qP) (C14)
w,—kyL dr\ o ikl;lkZ Jiw/a—l/Q(qP) ’

Jiwjat172(qp) + 17 Jiw sa—1/2(qp)
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