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i. Introduction 

The evolutionary diversification of organisms is commonly pictured as following a bifurcating tree 

of life. As time passes, species divide and follow their own evolutionary path along separate 

branches. In this strict bifurcating tree scenario, any evolutionary novelty or innovation is restricted 

to the lineage in which it arose. However, it is well known that branches of the tree of life can be 10 

porous, with episodic or even frequent genetic exchanges between species. Hybridisation is 

especially frequent in some groups of plants and allows various amounts of gene flow between 

closely related taxa (Goulet et al. 2017). During hybridization, genes are passed from the two 

parents to the offspring via sexual reproduction, but recent evidence furthermore indicates that 

genetic material is occasionally transferred between distantly related plant species by means other 15 

than sexual reproduction, a process known as lateral gene transfer (LGT). The cases of LGT 

reported to date involve various groups of plants and donors from different parts of the plant 

phylogeny or different phyla (reviewed by Richardson and Palmer 2007; Gao et al. 2014; Wickell 

and Li In press), and genes received from bacteria have even been linked to the emergence of land 

plants (Cheng et al. 2019). In this short essay, we discuss the potential impacts of these genetic 20 

transfers for our understanding of plant evolution. We focus on LGT, as these provide very tractable 

systems to assess the effect of reticulations on plant functional diversification, but also discuss the 

broader impacts of hybridization and introgression. 

 

ii. LGT represent novel mutations of major functional effect 25 
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The remarkable adaptations that have allowed plants to colonize most environments around the 

globe did not arise over night. In some cases, protracted evolutionary periods were required to 

incrementally modify genes either inherited from their ancestors or originating de novo in the 

genome (Bianconi et al. In press). Reticulation events have the potential to speed up this process 

and even provide access to new traits that would otherwise have been out of reach of natural 30 

selection. 

 For the recipient genome, LGT represents the insertion of foreign DNA, effectively 

generating major structural variants that natural selection can act upon. The fate of each LGT 

depends on its selective value in the recipient, and the frequency we observe will be significantly 

lower than the actual rate in nature as most transfers will be either deleterious or selectively neutral. 35 

However, given a high enough frequency, random transfers of DNA will occasionally increase the 

fitness of the recipients. Such beneficial LGT include those transferring functional genes that have 

undergone substantial modification through prolonged periods of positive selection in the donor 

genomes before being transferred (Christin et al. 2012). A gene that is selected for may also be 

accompanied by hitch-hikers on the same fragment of foreign DNA, which can act as standing-40 

genetic variation for secondary selection (Olofsson et al. 2019). LGT therefore provides a 

mechanism by which plants can effectively 'steal' the genetic blueprints for molecular adaptation, 

thereby recycling the product of natural selection and altering the evolutionary trajectory of a 

species. 

 LGT has spread functional metabolic, disease resistance and abiotic stress tolerance genes 45 

among plants (Dunning et al. 2019). These transfers can have an adaptive effect and bypass the 

necessary time required for the repeated action of natural selection to adapt the ortholgous gene in 

the recipient species. For example, PEPC (phosphoenolpyruvate carboxylase) is a key enzyme in 

the C4 photosynthetic pathway that has repeatedly undergone convergent positive selection in 

independent C4 origins to boost the enzymes efficiency (Christin et al. 2012). The grass Alloteropsis 50 
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semialata represents a recent C4 origin, and its native PEPC lacks the adaptive amino acid 

substitutions typically observed in older C4 groups (Christin et al. 2012; Dunning et al. 2017). 

Given enough time, it is likely the native gene from A. semialata will undergo similar convergent 

changes as witnessed in other species. However, certain populations of this species acquired via 

LGT a PEPC that had been adapted for the C4 function by the older C4 lineage of grasses that gave 55 

the gene (Christin et al. 2012; Dunning et al. 2017). In this example LGT acts as an evolutionary 

shortcut to a novel phenotype. 

 LGT may also allow an organism to evolve beyond its innate capability. The adaptive 

potential of an organism is limited by its evolutionary history, and the necessary material for 

specific innovations may be missing from some lineages if certain genes have been lost or never 60 

evolved (Blount et al. 2012). LGT can bypass this problem, allowing organisms to reach previously 

inaccessible areas of the adaptive landscape. For example, the chimeric neochrome photoreceptor 

for growing in low-light conditions was unique to the hornwort lineage, a small group of 

brypophtes that diverged early during land plant evolution (Li et al. 2014). A gene encoding the 

bryophyte-restricted neochrome was laterally acquired by ferns over 170 million years ago and is 65 

cited as a key innovation underpinning the Cretaceous diversification of this group under the 

emerging angiosperm canopy (Li et al. 2014). It is possible that ferns may never have been able to 

exploit this new niche had they not laterally acquired the hornwort gene. 

 

 iii. LGT spread traits across the tree of life 70 

Understanding when, where and why a trait evolves are the major goals of evolutionary biology. 

Most methods used to address these questions rely on phylogenetic trees, but gene flow between 

taxa can disconnect the history of the underlying trait from the species tree (Pardo-Diaz et al. 2012; 

Meier et al. 2017). Genes encoding one of the C4 enzymes (phosphoenolpyruvate carboxykinase - 

PCK) have been passed among a number of grass lineages (Dunning et al. 2019), which therefore 75 
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share the encoded enzyme yet have not evolved it independently. A detailed analysis of the C4 

phenotype of the grass A. semialata showed that its C4 photosynthetic machinery is composed of 

both native genes and LGT (Fig. 1; Dunning et al. 2017). The number of origins therefore differs 

among the constitutive elements of a single ecological innovation (Fig. 1; Dunning et al. 2017). 

Relying on species trees to assess the timing and drivers of adaptive evolution of these genes would 80 

mislead the analyses, including assessment of the levels of convergent evolution of the genes. 

 The importance of LGT for plant evolution is currently difficult to quantify. Most cases of 

LGT have been incidentally identified, and few systematic scans have been performed. In the case 

of parasitic plants, Striga has 34 LGT identified out of a total of 34,577 nuclear genes (Yoshida et 

al. 2019), and 108 are expressed in the Cuscuta transcriptome (Yang et al. 2019). Similarly, in the 85 

grass Alloteropsis semialata, 59 of its 22,043 nuclear genes were identified as LGTs (Dunning et al. 

2019). Because of detection difficulties and extreme caution in these studies, these numbers might 

underestimate the true amounts of LGT. Yet, it is clear that LGT represent a small fraction of all 

plant genes. The transfer of genes among close relatives via hybridization would however similarly 

disconnect the species and gene trees. Hybridization is known to be frequent in some groups 90 

(Goulet et al. 2017), but the taxonomic scales concerned are very different. Yet, all types of 

reticulate evolution create conflicts among gene trees, which can be problematic even when 

studying functional divergence on deep evolutionary scales (Koenen et al. In press). There is 

therefore a need for the field of plant macroevolution to consider the effects of reticulations in the 

tree of life on the sorting of functional traits among lineages. 95 

 

iv. LGT generates intraspecific variation in important genes 

Over the past decade, it has been increasingly recognized that individuals from the same species do 

not always share the same genes. In bacteria, this well-known phenomenon lead to the “pan-

genome” concept where a single species contains both a core set of genes present in all individuals 100 
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and a dispensable set of genes with a discrete distribution (Tettelin et al. 2005). Similar pan-

genomes have been reported in several model plant species, with many thousands of genes absent 

from the original reference genome (reviewed in Tao et al. 2019). We suggest that LGT and 

hybridization might be important, yet underappreciated, contributors to the functional diversity in 

plant pan-genomes. Transfers of genes into an established species will result in a patchy 105 

distribution, where, initially at least, only some populations possess the new genes (Fig. 2; Dunning 

et al. 2019). Local adaptation might moreover lead to variation in LGT content among members of 

the same populations (Prentice et al. 2009). The first methodological consequence is that the full 

extent of LGT cannot be estimated with a single reference genome per species. More importantly, 

in the case of functional genes of adaptive significance, it means that individuals from the same 110 

species can differ while those belonging to distinct species can share the same key genetic elements 

(Fig. 1). This phenomenon could have important consequences on the sorting of morphological and 

functional traits within and among species of plants, especially in groups where genetic exchanges 

are frequent. While hybridization effects are widely studied, the consequences of LGT for 

intraspecific diversity need to be assessed, as it can impact conservation, crop improvement 115 

programs, but also our understanding of functionally relevant taxonomic units. 

 

v. Conclusion: 

The transfer of functional genes among distantly related groups of plants can mislead our 

reconstruction of plant evolution by disconnecting the history of relevant genes from species trees. 120 

The impact of genetic exchange at the intra- and inter-specific levels should thus be considered in 

comparative botany, as both LGT and introgression are known to occur and move genes of 

functional importance among plants. Work on plant LGT is however still embryonic, and there is a 

need to evaluate the prevalence of the phenomenon in different groups. As more genomes become 

available, comparative analyses will be able to answer this question, potentially moving plant LGT 125 
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from an obscure oddity to be appreciated as an important contributor of adaptive diversification in 

plants and beyond. 
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Figure 1: Lateral gene transfer disconnects the origins of parts of the C4 photosynthetic trait 

from the species tree. This cartoon illustrates the situation of the grass Alloteropsis semialata 

(native genes in red), where some populations acquired a key C4 gene from Andropogoneae (in 195 

blue; Dunning et al. 2017). After the gene transfers, the C4 cycles can be composed of genes from 

different origins, as indicated with different colours in the schematics of the cycle. 

 

Figure 2: Lateral gene transfers create intraspecific variation in gene content. For six genes 

laterally acquired by the grass Alloteropsis semialata, their presence (in colour) or absence (in 200 

white) are indicated for 20 populations spread around the world (Dunning et al. 2019); 1 – Burkina 

Faso, 2 – Cameroon, 3 – Democratic Republic of Congo, 4 – Tanzania, 5 – Mozambique, 6 - 

Kenya, 7 – Zimbabwe, 8 and 9 – South Africa, 10 – Madagascar, 11 – Sri Lanka, 12 – Thailand, 13 

– China, 14 – Taiwan, 15 – The Philippines, 16 – Aru Island, Indonesia, 17 – Daru Island, Papua 

New Guinea, 18 – Darwin, Australia, 19 – Cairns, Australia, 20 – Brisbane, Australia. 205 

 


