
Horus: Interference-Aware and Prediction-Based
Scheduling in Deep Learning Systems
Gingfung Yeung , Damian Borowiec, Renyu Yang,Member, IEEE, Adrian Friday,

Richard Harper, and Peter Garraghan

Abstract—To accelerate the training of Deep Learning (DL) models, clusters of machines equipped with hardware accelerators such

as GPUs are leveraged to reduce execution time. State-of-the-art resource managers are needed to increase GPU utilization and

maximize throughput. While co-locating DL jobs on the same GPU has been shown to be effective, this can incur interference causing

slowdown. In this article we propose Horus: an interference-aware and prediction-based resource manager for DL systems. Horus

proactively predicts GPU utilization of heterogeneous DL jobs extrapolated from the DL model’s computation graph features, removing

the need for online profiling and isolated reserved GPUs. Through micro-benchmarks and job co-location combinations across

heterogeneous GPU hardware, we identify GPU utilization as a general proxy metric to determine good placement decisions, in

contrast to current approaches which reserve isolated GPUs to perform online profiling and directly measure GPU utilization for each

unique submitted job. Our approach promotes high resource utilization and makespan reduction; via real-world experimentation and

large-scale trace driven simulation, we demonstrate that Horus outperforms other DL resource managers by up to 61.5 percent for

GPU resource utilization, 23.7–30.7 percent for makespan reduction and 68.3 percent in job wait time reduction.

Index Terms—Distributed systems, deep learning, interference, GPU utilization, cloud computing, workload prediction

Ç

1 INTRODUCTION

DEEP Learning (DL) is an increasingly important type of
machine learning positioned to impact many fields.

Innovation in DL architectures and growth in data volume
has led to increased practitioner demand, resulting in the
establishment of clusters of machines equipped with com-
puter accelerators such as Graphical Processor Units
(GPUs). These DL systems—comprising distributed sys-
tems at both small and large-scale—are leveraged to enable
vast amounts of computation throughput and reduce total
model training time [1], [2].

Cloud providers deploy and execute DL workloads
(encapsulated as DL jobs) by provisioning resources as part
of their service model [3], [4], [5]. An important goal for
such DL systems is their ability to satisfy Service Level
Agreements (SLA) and Quality of Service (QoS) criteria in a
resource-efficient manner [6], [7]. Efforts to ensure such
SLA and QoS guarantees are challenged due to GPU under-
utilization [8], [9], [10]. This is due to existing resource man-
agers such as Kubernetes [11] and YARN [12] prohibiting the
explicit use of GPU sharing (i.e., only allowing a single DL job
to be assigned to each GPU). Such under-utilization

decreases performance, resource-efficiency, and service avail-
ability incurring longer queuing times [9], requiring addi-
tional GPU devices to satisfy demand.

The ability to co-locate DL jobs (i.e., execute on the same
GPU) has been identified as a means to address under-utili-
zation [13], [14], [15], [16]. The effectiveness of such co-loca-
tion is based on a good understanding of DL workload GPU
utilization patterns [8], [17], [18]. For providers, this enables
high-quality DL system scheduling and co-location deci-
sions that reduce GPU resource under-utilization. For con-
sumers, this allows greater insight into potential GPU
costs.1 Understanding and exploiting DL workload utiliza-
tion to improve co-location is critical for designing
resource-efficient DL systems [10], [19], [20].

However, established approaches for characterizing GPU
utilization from DL workloads leverage online profiling dur-
ing execution. Online profiling entails executing each
unique DL job on an isolated GPU (or dedicated machine)
to ensure accurate metric collection [21], [22]. Such online
profiling results in reduced service availability and
resource-efficiency due to the need for reserved GPU devi-
ces: a growing problem given the increasing number of dif-
ferent model architectures and configurations [8]. Whilst co-
location can improve GPU utilization, it also can incur per-
formance interference (which we refer to as interference)
resulting in an average DL job slowdown of 18 percent for
different co-location combinations [8]. While DL resource
managers now exist that allow for co-location [6], [8], [10],
less attention has been paid to actively addressing interfer-
ence between DL jobs sharing the same GPU during

� Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, and
Peter Garraghan are with the School of Computing&Communications, Lan-
caster University, LA1 4YW Lancaster, U.K. E-mail: {g.yeung1, d.borowiec,
a.friday, r.harper, p.garraghan}@lancaster.ac.uk.

� Renyu Yang is with the School of Computing, University of Leeds, LS2
9JT Leeds, U.K. E-mail: r.yang1@leeds.ac.uk.

Manuscript received 15 Feb. 2021; revised 31 Mar. 2021; accepted 26 Apr. 2021.
Date of publication 11 May 2021; date of current version 23 June 2021.
(Corresponding author: Renyu Yang.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2021.3079202

1. AWS p3.16xlarge instance (8x NVIDIA V100 GPUs): $24.48/h
(https://aws.amazon.com/ec2/pricing/on-demand/) [04/01/2021]

88 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3845-0686
https://orcid.org/0000-0002-3845-0686
https://orcid.org/0000-0002-3845-0686
https://orcid.org/0000-0002-3845-0686
https://orcid.org/0000-0002-3845-0686
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
mailto:g.yeung1@lancaster.ac.uk
mailto:d.borowiec@lancaster.ac.uk
mailto:a.friday@lancaster.ac.uk
mailto:r.harper@lancaster.ac.uk
mailto:p.garraghan@lancaster.ac.uk
mailto:r.yang1@leeds.ac.uk
https://aws.amazon.com/ec2/pricing/on-demand/

placement decisions. Poor DL job placement results in a
higher makespan, increased Job Completion Time (JCT), job
eviction, and job failures from GPU out-of-memory (OOM)
errors [9].

In this paper we present Horus: a prediction-based inter-
ference-aware resource manager for DL systems. In contrast
to existing approaches, Horus proactively predicts the GPU
utilization of unseen DL jobs based on their model features,
which are exploited by our scheduler to determine suitable
DL job co-location combinations to minimize interference.
Our approach avoids the need to profile kernel patterns [10],
[13], [21], [22], modification of the underlying DL frame-
work, nor require extensive online profiling of job execution
requiring an isolated GPU at scheduler runtime—all of
which are expensive and time consuming. We offer three
specific research contributions:

� Characterization of DL workload interference resulting
from co-location. We have characterized interference
profiles of over 600 unique combinations of co-
located DL jobs across heterogeneous GPU hardware
architecture. Findings demonstrate that DL job co-
location interference results in up to 2.4x–3.4x slow-
down, and is comparable to network locality for dis-
tributed training.

� GPU utilization analysis and prediction engine for DL
workloads. Through a series of benchmarks, we ana-
lyze and identify the key DL model features and
their relationship to GPU utilization. These include
Floating Point Operations Per second (FLOPs), input
data size and DL computation graph structure such
as number of convolution layers. Our proposed pre-
diction engine allows for sub-second DL job GPU
utilization prediction without a need for online
profiling.

� An interference-aware DL resource manager. Exploiting
our prediction engine, we propose an interference-
aware resource manager supporting co-location and
minimizing GPU over-commitment. Our approach
offers two alternative scheduling algorithms that pri-
oritize minimizing job makespan or improving fair-
ness to avoid job starvation—lowering median job
wait time at the expense of a marginal degradation
to makespan and utilization. The resource manager
was integrated into Kubernetes and deployed within
a DL cluster, and evaluated at scale via trace-driven
simulation of a production DL cluster. Results dem-
onstrate that our approach achieves a 32–61.5 per-
cent increase in GPU cluster utilization and up to
23.7–30.7 percent makespan reduction over existing
approaches.

We expand upon our previous work [23], by increas-
ing the scope of the DL workload characterization study
from 81 to 292 models; capture additional GPU architec-
tures and 600 more co-location profiles for analysis and
modelling, improved GPU prediction model accuracy;
and evaluate Horus at scale via trace-driven simulation
of a production cluster. The Horus framework has also
been redesigned to include a refined fair queuing sched-
uling algorithm to minimize a cost objective. Finally, the
evaluation has been conducted with an additional set of

workload compositions and an additional co-location
algorithm for comparison [8].

The paper is structured as follows: Sections 2 and 3 pres-
ent the research background and job characterization study,
respectively. Section 4 outlines design and implementation
of the Horus system. Sections 5 and 6 discuss experiment
setup and results. Section 7 provides related work and Sec-
tion 8 the conclusions.

2 MOTIVATION

2.1 Background

Deep Learning (DL) are Deep Neural Networks (DNN) rep-
resented as a Directed Acyclic Graph (DAG) or computation
graphs in execution. Each graph node is an operation (i.e.,
layer or combination of layers), containing parameter infor-
mation with access to its predecessor and successor. Model
parameters are stored as floating point values, hence larger
models in execution often result in a higher number of
Floating Point Operations, and an increased requirement
for GPU device memory. This is important as recent
research demonstrate increasing DNN model depth and
width can improve accuracy [24]. DNNs are frequently exe-
cuted on GPUs due to the high performance capability to
perform matrix multiplication on thousands of cores. Each
operation is often expressed as computation or memory ker-
nels on GPUs [25]. Hence a DL model with a large number
of layers requires more kernels, resulting in greater GPU
load driven by the number of FLOPS and the intermediate
outputs (activations) of the network.

Deep Learning Systems (DL systems) are clusters of
machines containing one or more accelerators – predomi-
nately GPUs – employed to execute DL workloads. Users
submit workloads into the DL system as jobs with various
configurations (e.g., batch size, model, dataset). Jobs are
then allocated onto the machines via the resource manager.
Recent studies of production DL systems have identified
the challenge of GPU under-utilization reflected by an aver-
age GPU utilization of 52 percent [9], and long queuing
time for DL jobs of between 4,000s–8,000s due to head-of-
line blocking [26]. We are able to corroborate such findings
from conducting an analysis of a month-long trace of a 398

Fig. 1. Job utilization and JCT from a production DL cluster (1 month).

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 89

production DL jobs scheduled to a 500+ machine GPU clus-
ter operated by a large global e-commerce company. As
shown in Fig. 1, we observed that half of the jobs have GPU
Utilization less than or equal to 60 percent and JCT less than
or equal to 300 minutes, averaging at 51 percent and around
500 minutes, respectively.

A primary cause of such under-utilization is the reliance
on traditional, non-preemptive schedulers [11], [12]
requiring each DL job to hold exclusive access to a GPU
device. This is problematic due to its negative impact on
job throughput, system availability, and resource-effi-
ciency. Existing approaches have demonstrated a positive
increase to DL system GPU utilization by enabling co-loca-
tion of DL jobs on the same GPU [6], [8], [10], [18]. The
effectiveness of co-location is dependent on two inter-
related concepts: accurate GPU profiling and minimizing
interference.

GPU profiling is used to ascertain the GPU utilization for
jobs, and is known to be non-trivial to calculate [27]. In this
context, GPU utilization is defined as the percentage of
time in a given sample interval where one or more ker-
nels executed on a GPU. It is important to note that this
measurement is not the actual utilization of the processing
elements core (chip area containing the floating-point,
integer, tensor units), nor relates to the bytes read/writ-
ten from device memory and cache. It is however, a good
estimate of the amount of load required to keep the GPU
busy within the measurement period. Profiling2 is per-
formed by collecting metrics related to a DL job on an iso-
lated GPU or machine [14], [21], [22]. Profiling can be
categorized into two types: Coarse-grained profiling obtains
the number of kernels, kernel configuration, GPU/mem-
ory utilization, and kernel execution time, and usually
takes several minutes to complete depending on the job.
Fine-grained profiling requires accessing hardware perfor-
mance counters including Achieved Occupancy and byte
read/write throughput from DRAM for each observed
kernel. Whilst more accurate when compared to coarse-
grain profiling, this method is more intensive and takes
longer to complete (minutes to hours), depending on the
metrics measured and workload complexity. Whilst GPU
profiling is used in existing DL resource managers for co-
location decisions, such co-location also incurs perfor-
mance degradation from interference.

Interference is a system phenomena occurring when mul-
tiple processes compete for the same limited set of resources

on the same machine [28], [29], [30], [31]. GPU interference
occurs with the same reason. Specifically, the limited set of
processing elements and memory then causes queuing
delays of the jobs’ kernels [13], [16], [21], [22]. These kernels
are launched by the GPU kernel scheduler, which follows
policy similar to round-robin fashion [32]. Interference of
co-located DL jobs has been shown to result in an 18 percent
JCT degradation [8]. Our initial experiments of job co-loca-
tion on an Nvidia GeForce GTX 1080 GPU depicted in
Fig. 2, show that ResNet50 and VGG19 models experience
up to 2.1x JCT slowdown when co-located with various
other models. Such slowdown is problematic considering
that DL jobs may perform model training in the region of
hours to days. Hence, in order for DL systems to fully
exploit co-location, maximizing resource utilization and
minimizing makespan, DL resource managers should con-
sider the effects of interference when performing DL job co-
location during placement.

2.2 DL Utilization and Interference

Existing GPU and DL resource managers [8], [10], [13], [14],
[15], [16], [21] alleviate interference effect by profiling kernel
characteristics and GPU Utilization at runtime to orches-
trate kernels scheduling order or opportunistically co-locate
jobs. However, profiling DL job kernels at runtime to infer
interference by creating suitable performance profiles may
extend DL job training from minutes to hours. Moreover,
profiling must be performed for every new job (DL model)
submitted into the system, resulting in additional overhead

Fig. 2. DL job interference (Nvidia GTX 1080, Cifar10 dataset).

TABLE 1
Micro-Benchmark Hardware Setup

Feature System A System B

CPU Intel i7-6850K AMD Ryzen 1920X
GPU Nvidia GeForce GTX 1080 Nvidia GeForce RTX 2080
RAM 32GB 128GB

TABLE 2
Analyzed DL Models

Datasets (CV): Cifar10 [33], batch sizes: {8, 16, 32, 64}. (NLP): WikiText2 [34]
& News Commentary v14-en-zh [35]. NLP: sentence length: 200, vocab.
10000, batch sizes: {16,32,64}.

2. Nvidia tools: NSight Systems, NSight Compute, and NVProf.

90 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

in the system. Since GPU Utilization is correlated to the load
of the GPU, we therefore turn to investigate the relationship
between GPU Utilization and interference. It is imperative
to understand how different DL model configurations affect
the GPU Utilization, and exploit such information to ascer-
tain co-location profiles with minimal interference.

Particularly, we conducted a set of relationship study to
address the following questions: [Q1] Can we leverage GPU
Utilization as a general proxy metric to estimate the interfer-
ence level, i.e., JCT slowdown, without fine-grained profil-
ing? [Q2] If so, can we exploit DL job characteristics and
extract useful information to predict GPU Utilization?

3 CO-LOCATION RELATIONSHIP STUDY

3.1 Profiling Setup

Environment. Micro-benchmarks were conducted using
two different DL systems (A & B), described in Table 1.
Leveraging methods established in the literature [15], [21],
[22], DL model profiling was conducted using isolated
GPUs, and by co-locating different combinations of DL jobs
within the same GPU. Each micro-benchmark was repeated
multiple times to ensure metric consistency. Both systems
used an Nvidia container runtime, CUDA Toolkit 10.2 and
PyTorch 1.5 DL Framework [52].

DNN Models. We selected a wide variety of representative
DL job types: 14 prominent computer vision (CV) models, 2
Natural Language Processing (NLP) and 1 custom Fully Con-
nected (FC) model architecture, encompassing convolution
neural networks (CNNs) and recurrent neural networks
(RNNs), comparable to prior works [15], [26], [53], [54]. Each
model architecture were then further refined into several dif-
ferent configurations by varying mini-batch size, hidden
dimensions and number of layers to create a number of model
permutations, as shown in Table 2 and Fig. 3. Within themem-
ory constraints of GPU devices, this resulted in 292 unique
configurations profiled in isolation with further 600 co-location
combinations. We run these models with the highest capacity
on our systems until they encountered OOM.

Metrics. In order to understand the impact of interference,
we extracted several key metrics of interest including: GPU uti-
lization, Job Completion Time and kernel access patterns. Met-
rics were collected using nvidia-smi, nvml-golang

bindings, and Nvidia Nsight Systems. We measured the

impact of interference by analysing the corresponding JCT
slowdown in each co-located execution case by comparing with
the isolated execution case. JCT slowdown Tdeg is measured as

Tdeg ¼ jTcolo � Tsoloj
Tsolo

; (1)

where Tcolo is the time taken for a co-located DL job to reach
a fixed time epoch, and Tsolo is the time taken for the same
DL job executing in isolation.

3.2 Relationship Between GPU Util and JCT
Slowdown

In response to [Q1], we observe that co-located DL jobs,
with each requiring high GPU utilization, result in greater
JCT slowdown due to more significant levels of resource
contention by the scheduled kernels. This is intuitive as
GPU utilization is driven by the degree in which kernels
engage GPU’s processing elements and memory. As shown
in Fig. 4, co-located job combinations with increasing levels
of GPU over-commitment (i.e., the cumulative GPU utiliza-
tion requirement greater than 100 percent) results in a JCT
increase between 1.5x–3x; In contrast, pairs of co-located DL
jobs which individually require less than 50 percent utiliza-
tion are less likely to exhibit severe performance degrada-
tion, with an increase in JCT between 1x – 1.5x. The
correlation of increased over-commit utilization with
increased JCT suggests that utilization can be used as a
proxy metric for determining job interference levels.

Without fine-grained profiling of individual DL job ker-
nels, one can leverage GPU utilization w.r.t. each DL job as
such proxy, when co-locating jobs with high load and deter-
mine scenarios which are likely to result in performance deg-
radation. We observe there is an approximate linear relationship
between accumulative GPU utilization and resultant JCT
slowdown before GPU over-commitment manifests. In com-
parison, GPU over-commitment results in a non-linear rela-
tionship – a quadratic polynomial fits well to the data with
the lowest R-squared difference indicated by 0.88 and 0.84
for Nvidia 10803 and Nvidia4 RTX 2080, respectively.

Additionally, we investigate the impact of hardware het-
erogeneity on JCT slowdown. Fig. 4a reveals that on average

Fig. 3. Overview of DL workload GPU utilization differences (Nvidia RTX 2080).

3. Function: x2ð1:32198Þ þ xð�0:00728Þ þ 6� 10�5
4. Function: x2ð1:16664Þ þ xð�0:00302Þ þ 4� 10�5

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 91

the interference severity when running identical DL jobs is
lower on the Nvidia RTX 2080 architecture than Nvidia 1080,
due to additional processing elements, increased cache size,
and larger memory bandwidth, with the coefficient of the
best-fit relationship differing for heterogeneous hardware.

3.3 Relationship Between FLOPs and GPU
Utilization

In response to [Q2], we investigate the DNN computation
graph and Fig. 4b illustrates a positive correlation between
FLOPs and GPU utilization. This is because the DNNmodel
has a larger number of parameters, and the number of acti-
vations will lead to more computation and memory kernels
launched in the GPU device, further causing an increased
GPU load.

In reality, both the number of matrix multiply and mem-
ory transaction increase when the batch size is increased due
to the number of FLOPs and memory transactions are corre-
lated to the number of elements within a batch of inputs, i.e.,
B�X where B is the batch size and X is the DNN inputs.
Hence, by looking into the DNN computation graph, we can
extract meaningful information to quantitatively determine
the GPU utilization, which in turn allow us to accurately infer
the most suitable job co-location scheme for reducing the per-
formance interference in a deep learning cluster.

4 PROPOSED APPROACH: HORUS

Horus is a prediction-based interference-aware DL system
resource manager, and has been designed as a set of compo-
nents that can be deployed as part of existing cluster resource
manager frameworks such as Kubernetes. Fig. 5 depicts Horus
architecture and it comprises three main components: the Pre-
diction Engine, the Metric Repository and the Application Control-
ler. Upon job submission, the application controller sends a
request to the prediction engine to estimate DL job GPU usage,
i.e., GPU Utilization and GPU Memory Utilization by inspect-
ing the workload definition (Section 4.1). Specifically, the pre-
diction engine requires a way to access the DNN graph and
dry run the model (e.g., downloading the .pth file). Cluster
view is maintained through infrastructure updates and moni-
toring agents, to collect infrastructure data from each node
including GPU usages and system usages (host memory
usages, and CPU utilization). n agent is deployed on each indi-
vidual node reporting application and system utilization met-
rics, which are eventually collected into the metric repository
(Section 4.3).

The scheduler then assigns DL jobs to GPUs by comput-
ing their suitability—minimizing a cost function objective to
support co-location w.r.t. cached cluster state. Our approach

aims to maximize GPU utilization and minimize makespan
via de-prioritizing co-location placement decisions that
would result in JCT slowdown from severe interference and
communication delays (Section 4.2).

4.1 Prediction Engine

4.1.1 Estimating GPU Utilization

Overview. The prediction engine extracts key DLworkload fea-
tures as described in Table 3 by iterating over the Open Neural
Network Exchange (ONNX)5 graph representation of the DL
model. We can obtain aggregate features such as FLOPs by
iterating each operators and calculate based on its inputs, out-
put shape, and parameters. Features are then normalized and
used as numerical inputs to a machine learningmodel in order
to predict the GPU utilization (GUtilj) of a given job j. We
train the prediction model in an offline training stage based on
a set of historical DL workload profile micro-benchmarks sim-
ilar to existing prediction based approaches [14], [29]. These
profiles are nominally acquired via developers running micro-
benchmarks or by monitoring existing non co-located DL
workloads on isolated GPUs. Critically, after successful pre-
diction model training, there is no need for isolated profiling
for unique DL workloads entering the system. It is worth not-
ing that such an approach can also be combined with reactive
approaches [8], [10], [15], [17], [18]. The machine learning
model can be periodically retrained after collecting additional
profiles (e.g., when newmodels are discovered).

Feature Importance. To understand further what contrib-
utes towards GPU utilization, we investigate each of the
tree based regressor feature weights by extracting the
weights and averaged across them as shown in Fig. 6. These
features are clear indicators and follow the existing

Fig. 4. GPU utilization against colocation features.

Fig. 5. Horus architecture - GPU utilization prediction engine and co-
location scheduler deployed within a DL system resource manager.

TABLE 3
ONNX Model Features

Features

FLOPs, Memory Parameters, Batch Size, Memory Activations,
Exponentials, Split, Constant, GlobalAveragePool,
ReduceMean, MaxPool, GRU, Reshape, LSTM, Concat,
Gather, Squeeze, Pad, BatchNormalization, AveragePool,
Conv, Slice, Transpose, Flatten, Relu, Gemm

5. https://onnx.ai/ [04/01/2021]

92 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

literature of model compression and neural architecture
search where reducing the number of parameters and inter-
mediate activations can save computation and memory con-
sumption of the hardware [37], [45]. Surprisingly, we found
that the number of convolution and the remaining features
had minimal to no impact on the regressor, and we plan to
look into leveraging compiler intermediate representation
for more hardware feature characteristics [25].

Model Evaluation.Model accuracy was determined via mea-
suring regressor Root Mean Square Log Error (RMSLE)—an
established measure of regression accuracy when the under-
prediction error is enlarged. This approach is useful for utiliza-
tion prediction: whilst overestimating GPU utilization is not
ideal in terms of maximizing resource efficiency, it is pref-
erable to underestimation which could lead to unintended
GPU over-allocation and interference that we attempting
to avoid. Table 4 shows that all prediction models achieve
a relatively low RMSLE score of 0.133.

4.1.2 Estimating GPU Memory Utilization

Compared with GPU utilization, estimating GPU memory
utilization is more complex since total job memory size
(MiB) is governed by initialization and optimization of indi-
vidual DL libraries. Without looking into the kernels imple-
mentation, it is possible to estimate the minimum expected
memory usage in bytes by considering the following four
factors in both forward Mf and backward passes Mb: (i) the
batch size of data B, (ii) the number of activations A, (iii)
number of gradients G and (iv) the number of parameters
P . In addition to an initialization overhead d, the overall
estimated memory requirement for a given DL job jwill be

GMemj ¼Mf
j þMb

j þ d ¼ ðB �Aþ P Þ þB �Gþ d: (2)

The estimated GPU utilization (GUtilj) and GPU memory
(GMemj) will be used for node capacity check in the scheduler
in case of tackling an incoming job.

4.2 Interference-Aware Job Scheduling

Gandiva [8] placement strategy monitors application
throughput, a job is killed or migrated to another node ran-
domly upon slowdown detection using an undefined
threshold value and time period. In such an approach, it is
possible for random job migration to be allocated with
another incompatible job leading to equal or greater perfor-
mance slowdown. Antman [10] enables co-location by mon-
itoring DL jobs, employing a local coordinator and
modified the underlying DL frameworks to allow fine-

grained control of DL jobs kernels, injecting idle time on a
GPU to alleviate interference between co-located jobs. This
approach, however, requires understanding and profiling
of the kernels execution order at runtime to determine the
appropriate idle time.

At the core of our interference-aware scheduling is to
understand the compute resource requirement prior to job
execution, and perform job placement with the least amount
of cost possible w.r.t the corresponding resources to the job.
This is in contrast to existing DL system schedulers which
react after obtaining workload utilization patterns.

4.2.1 Job Scheduling Plan

Problem Formulation. Our objective is to find a job place-
ment onto a cluster of nodes with GPU capacities that
minimizes the cost value of all possible solutions. In this
context, we use a decision variable Xjng to represent the
node n’s GPU g is allocated to the job j at the decision
time, and Costjng denotes the cost variable in this place-
ment. The optimization problem can be therefore
defined as the following Integer Linear Programming
(ILP) problem:

min
X
j2J

X
n2N

X
g2Gn

Costjng �Xjng (3)

s:t:
X
n2N

X
g2Gn

Xjng ¼ RQGPU
j ; 8j 2 J (4)

X
j2J

X
g2Gn

RQr
j �Xjng4CPr

n � URr
n; 8r 2 R; 8n 2 N (5)

Xjng ¼ f0; 1g; 8j 2 J; 8n 2 N; 8g 2 Gn: (6)

The constraints ensure at every time all GPU requests of
each job can be satisfied (Constraint (Eq. (4)) and the sum
of any type of resources (i.e., CPU, memory, and GPU
memory) requested by all jobs on any node must be
within the bound of node free resource (Eq. (5)). Subject
to these constraints, we aim to minimize the involved cost
of the overall GPU allocation among co-located jobs
(Eq. (3)). For clarity, notations used in this paper are sum-
marized in Table 5.

Cost Breakdown. To accurately capture the incurred cost
and the impact of GPU co-location onto the DL job perfor-
mance, we further break down the overall cost into two
independent portions: GPU memory usage and GPU utili-
zation increase

Costjng ¼ v1C
GMem
jng þ v2C

GUtil
jng ; (7)

wherein vi is a customized weight that indicates the perfor-
mance impact and we set all weights equally by default.

Fig. 6. Most important identified regressor features.

TABLE 4
Regressors Root Mean Square Log Error (RMSLE) for

GPU Utilization Prediction

Linear LightGBM [55] XGBoost [56] Random Forest [57]

RMSLE 0.188 0.193 0.133 0.150

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 93

Since higher GPU memory usage has a higher chance of
OOM errors and JCT slowdown, the cost of GPU memory
CGMem

jng is inherently referred to as a proportion of GPU
memory usage as a result of placing the job j (Eq. (8))

CGMem
jng ¼ URGMem

ng þ GMemj

CPGMem
ng

; (8)

where CPGMem
ng is a fix number, i.e., the total GPU memory

of the GPU device, while GMemj is the estimated GPU
memory usage of job j and URGMem

ng is the used GPU mem-
ory within URt

ng. Due to the relationships between
increased GPU utilization of co-located DL jobs and JCT
slowdown w.r.t hardware outlined in Section 3, we penal-
ize the combinations of co-located DL jobs when over-
commitment manifests. Specifically, let F be a set of func-
tions that we trained and fitted on the JCT slowdown and
cumulative GPU Utilization w.r.t GPU device g. f�t and
fþt are two function instances in F where f�t represents
the function when the targeting device is of t type and
cumulative GPU utilization is not yet over-committed
while fþt is used when the cumulative GPU utilization
surpasses 100 percent. Hence, the GPU cost can be
expressed as

CGUtil
jng ¼ fþt ðGUtiljngÞ; if GUtiljng > 100

f�t ðGUtiljngÞ; if GUtiljng � 100

�
; (9)

where GUtiljng is the estimated GPU utilization if job j is
placed onto node n’s GPU g

GUtiljng ¼ URGUtil
ng þ GUtilj: (10)

As our functions F was fitted against the JCT slow-
down and GPU Utilization, we can directly use the out-
come of the function as an estimated cost when these jobs
are packed onto the GPU device. Therefore, the schedul-
ing probability of the node would be inversely correlated
to the JCT slowdown estimate. As this ILP problem is
NP-hard and due to the heterogeneity of job resource

requirements [9], [26], we have modified our cost based
algorithm leveraged from [58] to greedily solve this
scheduling problem.

Algorithm 1. Weighted Fair Queuing Based Job
Scheduling

Input: (J , S, k, b) // Pending jobs, current cluster state, k
queues and b jobs to consider into the buffer for each sched-
uling round.

1: // Cluster the similar jobs into multi-tiered queues
2: Q Put pending jobs into k queues via k-means (J , k)
3: while queues inQ is not empty do
4: eJ Pick b jobs into scheduling buffer via weighted

fairness
5: for j in eJ do
6: if the cluster has allocatable resources (S) then
7: // capacity check (CPUs, Mems, GPUMems)
8: N filter all nodes passing capacity check (j, S)
9: � j:requestedGPU
10: s d�=#GPUperNodee
11: if LENN < s then
12: continue
13: // calculate the cost of placing a job onto GPUs on the

nodes
14: Cj Eq. (7), (j;8g 2 Gn; 8n 2 N)
15: // shortlist a collection of GPUs with min costs
16: G select top-� from Cj in ascending order
17: // resource allocation
18: SCHEDULEj, G

4.2.2 Runtime Job Scheduling With Weighted Fair

Queuing

As we observed in Fig. 1 that the JCTs vary substantially
among jobs, it is critical to avoid head-of-line blocking and
any forms of resource starvation – particularly incurred by
long jobs with large resource requests. To schedule different
jobs in a fair manner, we borrow the ideas from [59], [60];
(1) cluster similar jobs into several groups to individually
manage the jobs in a group and (2) at each scheduling
round, we fairly pick up a certain number of jobs from dif-
ferent queues, primarily considering the waiting time and
queue length, and then assign the most suitable GPU
resources to launch them in the GPU cluster. Algorithm 1
outlines the algorithm details.

Job Clustering. Before jobs are actually scheduled, we
carry out a clustering procedure for all jobs. Specifically, the
L1 Distance metric is used to identify similar jobs consider-
ing the following features: (1) Number of tasks; (2) GPU Uti-
lization predicted; (3) GPU per task; and (4) GPU memory
estimated. These features outline per-job resource require-
ments and can be obtained by adopting the method in Sec-
tion 4.1. In practice, we run the k-means algorithm on all yet-
to-execute jobs to identify similar jobs and put them into the
corresponding queues, i.e., Q ¼ ½Q1; . . .;Qk� (Line 2). We set
k = 3 as we found that from Fig. 1a, the utilization patterns
have 3 distinct CDFs.

Picking Jobs Based on Weighted Fair Queuing. Presumably,
b jobs are allowed, as a batch, into each scheduling round.
To be fair, Horus picks up a certain number of pending

TABLE 5
Notations Definition

Symbol Description

J; j Jobs awaiting scheduling, a job
N;n Cluster node collection, a node
Gn Available GPUs on node n
vi Component weights in the objective function
R Enumerated resource types: CPU(0), RAM(1),GMem

(2)
r a given resource type in R
CPr

n Capacity of resource r on node n
URr

n Used resource r on node n
CP t

ng Capacity of resource t (GMem) on GPU g on node n
URt

ng Used resource t (GUtil, GMem) on GPU g on node n
Xjng 1 if job j is allocated to GPU g on node n; 0 otherwise
RQr

j Requested resource of job j for resource r
RQGPU

j Requested GPU number of job j
GUtilj Estimated GPU utilization of a job j
GMemj Estimated GPU memory usage of a job j
b the number of jobs considered in each scheduling

round
k queue numbers in the scheduler

94 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

jobs from each queue according to the queue weight, i.e.,
the degree of job pending (Line 4). more jobs are expected
to be selected and processed from a queue with longer
waiting time and larger queue length, we measure
the weight as the product of job’s median waiting
time per queue and the queue length, i.e., wx ¼
maxfLenðQxÞ;MedðQxÞ � LenðQxÞg; x ¼ f0. . .kg, where the
max operation is to guarantee a non-zero value once
median waiting time is zero when all jobs are new arrivals
on the system. Median has a statistical property that is
less affected by skewed data, thus can more accurately
reflect the queuing time for a class of jobs. Eventually, the
number of jobs picked from Qx can be calculated by

wxPk

i
wi

b. This design can actively avoid job starvation of any

particular class of jobs – whenever a class of jobs start
to starve, an increased number of jobs will be selected. We
also allow reservation for starving jobs as the weighted
fair queuing algorithm will select the jobs with the longest
waiting time.

Resource Allocation. Because all pending jobs are now
well ordered into eJ according to the weighted fairness,
the scheduler will try its best effort to allocate available
resources to each job in turn whist minimizing the per-
formance interference. Specifically, for each job, we check
the resource capacity and select all the nodes (N) that
can satisfy all requirements of job j in terms of CPU,
memory and GPU memory (Lines 8). The GPU memory
requirement is inferred by using Eq. (2) in Section 4.1.
Based on the total number of GPUs required by the job
and the number of GPUs per node, we calculate the min-
imal number of nodes that can meet the needs of job j
(Lines 9-12). By using Eq. (7), we can then calculate the
cost of scheduling a job onto each GPU of each node in
N (Line 14) and pick the top-� GPUs (G) with the mini-
mal costs (Line 16) before the final resource allocation
and job scheduling (Line-18).

4.2.3 Other Considerations and Discussion

Job Failover and Rescheduling. It is possible for our
approach (as well as other DL resource managers) to
encounter issues associated with OOM errors due to co-
located DL jobs exceeding the total GPU memory capac-
ity stemming from incorrect memory requirement esti-
mation. We address this issue by using a separate thread
to monitor job progress, and in the event of failure, jobs
are resubmitted onto the scheduling queue similar to
prior works [8], [29]. The scheduler will then update the
DL job request with necessary GPU memory require-
ments, where GPU memory must be equal or greater
than the memory available previously placed based on
periodic infrastructure profiles.

Locality-Based Calibration. This work primarily tackles the
JCT slowdown due to interference stemming from job co-
location while optimizing the distributed job training is not
the focus of this paper. The current job placement scheme
assumes high-speed connection across-nodes, hence the
data transfer time during training is not the dominating fac-
tor in current algorithm design. The GPU interference aware
scheduling is most suitable for jobs which do not have high
frequent transfer of gradients and parameters. For jobs

requiring 8 or more GPUs, the cost model in the algorithm
frame can be integrated with the locality-based placement
so that GPUs on the same nodes or same racks can be priori-
tized before the cost-based GPU filtering to reduce the large
amount of data transfer [8], [26], [61].

Timing Constraints. Horus factors in the waiting time in
multiple queues job selection, however like many other DL
cluster managers, does not consider the timing constraint in
terms of completion time in the placement/planning
phase [8], [10], [26], [61]. This is because a DL job’s conver-
gence rate is often non-linear, depends on hardware/soft-
ware parameters and does not correlate to the number of
iterations [9], so normally DL cluster managers cannot rely
on the job’s (remaining) execution time, which is used by
generic algorithms such as shortest-job-first (SJF) and short-
est remaining time first (SRTF), etc or other optimization
problem formulation based on timing constraints. Existing
scheduling approaches, particularly in HPC and Grid com-
puting, based on the estimation of execution time rely on a
strong assumption, that is, workloads are pre-known, e.g.,
periodic jobs with same datasets, hyperparameter, and
model architecture. This assumption does not hold in DL
clusters due to constant model evaluation with different
datasets [8]. Considering this constraint is, however, beyond
the scope of this paper.

4.3 System Implementation

Horus Application Controller is approximately 5k+ lines
of code written in Go. The prediction engine is written
in Python, and operates as a separate process within
the DL system i.e., in Kubernetes, our prediction engine
is a pod. Both the prediction engine and our applica-
tion controller communicate via remote procedure calls
(RPC). We leverage the gRPC6 library as the underlying
RPC implementation to perform data serialization and
de-serialization during data transfer, allowing our sched-
uler to request predicted information upon job submis-
sion. It is worth noting that our approach requires no
modification to any underlying DL libraries such as Ten-
sorFlow or PyTorch.

Monitoring. Monitoring is the key to application aware
optimization [10], [17], [26], [53], [62], [63]. In order to
obtain a fine-grained view of the infrastructure, Horus
leverages cAdvisor,7 a container monitoring framework.
These infrastructure information is then aggregated into
a centralized time series database, which our application
controller can query and make decision based on the
job’s historical usage.

Fault Tolerance.Using a Network File System (NFS) is often
necessary in DL training jobs due to a large amount of training
data and memory limitation [9], [26], [64]. In addition to effi-
cient retrieval of training data, a checkpoint file or miscella-
neous event files can be persisted across nodes by using NFS.
This allows DL job recovery after a failure and, more impor-
tantly, enables job preemption due to GPU over-commitment.
In Horus, the over-commitment threshold can be configured
based on the number of co-located jobs or device memory
usage by DL system operators. Apart from failures, stragglers

6. https://github.com/grpc/grpc, [01/07/2020]
7. https://github.com/google/cadvisor

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 95

can be present in the cluster and elastic training regime is a
practical way of addressing the issue [65]. However, it is not
the core focus of thiswork.

5 EXPERIMENT SETUP

5.1 Hardware and Software

Horus was deployed onto a 12-GPU cluster with each node
containing 4 x Nvidia 2080 GPUs, an AMD Ryzen 1920X 12
Core Processor (2 threads per core) with a 10 Gb Ethernet
network, and 128 GB DDR4 memory. Each node was
installed with Ubuntu Disco 19.04 and uses Nvidia driver
version 430.50. In our experiments, the DL library and
CUDA toolkits responsible for DL job instantiation and exe-
cution were packaged in a container. Our cluster uses
Kubernetes 1.15.2 due to its prominence in the distributed
systems community. cAdvisor and DCGM were configured
to extract data at 1s and 250ms intervals, respectively, as ini-
tial trial runs indicated that these parameters resulted in
effective job throughput given our cluster configuration.
Our large-scale simulation forms a 128-node cluster with
each node containing 8 GPUs, 128 CPU cores and 512 GB
memory comparable to existing work [26], [53].

5.2 Methodology

We have evaluated Horus using two production traces, one
from [26] and another from our collaborator with 398 jobs
shown in Fig. 1, using experiments and large-scale trace
driven simulation. The main highlights are:

� In testbed cluster experiments, Horus reduces job
makespan by up to 30.7 percent and increases the
average cluster GPU utilization by up to 61.5 percent
in comparison to FIFO, Opportunistic Bin Packing
and Performance-aware Bin Packing.

� In trace-driven simulation, Horus performance
also holds where our approach outperforms other
scheduling approaches in terms of makespan, clus-
ter GPU utilization and average job waiting time.

Comparative Algorithms. To evaluate the Horus schedul-
ing algorithm described in Section 4.2.2, we have designed
and implemented additional scheduling algorithms for
comparison:

" First in First Out (FIFO): Emulating slot-based
approaches established in big data cluster schedulers
such as Kubernetes and YARN. FIFO assigns the
incoming DL job onto an idle GPU without job co-
location.

" Performance-aware Bin Packing (PAB): Leveraging
techniques found in [8], [53], PAB schedules DL jobs
based on leveraging job characteristics – detected
iteration slowdown. The scheduler measures the dif-
ference in average steps per second versus the previ-
ous state. After new job placement, if performance
drops by 50 percent, the job is simply re-queued. We
allow a warm-up period between 0-60s so all DL jobs
achieve stable resource patterns.

" Opportunistic Bin Packing (OBP): Assigns DL jobs based
on available information – GPU memory availability,
via the memory estimation model described in Eq. (8).
During job submission time, if a GPU has more

memory available than estimated memory require-
ment, the scheduler opportunistically schedules jobs to
theGPU similar to least-loaded approach.

In the testbed cluster, we conducted experiments with
Horus (k=1), as Horus-f (k=3) did not result in significant
difference, which instead improved at greater system scale
as shown in the large-scale trace driven simulation.

Workload. Experiments were conducted by using a mixture
of DL jobs generated from Table 1, as well as new DL model
configurations and models such as Transformer, resulting in
Horus being exposed to ~50 percent new DL jobs not used in
predictor training. The selectedmodels and datasets leveraged
in our experiments are well established in micro-benchmark-
ing DL cluster schedulers [8], [26]. All algorithms were evalu-
ated with two different workload submission patterns W-
Small &W-Large. W-Small and W-Large use job type distribu-
tions between 3 minutes to 2 hours following DL job sizes
derived fromproduction systems [26].

Job Characteristics. Jobs are characterized as short/long
(<¼800s or > 800s) and light/heavy (< 60 or> 60 per-
cent GPU utilization). JCT was controlled by terminating
jobs at specified epoch numbers to emulate JCT patterns
of production systems. Note that over 50 percent of total
production DL jobs have been shown to require a single
GPU in [9], [26], and hence for our test bed experiments,
we focused on DL jobs requiring a single GPU for train-
ing. Second, our objective is to study changes in work-
load makespan and JCT due to interference from DL job
co-location. Locality–a focus in prior DL cluster schedu-
lers [8], [26], [53]–introduces further JCT heterogeneity,
making it difficult to fairly measure potential trade-off
gains between resource utilization against JCT increase
when co-locating DL jobs.

Experiment Runs. Each algorithm scheduled 100 DL jobs
for each workload pattern five times each, successfully
training a total of 2,500 DL jobs; equivalent to approxi-
mately to 7.5 days of continuous DL cluster execution. For
test bed experiments, Horus was configured to operate with
buffer size b ¼ 15, and k ¼ 1 to demonstrate throughput. In
order to evaluate fairness at scale, we conduct the fairness
measure in large-scale production trace driven simulation.

Metrics. Algorithm effectiveness was measured using the
following metrics: Cluster GPU Resource Utilization: average
aggregate GPU utilization of all GPUs, Job Completion Time
(JCT): the end-to-end completion time for a DL job, commenc-
ing from the start of job execution and finishing at job comple-
tion.Workload Makespan: the total span time to complete all DL
jobs from en-queuing through to completion. Job waiting time:
average job waiting time measured from point at arrival to
being scheduled and placed by our scheduler.

6 EXPERIMENT RESULTS

6.1 Testbed Cluster

JCT. Fig. 7 shows the comparison of average JCT of each
scheduling approach. We observe that FIFO achieves the fast-
est JCT, due to exclusive GPU access, hence having
no interference. In contrast, we observe that all co-location
algorithms experience JCT slowdown of between 8.2–21.8,
and 10.3–30.3 percent for W-Large and W-Small when com-
pared to FIFO, respectively. All co-location approaches suffer

96 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

greater performance degradation inW-Small. This is because a
higher proportion of short and small jobs allows for a more
frequent and varied co-location within GPUs, as opposed to
longer and heavier jobs that claim a large portion (or the entire
GPU). Although FIFO achieve the fastest average JCT, it has
resulted in the largest makespan and lowest GPU Utilization
due to longer queuing times.

Makespan. As shown in Table 6, Horus successfully sched-
ules all DL jobs with the lowest makespan of 204 and 212 min-
ute across W-Small and W-Large, respectively, and is
equivalent to a 30.7 and 23.7 percent improvement against
FIFO, and a 10.8–23.3 percent improvement over OBP and PAB
in W-Large. We observe that OBP has the second lowest make-
span (238 and 225 minutes), outperforming PAB due to the lat-
ter algorithm incurring additional overhead, when determining
whether performance were impacted after initial co-location
decision. As co-location gains are more effective when work-
loads are long with diverse utilization, the effectiveness of co-
location algorithms (particularly OBP and Horus) is therefore
slightly lower inW-Small when compared toW-Large.

Utilization.Horus is also able to achieve high overall clus-
ter resource utilization in all experiment runs as shown in
Fig. 8, reflected by an average 69.6 percent GPU utilization.
We observed that in some experiments runs of W-Small,
both Horus and OBP can experience up to 30 minutes of DL
cluster resource utilization of only 3–5 percent. This is due
to our generated DL jobs may have long epoch times, yet
exhibit a low GPU utilization. When omitting such tailing
behavior in W-Small, cluster resource usage of OBP and
Horus algorithms increases by a further 5.2 and 11.9 per-
cent, respectively. While OBP and PAB both achieve higher
utilization compared to that of FIFO due to their ability to
perform co-location, OBP is able to achieve higher utiliza-
tion as a result of its rapid scheduling cycle. In contrast,

PAB incurs additional scheduling waiting time in order to
profile scheduled job’s stable performance, this results in a
total of n jobs multiply by Twait where Twait is the time it
takes for a job to reach stability. Interestingly, Horus’s abil-
ity to effectively co-locate, achieving higher DL job through-
put and GPU Utilization will paradoxically expose to
greater interference and consequent JCT slowdown. Horus
does however still achieve a lower JCT in comparison to
OBP, and when considering our gains to resource utilization
and makespan, we view this as an acceptable trade-off.

6.2 Large-Scale Trace Driven Simulation

To demonstrate scalability, we evaluated Horus’s perfor-
mance in simulation using 398 jobs from a production
trace shown in Fig. 1. Derived from the production trace,
our simulation captures both the number of GPUs allo-
cated and execution time required for DL job execution.
We executed scheduling algorithms OBP, FIFO, Horus
(k=1) and Horus-f (k=3) configured identically to testbed
experiments. Since the simulator does not capture the
precise effects of kernel-level characteristics or internal
job progress, PAB was not included. We assume interfer-
ence overheads scale linearly w.r.t. the sum of the jobs
GPU Utilization. The simulation runs in super-real time
as the full trace duration is a month.

Improvements. Similar to the testbed experiments, both
Horus approaches now utilize the cluster GPU at higher
values as shown in Fig. 9a and resulted in fastest makespan

Fig. 7. Job Completion Time (JCT) in testbed cluster experiments.

TABLE 6
DL Cluster Makespan Statistics

Workload Algorithm Avg.(mins) St. Dev.(mins) Gain

W-Large FIFO 306.9 1.15 -
PAB 277.6 1.72 9.5%
OBP 238.6 4.9 22.2%
Horus 212.8 5.04 30.7%

W-Small FIFO 267.3 1.32 -
PAB 250.4 2.02 6.3%
OBP 225.3 5.38 15.7%
Horus 204.0 8.5 23.7%

Fig. 8. Average cluster GPU util in testbed cluster experiments.

Fig. 9. Summary of trace-driven DL cluster simulation at scale.

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 97

up to hundreds of scheduling decisions steps. Compared to
Horus, Horus-f has almost the same makespan and utiliza-
tion, however Horus-f results in a approximately 6 percent
lower median job waiting time as shown in Table 7, show-
ing that Horus-f is desirable when fairness between multi-
ple tenants and jobs category should be considered as it is a
common practice for production cluster to be shared by
multiple tenants. Overall, both of our Horus scheduling
approach utilizes the expensive GPUs effectively both in
research scale and large scale cluster, thus enabling faster
turn around time, increasing productivity and resource
efficiency.

Impact of Queue Number k. We conduct sensitivity anal-
ysis by examining Horus’s sensitivity to the configurable
number of queues. We evaluate Horus with various val-
ues – 3, 4, and 5. The large-scale simulations are ran and
averaged over three runs. We observe that the number of
queues does not significantly affect Horus as shown in
Fig. 9c. When k=5, the waiting time is reduced by ~1 per-
cent when compared to k=3. However, the makespan per-
formance has degraded slightly when the number of
queues is increased as shown in Fig. 9d. There is a known
trade-off between fairness and throughput and we view
this as an acceptable trade-off.

7 RELATED WORK

Understanding and achieving high resource utilization
for heterogeneous workloads—including DL—in cloud
computing is an important topic [6], [8], [10], [14], [17], [18],
[21], [22], [28], [30], [62].

GPU Profiling.Many existing DL systems profile workloads
to improve resource-efficiency, these metrics includes training
progress [53], communication patterns [26], [66], kernels
scheduling patterns [10] and inference execution time [6]. In
terms of GPU utilization profiling, Gandiva [8] focuses on
time-sharing, leverages online profiling in isolated machines
to determine suitable co-location andmigration strategies. Thi-
nakaran et al. [17] also perform online profiling onmachines in
isolation to harvest under-utilized resources. Xu et al. [15]
leverage virtualized GPU metrics and vCPU in isolation to
propose an approach to predict slowdown from co-locatedDL
workloads. Wang et al. [19] obtain DL workload and infra-
structure features to determine suitable training regime. Ant-
man [10] also leverages GPU Utilization to first identify jobs
that maybe suitable for co-location. Qi et al. [67] predict train-
ing time viamodel features, device features, and profiling per-
layer execution time.

Interference-Aware Resource Managers. Studying GPU inter-
ference is an established area of research – various solutions
have been proposed to mitigate kernel interference in GPU

kernel scheduling [13], [14], [16], [21], [22], [32]. These GPU
resource schedulers operates between the GPU device driver
and the application framework, hence cannot effectively
orchestrate and optimize with the global view of the cluster.
[14] proposed to profile job’s GPU hardware utilization pat-
terns for only a few seconds, this is insufficient for DL jobs
that typically require pre-processing of the data when each
mini-batch is pulled from the DFS, which can be in region of
tens of minutes [10]. For the same reason, various cluster
schedulers which reduce performance interference of
heterogeneous workloads in cloud environments [29],
[30], [31], [58] are not designed to effectively handle DL
cluster scheduling. In addition, they do not consider
job’s locality which is also a key driver in DL job’s per-
formance [8], [26], [61]. Thus, differences in hardware
architecture, workload, and long queue times [9] drive a
need for DL specific cluster schedulers.

DL Resource Managers. Gandiva [8] is the first co-location
enabled DL resource manager, and focuses on improving
time-sharing by introducing context-switch mechanism in
DL jobs. Tiresias [26], focuses on improving average JCT
and job starvation time. It does so by profiling network
latency, consolidating distributed DL jobs and implement-
ing a multi-level feedback queue, which adjusts job priori-
ties. Optimus [53] implements a performance predictor
model, which at runtime, adjusts the number of required
parameter servers or workers. It assumes job conver-
gence is predictable, which in many cases is difficult to
ascertain [26]. Recently proposed DL resource manager -
Antman [10] introduces modification to the underlying
DL framework to allow fine-grained kernel scheduling
for co-location to alleviate interference, however still
requires profiling at runtime. All of the above DL system
resource managers are complimentary to our work, as
they focus on addressing various challenges and sched-
uling objectives. Horus builds upon prior works, and
focuses on improving DL system overall makespan and
GPU utilization by automatically predicting GPU utiliza-
tion and estimate memory requirements without manu-
ally specifying placement decisions, and complements
other interference-aware resource managers.

8 CONCLUSION

In this paper we have presented Horus, a prediction-based
interference-aware resource manager for DL systems that
achieves high job throughput and increased resource effi-
ciency. Horus avoids the need for lengthy online profiling and
one or more dedicated GPUs as favored by existing
approaches, by predicting GPU utilization from computation
graph features extracted from the DNN and an offline trained
resource predictor. Our approach requires no modifications to
DL libraries nor expensive kernel profiling at scheduler run-
time. In our analysis we have shown that interference between
co-located DL jobs causes on average a JCT slowdown of 19–42
percent—comparable to latency increases due associated with
distributed learning. Horus is currently integrated into Kuber-
netes and is suitable for integration into existing DL system
resourcemanagers.We have demonstrated that Horus is capa-
ble of reducingmakespan by up to 23.7–30.7 percent, achieving
a cluster utilization of 69.6, and 68.3 percentmeanwaiting time,

TABLE 7
Job Waiting Time (steps) for a Large-scale DL Cluster

Algorithm Avg. Med. St. Dev Reduction

FIFO 466.2 463.1 327.7 –
OBP 347.8 351.4 248.9 25.4%
Horus 156.5 150.1 130.4 66.4%
Horus-f 147.6 148.5 126.2 68.3%

98 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

representing a considerable increase in DL system resource-
efficiency. We also offer Horus-f which lowers median job
waiting time and avoids starvation among queued jobs, desir-
able when fairness between multiple tenants should be
considered.

ACKNOWLEDGMENTS

This work was supported by the EPSRC (EP/P031617/1).

REFERENCES

[1] X. Jia et al., “Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes,” 2018,
arXiv:1807.11205.

[2] E. Chung et al.“Serving DNNs in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20,
Mar./Apr. 2018.

[3] Google, “Cloud GPUs | Google cloud,” 2020. [Online]. Available:
https://cloud.google.com/gpu

[4] Amazon Web Services Inc., “Amazon EC2 P3 – Ideal for machine
learning and HPC - AWS,” 2020. [Online]. Available: https://
aws.amazon.com/ec2/instance-types/p3/

[5] Microsoft Corporation, “Azure VM sizes - GPU - Azure virtual
machines,” 2020. [Online]. Available: https://docs.microsoft.
com/en-us/azure/virtual-machines/sizes-gpu

[6] H. Shen et al., “Nexus: A GPU cluster engine for accelerating
DNN-based video analysis,” in Proc. 27th ACM Symp. Operating
Syst. Princ., 2019, pp. 322–337.

[7] C. Zhang et al., “MArk: Exploiting cloud services for
cost-effective, SLO-aware machine learning inference serving,”
in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2019,
pp. 1049–1062.

[8] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in Proc. 13th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2018, pp. 595–610.

[9] M. Jeon et al., “Analysis of large-scale multi-tenant GPU clusters
for DNN training workloads,” in Proc. USENIX Conf. Usenix
Annu. Tech. Conf., 2019, pp. 947–960.

[10] W. Xiao et al., “AntMan: Dynamic scaling on GPU clusters for
deep learning,” in Proc. 14th USENIX Symp. Operating Syst. Des.
Implementation, 2020, pp. 533–548.

[11] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running:
Dive into the Future of Infrastructure. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2017.

[12] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another
resource negotiator,” in Proc. 4th Annu. Symp. Cloud Comput.,
2013, Art. no. 5.

[13] R. Phull et al., “Interference-driven resource management for
GPU-based heterogeneous clusters,” in Proc. 21st Int. Symp. High-
Perform. Parallel Distrib. Comput., 2012, pp. 109–120.

[14] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling
for GPU based cloud servers using machine learning,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2016, pp. 353–362.

[15] X. Xu et al., “Characterization and prediction of performance
interference on mediated passthrough GPUs for interference-
aware scheduler,” in Proc. 11th USENIX Conf. Hot Topics Cloud
Comput., 2019, Art. no. 14.

[16] S. Kato et al., “TimeGraph: GPU scheduling for real-time multi-
tasking environments,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2011, Art. no. 2.

[17] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Kube-knots: Resource harvesting through dynamic
container orchestration in GPU-based datacenters,” in Proc. IEEE
Int. Conf. Cluster Comput., 2019, pp. 1–13.

[18] T.-A. Yeh et al., “KubeShare: A framework to manage GPUs as
first-class and shared resources in container cloud,” in Proc.
29th Int. Symp. High-Perform. Parallel Distrib. Comput., 2020,
pp. 173–184.

[19] M. Wang et al., “Characterizing deep learning training workloads
on alibaba-PAI,” IISWC, pp. 189–202, 2019.

[20] Y. Wang et al., “A systematic methodology for analysis of deep
learning hardware and software platforms,” in Proc. 3rd Mach.
Learn. Syst., 2020, pp. 30–43.

[21] Q. Chen et al., “Prophet: Precise QoS prediction on non-preemp-
tive accelerators to improve utilization in warehouse-scale com-
puters,” in Proc. 22nd Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2017, pp. 17–32.

[22] Q. Chen,H.Yang, J.Mars, andL. Tang, “Baymax:QoS awareness and
increased utilization for non-preemptive accelerators in warehouse
scale computers,”ACMSIGPLANNotices, vol. 51, pp. 681–696, 2016.

[23] G. Yeung et al., “Horus: An interference-aware resource manager
for deep learning systems,” in Proc. Int. Conf. Algorithms Architec-
tures Parallel Process., 2020, pp. 492–508.

[24] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 6105–6114.

[25] T. Chen et al., “TVM: An automated end-to-end optimizing com-
piler for deep learning,” in Proc. 13th USENIX Conf. Operating
Syst. Des. Implementation, 2018, pp. 579–594.

[26] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Proc. 16th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2019, pp. 485–500.

[27] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and
U. C. Weiser, “Many-core vs. many-thread machines: Stay
away from the valley,” IEEE Comput. Archit. Lett., vol. 8, no. 1,
pp. 25–28, Jan. 2009.

[28] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers
via sensible co-locations,” in Proc. 44th Annu. IEEE/ACM Int.
Symp. Microarchit., 2011, pp. 248–259.

[29] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling
for heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48,
pp. 77–88, 2013.

[30] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” ACM SIGPLAN Notices, vol. 49,
pp. 127–144, 2014.

[31] D. Novakovic et al., “DeepDive: Transparently identifying and
managing performance interference in virtualized environments,”
in Proc. USENIX Conf. Annu. Tech. Conf., 2013, pp. 219–230.

[32] A. Jog et al., “Application-aware memory system for fair and effi-
cient execution of concurrent GPGPU applications,” in Proc. Work-
shop General Purpose Process. Using GPUs, 2014, pp. 1–8.

[33] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” Citeseer, 2009.

[34] S. Merity et al., “Pointer sentinel mixture models,” in Proc. Int.
Conf. Learn. Representations, 2016.

[35] A. M. T. (WMT19), “Shared task: Machine translation of news,”
Accessed: Jan. 7, 2020. [Online]. Available: http://www.statmt.
org/wmt19/translation-task.html

[36] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[38] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2019, pp. 1314–1324.

[39] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2014.

[42] F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and < 0.5MBmodel size,” 2016, arXiv:1602.07360.

[43] G. Huang, Z. Liu, L. Van Der Maaten , and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. Conf. Com-
put. Vis. Pattern Recognit., 2017, pp. 2261–2269.

[44] N. Ma et al., “ShuffleNet V2: Practical guidelines for efficient CNN
architecture design,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 122–138.

[45] M. Tan et al., “MnasNet: Platform-aware neural architecture
search for mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 2815–2823.

[46] Y. Chen et al., “Dual path networks,” in Proc. 31st Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 4470–4478.

[47] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architec-
ture search on target task and hardware,” in Proc. Int. Conf. Learn.
Representations, 2018.

YEUNG ET AL.: HORUS: INTERFERENCE-AWARE AND PREDICTION-BASED SCHEDULING IN DEEP LEARNING SYSTEMS 99

https://cloud.google.com/gpu
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html

[48] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6307–6315.

[49] S. Xie, R. Girshick, P. Doll�ar, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 5987–5995.

[50] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” in Proc. 9th Int. Conf. Artif. Neu-
ral Netw., 1999, pp. 850–855.

[51] K. Cho et al., “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” ACM
EMNLP, pp. 1724–1734, 2014.

[52] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8024–8035.

[53] Y. Peng et al., “Optimus: An efficient dynamic resource scheduler for
deep learning clusters,” in Proc. 13th EuroSys Conf., 2018, Art. no. 3.

[54] S. Wang, A. Pi, X. Zhou, J. Wang, and C.-Z. Xu, “Overlapping
communication with computation in parameter server for scalable
DL training,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9,
pp. 2144–2159, Sep. 2021.

[55] G. Ke et al., “LightGBM: A highly efficient gradient boosting deci-
sion tree,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3149–3157.

[56] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2016, pp. 785–794.

[57] A. Liaw et al., “Classification and regression by randomForest,”
R News, vol. 2, no. 3, pp. 18–22, 2002.

[58] J. Mars and L. Tang, “Whare-map: Heterogeneity in ”homoge-
neous” warehouse-scale computers,” in Proc. 40th Annu. Int.
Symp. Comput. Archit., 2013, pp. 619–630.

[59] H. Wang et al., “S-CDA: A smart cloud disk allocation approach in
cloud block storage system,” in Proc. 57th ACM/IEEE Des. Autom.
Conf., 2020, pp. 1–6.

[60] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The multi-
ple node case,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137–150,
Apr. 1994.

[61] L. Luo et al., “PLink: Discovering and exploiting locality for accel-
erated distributed training on the public cloud,” in Proc. 3rd Mach.
Learn. Syst., 2020, pp. 82–97.

[62] R. Yang, C. Hu et al., “Performance-aware speculative resource
oversubscription for large-scale clusters,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 31, no. 7, pp. 1499–1517, Jul. 2020.

[63] P. Dube, T. Suk, and C. Wang, “AI gauge: Runtime estimation for
deep learning in the cloud,” in Proc. 31st Int. Symp. Comput. Archi-
tecture High Perform. Comput., 2019, pp. 160–167.

[64] D. Zhang et al., “AGL: A scalable system for industrial-purpose
graph machine learning,” Proc. VLDB Endowment, vol. 13,
pp. 3125–3137, 2020.

[65] Y. Chen et al., “Elastic parameter server load distribution in deep
learning clusters,” in Proc. 11th ACM Symp. Cloud Comput., 2020,
pp. 507–521.

[66] Y. Peng et al., “A generic communication scheduler for distributed
DNN training acceleration,” in Proc. 27th ACM Symp. Operating
Syst. Princ., 2019, pp. 16–29.

[67] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance
model for deep neural networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2017.

Gingfung Yeung is currently working toward the
PhD degree at the EDS Lab, Lancaster Univer-
sity, U.K. He has industrial experience building
Machine Learning systems at scale. His research
interests include machine learning systems, dis-
tributed systems, and resource scheduling.

Damian Borowiec received the bachelor’s
degree in computer science from Lancaster Uni-
versity, U.K. He is currently working toward the
PhD degree at the EDS Lab, Lancaster Univer-
sity, U.K. His research interests include deep
learning systems, energy-adaptive computing,
and neural network compilation methods.

Renyu Yang (Member, IEEE) is a research fel-
low with the University of Leeds, U.K. He previ-
ously worked with Alibaba Group China and
Edgetic Ltd., U.K., having industrial experience in
building large-scale resource scheduling sys-
tems. His research interests include reliable
resource management, distributed systems, and
applied machine learning.

Adrian Friday is a professor of computing and
sustainability at Lancaster University, U.K. He is
interested in the role of computational systems in
helping us understand the energy and carbon
footprint of socio-technical systems, and in find-
ing more sustainable ways of living. His current
work focuses on the role of energy data in smart
cities, and using statistical and ML techniques to
identify new opportunities for energy savings.

Richard Harper is a professor of computer sci-
ence and co-director for the Institute of Social
Futures (ISF), Lancaster University, U.K. He has
written 18 books and collections, including The
Myth of the Paperless Office (2003), Texture:
Human Expression in the Age of Communica-
tions Overload (2010) and Skyping the Family
(2019).

PeterGarraghan is a lecturer (assistant professor)
in distributed systems and EPSRC fellow at Lan-
caster University, U.K. He is the leader of the EDS
Lab. He has industrial experience building produc-
tion distributed systems at scale. His research
interests include machine learning systems, cloud
computing, green computing, resource manage-
ment, and system security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

100 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

