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Blade element modelling provides a quick analytical method for estimating
the aerodynamic forces produced during insect flight, but such models have
yet to be tested rigorously using kinematic data recorded from free-flying
insects. This is largely because of the paucity of detailed free-flight kinematic
data, but also because analytical limitations in existing blade element models
mean that they cannot incorporate the complex three-dimensional move-
ments of the wings and body that occur during insect flight. Here, we
present a blade element model with empirically fitted aerodynamic force
coefficients that incorporates the full three-dimensional wing kinematics of
manoeuvring Eristalis hoverflies, including torsional deformation of their
wings. The two free parameters were fitted to a large free-flight dataset com-
prising N = 26 541 wingbeats, and the fitted model captured approximately
80% of the variation in the stroke-averaged forces in the sagittal plane. We
tested the robustness of the model by subsampling the data, and found
little variation in the parameter estimates across subsamples comprising
10% of the flight sequences. The simplicity and generality of the model
that we present is such that it can be readily applied to kinematic datasets
from other insects, and also used for the study of insect flight dynamics.
1. Introduction
The unsteady aerodynamics of insect flight have been the focus of considerable
research, with new aerodynamic mechanisms still being discovered [1]. Dipteran
flies have received particular attention, because their possession of only two func-
tional wings reduces their kinematic complexity relative to four-winged insects,
and avoids the aerodynamic complexity of tandem wing-wing interactions.
Nevertheless, like most other insects, flies use high angles of attack and rapid
wing rotation at stroke reversal, posing substantial challenges for aerodynamic
modelling. Various modelling approaches have been used, each with their own
advantages and disadvantages. More sophisticated techniques include the use
of mechanical flappers [2–4] or computational fluid dynamics (CFD) (e.g.
[5–8]). Both approaches determine the aerodynamic forces from a predefined
set of wing kinematics, allowing the effect of specific kinematic parameters to
be investigated experimentally [4,8,9], but recreating an insect’s wing kinematics
in amechanical or computationalmodel is not straightforward, because thewings
follow complex three-dimensional paths, and undergo substantial deformation
through thewingbeat [10,11].Wing deformation is difficult to replicate accurately
in a mechanical flapper, and substantial user effort is required to generate a mesh
capable of accommodating wing deformation in a computational model. In
addition, the aerodynamics of the wings are affected by the body’s motions
during flight manoeuvres, which are difficult to reproduce in a mechanical flap-
per and demanding to model computationally. Although the development of
efficient algorithms and the increasing availability of low-cost clusters is
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making computational approaches ever-more practical, their
application is still limited to quite small datasets.

A simpler approach is to use an analytical blade element
model to estimate the aerodynamic forces, by splitting the
wing into a series of narrow chordwise elements, each of
which is modelled independently [12]. To the extent that the
flow around a real wing is inherently three-dimensional and
coupled to the wake [13], a blade element model cannot cap-
ture all of the details of the unsteady flow in the way that a
computational model can. Nevertheless, as we demonstrate
here, it is still possible to use this approach to make practically
useful predictions of the forces by using empirically fitted
force coefficients to summarize the complexities of the
aerodynamics. Current blade element models comprise a
quasi-steady component capturing how the pressure forces
depend on the instantaneous velocity and angular velocity of
the wing, and an unsteady component capturing how
the pressure forces depend on the wing’s instantaneous
acceleration [7,14,15], through the phenomenon of added
mass. Other unsteady effects relating to the development of
the floware not captured by thesemodels, because their coeffi-
cients are time-invariant and neglect the effects of wing–wake
interactions from one half-stroke to the next [7]. Analytical
blade element models therefore simplify the unsteady three-
dimensional aerodynamics of flapping flight substantially,
but can still do a surprisingly good job of approximating the
forces produced by a flapping wing [7,14,15]. The key is to
identify an appropriate analytical formulation describing
how the aerodynamic forces on each blade element vary
with the wing kinematics, and to model the wing kinematics
with a sufficiently high degree of fidelity, which is the aim of
this paper.

Previous studies have adopted several ad hoc approaches
tomodellingdifferent aspects of the aerodynamics—especially
the effects ofwing rotation,which have been treated separately
from the effects of wing translation in almost all previous
models ([6,7,14,15]; but see [16]). In each case, these models
are parametrized by a set of empirical force coefficients fitted
to measurements made under different kinematic conditions
using either a mechanical flapper [6,7,15] or a numerical
model [14]. The resulting blade element models involve
either one [6,7,15] or two [14] fitted parameters to describe
the rotational lift and drag, together with separate expressions
for the translational lift and drag coefficients as functions of the
angle of attack, with two [14] to four [7,15] or five [6] fitted par-
ameters. Consequently, the lift and drag are predicted from
analytical expressions that are sometimes quite far removed
from the underlying physics, and which involve from six [14]
to nine [7,15] or even 11 [6] empirically fitted parameters.
This brings an attendant risk of over-fitting, and as the identi-
fication and verification of these models has only been done
using flat, rigid wings and simplified kinematics for the sim-
plest case of equilibrium hovering flight [6,7,14,15], it is
unknown how well they predict the aerodynamic forces and
moments on real insects undergoing free-flight manoeuvres
involving complex wing deformations. A particular concern
with using such multi-parameter models of ad hoc form is
that these may not generalize well to other flight mor-
phologies, wing kinematics or flow conditions beyond those
under which the data were collected. What is needed instead
is a standard form developed from first principles—and there-
fore expected to generalize—that is capable of capturing the
full complexity of the deforming wing kinematics.
In fact, as we show here, it is possible to predict approxi-
mately 80% of the variation in the stroke-averaged forces of
free-flying hoverflies by using a physics-based model with
just two free numerical parameters that are fitted empirically
to the data. We achieve this by using linear least-squares mod-
elling to fit the numerical coefficients of an unsteady blade
element model, developed from first principles, to a free-
flight dataset recording the deforming wing kinematics and
stroke-averaged body accelerations for N = 26 541 wingbeats.
Fitting this simple physics-based model to our free-flight
dataset also allows us to interpret some of the more compli-
cated empirical functions that have been fitted to model the
aerodynamic force coefficients previously [3,6] and that have
been co-opted into subsequent models [7,15]. Our new
analytical blade element model takes full account of the
three-dimensional motion of the wings and body, incorporat-
ing wing deformation in the form of a linear time-varying
wing twist distribution, which is sufficient to capture most
of the deformation that is present in Eristalis [11]. While our
empirical data from hoverflies do not allow us to verify how
accurately our model predicts the time history of the aero-
dynamic forces within a single wingbeat, the stroke-
averaged forces are modelled closely. Given that the body
dynamics of Eristalis are too slow to depend closely on the per-
iodic forcing experienced through the wingbeat [17], our
model’s ability to fit the stroke-averaged forces closely
makes it well suited to use in future analyses of flight
dynamics and control in this species. The simplicity and gen-
erality of our model is such that it can also be applied to
kinematic datasets from other insects. Moreover, for the largest
insects, in which the body dynamics operate on a similar time-
scale to the wingbeat [17], it should be possible to fit the
aerodynamic force coefficients directly to the time-varying
rather than stroke-averaged forces using the same method.
2. Methods
The overall aim of this paper is to develop an aerodynamic model
with empirically fitted coefficients that predicts the stroke-aver-
aged aerodynamic forces as a function of the instantaneous
kinematic state of the wing through the stroke. The empirical
measurements that we analyse here are those previously
described in [18], but we begin by providing a brief summary of
the experimental methods and kinematic reconstruction tech-
nique for context, before providing a detailed description of the
aerodynamic modelling that forms the primary contribution of
this paper.

2.1. Experimental methods
Adult Eristalis tenax and E. pertinax (Diptera: Syrphidae) were
caught in Oxford and released singly inside a 1m diameter
opaque acrylic sphere. Four synchronized high-speed video
cameras (SA3, Photron Ltd, Bucks, UK) with 180mm macro
lenses (Sigma Imaging Ltd, Welwyn Garden City, UK) were
used to record 768 × 640 pixel images at 3800 Hz. Bright back-
illumination was provided by two synchronized 200W infrared
pulsed lasers (HSI-5000, Oxford Lasers Ltd, Oxford, UK), each
of which was routed through a split liquid light guide before
being collimated by one of four large Fresnel lenses. The
805 nm wavelength of the laser illumination was far beyond
the 600 nm upper limit of the visible spectrum for Eristalis
[19–21], and a 20 μs pulse duration was used to eliminate
motion blur and to prevent overheating of the insect. Ambient
lighting was provided by an overhead LED light source. The
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Figure 1. Kinematic definitions. (a) The body axes {xb, yb, zb} are defined as a right-handed axis system (grey arrows) with its origin at the centre of volume of the
insect’s body (grey silhouette), its xb-axis directed anteriorly along the major axis of the body voxels, and its yb-axis pointing to the insect’s right, parallel to the line
connecting the wing bases. The tip kinematics of the right wing are defined by its spherical coordinates in another right-handed axis system {xR, yR, zR} (black
arrows) fixed parallel to the body axes, but originating at the wing base. The tip kinematics of the left wing are defined by its spherical coordinates in an equivalent
left-handed axis system {xL, yL, zL} (not shown). In each case, the line from wing base to wing tip (red dot) defines the spanwise rotational axis of the wing (red
arrow): the azimuth of this spanwise axis defines the stroke angle of the wing (ϕ), and its elevation defines the deviation angle (θ). The blue shaded area shows a
single chordwise blade element with the position its three-quarter chord point marked by a green dot. (b) The pitch angle ω of a blade element is defined having
first rotated the wing’s measured outline through its stroke angle −ϕ about the zR-axis, then through its deviation angle −θ about the xR-axis, so as to bring the
line from wing base to wing tip into alignment with the yR-axis. The pitch angle ω was then defined as the angle from the xRyR-plane to the anatomical ventral
side of the rotated chord perpendicular to the yR-axis. (c) The speed of a blade element (U) is measured at its three-quarter chord point (green dot), and is the
hypotenuse of the components of the velocity vector directed parallel to the blade element chord (Ukc ) and normal to the blade element surface (U⊥S). The
aerodynamic angle of attack (α) is defined as shown by the arctangent of these two vector components.
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cameras were self-calibrated using custom-written software in
Matlab (The Mathworks Inc., Natick, MA, USA), to identify
jointly optimal estimates of the camera parameters and the
spatial coordinates of points on a two-dimensional calibration
grid held in a range of positions and orientations [22]. We cap-
tured between 10 and 50 separate recordings of each hoverfly,
before anaesthetizing it with CO2 at the end of the experiment,
and weighing it using a microbalance with 0.1 μg readability
(UMX2, Mettler Toledo Ltd, Leicester, UK). We measured the
temperature (27.5 ± 0.9°C) and relative humidity (33.4 ± 4.0%)
of the air in each trial (mean ± s.d. for 36 insects) and used
these to determine the air density (ρ). We analysed all of the
flight sequences in which both wings were visible to all four cam-
eras for ≥2 wingbeats, giving a total sample of N = 26 541
wingbeat pairs from 854 flight sequences representing 36 hover-
flies. A fully automated shape-carving procedure was used to
label voxels contained within the minimum convex hulls of the
insect’s body and its two wing outlines, respectively [18].

2.2. Flight kinematics modelling
Throughout the paper, we use boldface symbols to represent
vector quantities, and use t to represent continuous time. We
defined the body kinematics using a right-handed, rotating,
body-fixed axis system {xb, yb, zb} with its origin at the centre of
volume of the body voxels, its xb-axis directed anteriorly along
the major axis of the body voxels, and its yb-axis pointing right-
ward parallel to the line connecting the wing bases (figure 1).
Wemeasured the position of the body axes,Xb(t), in a non-rotating
laboratory coordinate system {X,Y,Z}, inwhich theZ-axiswas ver-
tical, and smoothed ourmeasurements using a quintic spline fitted
in B-form inMatlab [23]. This method fits each element of the pos-
ition vector as the smoothest piecewise polynomial function of
time that falls within a given tolerance of the data, defined as the
sum of the squared distance of the function from the data over
all sample points. For transparency, we selected a tolerance that
was equal to the sum of the squared variation that would have
been removed by forward–backward filtering the data using a
third-order Butterworth filter with a 100Hz cut-off frequency
(−3 dB) chosen to fall well below the insect’s 188 ± 14 Hzwingbeat
frequency (mean ± s.d.). We then double-differentiated each
quintic spline analytically inMatlab to estimate the insect’s instan-
taneous linear acceleration with respect to the laboratory
coordinate system, €Xb(t), resolved in the laboratory axes.

We described the kinematics of the right wing in a right-
handed axis system {xR, yR, zR} parallel to the rotating body
axes {xb, yb, zb}, but with its origin at the wing base. We used
the spherical coordinates of the wing tip to define the stroke
angle (ϕ) and deviation angle (θ) of the wing (figure 1). We
defined the local pitch angle ω(r) of the wing at radial coordinate
r (figure 2) by rotating the wing’s measured outline through the
angle −ϕ about zR, then through the angle −θ about xR, so as to
bring its spanwise axis into alignment with yR. The local pitch
angle ω(r) of the wing was then defined as the angle from the
xRyR-plane to the anatomical ventral side of the chord, perpen-
dicular to the yR-axis at radial coordinate r (figures 1b and 2).
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Figure 2. Morphological definitions and measurements. (a) The wing is split
into 20 equally spaced chordwise blade elements, each of width Δr. The ith
blade element is located at radial distance r(i) from the wing base, and has
chord length c(i). The distance of the three-quarter chord point (green circle)
from the spanwise rotation axis of the wing (red arrow) is denoted c3/4(i),
and is used in calculating the quasi-steady lift and drag forces (see electronic
supplementary material, Methods). Likewise, the distance of the half-chord
point (black circle) from the spanwise rotation axis is denoted c1/2(i), and
is used in calculating the added mass force (see electronic supplementary
material, Methods). (b) The measured positions of the three-quarter chord
points (green circles) and half-chord points (black circles) are shown for
each of the 20 blade elements.
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We summarized the spanwise twist as a linear function of dis-
tance along the wing by regressing ω(r) on r, modelling the
local pitch angle as:

v̂(r) ¼ v0 þ vrr (2:1)

where ω0 is the pitch angle offset, and ωr is the linear twist gradi-
ent. The kinematics of the left wing were defined independently
using an equivalent left-handed axis system {xL, yL, zL}. Variable
wing camber might also have been present [11], but measuring
this requires data of higher order than can be obtained using a
voxel carving method to identify the wing outlines. Were wing
camber to be measured directly in a future study, it would in prin-
ciple be possible to incorporate its effects in the blade element
model below by treating camber as augmenting the aerodynamic
angle of attack defined with respect to the angle of the chord line
measured between the leading and trailing edge.

We smoothed our measurements of θ, ϕ, ωr and ω0 for each
wing using the same quintic spline method as we used to
smooth the body kinematics, this time setting the tolerance
to give a similar degree of smoothing to a digital Butterworth
filter with a cutoff frequency of 500 Hz for the wing tip kin-
ematics θ and ϕ and 800 Hz for the wing twist kinematics ωr

and ω0 (electronic supplementary material, figure S1). We then
evaluated the first and second derivatives of these fitted spline
functions analytically. The smoothed kinematic data were next
split into discrete wingbeats by identifying the time at which
the mean angular speed of the two wing tips reached a minimum
at the end of each half stroke. Finally, for consistency of sampling
between discrete wingbeats of variable period, we used cubic
interpolation to resample the smoothed wing and body kin-
ematic data and their time derivatives at 100 evenly spaced
time steps through each wingbeat, beginning at the start of the
downstroke. This means that the kinematic measurements were
upsampled by approximately a factor of 5 prior to further
analysis, which (i) ensures that each wingbeat starts and ends
at exactly the same phase; (ii) allows the data to be stored in
an efficient matrix form; and (iii) standardizes the basis on
which the wingbeat averaged forces are estimated.

By the end of this process, each wingbeat is represented by
4200 datapoints, comprising the 6 degrees of freedom of the
body and four primary kinematic variables of each wing, each
sampled together with their first and second derivatives 100
times per wingbeat. In principle, these data are already in a
form suitable for the subsequent blade element analysis. How-
ever, in the interests of compressing the data into a compact
functional form suitable for sharing, and noting the different
characteristic timescales on which the different kinematic com-
ponents vary, we projected the data for each wingbeat into a
set of harmonic basis functions [24] comprising a truncated Four-
ier series plus cubic polynomial in time from the start of the
wingbeat, with harmonic content to first order for the body kin-
ematics, fourth order for the wing tip kinematics and sixth order
for the wing twist kinematics (see electronic supplementary
material, Methods). This compression reduces the dimension of
the data by almost a factor of 30, while preserving >99.99% of
the measured variation in the pose of the insect, as characterized
by the 6 degrees of freedom of its body and four primary kin-
ematic variables of each of its wings. These harmonic
representations of the data are shared as electronic supplemen-
tary material, Data S1, so to ensure the repeatability of our
analysis and to enable its validation using numerical techniques
possibly requiring finer time steps, we obtained the 4200 data-
points that we use in the blade element model for each
wingbeat by evaluating these harmonic fits rather than the
spline fits on which they are modelled. This step makes a negli-
gible difference to the numerical values of the datapoints used in
the analysis (electronic supplementary material, figure S1), and
hence to the results of the analysis, but it aligns the present
work more closely to the approaches that we have developed
elsewhere for analysing the dominant kinematic couplings
involved in insect flight control using harmonic functional
principal components analysis [24].

2.3. Standard hovering wingbeat
We defined a standard wingbeat for use in model validation by
taking the mean through time of a sample comprising the 1% of
all N = 26 541 wingbeat pairs that most closely met the criteria for
hovering flight. We selected these as the 265 wingbeats with the
lowest flight speed from within the set of wingbeats representing
near-equilibrium flight, which we defined as flight where the
magnitude of the body’s acceleration was less than 0.5 m s−2 in
both the vertical and the horizontal (i.e. such that the vertical
aerodynamic force would have been within 5% of supporting
body weight). The 265 wingbeats that we used in this averaging
came from 51 different flight recordings and 19 different individ-
uals, and the standard hovering wingbeat that they define should
therefore be representative of equilibrium hovering flight
(figure 5). The cubic polynomial terms of the harmonic repre-
sentation of the wing kinematics (see above) were negligible for
the standard hovering wingbeat, and we therefore set them to
zero so as to make the standard hovering wingbeat kinematics
strictly periodic. The body was assumed to be stationary, with
a constant pitch angle of 43.6° between the long axis of the
body and the horizontal, defined as the mean over the 265 wing-
beats, and with the body roll angle set to zero as appropriate for
symmetric hovering.

2.4. Flight dynamics modelling
The overall goal of this paper is to use aerodynamic modelling to
relate free-flight measurements of body kinematics to the wing
kinematics that produce them. Although we take full account
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of the body’s rotational and translational motion in defining the
motion of the wings relative to the air, our modelling of the
resulting aerodynamic forces only considers their effects on
the translational motion of the centre of mass. That is to say,
we do not attempt to model the rotational dynamics of the
body, which is a more complex problem requiring knowledge
of the insect’s inertia tensor and the chordwise position of the
centre of pressure. Subject to making such further assumptions,
the rotational dynamics can be modelled subsequently using
the same blade element model if required.

The only ways in which a fluid can impart force to a solid
surface are through pressure forces acting normal to the surface,
and friction forces acting tangential to it. We may therefore use
Newton’s Second Law to write the equations of translational
motion for a free-flying insect as

m€Xb(t)�mg ¼ P(t)þ F(t) (2:2)

where m is the insect’s mass, €Xb(t) is the acceleration of the
insect’s centre of mass with respect to the laboratory coordinate
system, g is gravitational acceleration, P is the total pressure
force, and F is the total friction force. Note that as equation
(2.2) contains only the external forces acting at the insect’s
centre of mass, it does not show the inertial forces that act in reac-
tion to flapping at the wing hinge. These are internal forces that
cannot produce any acceleration of the insect’s centre of mass,
which is therefore a different situation to that which is encoun-
tered when measuring the internal forces at the wing hinge on
a bench-mounted mechanical flapper. Moreover, although the
wings’ motion causes the anatomical position of the centre of
mass to fluctuate, which can cause the body to oscillate at wing-
beat frequency in some large insects [25], the wings are several
orders of magnitude lighter than the body in Eristalis. Their
motion therefore has a negligible effect on the motion of the
centre of volume of the body voxels, which we thereby equate
with the motion of the insect’s centre of mass.

Since the wingbeat period of a hoverfly is much shorter than
any characteristic timescale of its body’s dynamics [17], we may
reasonably model its body dynamics using the stroke-averaged
versions of these variables, which we denote using overbar
notation with n as wingbeat number:

m€Xb(n)�mg(n) ¼ P(n)þ F(n): (2:3)

This stroke-averaging is beneficial in removing the noise associ-
ated with estimating the double derivative of position from
high-speed videogrammetric data. Nevertheless, in future work
with larger insects whose body dynamics operate on a similar
timescale to the wingbeat [17], it might be more appropriate to
retain the original form of equation (2.2). The left-hand side
of equation (2.3) is a direct empirical estimate of the stroke-
averaged aerodynamic forces, which we refer to hereon as the
‘measured’ aerodynamic force, to distinguish this from the indir-
ect estimates of the time-varying aerodynamic force that we
make later using our blade element model. The stroke-averaged
expression in equation (2.3) forms the basis of the empirical
estimation of the aerodynamic forces in this paper.

2.5. Aerodynamic modelling
We begin this section by analysing the scaling of the aero-
dynamic forces, which we use to define the theoretical form of
the kinematic predictor variables that we use to fit the aero-
dynamic coefficients of the quasi-steady blade element model.
Although the key concepts are covered in aerodynamics texts
such as Katz & Plotkin [26] and in the seminal work on insect
flight by Ellington [12], they are usually only discussed in the
context of detailed aerodynamic models that aim to determine
analytically the same force coefficients as we aim to estimate
empirically here, under restrictive assumptions that will not
usually be satisfied in insect flight. Hence, following the
approach advocated by [27], and noting that there is no
analytical theory which covers the full range of flow conditions
experienced in insect flight, we here develop the scaling of the
aerodynamic forces from first principles, with the goal of
making the assumptions of our blade element model fully trans-
parent. We then introduce the theoretical form of the equations
that we use to model the unsteady forces, before describing
how we fit the empirical aerodynamic force coefficients to the
measured flight data. Although some elements of our model
are shared with previous work, this approach results in an aero-
dynamic model with a different mathematical form to the
others that have been used previously to analyse insect flight
[3,6,7,12,14,15].

2.5.1. Scaling of the quasi-steady pressure force
The pressure force P in equation (2.2) will dominate the friction
force F at the Reynolds numbers of order 103 that characterize
flight in Eristalis. It follows that viscous shear in the thin bound-
ary layer forming the inner region of the flow cannot be directly
responsible for setting the fluid into motion in the outer region of
the flow. This outer flow must instead be driven by pressure gra-
dients resulting from the wing’s motion and reflecting the
constraint that fluid cannot penetrate its surface. This constraint
implies that at every point on the wing’s surface, the surface-
normal component of the local flow velocity (Q⊥S) must be
identical to the surface-normal component of the local surface
velocity (V⊥S), each measured with respect to an inertial frame
of reference:

Q?S ¼ V?S ¼ V sinb, (2:4)

where V is the speed of a given surface point, and where β is the
angle of attack measured from the velocity of this point to the
plane tangent to the surface there. This boundary condition is
not sufficient to uniquely determine the tangential flow [26], but
the pressure gradients that result from its imposition are neverthe-
less causative in generating the tangential flow. For example, the
line integral of the tangential flow around the aerofoil is called
the circulation (Γ ), and if it is assumed that viscous effects cause
the flow to depart smoothly from the sharp trailing edge and to
have finite velocity there, which is called the Kutta condition,
then the circulation that is needed to maintain this condition at
steady state may be expected to scale with the normal flow that
would be present at the trailing edge in the absence of any circula-
tion. A similar conclusion holds in relation to a generalized form
of the Kutta condition that can be applied at a sharp leading
edge, wherein the normal velocity of the flow determines both
the critical angle of attack at which the flow begins to separate,
and the strength of the resulting leading-edge vortex [28]. To sum-
marize, a moving wing perturbs the flow because of its
impermeability to the fluid, and the form of the resulting kin-
ematic boundary condition (equation 2.4) immediately suggests
that the strength of this perturbation should scale with the
speed of the surface and the sine of its angle of attack.

To specialize this still quite-general conclusion, we note that
for a thin flat plate undergoing steady translational motion
through still air, the local speed V and angle of attack β is the
same everywhere. Given that the circulation is defined as the
line integral of the tangential flow around the chord of the plate,
we may therefore expect it to scale as G/ cU sina where U and
α are used to represent the overall speed and angle of attack of
the aerofoil, and where c is its chord length. This conclusion
accordswith the results of classical thin aerofoil theory, which pre-
dicts that G ¼ pcU sina for a thin flat plate undergoing steady
translational motion with the Kutta condition met at the trailing
edge [26]. Of course, if the aerofoil is also rotating steadily, then
the local angle of attack β will vary linearly along the chord, so
it is reasonable to ask whether the quasi-steady effects of
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translation and rotation may in fact be captured by equating the
overall angle of attack α to the local angle of attack β measured
at some unique point on the chord. Indeed, in the limit of small
amplitude harmonic oscillations, classical unsteady thin aerofoil
theory predicts that the circulation is independent of the angular
velocity of the aerofoil in the special case that the angle of attack
is measured at the three-quarter chord point [26]; and is thereby
proportional to the normal flow velocity there [28]. Here, we test
empirically whether this conclusion also holds for our data.

The scaling of the circulatory pressure force is given by the
Kutta–Joukowski theorem for two-dimensional inviscid flows as
rUG, where ρ is the fluid density [26]. The same theorem also pre-
dicts that this pressure force will act perpendicular to the flow—
not perpendicular to the chord. This is unintuitive for a thin flat
plate generating a pressure difference across its surfaces, but
reflects the fact that if the flow remains attached then the accelera-
tion of the fluid around the leading edge will be associated with a
suction force parallel to the chord. In practice, this leading-edge
suction is expected to be lost if the flow separates at the leading
edge, as is typical of insect flight, and it is then more reasonable
to assume that the pressure forcewill act normal to the chord. Fur-
thermore, on a three-dimensional wing of low aspect ratio, the
flow induced by the wake tilts the aerodynamic force vector
back considerably, bringing its line of action more nearly perpen-
dicular to the chord. Putting all of these considerations together,
we therefore propose modelling the quasi-steady pressure force
(Pqs) on a blade element of small width Δr using the scaling:

Pqs / rU2c sinaDr, (2:5)

where the unknown constant of proportionality and direction
of action of the force remain to be determined empirically. Decom-
posing this quasi-steady pressure force into a lift component LP =
Pqscos α, and a drag component D = Pqssin α then yields the fol-
lowing scalings for the pressure lift and drag:

LP / rU2c sina cosa Dr (2:6)

and

DP / rU2c sin2 a Dr, (2:7)

where the constant of proportionality is assumed to be identical in
both expressions, and where by definition the drag acts in the
direction of the flow and the lift acts perpendicular to the flow
in the direction of increasing angle of attack. We emphasize that
these equations are only valid where the angle of attack α is
measured at a unique reference point on the chord, provisionally
assumed to be located at three-quarters of the distance from the
leading edge to the trailing edge, where α is defined as the
angle measured between the chordline and the velocity of that
point on the chord.

2.5.2. Quasi-steady force coefficients
By convention, the non-dimensional lift coefficient (CL) and drag
coefficient (CD) of a blade element are defined as

L ¼ 1
2
rU2cCLDr (2:8)

and

D ¼ 1
2
rU2cCDDr: (2:9)

Combining these identities with the scalings in equations (2.6)
and (2.7), we expect that the parts of the lift and drag coefficients
due to the quasi-steady pressure force should vary as

CLP ¼ CPa
sina cosa (2:10)

and

CDP ¼ CPa
sin2 a, (2:11)
where CPa
is an unknown constant that remains to be determi-

ned. This parameter CPa
may be interpreted as the derivative

of CP with respect to the angle of attack α at α = 0, where CP is
the force coefficient associated with the total quasi-steady
pressure force Pqs, non-dimensionalized similarly to CL and CD

in equations (2.8) and (2.9).
Equation (2.11) implies that the drag force should vanish at

α = 0, which reflects our neglect of the friction force to this
point. However, whereas the pressure force is expected to dom-
inate the friction force at most angles of attack, friction cannot
be dismissed entirely at very low angles of attack, when the
pressure force will also be small (equation (2.5)). Because friction
acts tangential to the surface, it will in principle modify the total
lift and drag coefficients as

CL ¼ CPa
sina cosa� CF(a) sina (2:12)

and

CD ¼ CPa
sin2 aþ CF(a) cosa, (2:13)

where the notation CF(α) reflects the fact that the dimensionless
friction force coefficient CF will in general depend on the angle
of attack α. However, on the basis that the friction forces
are expected to be negligible in comparison to the pressure
forces except as α→ 0, when CF(α) sin α→ 0 and CF(α) cos α→
CF(α), it is reasonable to model the lift and drag coefficients
empirically as

~CL ¼ ~CPa
sina cosa (2:14)

and

~CD ¼ ~CPa
sin2 aþ ~CD0 , (2:15)

where the tilde notation indicates an empirical parameter esti-
mate, and where the drag coefficient offset ~CD0 is equal to the
drag coefficient at α = 0 such that ~CD0 ¼ CF(0). We note in passing
that this formulation is mathematically equivalent to assuming
that the friction coefficient varies as CF ¼ CFa cosa, which appro-
priately predicts that the net tangential force on an infinitely thin
flat plate will vanish at α = 90°. With this assumption, it follows
that ~CD0 ¼ CFa , and it can be seen by inspection of equations
(2.12) and (2.14) that ~CPa

¼ CPa
� CFa , where the Pythagorean

identity sin2 α + cos2 α = 1 is used to prove the same in equations
(2.13) and (2.15). The estimated lift and drag coefficients are the
same on either basis, and the only distinction to be drawn here is
in whether ~CPa

is interpreted as an empirical estimate of CPa
or of

(CPa
� CFa ).
This approach neglects possible variation of the friction drag

coefficient with Reynolds number through the stroke, but this is
unlikely to represent much of a limitation in practice, given that
the drag coefficient offset ~CD0 is determined empirically, and
lumps the friction drag together with any pressure drag that
may happen to be present at α = 0 owing to the effects of wing
corrugations, leading-edge thickness, etc. Such effects are diffi-
cult to model from first principles, being highly dependent on
the detailed wing structure.

2.5.3. Form of the unsteady forces
Differentiating the boundary condition in equation (2.4) with
respect to time shows that the acceleration of any point on the
wing normal to its surface must be accompanied by an equal
acceleration of the fluid at that point. Pressure will communicate
this motion to the rest of the fluid at the speed of sound, decay-
ing quickly away from the wing, and effectively superposing
instantaneously with the existing flow. The reaction to this accel-
eration of the fluid is called the added mass force, because it has
the effect of increasing the inertia experienced by a wing acceler-
ating through a fluid. It is clear from the form of the boundary
condition, however, that in contrast to the force that is required



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210103

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 M

ay
 2

02
1 
to accelerate the mass of a solid body, the added mass force
depends on how the body’s acceleration is directed in relation
to its geometry. Nevertheless, by resolving the body’s accelera-
tion relative to the inertial frame in body axes [28], it becomes
possible to define an added mass tensor that depends only on
the shape and size of the body. The added mass forces involved
in insect flight are especially significant at stroke reversal [29],
when the magnitude of the wing’s acceleration is greatest, and
when the wing’s orientation is such that a significant part of its
acceleration is directed normal to its chord. It is important to
emphasize that the added mass force is simply an unsteady
pressure force arising from acceleration of the fluid, and is not
connected with any identifiable mass of fluid actually being
carried along with the body.

Because the instantaneous effect of the wing’s acceleration
superposes with the existing flow, inviscid flow theory can be
used to model the added mass forces acting in a real fluid.
Indeed, it has been established theoretically [30], validated
numerically [29,30], and demonstrated experimentally [31,32],
that the same added mass force acts in both viscous and inviscid
flow. Classical inviscid flow theory [33,34] predicts the surface-
normal component of the added mass force on a thin flat plate
of chord c and width Δr as

A?S ¼ �p

4
rc2 _U

0
?SDr (2:16)

where _U
0
?S denotes the scalar projection of the acceleration of the

plate’s half-chord point onto the unit vector normal to the plate’s
surface. We emphasize that the validity of this equation rests on
the assumption that the surface-normal acceleration is measured
relative to an inertial frame of reference at the half-chord point.
Equation (2.16) has been widely used to model the added mass
forces on insect wings [7,12,14,15], but it is perhaps less well
known that the same inviscid flow theory [33,34] also predicts
a surface-parallel component of the added mass force, acting
along the chord as

Akc ¼ p

4
rc2VrU0

?SDr, (2:17)

where U0
⊥S denotes the surface-normal velocity of the half-chord

point, and Ωr denotes the angular velocity of the plate along its
spanwise axis [29,30]. It can be seen from the form of equation
(2.17) that this surface-parallel component of the added mass
force is solely a reaction to the centripetal part of the acceleration
of the fluid parallel to the wing’s chord (i.e. there is no added
mass force associated with tangential acceleration of a thin flat
plate parallel to its chord). It is therefore directly attributable to
the surface-normal motion of the plate, as expected from the
boundary condition in equation (2.4). For a flat plate of finite
width Δr, the added mass force will also include a surface-
parallel component acting along the span, with the same form
as equation (2.17) after switching the spanwise and chordwise
axes (e.g. [33]).

For the general planar motion of a rigid aerofoil described by
equations (2.17) and (2.16), the combined contributions of A⊥S

and Akc will integrate to zero over a periodic stroke cycle when
resolved in inertial axes [34]. It is important to note, however,
that the surface-normal component alone need not integrate to
zero when resolved in inertial axes. This is the situation that
arises if the wing rotates and the surface-parallel components
of the added mass force are neglected—as they are in most
blade element models [7,14,15]. This may not be unreasonable,
because the flow evolves such that the circulatory force cancels
the surface-parallel component of the added mass force when
the flow separates at the leading edge, thereby causing the
total pressure force on a rotating and translating flat plate to
act approximately normal to its surface [30]. Flow separation is
a viscous phenomenon, so it seems plausible that this cancella-
tion of the surface-parallel component of the inviscid added
mass force might be the origin of the viscous ‘centripetal accelera-
tion reaction’ force reported by Zhang et al. [35], given that the
contribution of the remaining surface-normal component need
not integrate to zero. We therefore follow the usual convention
of modelling only the surface-normal component of the added
mass force here. Thismeans that the addedmass forces that we cal-
culate do not integrate to zero over a single wingbeat period—
though there would be no reason to expect them to do so
anyway during stroke cycles that are not strictly periodic, such
as those used during unsteady manoeuvres. Finally, we note that
the classical inviscid flow theory cited above refers to single rigid
bodies [33,34], and it is well established mathematically that
deformable bodies [36] and articulated bodies [37] are capable of
generating periodic locomotion through perfect fluids, solely by
means of inviscid added mass effects [38].

2.5.4. Blade element modelling
The final step in the aerodynamicmodelling is to use the equations
in §2.5.2 to assemble a set of kinematic predictors for the stroke-
averaged quasi-steady aerodynamic forces. Given our measure-
ments of the wing and body kinematics, these results can then
be used together with equations (2.2) and (2.16) to formulate a
set of linear equations that can be solved in a least squares sense
for the unknown aerodynamic force coefficients ~CPa

and ~CD0 ,
which are assumed to be the same for all blade elements. Practi-
cally speaking, we split each wing into 20 evenly spaced blade
elements, of width Δr and chord length c(i), where i ∈ 1… 20
denotes the blade element number (figure 2), the aerodynamic
contributions of which we then summed over all 20 blade
elements and all 100 sample points for both wings.

Making use of the equations in §2.5.2, we modelled the
instantaneous lift (L), drag (D) and added mass (A) forces
acting on the ith blade element at time t as

L(i, t) ¼ 1
2
rU2(i, t) c(i) ~CPa

sina(i, t) cosa(i, t)
� �

1?U,r(i, t)Dr,

(2:18)

D(i, t) ¼ 1
2
rU2(i, t) c(i) ~CPa

sin2 a(i, t)þ ~CD0

� �
1kU(i, t)Dr (2:19)

and

A(i, t) ¼ �p

4
r _U

0
?S(i, t)c

2(i) 1?S(i, t)Dr (2:20)

in which 1kU , 1⊥U,r, 1⊥S are unit vectors defined as follows. The
unit vector 1⊥U,r is directed mutually perpendicular to the vel-
ocity of the blade element and its span, and points in the
direction of increasing angle of attack, thereby defining the direc-
tion in which lift acts. The unit vector 1kU is directed parallel to
the velocity of the blade element, and points in the direction of
the relative flow, thereby defining the direction in which drag
acts. In each case, the blade-element velocity is defined at the
three-quarter chord point. The unit vector 1⊥S is the blade-
element surface normal, signed positive in the direction of
increasing angle of attack, and is related to the other two unit
vectors by the identity 1?S ¼ 1?U,r cosaþ 1kU sina. The aerody-
namic speed, U, and angle of attack, α, of each blade element are
each measured at the three-quarter chord point working back
from the leading edge, as detailed in the electronic supplemen-
tary material, Methods, such that equations (2.18) and (2.19)
account implicitly for the effect of wing rotation on the quasi-
steady pressure force (see also §2.5.1). The surface-normal accel-
eration _U

0
?S is defined at the half-chord point for the purposes of

determining the added mass force, and is signed positive in
the direction of 1⊥S (see electronic supplementary material,
Methods). All of these quantities measure the blade element kin-
ematics with respect to the laboratory coordinate system, and
therefore incorporate all of the effects of the body’s translational
and rotational motion during forward flight and manoeuvring.



Table 1. Comparison of the full aerodynamic model with several alternative models, showing the effect of various simplifications on the estimated force
coefficients ĈPa and ĈD0 , and on the mean squared error (MSE) in the predicted forces. The penultimate column reports the chordwise reference point at which
the kinematics are defined for the purposes of calculating the quasi-steady lift and drag on each blade element; the added mass forces are always calculated
using the acceleration measured at 50% of chord. This chordwise reference point is optimized in the version of the full model shown in the last row of the
table, so as to minimize the MSE subject to the necessary physical constraint that ĈD0 � 0. The last column gives the total number of free parameters
estimated by the optimization procedure. The MSE is averaged over all N wingbeats and all three axes such that MSE ¼ 1

3N

PN
n¼1 ê(n) � ê(n), where ê(n)

contains the residual error in each axis for the nth wingbeat. The estimated force coefficients are reported ±1 s.d., where s.d. is the standard deviation of their
values computed over 105 random subsamples of the data, each comprising 10% of the recorded flight sequences.

model ĈPa ĈD0 MSE (mN)2 % chord parameters

full model 2.70 ±0.04 0.15 ± 0.07 0.0265 75 2

no drag offset 2.73 ± 0.04 — 0.0267 75 1

no drag offset or added mass 3.12 ± 0.03 — 0.0280 75 1

flat plate wing 1.69 ± 0.04 0.48 ± 0.06 0.0344 75 2

no body motion 2.65 ± 0.04 0.86 ± 0.19 0.0356 75 2

full model, optimized % chord 2.58 ± 0.04 0 0.0262 87 3
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Our kinematic measurements record the motion of each
wing at τ∈ 1… 100 discrete time points through each wingbeat.
The contribution of each wing to the total stroke-averaged
aerodynamic force may therefore be written as

1
100

X100

t¼1

X20

i¼1

L(i, t)þD(i, t)þ A(i, t)ð Þ

¼ ~CPa

1
100

X100

t¼1

X20

i¼1

1
2
rU2(i, t)c(i) sina(i, t)1?S(i, t)Dr

þ ~CD0

1
100

X100

t¼1

X20

i¼1

1
2
rU2(i, t)c(i)1kU(i, t)Dr

þ 1
100

X100

t¼1

X20

i¼1

�p

4
rc2(i) _U

0
?S(i, t)1?S(i, t)Dr,

(2:21)

where we have made use of the identity 1?S ¼ 1?U,r cosaþ
1kU sina to eliminate two of the trigonometric terms when com-
bining equations (2.18) and (2.19). By an obvious use of notation
for the summations, we will abbreviate the right-hand side of
equation (2.21) as ~CPa

SPa
þ ~CD0SD0 þ SA. The total stroke-

averaged aerodynamic force on a given wingbeat may therefore
be modelled as

P(n)þ F(n) � ~CPa
[SL

Pa
(n)þ SR

Pa
(n)]þ ~CD0 [S

L
D0
(n)

þ SR
D0
(n)]þ SL

A(n)þ SR
A(n), (2:22)

where the L andR superscripts denote summations for the left and
right wings, respectively.

2.6. Model fitting
Combining equation (2.22) with equation (2.3) for the measured
stroke-averaged aerodynamic force, we may write

m€Xb(n)�mg(n)� SLR
A (n) ¼ ĈPa

SLR
Pa
(n)þ ĈD0S

LR
D0
(n)þ ê(n),

(2:23)

where SLR
A (n) ¼ SL

A(n)þ SR
A(n) and so on, and where

ê ¼ [êX , êY, êZ] is a residual error term accounting for the differ-
ence between the measurements and the model in the lab axes in
which the forces are resolved. Equation (2.23) is linear in the
unknown force coefficients ~CPa

and ~CD0 , so can be solved using
linear regression to provide parameter estimates ĈPa

and ĈD0

that minimize the error sum of squares
PN

n¼1 ê(n) � ê(n) over all
N = 26 541 wingbeats. We initially solved equation (2.23) with
the aerodynamic speed U and angle of attack α defined at the
three-quarter chord point as explained above, which yields a
unique solution for ĈPa

and ĈD0 . As a direct check on the effect
of this assumption of the model, we then tried varying the chord-
wise position at which U and α were defined, which yields a
family of solutions for ĈPa

and ĈD0 . Finally, we verified the
importance of including body motion and wing twist in the
model by re-computing the kinematics without accounting for
body motion, and with the wing pitch angle set uniformly at
its value mid-span, before solving again for the unknown force
coefficients ~CPa

and ~CD0 (table 1).
2.7. Model validation
In the light of the very large sample, and because the regression
model does not take account of autocorrelation in the stroke-
averaged forces from one wingbeat to the next, we do not report
95% confidence intervals for our parameter estimates. Instead, we
tested the robustness of the analysis using subsampling, repeating
the regression modelling 105 times on random subsamples of the
data each containing only 10% of the flight sequences (i.e. 85 out
of the 854 flight recorded sequences). This subsampling analysis
allows us to assess the variance in our parameter estimates result-
ing from variation between individuals and flight sequences, and
does so at a sample size that is more realistic for future studies
than the very large sample used here (i.e. order 102 rather than
order 103 flight sequences). Finally, using our estimates of ĈPa

and ĈD0 with the kinematics defined at the three-quarter chord
point, we tested how the number of blade elements and number
of time steps affected the aerodynamic forces predicted for the
standard hoveringwingbeat. The predictedmean absolute aerody-
namic force changed byonly 0.30%when increasing the number of
blade elements to 1000 (electronic supplementary material, figure
S2a,b), and by only 0.14% when increasing the number of time
steps to 10 000 (electronic supplementary material, figure S2c,d),
so we conclude that the default discretization using 20 blade
elements and 100 time steps is more than sufficient.
3. Results
3.1. Body dynamics
Our free-flight dataset captures a wide variety of behaviours,
including forward flight, hovering, ascent, descent and
saccadic manoeuvres. A typical flight recording (electronic
supplementary material, Video S1) includes brief periods of
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Figure 3. Histograms of the measured stroke-averaged aerodynamic force and measured acceleration of the insect’s body in an inertial frame of reference.
(a–c) Measured stroke-averaged aerodynamic force, resolved in the insect’s body axes. (d–f ) Measured stroke-averaged acceleration, €X b(n), resolved in the
insect’s body axes. Note that the distribution of the acceleration is similar across all three body axes, but that the need to provide weight support in addition
to manoeuvring force means that the resultant forces are principally distributed in the xb- and zb-axes of the body.
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slow forward flight, punctuated by fast body saccades.
Although we cannot claim to have captured the entire flight
envelope, these data therefore cover a large part of the behav-
ioural repertoire of Eristalis, including many manoeuvres
typical of free-flight [39–42]. This range of behaviour is
reflected in the variability of the measured aerodynamic
forces acting along the xb-axis (0.97 ± 0.43 mN) and zb-axis
(−1.11 ± 0.4 mN) of the body (mean ± s.d.; figure 3a,c). The
forces measured along the yb-axis were much less variable
(0.00 ± 0.11 mN; figure 3b), consistent with the orthodoxy
that comparatively little lateral aerodynamic force is produced
during manoeuvres [43]. Nevertheless, the double derivatives
of body position vary to a similar extent in all three body axes
(figure 3d–f ), indicating that the asymmetry of force pro-
duction in the xb- and zb-axes is explained by the need to
overcome the body’s acceleration due to gravity, which
is small in the yb-axis except during highly banked turns. It fol-
lows that after addressing the requirement for weight support,
the hoverflies were actually comparably manoeuvrable in all
three body axes.

3.2. Wing kinematics
Wingbeat frequency and stroke amplitude vary greatly over
the dataset, but their variability owes more to variation
between individuals than within (figure 4), and the time-
history of the wing kinematics is actually quite stereotyped
over the whole dataset (figure 5b). Because the wing tip trajec-
tory is inclined at approximately 45° to the body, the stroke
angle ϕ and deviation angle θ always have similar oscillation
amplitudes, and both vary approximately sinusoidally
through the wingbeat (figure 5a). The wing pitch angle ω at
mid-span varies symmetrically on the upstroke and down-
stroke, showing a slight recoil at the start of each half-stroke.
The aerodynamic angle of attack α has a similar time history
on both the upstroke and the downstroke, changing rapidly
as the wing rotates and the stroke reverses, such that the
suction surface of the aerofoil switches sides (figure 5b).
3.3. Aerodynamic force coefficients
With the aerodynamic speed U and angle of attack α defined
at the three-quarter chord point, our best estimates for the
model parameters were ĈPa

¼ 2:70 and ĈD0 ¼ 0:15, such that
the lift and drag coefficients (equations (2.14) and (2.15))
may be modelled empirically as

~CL ¼ 2:70 sina cosa (3:1)

and

~CD ¼ 2:70 sin2 aþ 0:15: (3:2)

The variance in the estimated lift and drag curves over 105

random 10% subsamples of the 854 flight sequences was
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ditional upon wingbeat phase. Dashed lines indicate ±1 s.d. from the mean;
solid lines plot the kinematics of the standard hovering wingbeat.
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negligible for the lift coefficient but more substantial for the
drag coefficient (figure 6b). This reflects the fact that the error
in the estimation of the lift coefficient depends only on the
error in the estimation of the aerodynamic force coefficient
derivative ~CPa

, whereas error in the estimation of the drag coef-
ficient depends also on the error in the estimation of the drag
coefficient offset ~CD0 . We therefore investigated the effect of
dropping ~CD0 from the regression model in equation (2.23)
(i.e. modelling the lift and drag coefficients using equation
(2.11) instead of equation (2.15)). This produced a 1% increase
in the estimated aerodynamic force coefficient derivative ĈPa

,
from 2.70 to 2.73, in compensation for the slight decrease in
the predicted drag that would otherwise result from dropping
~CD0 . These changes were associated with only a 0.6% increase
in the error sum of squares (table 1), so the inclusion of a
drag coefficient offset—though justified theoretically—adds
little predictive power to the model. On the other hand, it is
clear from figure 6b that the estimated value of the drag coeffi-
cient at zero angle of attack is consistently positive acrossmany
different subsamples of the data, so the inclusion of ~CD0 in
the model is also justified empirically. Also dropping the
theoretical added mass correction from the measured forces
on the left-hand side of equation (2.23) resulted in an additional
5% increase in the error sum of squares (table 1), which con-
firms that including the added mass term also has merit in
improving the model fit.

These results assume that the aerodynamic speed U and
angle of attack α are defined at the three-quarter chord point.
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that ĈD0 � 0, which bites when the kinematics are defined at greater
than or equal to 85% chord. See text for further details.
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Adjusting the reference point at which the kinematics were
defined allowed a small reduction in the error sum of squares,
but with the paradoxical result that the estimated drag coeffi-
cient offset ĈD0 became negative if the reference point was
moved farther than 85% towards the trailing edge (figure 7).
Subject to the physical constraint that ĈD0 � 0, the error sum
of squares was minimized when U and α were defined at
87% of the chordwise distance back from the leading edge,
with ĈPa

¼ 2:58 and ĈD0 ¼ 0. The chordwise reference point
that minimizes the error sum of squares is therefore associated
with a binding inequality constraint ĈD0 � 0. This optimization
produces only a 1% improvement in the error sum of squares
(table 1), and comes at the cost of estimating a third parameter
from the data. The best-fitting chordwise reference point
cannot be estimated within the existing regression equations,
and was instead estimated using an exhaustive search pro-
cedure. We therefore prefer to retain the parameter estimates
of ĈPa

¼ 2:70 and ĈD0 ¼ 0:15 with the kinematics defined at
the three-quarter chord point in accordance with the prior
expectation from classical aerodynamic theory (see §2.5).
3.4. Goodness of fit of the stroke-averaged aerodynamic
forces

Because the blade element model is fitted as a regression
forced through the origin (equation 2.23), its R2 statistic is
not well defined. To assess its goodness of fit with respect
to the measured forces, we therefore regressed the fitted aero-
dynamic forces on the measured aerodynamic forces, without
forcing the regression line through the origin (figure 8). We
did this separately for each body axis, and found that a
large proportion of the variation in the stroke-averaged
forces measured in the body’s plane of symmetry was
explained in both the xb- and the zb-axes (R2 = 82.5% and
R2 = 79.0%, respectively). By contrast, a much smaller pro-
portion of the measured variation in the stroke-averaged
forces was explained in the transverse yb-axis (R2 = 18.0%).
Moreover, although the regression intercept was appropri-
ately close to zero in all three body axes (xb: 0.041 mN;
yb: 0.000 mN; zb: 0.021 mN), the regression slope was only
suitably close to one in the body’s plane of symmetry (xb: 0.92;
zb: 1.05), being greatly attenuated by noise in the transverse
axis (yb: 0.62). This poor fit in the yb-axis presumably reflects
the fact that the total range of the lateral stroke-averaged
aerodynamic forces was small (figure 3e), which leads to a
lower signal to noise ratio in the yb-axis (figure 8b) than in
the xb- or zb-axis (figure 8a,c). The forces measured in the
xb- and zb-axes are generally well modelled, although a
detailed inspection of the regression plots shows that whereas
the aerodynamic forces measured in the xb-axis are fitted
closely over their entire range (figure 8a), the blade element
model systematically under-predicts the magnitude of the
largest aerodynamic forces produced in the zb-axis (bottom
left region of figure 8c). Even so, the blade element model
does a good job of fitting the overall time-history of the
measured stroke-averaged forces on the timescale of an
entire flight sequence (figure 9).

3.5. Predicted aerodynamic forces through the
wingbeat

Because the parameters of the blade-element model were
fitted only to the stroke-averaged forces, there is no necessary
statistical reason to assume that the resulting model will per-
form well in predicting the time-varying aerodynamic forces
through the wingbeat, but the physical basis of the under-
lying aerodynamic model is such that it could be expected
to. We used the blade element model to predict how the
aerodynamic forces are expected to vary through the stan-
dard hovering wingbeat that we defined in §2.2 (figures 10
and 11; electronic supplementary material, Videos S2 and
S3), to allow us to assess the relative contributions of lift,
drag and added mass at different stages of the wingbeat.
As a further check on the robustness of our predictions to
errors in parameter estimation, we modelled the time-varying
aerodynamic forces through this standard hovering wing-
beat, across the full range of variation in the aerodynamic
force coefficients estimated for the subsamples in §3.3.
Despite the variation in the aerodynamic force coefficient par-
ameters fitted in the subsampling analysis (figure 6b), the
resulting variation in the predicted time-varying aero-
dynamic forces was slight in comparison to their variation
through the wingbeat (figure 10). The results in figure 10
therefore provide a sound basis for comparing the predictions
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of our blade element model with future CFD simulations of
the standard hovering wingbeat.

Because the stroke plane is close to horizontal during the
standard hovering wingbeat, weight support is attributable
primarily to aerodynamic lift, which is predicted to account
for 77.2% of the stroke-averaged vertical force (figure 10d ).
The added mass and drag forces each make a small net posi-
tive contribution to weight support, providing 14.3% and
8.5%, respectively, of the predicted stroke-averaged vertical
force. The predicted lift force peaks at the middle of each
half-stroke, when the wing’s translational velocity is highest
(figure 11f,h; electronic supplementary material, Video S3),
so this is also the phase of the stroke during which the
majority of the vertical force is expected to be produced
(figures 10d and 11b,d ). By contrast, the added mass force
peaks at the beginning of each half-stroke, when the wing’s
acceleration normal to its chord is highest (figure 11e,g; elec-
tronic supplementary material, Video S3). The drag force has
a more complicated time-history again, peaking at several
points through the stroke (figure 11e–h; electronic supplemen-
tary material, Video S3). Aerodynamic force production in
the transverse yb-axis is qualitatively similar on both the
upstroke and downstroke (figure 10b), and the same is true of
the vertical component of the aerodynamic force (figure 10d ),
but in each case the amplitude of the forces is somewhat dimin-
ished on the upstroke relative to the downstroke. By contrast,
aerodynamic force production along the xb- and zb-axes of the
body displays a marked asymmetry between the upstroke
and the downstroke (figure 10a,c). The dynamics of hovering
force production are therefore considerably more complex
than might first appear from the time-history of the vertical
aerodynamic force component alone (figure 10d).
4. Discussion
Perhaps the greatest challenge in modelling insect flight is to
predict the aerodynamic forces that the flapping wings
impart as they undergo a variety of complex aeroelastic
motions in a variety of different flight conditions. Although
current CFD techniques allow these forces to be predicted
with great accuracy for a given set of wing or body kin-
ematics, it remains extremely time consuming to compute
the flows associated with variable wing or body kinematics
or with different wing morphologies [5–8]. Moreover, the
aerodynamic assumptions that classical analytical models
must make to fix a solution for the aerodynamic force coeffi-
cients are so restrictive as to prevent their realistic application
to insect flight [12]. Here we have aimed to find a middle
ground, by estimating the aerodynamic force coefficients
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empirically for a simple analytical blade element model that
captures the scaling of the forces expected from first prin-
ciples, and which models the forces with sufficient accuracy
to be used in a range of other applications. By estimating
just two numerical parameters—the derivative of the
pressure force coefficient (ĈPa

¼ 2:70) and the drag coefficient
offset (ĈD0 ¼ 0:15)—for the largest dataset of insect wing and
body kinematics obtained to date [18], we have captured 80%
of the total variation in the measured stroke-averaged aero-
dynamic forces in the sagittal plane over N = 26 541
wingbeat pairs recorded in freely hovering and manoeuvring
Eristalis hoverflies. This is possible because whereas the aero-
dynamic form of the model is quite simple and uses empirical
estimates of the force coefficients that are averaged over many
different flight conditions, the modelling of the kinematics is
sufficient to capture almost the full complexity of the wing-
beat. In summary, the key contribution of this paper is to
provide a kinematically accurate blade-element model of
the stroke-averaged forces of insect flight, fitted and validated
with respect to an extensive free-flight dataset including a
wide range of flight manoeuvres.

4.1. Key features of the modelling
A key feature of our kinematic model is that it takes full
account of the torsional deformation of the wing, without
either limiting the motion to a fixed stroke plane, or treating
the entire wing as a flat plate. This matters, because wing flex-
ion is a defining characteristic of insect flight, which can
reduce its aerodynamic power requirements and enhance the
useful force produced [8,44]. For example, whenwe tried treat-
ing the wing as a flat plate operating at a pitch angle matched
to that of the twistedwing atmid-span, we found that the error
sum of squares increased by 30%, which was associated with a
large decrease in the estimated value of ĈPa

and an unrealisti-
cally large increase in the estimated value of ĈD0 (table 1;
electronic supplementary material, figure S3c). Modelling
the kinematics accurately is therefore at least as important as
modelling the flow accurately, so it does not make sense, for
example, to go the effort of solving the full Navier–Stokes
equations numerically for an oversimplified model of an
insect’s wing kinematics.

Another key feature of the kinematic modelling is that
it implicitly accounts for the body’s own velocity and accelera-
tion when computing the velocity, angle of attack and
acceleration of each blade element. The body’s motion plays
a key role in flight stability (e.g. [45,46]), so it is essential that
any aerodynamic model which aims to investigate free-flight
behaviour takes account of these effects. Moreover, whereas
the velocity of the body is usually considerably smaller than
the velocity of the wing tip, the two can become comparable
in magnitude during fast manoeuvres and fast forward
flight. In fact, there is clear evidence of the importance of the
body’s motion in our modelling, because if we ignored the
body’s velocity and acceleration when fitting the blade
element model, then the error sum of squares increased
by 34%, and the estimate of the drag coefficient offset
became unreasonably high (table 1; electronic supplementary
material, figure S3d).

Concerning the aerodynamic modelling, it is noteworthy
that moving the reference point at which the kinematics are
defined backwards from its default three-quarter chord pos-
ition results in at best a 1% reduction in the error sum of
squares and is associated with the drag coefficient offset
being driven unrealistically towards zero. Conversely,
moving the reference point forwards from the three-quarter
chord point causes a rapid worsening of the model fit,
which implies that the default approach is successfully captur-
ing the rotational lift as expected (see §2.5). This provides
a useful empirical validation of the approach of treating
rotational lift together with translational lift [16] by defining
the aerodynamic speed U and angle of attack α at the three-
quarter chord point [12], consistent with the results of
previous work using mechanical flappers [7].

4.2. Comparison to other models
Blade element models have been widely used to predict
the aerodynamic forces of insect flight, but never before in
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Figure 11. Spanwise distribution of predicted aerodynamic force at four phases of the standard hovering wingbeat. (a–d) Resultant aerodynamic force (blue
arrows). (e–h) Quasi-steady lift (orange arrows) and drag (green arrows) force, together with unsteady added mass force (red). The four phases of the wingbeat
correspond to (a,e) beginning of the downstroke; (b,f ) middle of the downstroke; (c,g) beginning of the upstroke; (d,h) middle of the upstroke. The hoverfly body is
shown in the background, and the grey line shows the wing tip path. The viewpoint rotates with the stroke, so as to look down the spanwise axis of the wing at all
times. Individual blade elements are plotted as black lines, to show the spanwise distribution of wing twist through the wingbeat. See electronic supplementary
material, Videos S2 and S3 for animated versions of these forces at all time steps.
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combination with such detailed kinematic data from free-
flying insects. Our model differs from others used previously
in the following respects: (i) it includes the full three-dimen-
sional motion of the wing, including torsional deformation;
(ii) it incorporates all six rotational and translational degrees
of freedom of the body; (iii) it models the rotational
aerodynamic force by calculating the angle of attack at the
three-quarter chord point rather than treating this as a separate
contribution; (iv) it captures systematic variation in the
direction of the quasi-steady aerodynamic force with respect
to the wing’s surface and the flow; and (v) it has a simple
and transparent aerodynamic form developed from physical
principles. The first two of these distinguishing features
relate partly to the availability of data, but all are fundamental.

Concerning our treatment of the rotational forces, most
recent blade element models include a separate rotational
lift component, sometimes called a rotational circulation
force (e.g. [7,15]). Indeed, the blade element model of
Nakata et al. [14], with coefficients fitted using computational
fluid dynamics also includes a separate rotational drag force.
These rotational forces are expressly intended to capture the
aerodynamic effects of pitching or twisting about the span-
wise axis of a flapping wing, but by defining the velocity of
each blade element at its three-quarter chord point [12], all
or most of these rotational effects can be incorporated directly
into the calculations of translational lift and drag, thereby
simplifying the model conceptually and reducing the
number of free parameters that must be estimated [16].

The direction of the quasi-steady pressure force is deter-
mined in our model by the balance of the orthogonal lift
and drag forces, where the lift on each blade element is
assumed to act perpendicular to the relative air flow, and
where the drag is assumed to act in the direction of the rela-
tive air flow. Other blade element models have defined the
circulatory force as acting normal to the blade element, but
have assumed that its magnitude is equal to that of the resul-
tant lift and drag [6,7,9,15], which means that a circulatory
force is assumed to act perpendicular to the chord even at
zero angle of attack if there is any friction drag or pressure
drag under these conditions. By contrast, the treatment of
the drag offset term in our model means that the direction
of the quasi-steady aerodynamic force varies with respect to
the chord (figure 12a). Specifically, whereas the quasi-steady
force is almost perpendicular to the chord at angles of
attack greater than about 45°, it becomes tilted back substan-
tially at lower angles of attack, ultimately becoming tangent
to the chord at zero angle of attack.

This behaviour is appropriate given the inevitable
presence of friction drag, and the likely importance of
pressure drag even at low angles of attack. Although insect
wings are commonly treated as approximating an idealized
thin aerofoil, they do in fact have a finite thickness, particularly
at the leading edge, which typically functions as a reinforced
spar. Wing corrugation due to venation also makes wings
inherently three-dimensional structures, which can further
increase profile drag [10,11]. Aerodynamic measurements of
real insect wings [47,48], or mechanical and computational
models thereof [3,49], have all indicated the presence of
significant drag at zero angle of attack, and hence of the
tilting back of the resultant aerodynamic force at low
angles of attack. While it is true that insect wings operate at
characteristically high angles of attack, in the hoverfly data
that we have presented here, 47% of all of the aerodynamic
force produced by the wing is predicted to occur at angles of
attack α < 45° (figure 12b), with a mode at α = 36°, for which
the force vector will be tilted back significantly from 90°
(figure 12a).

Perhaps the most important feature of our model is the
simplicity of its form, which despite being highly nonlinear
in the kinematics, is nevertheless linear in its two free par-
ameters CPa

and CD0 . This means that we are able to fit
these parameters analytically using linear least squares, guar-
anteeing that they are optimized globally and at speed—even
on the very large dataset that we employ. Moreover, because
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Figure 12. Predicted direction and relative contribution of the quasi-steady
aerodynamic force across different angles of attack. (a) The direction of the
resultant quasi-steady force vector is represented by its angle (γ) with respect
to the blade element chord, across the full range of measured aerodynamic
angle of attack (α). The predicted angle γ is calculated as the angle between
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(dotted line) at angles of attack above approximately 45°. (b) Distribution of
predicted contribution to the stroke-averaged quasi-steady aerodynamic force
at different aerodynamic angles of attack for all recorded wingbeats com-
bined. The horizontal red bars display the total percentage of the force
produced at angles of attack above and below 45° (i.e. the area under
the graph to either side of the vertical red line).
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the form of our model was developed from first principles
rather than with reference to the data, it provides useful phys-
ical insight into the ad hoc form of some influential models
that have been fitted previously. In particular, Dickinson
et al. [3] modelled the lift and drag coefficients for their
robotic flapper as CL = 0.225 + 1.58 sin(2.13α− 0.14) and
CD = 1.92− 1.55 cos(2.04α− 0.17), where α is in radians and
where all of the numerical constants are estimated from the
data. These complicated formulae use a total of eight free
numerical parameters to model CL and CD, but make better
sense physically when it is observed that they approximate
trigonometric double angle formulae. Noting that sin(2α) =
2 sin α cos α and cos(2α) = 1− 2 sin2α, equations (3.1) and
(3.2) describing our own fitted model can be restated as

ĈL ¼ 1:35 sin (2a) (4:1)

and

ĈD ¼ 1:50� 1:35 cos (2a) (4:2)

which are not dissimilar to the equations fitted by Dickinson
et al. [3] that themselves approximate trigonometric double
angle formulae. This in turn reflects the fact that whereas
the resultant force varies sinusoidally with the angle of
attack, its direction is approximately normal to the wing’s
surface, such that its lift and drag components resolved per-
pendicular and tangent to the relative airflow vary as cosine
and sine functions of the angle of attack, respectively.
4.3. Extension to other datasets
The same blade element model can be straightforwardly
applied to other insect species, because other than the mor-
phological parameters of wing length and wing shape
(figure 2), there are nomodelling assumptions that are specific
either to hoverflies or to the dataset that we used. Indeed, one
of the strengths of our approach is that the same blade element
model can be straightforwardly fitted to any similar dataset,
using linear least squares to optimize the force coefficient
parameters: Matlab code implementing the blade element
model is provided as Supporting Data S1 to this end. It is
clear from ourmodelling that knowledge of thewing twist dis-
tribution is essential to fitting the forces accurately (table 1),
which reinforces the need for future kinematic studies to
measure wing deformation as we have done here. Of course,
in design problems where the wing twist distribution is a
parameter that may need to be optimized rather than
measured, the inclusion of wing twist in our analytical blade
element model makes it suitable for use in fast global optimiz-
ation of the wing deformation parameters prior to local
refinement using CFD.

Our analysis shows that the blade element model is robust
to drastic reductions in sample size, with data subsampling
producing comparatively small changes in the predicted
forces when fitting the force coefficients to random sub-
samples comprising only 10% of the recorded data. This
means that the same modelling approach can be applied to
datasets much smaller than the N = 26 541 wingbeats that we
analyse here. If necessary, the simplicity of the model can be
increased further by excluding the small drag offset term.
This then means that only the derivative of the pressure
force coefficient need be estimated, which reduces the variance
of the parameter estimate (electronic supplementary material,
figure S3b). Given the comparatively weak signature of the
drag offset term at high angles of attack, this may be a prefer-
able approach when working with smaller or noisier datasets
than the one available here. However, while the inclusion of
the drag offset term provides only a 0.6% reduction in the
error sum of squares, we retain it in our model because its
importance is supported by both theory and experiment
[3,49]. Furthermore, although its inclusion has a minimal
effect on the accuracy of our modelling of this dataset for Eri-
stalis, the drag offset term may be more important for other
species with different morphologies and especially for those
operating at lower Reynolds numbers.

As with any form of regression modelling, an important
caveat is that the dataset must contain sufficient variation in
the independent variables to enable a good fit (compare,
figure 8a,c with figure 8b). In principle, our regression esti-
mates of the lift and drag coefficients could be replaced by
estimates from model wings [3] or CFD [14]. However, an
obvious risk of this approach is that the aerodynamic proper-
ties of a model wing, or even those of a detached wing
suffering rapid desiccation [50], may differ markedly from
the aerodynamic properties of a real wing in vivo. These
problems are avoided completely by our approach of fitting
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the parameters of the blade element model empirically to
free-flight data from live insects.
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Figure 13. Histograms of wing tip separation and stroke amplitude, and
their association with the measured stroke-averaged aerodynamic force.
(a) Histograms of wing tip separation at the start of the downstroke
(shaded bars) and at the start of the upstroke (unshaded bars). (b,c), Fre-
quency density plots showing stroke amplitude and wing tip separation at
the start of the downstroke, versus the measured forces in the xb (blue)
and zb (red) axes of the body. Shading density corresponds to frequency den-
sity of data. Wing tip separation was calculated as the distance between the
wing tips at the start of the half-stroke, normalized by the mean wing chord;
R2 statistics for the linear associations between the wingbeat parameters and
the measured forces are shown for each axis.
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4.4. Limitations
Although our blade element model fits the aerodynamic
forces well in the sagittal plane over most of their range, it
systematically under-predicts the magnitude of the largest
aerodynamic forces produced in the zb-axis (figure 8c). This
discrepancy presumably indicates a nonlinearity in aero-
dynamic force production that the quasi-steady blade
element model fails to capture. More specifically, as most of
the force in the zb-axis is produced on the downstroke (figure
10c), we hypothesize that this nonlinearity reflects some
unsteady aerodynamic mechanism that becomes increasingly
important as force production is increased on the downstroke.
One obvious possibility is that this nonlinearity is due to the
presence of a leading-edge vortex (LEV) on the functional
upper surface of thewing. This is one of the characteristic aero-
dynamic mechanisms of insect flight, allowing the lift curve to
be extended to high angles of attack by delaying stall [51].
Delayed stall is already implicit in our model because of its
explicit assumption that the wing does not suffer a sudden
loss of lift at high angles of attack (figure 6). It remains unclear,
however,whether the presence of anLEVenhances the aerody-
namic force coefficients by amplifying some portion of the lift
curve rather thanmerely by extending it [52]. Hence, although
the average aerodynamic effect of the LEV should be captured
by the empirical force coefficients that we have estimated from
ourdata, it is plausible that themodelmight still underestimate
the lift enhancement provided by the LEV at very high angles
of attack. It is also worth noting that our model does not
account explicitly for the three-dimensional effects of spanwise
flow impacting the strength and stability of the LEV [13], nor
for the possible effects of interactions between the wing and
the wake shed on the preceding half-stroke [7].

A second possibility is the clap-and-fling mechanism [12],
which can occur if the wings approach one another closely at
the top of the upstroke and are then flung apart on the down-
stroke (figure 13a). This mechanism may also be modified by
the effects of spanwise bending and chordwise camber [53],
which we do not model directly here. Interestingly, although
there is a positive association between the stroke amplitude
and the magnitude of the measured aerodynamic force
along both the xb- and zb-axes (figure 13b), as expected
under a quasi-steady model of the forces, this association is
much stronger in xb (R2 = 0.53) than in zb (R2 = 0.27). This
suggests that increases in the magnitude of the aerodynamic
forces in zb are not principally driven by increases in stroke
amplitude. On the other hand, there is a negative association
between the wing tip separation at the start of the down-
stroke, and the magnitude of the measured aerodynamic
forces (figure 13c), which is stronger in the zb-axis (R2 =
0.62) than in the xb-axis (R

2 = 0.25). This negative association
would be expected under an unsteady clap-and-fling mech-
anism, and the strength of the association in zb suggests
that increases in the magnitude of the aerodynamic forces
in this axis may indeed by driven by an unsteady clap-and-
fling mechanism. This is consistent with the interpretation
that wing-wing interactions affect force production in the
zb-axis more than in the xb-axis. Since the blade element
model will not capture this nonlinearity directly, it follows
that the linear parameter estimate for ĈPa

may overestimate
the true value of the quasi-steady force coefficient derivative
~CPa

. Another possible reason for this discrepancy is in the
modelling of the added mass forces, where there remains
room for further improvement as detailed in the Methods.

Finally, although the effects of body motion are captured
in our modelling of the wing kinematics and aerodynamics, it
is important to note the body itself will produce drag—and
perhaps some lift—in forward flight [48]. Modelling the
aerodynamic forces produced by a bluff body is not straight-
forward, owing to the likelihood of sudden flow separation
above some critical angle of attack, but as most of the flight
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sequences that we modelled were close to hover, it is reason-
able to assume that the aerodynamic forces on the body
would have been overwhelmed by the aerodynamic forces
acting on the wings at most stages of the wingbeat.
ietypublishing.org/journal/rsif
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5. Conclusion
We have shown here that an analytical blade element model
with just two empirically fitted coefficients provides a close
fit to the measured stroke-averaged aerodynamic forces of
free-flying insects in manoeuvring flight. The alternative
approach of using computational fluid dynamics modelling
is capable of capturing fine aerodynamic detail, and has
even led to the discovery recently of novel unsteady mechan-
isms (e.g. [1]), but is computationally expensive, taking many
orders of magnitude longer to deliver results than the analyti-
cal blade element model presented here. Both approaches
therefore have a complementary role to play. Analytical
blade element modelling functions well for investigating
large datasets, studying the effect of changing wing kin-
ematics parametrically, and making quick comparisons
across species. Conversely, a numerical approach is preferable
where high-fidelity predictions, detailed time histories, or
insight into unsteady aerodynamic mechanisms is required.
The strengths of the analytical blade element model that we
have presented here are (i) the simplicity of its underlying
aerodynamic equations; (ii) the complexity of the deforming
wing kinematics and body motions that it models; and
(iii) the fact that its aerodynamic force coefficients are fitted
empirically to free-flight data from real insects, thereby cap-
turing the full scope of the insect’s flight dynamics. Besides
demonstrating the importance of prioritizing accurate model-
ling of the deforming wing kinematics ahead of detailed
modelling of the fluid dynamics, we expect that our model
will serve as a useful, validated tool for future research on
insect flight dynamics and control.
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