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INTRODUCTION 
 

Bladder cancer (BLCA) is one of the common 

malignant tumors in the human population, and has a 

frequency ranking of 10th amongst the catalog of all 

malignant tumors worldwide [1]. BLCA is also the 

second most common malignant tumor found 

associated with the urinary system [2]. New BLCA 

cases worldwide accounts for 3% of total cancers with 

mortality accounting for 2.1% of total cancer-related 

deaths [1]. 2018 American Cancer Society statistics 

revealed over 1.7 million new cancer cases, with over 

80 000 BLCA cases thus showing a high incidence of 

this disease state [3]. Notably, the pathophysiological 

properties of BLCA disease are exemplified by 

significantly increased metastasis, linked to the higher 

mortality rate. Conventional BLCA disease therapy 

combines both chemotherapy adjuvant and surgical 

resection of the tumor. In spite of such radical and 

invasive therapies, BLCA patient median survival time 

is ~15 months, with a relatively low 5 year survival 

rate of ~15% [4, 5]. There is thus an urgent need to 

identify new and more reliable disease-linked 

biomarkers to stratify BLCA patients into well-defined 
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ABSTRACT 
 

Bladder cancer (BLCA) is one of the common malignant tumors of the urinary system. The poor prognosis of 
BLCA patients is due to the lack of early diagnosis and disease recurrence after treatment. Increasing evidence 
suggests that gene products of the nuclear factor of activated T-cells (NFAT) family are involved in BLCA 
progression and subsequent interaction(s) with immune surveillance. In this study, we carried out a pan-cancer 
analysis of the NFAT family and found that NFAT2 is an independent prognostic factor for BLCA. We then 
screened for differentially expressed genes (DEGs) and further analyzed such candidate gene loci using gene 
ontology enrichment to curate the KEGG database. We then used Lasso and multivariate Cox regression to 
identify 4 gene loci (FER1L4, RNF128, EPHB6, and FN1) which were screened together with NFAT2 to construct a 
prognostic model based on using Kaplan-Meier analysis to predict the overall survival of BLCA patients. 
Moreover, the accuracy of our proposed model is supported by deposited datasets in the Gene Expression 
Omnibus (GEO) database. Finally, a nomogram of this prognosis model for BLCA was established which could 
help to provide better disease management and treatment. 
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risk groups to enable better disease management and 

treatment. 

 

The first member of the nuclear factor of the activated  

T-cells (NFAT) family was discovered when T 

lymphocytes were stimulated by antigens to activate gene 

transcription leading to new cytokine synthesis of e.g. 

interleukin-2 [6]. Simultaneously, Feske and colleagues 

found that the activation of immune cells causes a rise in 

cytosolic calcium ion levels which cause NFAT 

activation in vivo, promoting the subsequent immune 

response to pathogen infection [7]. Surprisingly, recent 

studies suggest that NFAT family members can regulate 

cancer development and metastasis. In melanoma cells, 

NFAT2 and NFAT4 are activated by B-RAF-V600E via 

the canonical MAPK signal transduction pathway to 

promote COX-2 gene expression [8]. Increased COX-2 

expression is associated with poor prognosis in cancer 

[8]. In breast and colon cancer, NFAT5 can promote 

cancer invasion via the involvement of integrin α6β4 [9]. 

In breast cancer, NFAT activity promotes the invasion by 

stimulating COX-2 expression and prostaglandin 

synthesis [10]. Although NFAT family linkage to tumour 

development and progression was initially linked to 

cancer cell proliferation and migration, the prognostic 

value of NFAT activity in BLCA patients was unclear. 

 

Bioinformatics has become an increasing and widely 

used tool for tumor diagnosis, prognosis and prediction 

in cancer cases. Using a bioinformatics approach, 

Thakur and colleagues showed that transcriptomic 

signatures could have a prognostic value in melanoma 

[11]. In another study, screening a set of specific 

miRNAs using data deposited in The Cancer Genome 

Atlas (TCGA) database could be used to diagnose oral 

cancer; this conclusion was further supported from an 

analysis of the Gene Expression Omnibus (GEO) 

database within the National Center for Biotechnology 

Information (NCBI) [12]. Li and colleagues used 

clinical datasets in TCGA to assess the CpG island 

methylator phenotype (CIMP) in colorectal cancer and 

links to genomic aberrations and immune infiltration 

[13]. Meanwhile, the prognostic model using 4 genes 

was built to predict the overall survival (OS) of 

hepatocellular carcinoma (HCC) patients [13].  

 

In this study, we identified NFAT family expression in 

pan-cancer models using the TCGA database and 

genotype tissue expression (GTEx). We then combined 

LASSO regression and Cox regression analyses to build 

a predictive model for BLCA patient prognosis. A 5 

genes prognostic model was established which included 

NFAT2, FER1L4, RNF128, EPHB6 and FN1. This 
model was validated by analysis of different BLCA 

clinical datasets from multiple databases. This study 

supports the use of the NFAT family as a prognostic 

biomarker to help in BLCA stratification, disease 

management and therapy. 

 

MATERIALS AND METHODS 
 

Pan-cancer profiling for NFAT family gene expression 

 

To analyze gene expression profiles for the NFAT 

family of gene products in different malignant cancer, 

the GTEx, TCGA, and Oncomine databases were used. 

Oncomine is an online cancer microarray database 

(http://www.oncomine.org) [14] with a gene chip-based 

database and integrated data extraction platform. In this 

study, Oncomine was selected to compare the gene 

expression of NFAT family in tumors vs. normal tissues. 

The selection criteria for this study were “P<0.05, 

threshold: 2-fold change, gene rank: top 10%.” 

Meanwhile, the Gene Expression Profiling Interactive 

Analysis (GEPIA) tool was used to analyze the clinical 

datasets in the GTEx and TCGA databases to compare 

NFAT gene expression differences in pan-cancer models 

(http://gepia.cancer-pku.cn) [15]. 

 

Analysis of NFAT genetic alterations and expression 

profiling 

 

We utilized cBioPortal which is a visualization website 

integrating data from 126 tumor genome projects 

(http://www.cbioportal.org) [16]. We specified our 

query tumor type as “bladder urothelial carcinoma” and 

gene query names “NFAT1, NFAT2, NFAT3, NFAT4 

or NFAT4” were selected on the cBioPortal server. The 

NFAT mRNA expression levels were analyzed and 

Kaplan-Meier (KM) survival curves were generated to 

evaluate NFAT expression on overall survival (OS) and 

disease-free survival (DFS). 

 

Kaplan-Meier analysis  

 

To analyze BLCA prognostic values, R software with 

survival package was used to display OS. The P-value 

was calculated with values below 0.05 considered 

statistically significant. 

 

Analysis of differentially expressed genes (DEGs) 

 

The clinical data were extracted from the TCGA 

database and divided into high expression and low 

mRNA expression groups according to NFAT2 median 

expression. R software with limma, pheatmap, and 

ggplot2 packages was used to determine differential 

genes between the two groups. The 20 DEGs with the 

most significant up-regulation and down-regulation 

were displayed using volcanic and heat maps. 

Differential gene screening criteria | log FC | ≥2, 

P<0.05. 

http://www.oncomine.org/
http://gepia.cancer-pku.cn/
http://www.cbioportal.org/
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Analysis GO and KEGG pathway 

 

R software with clusterProfiler, DOSE and enrichplot 

packages was used to perform gene ontology (GO) 

functional analysis and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway analysis on the 

differential genes, and FDR<0.05 was set as a cut-off 

for significance [17–19]. 

 

Analysis of independent prognostic factor 

 

R software with survival and survminer packages was 

used to analyze TCGA clinical data. Both univariate 

analysis and multivariate analysis were used to generate 

Cox proportional hazard regression models. 

 

Protein-protein interaction analysis 

 

The top 100 DEGs were imported into the Search Tool 

for the Retrieval of Interacting Genes (STRING). This 

online tool facilitates building protein-protein interaction 

networks (PPI) (https://string-db.org) [20]. Results were 

also imported into Cytoscape software [21], and protein-

protein interaction networks and specific nodes within 

such networks were further analyzed using the MCODE 

tool in Cytoscape. The network scoring degree cutoff 

was 2 and the K-core was 2. 

 

Construction of risk score models  

 

First, the DEGs identified by limma were subjected to 

univariate Cox regression analysis. Second, a logistic 

regression model and the LASSO method for variable 

selection and shrinkage were applied to narrow the 

mRNA expression profiles by using R package glmnet 

4.0. The penalty regularization parameter k was 

determined via the cross-validation routine before 

running the main algorithm with an n-fold value equal 

to 10. The k value was finalized by using lambda min, 

which was the value of lambda, giving minimum mean 

cross-validated error [22]. Then, the data were 

randomly divided into training and testing sets. Finally, 

the multivariate Cox regression model was built. 

Besides, the model based on the training group was 

validated in the testing group by ROC and nomogram. 

Nomograms were widely applied to predict cancer 

patients’ prognoses, mainly because they could reduce 

the statistical prediction models into a single numerical 

assessment of the probability of OS that was tailored to 

the individual patient’s profile. In this study, the 

combined model based on all independent prognostic 

factors selected by the multivariable Cox regression 

analysis was used to construct a nomogram to assess the 
probability of 1-3-5 years OS for patients with BLCA. 

Subsequently, the nomogram’s calibration curve was 

evaluated graphically by plotting the nomogram 

prediction probabilities against the observed rates. 

Overlapping with the reference line demonstrated that 

the model was in perfect agreement. 

 

Analysis of GEO database 

 

We downloaded data from GSE13507 and GSE48276 in 

the GEO database in NCBI (http://www.ncbi.nlm.nih. 

gov/geo) [23]. This included data from 256 samples of 

bladder cancer tissue and adjacent tissues. GSE13507 is 

an expression profiling study with 165 primary bladder 

cancer samples, 23 recurrent non-muscle invasive tumor 

tissues, 58 normal-looking bladder mucosae surrounding 

cancer and 10 normal bladder mucosae analyzed using an 

Illumina human-6 v2.0 expression bead chip platform. R 

software was used to verify the risk model obtained by 

analysis of TCGA datasets. 

 

Analysis of immunohistochemistry expression 

 

The Human Protein Atlas (HPA) database is a large-scale 

protein research project, the main purpose of which is to 

map the positions of proteins encoded by expressed genes 

in human tissues and cells (https://www.proteinatlas.org) 

[24]. IHC data for potential clinical application was 

extracted from the HPA database in both normal tissue 

and bladder urothelial cancer, and results were shown as 

typical images. Such data validated the potential 

significance of NFAT2 in bladder cancer prognosis 

prediction. 

 

Cell culture 

 

Human bladder cancer cell lines T24, 5637, and J82 

were obtained from the Cell Bank of Type Culture 

Collection (Chinese Academy of Sciences, Shanghai 

Institute of Cell Biology, Shanghai, P. R. China). Cell 

lines were maintained in RPMI1640 medium (GIBCO, 

Gaithersburg, MD, USA) supplemented with 10% fetal 

bovine serum (GIBCO). Cell lines were incubated at 

37° C in an atmosphere of 5% CO2 and 95% air. 

 

Colony formation assay 

 

200 cells per well were plated in 6-well plates. After 14 

days of culture in RPMI1640 medium, cells were fixed 

with 4% (w/v) paraformaldehyde, washed with PBS and 

stained with 0.1% (w/v) crystal violet. 

 

Cell proliferation assay 
 

Cell proliferation assays were performed using the Cell 

Counting Kit-8 (Donjindo, Japan). Cells were plated 
into 96-well plates in triplicate at approximately 2000 

cells per well and subjected to different treatment 

conditions. The OD value was measured using a 

https://string-db.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.proteinatlas.org/
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microplate reader (Thermo Fisher, Waltham, MA, 

USA) at a wavelength of 450 nm. 

 

Statistical analysis  

 

The data were presented as the mean ± standard 

deviation. Unpaired t-tests were used to compare the 

difference between two groups. P<0.05 was considered 

to indicate a statistically significant difference between 

the two groups. 

 

RESULTS 
 

NFAT family gene expression and genetic alterations 

in bladder cancer 

 

The expression of the mRNA expression levels 

corresponding to NFAT family members in BLCA 

patients was analyzed using the GTEx and TCGA 

database. The results showed that the NFAT family 

gene expression increased in the BLCA (Figure 1). To 

further determine the genetic alterations linked to such 

effects we used the cBioPortal database. Amongst the 

12 clinical datasets which were analyzed, the frequency 

of gene alterations, including mutations, amplifications, 

deep deletions, and multiple alterations, ranged from 

0.97% to 20.83%, with mutations and amplifications 

being the most observed alterations (Figure 2A). The % 

of genetic alterations within the NFAT family in BLCA 

varied from 3% to 5% for individual NFAT gene loci 

(Figure 2B). Meanwhile, clinical survival information 

was extracted to analyze the prognostic roles of the 

NFAT family in BLCA patients with or without 

alterations (Figure 2C). The results showed that the 

altered group had improved OS, but did not observe any 

significant correlation between the presence of 

alterations and DFS (Figure 2D). 

 

Prognostic value of NFAT family members in BLCA 

 

To further explore the prognostic value of each NFAT 

gene in BLCA, we used R software with a survival 

package to analyze the clinical BLCA datasets in the 

TCGA database. The results showed that after grouping 

BLCA patient overall survival (OS) based on the 

median value of gene expression, low NFAT2 

expression was strongly associated with the better or 

improved OS, whereas NFAT1, NFAT3, NFAT4, and 

NFAT5 expression were not related to OS in BLCA 

patients (Figure 3). 

 

Expression of NFAT2 in BLCA patients with 

different clinicopathological features 

 

Analysis of the clinical data extracted from TCGA 

found that the expression of NFAT2 had no relevance to 

the M stage, stage, gender, and age of the tumor (Figure 

4A–4D). For N stage, only N0 and N2 had a significant 

 

 
 

Figure 1. The expression of NFAT family gene in BLCA. Blue represents the expression of normal tissues in the GTEx database, and red 

represents the expression of BLCA patients in the TCGA database. 
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difference, but there was no continuous significance 

from N0 to N4. It indicated that NFAT2 and N stage 

were not closely connected (Figure 4E). The same result 

also appeared in the T stage (Figure 4F). Surprisingly, 

in the classification of the BLCA tumor grades, NFAT2 

expression in high-grade groups was significantly 

higher than in low-grade groups (Figure 4G). 

 

NFAT2 is an independent prognostic risk factor for 

BLCA 

 

The information of BLCA patients with incomplete 

follow-up was removed from subsequent analyses. A 

Cox regression model for univariate analysis was used: 

we found that NFAT2 had no significant correlation 

with BLCA tumor stage and grade (Table 1). Moreover, 

the hazard ratio (HR) value was 1.113. In the TCGA 

database, the level characteristics of BLCA were only 

divided into high-grade and low-grade tumors. 

However, no deaths were recorded in BLCA patients 

with low-grade tumors. Surprisingly, multi-factor 

analysis using the Cox model found that NFAT2 could 

be used as an independent prognostic risk factor and 

was not affected by other factors (Figure 5). 

Screening for DEGs within BLCA patient groups 

with differential NFAT expression  

 

Our previous results demonstrated that NFAT2 

expression is linked to OS of BLCA patients. R software 

with the limma package was applied to screen DEGs of 

TCGA datasets focused on NFAT2 low vs. high 

expression groups in BLCA patients. A total of 1447 

DEGs were identified with 1153 up-regulated genes and 

294 down-regulated genes (Figure 6A). Furthermore, the 

top 20 up-regulated and down-regulated DEGs were 

plotted in a heatmap (Figure 6B). 

 

Biological analysis of DEGs between the high and 

low expression groups  

 

To assess DEG functionality, R software with the 

limma package was used to analyze all DEGs identified 

in BLCA. Our results showed that 2198 GO terms were 

enriched. The enrichment items were classified into 3 

functional groups: biological process (BP) group (1888 

items), cellular component (CC) group (137 items), and 

molecular function (MF) group (173 items). The top  

10 significant biological processes GO terms are shown 

 

 
 

Figure 2. Genetic alterations of NFAT family genes. (A) Oncoprint visual summary of genetic alterations in NFAT family members.  

(B) Summary of genetic alterations in NFAT family members. (C) Kaplan-Meier survival curves for OS in cancer patients with genetic 
alterations. (D) Kaplan-Meier survival curves for DFS in cancer patients with genetic alterations. 
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for each item (Figure 7). Within the BP group, the top 3 

significant biological processes were leukocyte 

migration, regulation of lymphocyte activation, and 

phagocytosis. In the CC group, highlighted gene 

products were associated with the collagen-containing 

extracellular matrix, extracellular side of the plasma 

membrane, and immunoglobulins. Finally, the most 

enriched GO terms in the MF group are antigen 

binding, extracellular matrix structural constituent, and 

glycosaminoglycan binding.  

 

KEGG pathways were mainly enriched in cytokine-

cytokine receptor interaction, human T-cell leukemia 

virus 1 infection, MAPK signaling pathway, PI3K-Akt 

signaling pathway, and chemokine signaling pathway 

(Figure 8A). The pathway-pathway network showed the 

relationship between the 67 KEGG pathways enriched 

in all DEGs (Figure 8B). 

 

Protein-protein interaction (PPI) network analysis 

 

Protein-protein interaction (PPI) networks generated in 
silico help us to explore molecular mechanisms 

associated with specific gene products and biochemical 

pathways. The interactions among the identified top 100 

DEGs were analyzed by using the STRING database. 

The PPI network of the DEGs consisted of 72 nodes and 

533 edges (Figure 9A). Amongst these gene products, 

C1QA, C1QB, C1QC, COL1A1, and COL1A2 showed 

the highest combined score in PPI networks, suggesting 

that NFAT2 plays a key role in the immune system in 

BLCA. PPI network was imported into Cytoscape. The 

clusters by the MCODE app showed seven sub-

networks, and the sub-network with the highest score is 

shown in Figure 9B. Other sub-networks were shown in 

Table 2. These findings suggest that NFAT2 has a 

significant role cell function which could influence 

BLCA patient outcomes. 

 

Construction of overall survival risk score model for 

BLCA 

 

Based on our findings linking NFAT2 expression with 

BLCA patient overall survival (OS), and NFAT2 risk 

score model was built to predict BLCA patient survival. 

Univariate Cox regression was used to assess DEG 

 

 
 

Figure 3. Prognostic value of NFAT members in BLCA patients. Kaplan-Meier survival curves for OS of BLCA patients with expression 
of NFAT1, NFAT2, NFAT3, NFAT4 and NFAT5. 
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correlation with NFAT2 in BLCA and we identified 8 

gene loci where the P-value was below 0.05. 

Furthermore, we used LASSO logistic regression 

combined with 10-fold cross-validation to narrow the 

mRNA expression profiles (Figure 10A, 10B). As a 

result, 5 gene loci were identified to build a predictive 

risk score model.  

 

The samples were randomly divided into training set and 

testing set, and the training set was used to obtain the 

model. The predictive model was characterized by the 

linear combination of the expression of these 5 genes 

weighted by their relative coefficient in the multivariate 

Cox regression as follows: risk score = (-0.262991181 * 

expression of FER1L4) + (0.235961475 * expression of 

RNF128) + (-0.180646092 * expression of EPHB6) + 

(0.097234847 * expression of FN1) + (0.084658888 * 

expression of NFAT2). 

 

The 204 patients of the testing set were used to validate 

the model in this study. The risk score was calculated, 

and the median value was used as the cut-off value for 

 

 
 

Figure 4. Expression of NFAT2 in BLCA patients with different clinical and pathological features. Kaplan-Meier survival curves for 

OS of BLCA patients and clinical factors. (A) M Stage. (B) Gender. (C) Age. (D) Stage. (E) N Stage. (F) T Stage. (G) Grade Stage. 
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Table 1. Univariate Cox proportional hazard model of the expression of NFAT2 and clinical factors. 

Univariate Cox analysis 

 HR HR.95L HR.95H pvalue 

age 1.041097238 1.02210766 1.06043962 1.80E-05 

gender 0.931539367 0.636464096 1.363416409 0.715185647 

grade 9617820.06 0 Inf 0.992093304 

stage 1.953870349 1.526479865 2.500923482 1.05E-07 

T 1.711736629 1.317903959 2.223259342 5.60E-05 

N 1.603321291 1.3433964 1.91353733 1.69E-07 

M 2.116864599 0.762125873 5.879758041 0.150207498 

NFAT2 1.113013537 1.027802607 1.205288958 0.008419016 

 

the risk score (Figure 10C). The K-M OS curves of the 

two groups, based on the 5 genes, were significantly 

different (Figure 10D). The prognostic capacity of the 

signatures for these 5 genes was assessed by calculating 

the AUC of a time-dependent ROC curve. The AUC of 

the prognostic model was 0.673 for the 1-year survival 

time. These results indicated that the forecast model had 

high sensitivity and specificity (Figure 10E). 

 

 
 

Figure 5. NFAT2 is an independent prognostic factor of BLCA. Multivariate Cox proportional hazard model of the expression of NFAT2 

and clinical factors. 
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Evaluation of the risk score model 

 

To establish a clinically applicable method for predicting 

the BLCA patients’ survival probability, a nomogram 

was built to predict the probability of the 1-3-5 years OS 

in the testing set (Figure 11A). The predictors of the 

nomogram included 5 factors. The 45° line represented 

the best prediction. Calibration plots showed that the 

nomogram performed well (Figure 11B). 

Validation of prognosis risk model 

 

To verify the prognostic value of NFAT2 and accuracy 

of the model for BLCA patients, we further analyzed 

other BLCA clinical expression datasets. Microarray 

data from clinical study GSE100926 in the GEO 

database was extracted and found significant differences 

in expression between BLCA cancer tissues and adjacent 

tissues. Representative images of the NFAT2 protein 

 

 
 

Figure 6. DEGs between high and low expression of NFAT2 groups. (A) Volcanic map for the DEGs identified by R software with 

limma package. The abscissa represented log2FC, and the ordinate represented the negative logarithm of the P-value. The red, green, and 
black nodes represented upregulated mRNA, downregulated mRNA, and non-differentially expressed mRNA. (B) Heatmap for the DEGs 
identified by R software with limma package. 
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Figure 7. Gene ontology pathway enrichment analysis of DEGs. The rich factor demonstrates the degree of enrichment by GO. The 

node size represents the number of selected genes, and color represents the P-value of the enrichment analysis. CC, cellular component; MF, 
molecular function; BP, biological process. 
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levels were shown the same expression trend in the HPA 

database. Normal bladder tissue staining of NFAT2 

showed median expression in the nucleus (Figure 12G). 

However, in the cancer tissue samples, the NFAT2 

nuclear staining was significantly weaker than in normal 

tissue. According to the median value of NFAT2 nuclear 

expression as a classified condition, it was found that  

the survival condition of the low-expression group of 

 

 
 

Figure 8. KEGG pathway enrichment analysis of DEGs. (A) The rich factor demonstrates the degree of enrichment by GO. The Node 

size represents the number of selected genes, and color represents the P-value of the enrichment analysis. (B) Network diagram provides the 
KEGG pathway interaction in the DEGs. 
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NFAT2 was better than that of the high-expression 

group, which indicated that the nuclear levels of NFAT2 

could affect the survival of BLCA patients (Figure 12A). 

Meanwhile, the prognostic model was assessed in the 

GEO data. A total of 165 patients in the GSE100926 

data were classified into a low-risk group and a high-risk 

group using the risk score mode. The result was 

consistent with the result in TCGA. The OS of the 

BLCA patients in the GSE100926 data in the high-risk 

group was significantly lower than that in the low-risk 

group (P<0.05) (Figure 12B). Furthermore, the AUCs of 

the external verification set were 0.643 at 1 year, 0.639 

at 2 years, and 0.664 at 3 years, demonstrating that this 

risk model can predict the OS of BLCA patients (Figure 

12C). The survival of patients was calculated based on 

the nomogram, and find that the nomogram performed 

well (Figure 12D, 12E). In order to further verify the 

accuracy of our model, using the same method with 

GSE48276 in the GEO database, the results also show 

that the model has a higher accuracy. The AUCs of 

GSE48276 was 0.643 at 1 year, 0.619 at 2 years, and 

0.622 at 3 years. 

 

NFAT2 has oncogenic function in BLCA 

 

In our previous studies it was found that in BLCA 

patients, the overall survival of the low expression group 

of NFAT2 was higher than that of the high expression 

group. We speculated that NFAT2 may function as an 

oncogene within the context of BLCA disease. We 

carried out cellular studies on three different BLCA cell 

lines, T24, J82, and 5637 (Figure 13). NFAT2 was 

expressed ~2-fold more in T24 vs. 5637 BLCA cell lines 

(Figure 13A, 13B). In the 5367 cell line, knockdown of 

NFAT2 expression using small hairpin RNA (sh-

NFAT2) using stable lentiviral transduction caused 

~80% reduction in NFAT2 levels (Figure 13C, 13D). 

NFAT2 knockdown caused ~60% reduction in 5637 cell 

proliferation (Figure 13E). The colony formation assay 

showed that knockdown of NFAT2 also caused a 

significant ~2-fold reduction in formation of the 5637 

cell colonies (Figure 13F). Incorporation of EdU 

nucleotide analog into genomic DNA to assess new 

DNA synthesis revealed similar findings on 5637  

cell proliferation (Figure 13G). Simultaneously, the 

Transwell cell migration assay showed revealed that 

NFAT2 knockdown inhibits the migratory and invasive 

capacity of 5637 cells (Figure 13H). The wounded cell 

monolayer assay experiment also showed that NFAT2 

knockdown caused ~2-fold decrease in cell migration 

(Figure 13I). Further analysis of control and NFAT2 

knockdown 5637 cells using immunoblotting showed a 

significant increase in E-cadherin and decrease in 

vimentin levels (Figure 13J). Quantification using qRT-

PCR in these 5637 cells revealed ~2-fold decrease in 

NFAT2 mRNA correlated with ~4-fold increase in E-

cadherin and ~4-fold decrease in vimentin mRNA levels 

(Figure 13K). Such findings link NFAT2 regulation of 

differential gene expression for E-cadherin and vimentin 

in BLCA development and progression. 

 

To further assess NFAT2 cancer functionality in vivo, 

the stably transfected 5637 cell line sh-NFAT2  

and untransfected 5637 parental control was injected 

 

 
 

Figure 9. Network of protein-protein interactions (PPI) analysis. (A) Protein-protein interaction network was constructed for the 

DEGs using Cytoscape. (B) Subnetwork with the highest score using MCODE tool. 
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Table 2. The 6 sub networks significantly associated with the PPI of DEGs in patients with BLCA. 

Sub Network 

Cluster Score Nodes Edges Node IDs 

1 18.211 20 173 
MMP9, COL6A3, THBS2, CTHRC1, LUM, COL3A1, COL6A2, COL6A1, SFRP2, 

COMP, COL1A1, COL1A2, POSTN, NNMT, AEBP1, C1S, ISLR, DCN, SFRP4, FN1 

2 5.143 8 18 S100P, PSCA, TFF1, ERBB3, UPK2, AGR2, KRT7, MYCL 

3 4 4 6 C1QC, CHI3L1, C1QA, PTGDS 

4 3.333 4 5 KRT13, UPK1A, UPK3B, KRT20 

5 3 3 3 FOXA1, ID1, FGFR3 

6 2.8 6 7 LYZ, KRT19, KLF5, C1QB, CD14, TBX3 

 

subcutaneously into different groups of BALB/C 

immunodeficient Nude mice. This was carried out to 

determine whether NFAT2 expression influences 

BLCA tumor growth in vivo. Comparison of the control 

and NFAT2 knockdown mouse tumour groups was 

evaluated: knockdown of NFAT2 caused a significant 

~4-fold reduction in tumor weight (Figure 13L) and ~2-

fold reduction in tumor volume (Figure 13M). 

Immunohistochemical staining for the nuclear cell 

proliferation marker Ki-67 revealed that the NFAT2 

knockdown tumor group exhibited reduced staining 

compared to the control group (Figure 13N). Such 

findings suggest a strong link between NFAT2 

expression and BLCA development and progression  

in vivo. 

 

DISCUSSION 
 

Bladder cancer (BLCA) is one of the most common 

cancers worldwide with an increasing incidence of 

bladder cancer annually. 70% of BLCA patients exhibit 

tumor metastases after cancer therapy, with a lifetime 

for follow-up and careful surveillance [25]. At present, 

BLCA clinical diagnostic methods rely mainly on 

cystoscopy and urine cytology. Cystoscopy is the gold 

standard for the BLCA diagnosis and follow-up. 

However, as cystoscopy is an invasive and expensive 

clinical technique, it is problematic for BLCA patients. 

Therefore, there is a need for BLCA biomarkers that 

have high sensitivity, high specificity, combined with 

rapid non-invasive diagnostic techniques. Common 

clinical BLCA biomarkers including urinary 

fibrinogen/fibrin degradation products (FB/FDP), 

bladder tumor antigen (BTA), nuclear matrix protein 22 

(NMP22), hyaluronic acid (HA), and hyaluronidase 

(Haase) [26–28] but these still lack accurate disease 

stratification for BLCA. Therefore, we urgently need to 

find BLCA biomarkers that are both predictive and can 

be used early in the disease process. This can help to 

improve the patient’s postoperative survival time. 

However, because the period of experimental 

verification is too long, new biomarkers discovery often 

takes a long time. The emergence of bioinformatics 

tools provides us with new ideas for discovering new 

BLCA biomarkers. 

 

NFAT was first discovered in T -cells as a 

transcriptional activator of the interleukin 2 [29, 30], and 

a key regulator of T-cell function in immune responses. 

Five NFAT family members, including NFAT1, 

NFAT2, NFAT3, NFAT4, and NFAT5 are often found 

to play a critical role in regulating the immune system 

and pro-inflammatory responses. For example, in a 

mouse model, NFAT activates transcription of the TNFα 

locus to promote autoimmune diseases such as 

rheumatoid arthritis, RA [31]. Deletion of the NFAT2 

gene locus inhibited mouse thymus development and the 

expression of anti-apoptotic protein BCL-2 [32]. 

However, increasing evidence shows a strong link 

between NFAT family members in tumor initiation, 

development and progression [8–10]. However, the link 

between NFAT expression in different cancer patients 

and link to disease development and progression was 

unclear. The emergence of cancer bioinformatics 

provides us with valuable tools for exploring NFAT 

expression in different cancers and patient outcomes. In 

our study, by integrating of cancers studies of datasets 

from GTEx, TCGA, and Oncomine databases, it was 

found that increased gene expression of NFAT family 

members correlated with increased incidence of BLCA. 

By analyzing cancer datasets using cBioPortal, it was 

found that the alterations within the gene loci encoding 

NFAT family members could also affect BLCA patient 

survival. Further analysis of clinical datasets in the 

TCGA database showed that OS for the NFAT2 low 

expression group was significantly higher than the 

NFAT2 high expression group. Multivariate analysis 

proves that the expression of NFAT2 was not affected 

by the characteristics of other cases. These findings 

suggested that NFAT2 might be an independent 

prognostic risk factor for BLCA diagnosis. R software 

was used to analyze the function of differential genes 

between high and low NFAT2 expression groups and 

construct corresponding interaction networks. It was 

found that a total of 2198 GO terms, 67 KEGG terms, 

and 6 sub-networks were enriched. Enrichment into the 
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PI3K-Akt signaling pathway via KEGG was the same as 

the previous research results. Kim and colleagues have 

previously shown that nerve growth factor activation of 

phosphatidylinositol 3-kinase: Akt: glycogen synthase 

kinase 3β pathway regulates NFAT expression in 

neurons [33]. Besides, genes in this sub-network are 

closely linked to the regulation of cell migration. Li and 

colleagues showed that in ovarian cancer cells, NFATc1 

 

 
 

Figure 10. Construction of overall survival risk score model. (A) LASSO coefficient profiles of the genes associated with the DEGs.  
(B) Partial likelihood deviance was plotted versus log (Lambda). The vertical dotted line indicates the lambda value with the minimum error 
and the largest lambda value. (C) Risk scores of the patients in the high (red) and low (green) risk groups. (D) Patients of the validation set 
from TCGA were divided by risk score into high risk and a low risk groups. OS between two risk groups were analyzed and compared by 
Kaplan-Meier analysis. Red lines represent the high-risk group samples, and blue lines represent the low-risk group samples. (E) ROC curves in 
the validation set. The abscissa represents sensitivity, and the ordinate represents specificity. 
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knockdown inhibits cell proliferation and migration [34]. 

These independent studies further support our hypothesis 

that NFAT2 promotes BLCA cell migration and 

proliferation. It is also likely that NFAT2 is involved in 

other cellular pathways that contribute to cancer 

development and progression. 

 

An earlier study by Gyorffy and colleagues analyzed 

clinical datasets from non-small cell lung cancer in the 

TCGA database using univariate and multivariate Cox 

regression analysis, Kaplan-Meier analyses, and found 

that the expression of CDKN2A, OPN, EZH2, ANXA3, 

ADAM28 and ERCC1 genes significantly correlated 

with OS [35]. In recent studies, bioinformatics has been 

widely used to discover biomarkers and the construction 

of OS and DFS models. Yoshie and colleagues found 

that in prostate adenocarcinoma (PACA) patients, 

overexpression of PEG10 is linked to a reduction in 

PACA patient survival [36]. Another study revealed that 

the hyaluronic acid family could be used as a BLCA 

biomarker, whose expression positively correlated with 

transcriptional regulators such as β-catenin, Twist, and 

Snail expression levels [37]. In BLCA, patients have a 

poor prognosis due to the lack of reliable monitoring 

methods. Therefore, using a reliable prognostic model 

could help BLCA patients to status better. The use of 

cancer bioinformatics to build survival models based on 

multiple gene expression profiles to predict patient 

survival has been widely accepted and increasingly 

applied to diverse cancer disease states. Here, we 

constructed a prognostic risk assessment model based on 

multiple genes as a basis for clinical treatment. Unlike 

previous studies, this study not only randomized the 

original samples, but also identified genes related to 

prognosis based on an independent prognostic factor 

NFAT2. Univariate Cox, Lasso and multivariate Cox 

analyses were conducted to build a risk model to predict 

risk of BLCA prognosis. FER1L4, RNF128, EPHB6, 

and FN1 were identified with NFAT2 for prognostic 

model construction. 

 

 
 

Figure 11. Evaluation of risk score model. (A) The nomogram is applied by adding up the points identified on the points scale for each 
variable. (B) The calibration curve for predicting 1‐3-5 years OS for patients with BLCA. The Y‐axis represents actual survival, as measured by 
K‐M analysis, and the X‐axis represents the nomogram‐predicted survival (P<0.05). 
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For RNF128, the RING finger protein belongs to a subset 

(RNF subfamily) of the E3 ubiquitin ligase superfamily 

which facilitates the attachment of ubiquitin and 

ubiquitin-like proteins to target substrates [38, 39]. More 

than 200 RNF family members have been identified with 

diverse properties [40]. Several RNF family members 

have been implicated in cancer development [41–43]. 

RNF128 (also known as Grail), as a member of the RNF 

family, was first discovered as an E3 ubiquitin ligase, 

which was involved in regulating cellular immune 

function [44]. However, recent studies suggest that 

RNF128 plays an essential role in tumor occurrence and 

development. RNF128 is proposed to ubiquitinate p53 

and TBK1 to down-regulate tumor suppressor function 

and thus promote human leukemia development [45]. In 

esophageal squamous cell carcinoma, the overexpression 

of RNF128 promotes signaling through the EGFR/ 

MAPK/MMP-2 pathway to enhance cell invasion  

and metastasis [46]. In melanoma, down-regulation of 

RNF128 is proposed to activate Wnt/β-catenin signaling, 

which promotes higher epithelial-mesenchymal transition 

(EMT) and cell stemness [47]. RNF128 can also bind 

other E3 ubiquitin ligases, such as NEDD4, to promote 

the migration of lung cancer cells [45]. Our mining  

of the TCGA clinical database found that high  

RNF128 expression correlated with better BLCA patient 

prognosis. A model based on the expression of RNF128 

was constructed to predict the survival time of BLCA 

patients. 

 

The ephrin receptor, EphB6, functions as a tumor 

suppressor in cancer development [48–50]. In breast 

cancer, low EphB6 expression is linked to enhanced 

tumor invasiveness; treatment of aggressive breast cancer 

cell lines with 5’-aza-2’-deoxycytidine elevates EphB6 

expression and to reduces tumor cell invasiveness [48]. 

Hafner and colleagues studied melanomas and found that 

compared to benign moles, EphB6 mRNA expression 

decreased in melanoma and metastatic tumors [49]. 

Another study on colorectal cancer, found that decreased 

EphB6 expression correlated with decreased OS in 

cancer patients [50]. However, the link between EphB6 

and BLCA disease has not been fully explored. In our 

studies, the EphB6 low expression group exhibited 

reduced OS in BLCA disease. 

 

FER1L4 expression could inhibit colon cancer 

development and progression and could be a prognostic 

 

 
 

Figure 12. Validation of prognosis risk model. (A) Kaplan-Meier curves for OS time of patients with expression of NFAT2 in clinical study 
GSE100926. (B) Patients data from GSE100926 were divided by risk score into a high risk and a low risk groups. OS between two risk groups 
were analyzed and compared by Kaplan-Meier analysis. (C) 1-3-5 years ROC curves in GSE100926. The abscissa represents sensitivity, and the 
ordinate represents specificity. (D–F) The calibration curve for predicting 1-3-5 years OS for patients with BLCA. The Y-axis represents actual 
survival, as measured by K-M analysis, and the X-axis represents the nomogram‐predicted survival (P<0.05). (G) The expression profiles of the 
NFAT2 in the normal bladder tissue and bladder specimens. Images were taken from the HPA. 
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survival indicator in such patients [51]. Furthermore, 

FER1L4 inhibited the growth and invasion of 

esophageal squamous cell carcinoma cancer cells [52]. 

In endometrial cancer, FER1L4 acted as an independent 

prognostic indicator with the FER1L4 high expression 

group displayed markedly higher OS compared to the 

low FER1L4 expression group [53]. Combined with 

clinical information, we were found that the FER1L4 

high expression group of had better OS in BLCA. 

 

Fibronectin 1 (FN1) plays an essential role in cell-matrix 

and cell adhesion, cell migration, morphogenesis, 

differentiation, and carcinogenic transformation [54]. In 

breast and lung cancer, FN1 activated the PI3K/Akt 

signal transduction pathway by binding to the integrin 

receptor α5β1 [55, 56]. Han and colleagues found  

that FN1 stimulated non-small cell lung cancer cell 

proliferation by activating the mammalian target of 

rapamycin, mTOR [55]. Similarly, FN1 deletion during 

colorectal carcinogenesis could inhibit cell proliferation, 

migration, and invasion [57]. A number of studies have 

shown that miRNAs that target FN1 could modulate cell 

proliferation and invasion [58, 59]. Immunohistochemical 

analysis reporting elevated FN1 expression has been 

reported in various cancers, including breast, lung, 

thyroid and esophageal cancer [60–62]. These all 

indicated that the expression level of FN1 was closely 

linked to tumor initiation, development and progression. 

 

In terms of the effectiveness and stability assessment of 

the prognostic model, the AUC of the ROC curve of the 

internal verification set for the prognostic model for 

predicting the 1-year survival was 0.673. The AUCs of 

the external verification set GSE100926 were 0.643 at  

 

 
 

Figure 13. NFAT2 participates in the regulation of BLCA as an oncogene. (A) The expression of NFAT2 was verified by WB. (B) The 
expression of NFAT2 was verified by RT-PCR. (C) The knockdown efficiency was verified by RT-PCR. (D) The knockdown efficiency was verified 
by WB. (E) The cell viability was assessed by cell proliferation assay (see Materials and Methods). (F) Cell proliferation detected by colony 
formation assay. (G) Cell proliferation was measured by EdU incorporation assay. (H) Cell invasion measured by Transwell migration assay. (I) 
Cell migration evaluated by wounded cell monolayer closure assay. (J) Western Blot analysis of protein expression of NFAT2 and EMT-linked 
gene products. (K) Quantitative RT-PCR analysis of mRNA for NFAT2 and EMT-related genes. (L) Tumor weight from control and NFAT2 
knockdown mouse tumor groups. (M) Tumor volume from control and NFAT2 knockdown mouse tumor groups. (N) Tumor cell proliferation 
evaluated by Ki-67 immunohistochemical staining. *P<0.05; **P<0.01; ***P<0.001; #P<0.05. All data are representative of three independent 
experiments. 
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1 year, 0.639 at 2 years, and 0.664 at 3 years. Analysis of 

each dataset shows that the high-risk BLCA group 

prognosis is worse than that of the low-risk BLCA group. 

A nomogram was further constructed to predict the OS of 

BLCA patients, and a calibration chart of the nomogram 

was drawn. These results showed that this model was a 

useful predictive model and could be used to predict the 

survival status of BLCA patients. However, our research 

also had specific limitations. First, the TCGA database is 

mainly composed of studies on Caucasians and people of 

African origin, and further ethnic group studies are 

required to verify our model. Secondly, our study was 

based on microarray data analysis. This was needed to 

extract a single gene to profile NFAT expression in 

cancer. The mechanism of NFAT2 action requires further 

studies using cell and animal models. 

 

Overall, our findings indicate the NFAT family 

expression is closely related to cancer initiation, 

development and/or progression. In the BLCA disease, 

NFAT2 can be used as an independent prognostic risk 

factor in assessing BLCA patient survival. Besides, the 

4-factor prognostic model based on NFAT2 was a 

reliable tool for predicting the OS of BLCA patients. 

The nomogram provided by this study could be a 

starting point to better develop personalized treatment 

plans for BCLA patients. 
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