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ABSTRACT Online parameter estimation of permanent magnet synchronous machines is critical for

improving their control performance and operational reliability. This paper provides an overview of the recent

achievements of online parameter estimation of PMSMs with examples. The critical issues in parameter

estimation are firstly analysed, especially the rank-deficient issue and inverter nonlinearities. Then, the state-

of-the-art online parameter estimation modelling techniques are reviewed and assessed. Finally, some typical

applications and examples are outlined, e.g. estimation of mechanical parameters, improvement of sensored

and sensorless control performance, thermal condition monitoring, and fault diagnosis, together with future

research trends.

INDEX TERMS Condition monitoring, control performance, electrical parameter, fault diagnosis, mechan-

ical parameter, online parameter estimation, permanent magnet synchronous machine, sensorless control.

ACRONYMS
ADC Analog-to-digital converter

AI Artificial intelligence

ANN Adaline neural network

AO Adaptive observer

DO Disturbance observer

DTC Direct torque control

DWT discrete wavelet transfer

EKF Extended Kalman filter

EV/HEV Electric/hybrid electric vehicle

FCS Finite control set-model

FFT Fast Fourier transform

FEA Finite element analysis

FOC Field oriented control

GA Genetic algorithm

GPU Graphics processing unit

HF High frequency

ITSC Inter-turn short-circuit

IPMSM Interior PMSM

LMS Least mean square

LPF Low-pass filter

MPC Model predictive control

MRAS Model reference adaptive system

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

MTPA Maximum torque per ampere

MTPV Maximum torque per voltage

PF Particle filter

PMSM Permanent magnet synchronous machine

POPE Position-offset based parameter estimation

PSO Particle swarm optimization

PWM Pulse width modulation

QGA Quantum genetic algorithm

RLS Recursive least square

SLPSO Self-learning PSO

SMO Sliding-mode observer

SPMSM Surface-mounted PMSM

SNR Signal-to-noise ratio

VSI Voltage source inverter

I. INTRODUCTION

Due to high torque density and efficiency, permanent magnet

synchronous machines (PMSMs) have been widely used in

various applications [1], e.g. aerospace, domestic appliances,

electric/hybrid electric vehicles (EV/HEV), servo drives,

and wind power generation. In most industrial applications

it is critical to acquiring accurate electrical and mechani-

cal parameters for either improving control performance or

achieving reliable fault diagnosis [2]–[8].

On the one hand, electrical parameters, i.e. stator resis-

tance, inductance and rotor flux linkage, are essential in
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various PMSM control strategies. More specifically,

in EV/HEV and wind power applications, accurate electrical

parameters are necessary to determine the optimal current

trajectories under maximum torque per ampere (MTPA) and

maximum torque per voltage (MTPV) strategies [9]–[17]. For

the most common control methods, i.e. field-oriented control

(FOC) [18]–[22], direct torque control (DTC) [23]–[26],

as well as the model predictive control (MPC), [27]–[31], the

accurate PMSM parameters are usually critical to ensuring

system stability, improving efficiency and dynamic response.

On the other hand, the mechanical parameters, e.g. moment

of inertia and viscous friction coefficients, vary significantly

with mechanical loads and are important in the design of

speed-loop controllers [35]–[43].

In the last few decades, the techniques of parameter esti-

mation have been extensively developed and the parame-

ter estimation can be implemented, both offline and online.

Generally, offline estimation is essential both in the machine

and controller design and has been extensively used and

investigated. In comparison, the online estimation method is

primarily concerned with real-time acquiring electrical and

mechanical parameters. The offline estimation methods have

been well reviewed in [44] based on the time and frequency

domains, as well as computational methods, i.e. finite ele-

ment analysis (FEA), numerical, observer- and artificial intel-

ligence (AI) -based methods. However, online methods are

only very briefly outlined without reviewing the critical liter-

ature. Meanwhile, [45] focuses on the review of stator induc-

tance estimation, including offline measurement at standstill

and some online estimation algorithms, i.e. recursive least

square (RLS), model reference adaptive system (MRAS),

artificial neural network (ANN) and extended Kalman filter

(EKF), however, no examples of online estimation algorithms

were provided as part of the review. Thus, online parameter

estimation techniques and associated critical issues have not

been reviewed and assessed systematically so far.

This paper presents a comprehensive overview of online

parameter estimation techniques, together with applications

with extensive examples. The state-of-the-art techniques

of online and offline parameter estimation are outlined in

Section II. Section III describes the basis of PMSMs and

drive systems, and emphasizes the general issues in param-

eter estimation. The widely used modelling techniques for

online parameter estimation are introduced and assessed in

Section IV, and the literature is summarized in Section V.

Section VI introduces some typical industrial applications of

online parameter estimation. Section VII prospects further

research trends in this field. Section VIII concludes the paper.

II. OUTLINE OF THE STATE-OF-THE-ART TECHNIQUES OF

PARAMETER ESTIMATION FOR PMSMS

A. PMSM MACHINE PARAMETERS

In general, the PMSM model can be expressed as [46]:

ud = Rs(Ts)id + L
inc
d

did

dt
+ L incdq

diq

dt
− ωrψq, (1a)

uq = Rs(Ts)iq + L
inc
q

diq

dt
+ L incqd

did

dt
+ ωrψd , (1b)

where

ψd = Ld
(

id , iq
)

id + Ldq
(

id , iq
)

iq

+ψq(id , iq,T pm), (2a)

ψq = Lq(id , iq)iq + Lqd (id , iq)id , (2b)

where ud , uq, id , iq are the dq-axis voltages and currents.

Rs andψq are the stator resistance and the rotor flux linkage at

temperatures Ts and Tpm.ωr is the electrical rotor speed. L
inc
d ,

L incq ,L incdq , L
inc
qd , Ld , Lq, Ldq and Lqd are the dq-axis incremen-

tal and apparent self- and mutual-inductances, respectively.

As is well known, temperatures have a significant influence

on stator resistance and rotor flux linkage, while the magnetic

saturation also significantly affects rotor flux linkage and

dq-axis stator inductances, respectively.

FIGURE 1. Illustration of incremental and apparent inductances.

On the one hand, the incremental inductance L inc is defined

as the slope at the operating point (3), while the apparent

inductance La is defined as the flux linkage divided by cur-

rent (4), which are graphically illustrated in Fig. 1. When the

magnetic circuit is unsaturated, the incremental inductances

are the same as the apparent inductances, whereas incremen-

tal inductances become smaller once the magnetic circuit is

saturated due to nonlinear change of flux linkagewith current.

L inc =
∂ψ

∂i
, (3)

La =
ψ

i
. (4)

On the other hand, the cross-coupling effect also exists.

The increase of q-axis current deepens the magnetic sat-

uration level, which in turn will lead to a decrease in

d-axis inductance. Likewise, the cross-coupling effect of

d-axis current on the q-axis inductance is the same.

In [90], the relationship between the incremental and

apparent inductances is established. The dq-axis incremental

inductance matrix Lincdq is adjusted to the diagonal matrix

Lincdq,adj, i.e.

Lincdq =

[

L incd L incdq
L incqd L incq

]

, (5)

Lincdq,adj =

[

L incd,adj 0

0 L incq,adj

]

, (6)
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FIGURE 2. Overview of parameter estimation techniques.

where

L incd,adj =
L incd 1id + L

inc
dq 1iq

1id
, (7a)

L incq,adj =
L incq 1iq + L

inc
qd 1id

1iq
. (7b)

Thus, the equivalent apparent inductances, Lad and Laq , can

be calculated by [90]

Lad =

∫

L incd,adj(id )did

id
, (8a)

Laq =

∫

L incq,adj(iq)diq

iq
. (8b)

It is worth mentioning that there is a third type of induc-

tance definition [47], [48], which is often called energy induc-

tance and is different from either apparent inductance or

incremental inductance, although when the magnetic circuit

is linear their values are the same. However, owing to space

limitations, it will not be discussed in this paper.

In summary, the estimation of stator inductances can be

grouped as:
1) Estimation of apparent and incremental inductances

without [49], [50] and with [52]–[57] accounting for

self- and cross-saturation effects.

2) The relationship between the incremental and apparent

inductance can be approximated by (5)-(8).

B. BASIC PARAMETER ESTIMATION TECHNIQUES

The state-of-the-art offline/online parameter estimation tech-

niques with/without accounting for magnetic saturation are

briefly outlined, as shown in Fig. 2, and the estimation meth-

ods for stator inductances are summarized in Table 1.

The FEA is the most common offline method to esti-

mate PMSM parameters but requires detailed knowledge of

geometric and material information. It is widely reported

that FEA can be used to calculate a rotor flux linkage map

and incremental/apparent dq-axis inductances accounting for

magnetic saturation and cross-coupling. However, sometimes

FEA methods [47], [48] are limited since some material

properties are unknown or not completely acquirable. Hence,

offline experimental estimation methods have been exten-

sively developed in the last few decades. Some existing meth-

ods are listed below.

1) Multiparameter estimation:

a) DC step voltage excitation [49].

b) DC-axis square voltage excitation [50].

2) Magnetic model estimation:

a) Dq-axis voltage pulse injection [46].

b) Fast Fourier transform (FFT) analysis [51].

c) AC signal excitation [52]–[54].

d) Estimation under constant speed [55].

e) Estimation under variable speed [56], [57].
Firstly, according to the time constant at transient state,

the step DC voltage excitation tests at standstill in [49] are

used to predict apparent inductance, but it cannot determine

the rotor flux linkage or accurately consider the magnetic

saturation effect. In [50], dq-axis square voltages are supplied

to estimate stator resistance, apparent inductances, rotor flux

linkage and the initial rotor position. However, the magnetic

saturation effect is also not taken into consideration.

Accounting for self- and cross-saturation effects, [51] esti-

mates dq-axis flux linkages based on the measured dq-axis

currents at constant rotor speed, and then, the dq-axis incre-

mental inductances are calculated by the partial derivatives

of dq-axis flux linkages with respect to currents. However,

the variation of stator resistance due to the temperature effect

is not considered. AC signal excitations are employed to esti-

mate incremental [52] and apparent inductances [53], [54],

respectively, where the DC bias point sets the magnetic oper-

ating point in [52], and induced voltages and internal load

angles are measured in [53], [54]. To identify dq-axis flux

linkages and incremental inductances, the voltage pulses are
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TABLE 1. Comparison of stator inductance estimation methods.

applied to d-axis and q-axis in turn while the other axis

current remains constant [46]. However, the integration of

applied voltage is sensitive to the DC offsets. In [55]–[57],

magnetic models are estimated based on the FOC schemes

at constant [55] and at variable speed [56], [57]. More

specifically, [55] requires an additional voltage measurement

circuit. The variations of stator resistance and VSI caused

distorted voltage is determined at standstill [56]. The dq-axis

flux-linkage map is modelled as second-order polynomials

under variable speed control [57]. It should be mentioned that

the estimated dq-axis flux linkages in [46], [51], [52] and [57]

can derive both incremental and apparent inductances based

on (3)-(4). However, the values of two type inductances may

be different due to magnetic saturation, and the above papers

select either incremental or apparent inductance. In addition

to the direct calculation by means of inductance definitions,

the apparent inductances can also be estimated by utiliz-

ing the time constant of armature winding circuit [49], as well

as the analysis of a phasor diagram [54].

Secondly, the multistep estimation utilizes the acquirable

parameters, e.g. stator resistance and distorted voltage drop,

at standstill, and then, the rotor flux linkage and the sta-

tor apparent inductances can be estimated in the operat-

ing state [58]–[60]. Nevertheless, it cannot accurately track

online parameter variations due to neglecting the magnet

temperature rise and the core loss, which will be presented

in Section IV A in detail.

Thirdly, without relying on the nominal values/offlinemea-

surement, the online estimation methods are conducted dur-

ing the operation based on the available input and output

59062 VOLUME 9, 2021



Z. Q. Zhu et al.: Online Parameter Estimation for Permanent Magnet Synchronous Machines

measured quantities, i.e. current (I ), voltage (U ) and rotor

speed (n). On the one hand, with temperature increasing,

the value of stator resistance increases while the value of

rotor flux linkage decreases. Thus, these real-time estimated

temperature-dependent parameters can monitor the thermal

states [65], [66], thereby, preventing the damage of winding

insulation and PM demagnetization. It is particularly bene-

ficial to the estimation of temperature in PMs on the rotor

where direct temperature measurement is difficult. On the

other hand, there are some new developments in the cur-

rent research of observers, for instance, in [8], the peak

energy spectrum is creatively introduced into the flux linkage

observer, while a bearing fault diagnosis based on a full-order

observer is firstly proposed and applied, which has a ground-

breaking significance, and this research direction is worthy

of attention. The abrupt changes in dq-axis inductances and

stator resistance can also be used to diagnose the inter-turn

short-circuit (ITSC) [67]–[71].

Although the online parameter estimation techniques

incorporate high levels of computational efficiency, with the

improvement of the computing capability of the processor,

someAI-based algorithms have been applied to online param-

eter estimations to monitor thermal states of winding and PM,

whose temperatures vary slowly, e.g. [70]–[81]. Most online

methods are concerned with the apparent inductance estima-

tion since the terms of time derivation of dq-axis flux linkages

are cancelled in the steady-state equation [70]–[92]. How-

ever, the injected AC signals [74] will induce non-negligible

incremental inductances, which have not been considered

in the PMSM model (1)-(2). Meanwhile, due to the limited

rank of the reference model, most papers do not take into

account of the effect of cross-saturation. HF incremental

inductances are also important for high frequency signal

injection based sensorless rotor position estimation, partic-

ularly at zero and low speed, which has been investigated

in [83]–[90]. The main online modelling techniques, includ-

ing HF signal injection, will be illustrated in Section IV in

greater detail. However, there are still some general issues

in the parameter estimation, e.g. rank-deficient problem, VSI

nonlinearity, as well as the influence of signal injection,

which must be addressed first.

III. BASIS OF PMSM AND GENERAL ISSUES OF

PARAMETER ESTIMATION

In the last few decades, numerous PMSM topologies have

been developed [1], with the common configurations being

shown in Fig. 3. The surface-mounted PMSM (SPMSM),

Fig. 3 (a), has a simple construction and higher power density,

but it can only produce PM torque due to non-saliency and

the magnets are directly exposed to the armature reaction

field, and consequently, the stator inductances are relatively

low and almost equal in dq-axes. In comparison, the interior

PMSM (IPMSM), Fig. 3 (b), is constructed with magnets

embedded in the rotor core, and has a high saliency ratio,

i.e. q-axis inductance > d-axis inductance. Thus, these

machines are able to utilize the reluctance torque.

FIGURE 3. Common configurations of PMSMs. (a) SPMSM. (b) IPMSM.

FIGURE 4. Scheme of FOC system.

FIGURE 5. Representation of rotating dq-axis frame.

Fig. 4 shows the scheme of the most popular FOC system,

where the currents are represented by a space vector in the

dq-axis rotating frame, Fig. 5. The Park transformation from

three-phase currents to dq-axis currents is expressed as

[

id
iq

]

=
2

3
Tabc





ia
ib
ic



 ,

Tabc =





cos (θr ) cos
(

θr−
2π
3

)

cos
(

θr+
2π
3

)

−sin (θr ) − sin
(

θr−
2π
3

)

− sin
(

θr+
2π
3

)



,

(9)

where θr is the rotor angular position.

The PMSM model in the dq-axis frame is expressed

in (1)-(2), and the electromagnetic torque is

Te =
3

2
p

[

ψpmiq +
(

Ld − Lq
)

id iq
]

, (10)

where p is the number of pole-pairs. For non-salient PMSM,

it is assumed that Ld = Lq = Ls.
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The mechanical equation is described as

J
dωr

dt
= p

(

Te − TL −
B

p
ωr

)

, (11)

where J is the rotor inertia. TL is the load torque. B is the

friction coefficient.

Based on the above electrical and mechanical equations,

one or more electrical and mechanical parameters can be

estimated with aid of the measured basic electrical quanti-

ties, i.e. current, voltage, rotor speed. However, some crit-

ical issues still need to be emphasised, i.e. rank-deficient

and ill-condition problems, inverter nonlinearity, as well as

the influence of invasive signal, as illustrated in Fig. 6 and

described below.

FIGURE 6. General issues in single/multiple parameter estimation.

A. RANK-DEFICIENT PROBLEM

The rank-deficient problem in PMSMs is systematically

investigated in [61], which reveals that the accurate parameter

estimation relies on the full-rank reference/variable system.

As can be seen from (1)-(2), the rank of the electrical model

of the PMSM is two, and thus, only two parameters can be

estimated simultaneously. If the number of unknown param-

eters is more than the rank of the system, the estimated results

may not be converged to the correct values [95], [96].

Taking results in [61] as an example, on the basis of a

nonsalient-pole PMSM, the nominal values ofψpm,Rs, and Ls
are 77.6 mWb, 0.373�, and 3.24 mH, respectively. By utiliz-

ing the ANN estimator and one set of the electrical equation,

if the initial values are set far from the nominal values, it will

lead to significant estimation errors for all three parameters,

as shown in Fig. 7.

In order tomitigate the ill-convergence problem and realize

the simultaneous estimation of multiple parameters, several

approaches have been proposed and summarised as:
1) Injection signals at standstill [49]–[52].

2) Fixing one or more parameters [95]–[109].

3) Utilizing different states at standstill and opera-

tion [58]–[60].

4) With aid of additional devices, i.e. thermal sensors,

power/torque meters [53], [65], [110].

5) Injecting disturbance signals, [61]–[63], [70]–[94].

FIGURE 7. Examples of issues under rank-deficient condition [61].
(a) Estimated rotor flux linkage. (b) Estimated stator resistance.
(c) Estimated inductance. Nominal values of rotor flux linkage, stator
resistance and inductance are 77.6 mWb, 0.373 �, and 3.24 mH.

Several methods [49]–[52] have been proposed to estimate

electrical parameters for PMSMs at standstill, or in the case of

a locked rotor, which can eliminate the influence of rotor flux

linkage. The injected signals include DC step voltage [49],

AC signals [50]–[52], etc. However, the offline estima-

tion cannot track the variation of parameters, especially for

some parameters, which are heavily influenced by operating

conditions.

Secondly, to ensure full-rank, a simple method is to fix

one or more parameters in the parameter estimation. For

instance, Rs, Ld , and Lq are estimated in [98] by using RLS

while the other parameters are fixed to the nominal values to

build a full-rank reference/variable model. In [100], EKF is

used to estimate ψpm, which relies on a prior knowledge of

the nominal values of Rs, Ld , and Lq. In [101], MRAS and

EKF estimators are used to estimate speed/position and ψpm
separately, while Rs, Ld and Lq are set as the nominal values.

To ease the considerable computational burden due to inverse

matrix computation (A.9), the full-order EKF is divided into

two independent reduced-order EKFs in [102] to estimate Rs,

Ld , Lq and ψpm based on the assumption of dRs/dt = 0 and

dψpm/dt = 0 alternately. A three-order EKF is developed

in [104] to estimate ψpm while the variations of Ld and Lq are

ignored. In [109], Rs and ψpm are estimated at low and high

speeds, respectively. However, these two parameters cannot

be estimated simultaneously, and the rotor speed needs to

be changed for estimation. However, it is demonstrated that

if Rs and ψpm are not estimated simultaneously but sepa-

rately, the two estimated parameters may be converged to the

wrong values due to the mismatch of the actual and nominal

parameter values under different load conditions [61]. The

detailed descriptions of RLS and EKF algorithms are given

in Appendices A and B, respectively.

Thirdly, the two-step and three-step estimation procedures

are proposed in [58]–[60] to estimate electrical parameters at

standstill and operating state. However, the variation of rotor

flux linkage due to temperature dependency strongly affects
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the estimation accuracy, which will be illustrated in detail in

Section IV.

Fourth, the power meter [53], thermal couples [65], as well

as thermal imager [110] are used to provide extra machine

information. However, these methods require additional

devices or constructional changes and suffer from the risk

of sensor/device failure, which is not appropriate to low-cost

industrial applications.

Finally, from the other perspective, the full-rank reference

system can also be modelled by introducing additional distur-

bance signals to change the PMSM states, i.e.

1) Current/voltage injection [61]–[63], [70]–[79].

2) Rotor position offsets [35], [66], [81].

3) Variable rotor speed [80], [81].

4) HF signal injection [82]–[90].

5) Zero-voltage vector injection [91], [92].

6) Speed harmonics [93], [94], etc.

Therefore, the values of nominal parameters are usually no

longer required and the multiple parameters can be possibly

estimated simultaneously. The detailed overview will be pre-

sented in Section IV.

B. ILL-CONDITION PROBLEM

The uncertainties of the PMSM model and measurement

noises may also deteriorate the performances of parameter

estimation and result in decreased process reproducibility,

which is called ill-conditionmathematically [111], [112]. The

ill condition implies that the estimated parameters are very

sensitive to perturbations in the input and output data due to

sensor noise and the computation process.

For example, considering the following systems:

{

x + y = 2,

x + 1.001y = 2.

{

x + y = 2,

x + 1.001y = 2.001.
(12)

The left system has solution x = 2, y = 0 while the right

system has the other solution x = 1, y = 1. A small change in

the inputs or in the constant coefficients will result in a large

change in the solution, and it will lead to misestimation.

The condition number cond(A) is applied to judge how

sensitive it is to errors in the input and defined as

cond(A)v =
∥

∥

∥
A−1

∥

∥

∥

v
‖A‖v , (13)

where ‘‘v’’ is the operator norm of matrix A. The system

equations are called ill-conditioned if cond(A)v is much larger

than one, otherwise, they are called well-conditioned.

C. INVERTER NONLINEARITY

Since the direct measurement of the terminal voltage is diffi-

cult, reference voltages are often employed for the estimation.

Nevertheless, the nonlinearity ofVSIwill introduce distortion

to both the reference and real voltages. Consequently, it will

lead to estimation errors due to ill-condition problem.

As detailed in [113], [114], the correlations between the

terminal voltages ud,q and the reference voltages u∗d,q are

shown as
{

u∗d = ud + DdV dead

u∗q = uq + DqVdead
, (14)

where DdV dead and DqVdead are the distorted voltage terms

in d- and q-axes, which are expressed as

Vdead =
1

3

(

2Vdc(td + ton − toff)

Ts
+ Vce + Vd0

)

, (15)

[

Dd
Dq

]

=

[

sinθe sin(θe − 2/3π) sin(θe + 2/3π)

cosθe cos(θe − 2/3π) cos(θe − 2/3π)

]

×





sgn(ia)

sgn(ib)

sgn(ic)



 , (16)

where Vdc, Vce, and Vd0 are the DC bus voltage, the threshold

voltages of the active switch and the freewheeling diode,

respectively. θe is the rotor position. td , ton and toff are

the pulsewidth modulation (PWM) dead-time, turn-on and

turn-off time delays of the switch, respectively.

The sign function (sgn) is expressed as

sgn(i) =

{

1, i ≥ 0,

−1, i < 0.
(17)

However, theoretical voltage compensation cannot be

100% accurate due to uncertain VSI parameters and mea-

surement errors. In [62], the estimation error due to non-

ideal compensation is analysed and minimized by using an

error analysis, where the nonideal voltage measurement is

compensated as:
1) Read the zero-shift voltage Voffset of the analog-

to-digital converter (ADC) at zero speed with Vdc= 0;

2) The actual DC bus voltage is compensated by subtract-

ing Voffset from the measured bus voltage Vm;

3) The compensation voltage Vcom is calculated;

4) The computed Voffset and Vcom will be employed for

compensating the dq-axis voltages measured from the

output of the PI regulators.
It has been revealed in [64] that the VSI nonlinearity

compensation has a significant influence on the estimation

of Rs and ψpm at low speed, while, at high speed, it only

affects the estimation accuracy of Rs. Under id = 0 control,

the influence of VSI nonlinearity on the estimation of Lq is

negligible, while Lq is sensitive to the DC bus voltage drop

due to load variation and zero shift in the amplifier.

Fig. 8 shows the estimated stator resistance and rotor flux

linkage with and without considering the influence of non-

ideal voltage measurement at ω = 157 rad/s in [64], where

the nominal values of Rs and ψpm are 0.33� and 0.0776 Wb.

Compared with Figs. 8 (a)-(b), Fig. 8 (c) shows much better

results, which are close to the nominal values.

Due to the significance of VSI nonlinearity, an ANN esti-

mator in [65] is employed to estimate the distorted volt-

age Vdead (14)-(17) and ψpm with the aid of thermocouples

inserted in the stator winding. The compensation method is

applied to the FOC system in Fig. 9. Fig. 10 shows the dq-axis
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FIGURE 8. Estimated stator resistance and rotor flux linkage [64].
(a) Without considering the voltage nonidealities. (b) Considering the
measurement of DC bus voltage variation and the DC offset due to zero
shift. (c) Considering the measurement of DC bus voltage variation, the dc
offset due to zero shift, and the VSI nonlinearity compensation.

FIGURE 9. Compensation of VSI nonlinearity based on FOC system [65].

currents with and without considering voltage compensation

at 300 r/min based on the experimental results. Obviously, the

online tuning process of VSI nonlinearity will significantly

reduce the fifth and seventh current harmonics.

D. INFLUENCE OF SIGNAL INJECTION

The convergence speed and excitation duration have been

widely used to analyse the stability properties of differ-

ent parameter estimation algorithms [115]. The excitation

duration of the input signals should take into account the

FIGURE 10. Measured dq-axis currents and spectra [65]. (a)-(b) Without
proposed compensation. (c)-(d) With proposed compensation.

convergence speed of the applied algorithms. To build the

full-rank reference model, the injected current excitations

will affect the cross- and self-saturation of stator induc-

tances and introduce additional reluctance torque for interior

PMSMs and torque ripples for surface-mounted PMSMs.

FIGURE 11. Error analysis of estimation error of rotor flux linkage [61].

In [61], since the variations of Ld , Lq and ψpm due to mag-

netic saturationwith the injected d-axis current is neglected in

the parameter estimation, the estimation errors are analysed

and minimized by increasing the amplitude of the injected

negative d-axis current, as shown in Fig. 11.Moreover, q-axis

current compensation [76] and window functions [78], [79]

are presented to restrain the current injection caused torque

ripple and the excitation of resonances, respectively.

IV. EXISTING MODELING TECHNIQUES FOR ONLINE

PARAMETER ESTIMATION

Generally, the online parameter estimation process is inte-

grated on the basis of the PMSM drive system under sensored

and sensorless control. Both the electrical and mechanical

parameters can be estimated by utilizing the various estima-

tion algorithms and the measured quantities. The schematic

diagram of online parameter estimation is shown in Fig. 12,
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FIGURE 12. Schematic diagram of online parameter estimation.

where 1ωr , 1Id , 1Vd , and 1±θp are variables of rotor

speed, injected d-axis current and voltage, as well as the

position offsets. Sometimes the knowledge of some electrical

parameters is also required [35], [65], [80] and [81].

A reliable estimation model is the crucial precondition

of online parameter estimation techniques. If the estimation

model is built appropriately, it is not sensitive to the employed

estimation algorithms. The widely usedmodelling techniques

are overviewed below.

A. MULTISTEP ESTIMATION

As aforementioned, the rank-deficient problem restricts the

multi-parameter estimation. To mitigate this issue, the sim-

plest modelling techniques are multistep estimations, i.e. the

two-step [58] and the three-step estimations [59].

It has been demonstrated in [58] that Rs and ψpm cannot

be estimated simultaneously under sensorless control. The

two-step estimation is designed as follows.
1) At the first step, ψpm is fixed as nominal value to

estimate Rs.

2) At the second step, Rs is fixed as nominal value to

estimate ψpm.
Overall, the two-step estimation can be easily imple-

mented, but the estimation accuracy will deteriorate due to

variation of parameters, especially the decrease of ψpm at

high temperature. Meanwhile, since Ls is set to its nominal

value, the influence of magnetic saturation variation cannot

be considered.

FIGURE 13. Estimated stator resistance and rotor flux linkage at room
temperature under two-step estimation [116]. (a) Stator resistance.
(b) Rotor flux linkage.

Under id = 0 control, by utilizing an MRAS estimator,

the experimentally estimated Rs andψpm at room temperature

and after heating are shown in Figs. 13-14. The description

of MRAS is given in Appendix C. As can be seen, the esti-

mated values of Rs and ψpm at room temperature are close

FIGURE 14. Estimated stator resistance and rotor flux linkage after
heating under two-step estimation [116]. (a) Stator resistance. (b) Rotor
flux linkage.

to the nominal values of 0.373� and 0.0776Wb. However,

the estimated stator resistance of 0.42� is smaller than the

measured value of 0.45�, and the estimated rotor flux linkage

increases to 0.0786 Wb, which is opposite to the physi-

cal properties of NdFeB magnet since as the temperature

increases the PM flux linkage should be reduced.

The procedure of three-step estimation [59] is imple-

mented as follows.
1) At the first step, Rs and Vdead are estimated by signal

injection at standstill.

2) At the second step, ψpm, Ld and Lq are estimated at the

operating state by fixing the estimated values at the first

step.

3) At the third step, the variations of Rs, Ld and Lq are

estimated online by fixing ψpm at the second step.

FIGURE 15. Estimated stator resistance and distorted voltage at standstill
under three-step estimation [116]. (a) Stator resistance. (b) Distorted
voltage.

FIGURE 16. Estimated stator inductance and rotor flux linkage at
operating state under three-step estimation [116]. (a) Rotor flux linkage.
(b) Stator inductance.

The accuracy of three-step estimation is also affected by

the variation ofψpm. The three-step estimation is also verified

experimentally and shown in Figs. 15-17. Figs. 15 and 16

show the estimated Rs and Vdead by injecting d-axis current

at standstill, as well as the estimated ψpm and Ls at operating

state.

After 30 mins and 60 mins operation, Fig. 17, the mea-

sured Rs are 0.41� and 0.42 �, respectively, which are
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FIGURE 17. Estimated stator resistance after heating under three-step
estimation [116].

slightly larger than the measured values of 0.40� and 0.41�.

The estimation errors can be attributed to several factors,

i.e. imperfect compensation of VSI, measurement error, as

well as decreasing variation of ψpm with temperature-rise.

B. CURRENT/VOLTAGE INJECTION

In the cases without adding extra hardware devices, d-axis

current/voltage injection is widely used to change the state

of PMSM, which can build a full-rank reference model to

estimate multiple parameters. The injected signal can also be

in different forms.
1) Alternating sinusoidal currents [74].

2) One/multiple level negative d-axis current pulses

[61]–[63], [70], [73], and [75].

3) DC-component current [76].

4) Harmonic voltage injection [77].
Based on the full rank reference model, various estimation

algorithms have been employed to realize multiple parameter

estimation, i.e. RLS [75], [76], ANN [61], [62], EAs [63],

[70], [73]. For instance, Ld , Lq, Rs, ψpm and Vdead are esti-

mated by seven individual objective functions in [63] by

utilizing self-learning PSO by injecting a short period of

id 6= 0. Similarly, a coevolutionary PSO is designed in [73]

to estimate Ld , Lq, Rs and ψpm, where the graphic processing

unit (GPU) is used to accelerate computational efficiency.

The PSO algorithm is introduced in Appendix D in detail.

In [74], both Rs and back-electromotive-force (EMF) coeffi-

cient are estimated by superimposing a small AC component

on the d- axis current under steady-state sensorless operation,

while Ld and Lq are assumed to be known in a prior.

FIGURE 18. Measurement process based on d-axis current injection.

Under id = 0 control, the measurement process based on

d-axis is shown in Fig. 18, where the subscripts ‘‘0’’ and ‘‘1’’

denote the measured data when id = 0 and id 6=0, respec-

tively. Under the assumption that the magnetic saturation is

ignored, the ANN estimator is used to estimate Rs, ψpm, and

Ls simultaneously in [61]. The estimation results are shown in

FIGURE 19. ANN estimated parameters based on d-axis current
injection [61]. (a). Stator inductance. (b) Stator resistance. (c) Rotor flux
linkage.

Fig. 19, where the measured values are 0.373 �, 87.4 mWb,

and 3.24 mH. The injected d-axis current equals −2A and

lasts 50 ms. The modelling of ANN estimator can be found

in Appendix E.

Accounting for the cross- and self- magnetic saturation

of dq-axis inductances, the stator inductances are no longer

constant and can be expressed as follows:

Ld = fd
(

id , iq
)

, Lq = fq(id , iq). (18)

For simplicity, the linear correlation (19) is proposed to

describe the saturation effect during the current injection

in [75], [76], where αd , αq and βd , βq are the cross- and

self-saturation constants. However, the introduced saturation

coefficients will increase the number of unknown parameters,

and thus, the estimation process must contain sufficient signal

injections, e.g. multi-level, DC/AC component based current

injections, etc.

Ld = ld0 − βd id − αqiq, Lq= lq0 − βqiq − αd id . (19)

C. POSITION-OFFSET-BASED ESTIMATION

A position-offset-based parameter estimation (POPE) is pro-

posed in [66], where ψpm can be estimated based on the

transient addition of small positive and negative position

offsets. In the proposed method, the influences of VSI non-

linearity and magnetic saturation are eliminated. With the aid

of estimated ψpm, Rs can be determined sequentially. The

measurement process of POPE is shown in Fig. 20, where

θp and θn are positive and negative position offsets.
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FIGURE 20. Parameter estimation process based on position offsets.

The estimation model of POPE is expressed as

u∗d1 − DdV dead = Rsid − ω
(

Lqiq + ψpm sin
(

θr + θp
)

)

,

u∗d2 − DdV dead = Rsid − ω
(

Lqiq + ψpmsin(θr + θn)
)

.

(20)

Thus, ψpm can be obtained by

ωψpmcos(θr ) =
u∗d1 − u

∗
d2

2sin(θn)
. (21)

Under id = 0 control, the stator resistance is obtained as

Rs =
u∗q − DqV dead −

u∗d1−u
∗
d2

2sin(θn)

iq
. (22)

FIGURE 21. Measured dq-axis voltages and currents based on POPE [66].
(a) Currents. (b) Voltages.

By utilizing the ANN estimator in [66], the dq-axis volt-

ages and currents at 300 r/min with θp = 10θu, and the esti-

mated Rs and ψpm are shown in Figs. 21 and 22, respectively,

where θu is the unit electrical angle. Obviously, the position

offsets have a significant effect on the d-axis voltage. The

estimated parameters are presented in Fig. 22, where id =

0, iq = 4A at 300 r/min. In comparison to the nominal

values of 70.7 mWb and 0.33 �, the estimated values agree

well. The POPE technique can be further applied to estimate

mechanical parameters after accurately acquiring torque con-

stant [35], which will be introduced in Section VI A.

FIGURE 22. Estimated parameters based on POPE [66]. (a) Stator
resistance. (b) Rotor flux linkage.

FIGURE 23. Procedures of QGA based parameter estimation. (a) Variable
speed based estimation [80]. (b) Rotor position-offset based
estimation [81].

D. ESTIMATION UNDER VARIABLE SPEED CONTROL

A full rank reference model under variable speed control is

proposed in [80], [81] and the estimation procedures are given

in Fig. 23. Since the dq-axis currents remain constant and

only the rotor speed is changed, the estimation strategy under

variable speed control is preferred to take into account the

cross- and self-saturation effects. Due to large thermal time

constants of both the winding and PM, a quantum genetic

algorithm (QGA) is used under the variable speed control.

The detailed description of GA can be found in Appendix F.

Firstly, the steady-state dq-axis PMSM model (14) under

id = 0 control can be further simplified as
{

u∗d = −ωr L̂qiq + Dd V̂dead

u∗q = R̂siq + ωr ψ̂pm + DqV̂dead
(23)

Since DdVdead is a zero-mean distorted voltage under

id = 0 control, and thus, it will not influence the estimation of

Lq. Afterwards, the other parameters, i.e. Vdead , ψpm, and Rs,

VOLUME 9, 2021 59069



Z. Q. Zhu et al.: Online Parameter Estimation for Permanent Magnet Synchronous Machines

can be estimated subsequently based on the individual cost

functions PVi.

The cost functions PV1 − PV4 in [80] are expressed as

P
V1,L̂q,V̂dead

=
∑n

k=1

(

Ku

∣

∣

∣
u∗d,k + L̂qωr,k iq,k − Dd,k V̂dead

∣

∣

∣

)

, (24)

P
V2,V̂dead

=
∑n

k=1

(

Kv

∣

∣

∣
u∗d,k+Lqωr,k iq,k−Dd V̂dead

∣

∣

∣

)

, (25)

P
V3,ψ̂pm

=
∑n

k=1

(

Km

∣

∣

∣
u∗q,k−(k+0.5n) − ψ̂pmωr,k−(k+0.5n)

∣

∣

∣

)

,

(26)

P
V4,R̂s

=
∑n

k=1

(

Kw

∣

∣

∣
u∗q,k−R̂siq,k − ψpmωr,k−DqVdead

∣

∣

∣

)

,

(27)

where subscript k denotes the sampling index; n is the length

of the measured data; Ku,u,m,w are the gains of cost function.

Finally, Ld is estimated under the assumption that the tran-

sient load torque with/without small DC offset is constant.

In addition, similar to [80], POPE is further applied to

estimate ψpm in [81], then the rest parameters, i.e. Rs, Lq and

Vdead , are estimated from the measured data without the addi-

tion of position offset. The above proposed two parameter

estimation procedures are applied to an IPMSM, in which the

nominal values ofψpm, Lq andRs are 236mWb, 58.5mH, and

6.0 �. The estimated values are shown in Figs. 24 and 25.

FIGURE 24. QGA estimated parameters under variable speed control [80].
(a) q-axis inductance Lq. (b) Distorted voltage Vdead. (c) Rotor flux linkage
9pm. (d) Stator resistance Rs.

It is also worthwhile mentioning that the conventional cost

function (28) is designed byminimizing the absolute errors of

themeasured currents, which has beenwidely used in existing

PSO based parameter estimation PSO.

J=
∑n

k=1
(Kd

∣

∣

∣
id (k)− îd (k)

∣

∣

∣
+Kq

∣

∣

∣
iq (k)− îq (k)

∣

∣

∣
),

(28)

FIGURE 25. QGA estimated parameters based on POPE under variable
speed control [81]. (a) q-axis inductance Lq. (b) Distorted voltage Vdead.
(c) Rotor flux linkage 9pm. (d) Stator resistance Rs.

where Kd and Kq are the weighting factors. id , îd , iq and îq
are the measured and predicted dq-axis currents, respectively.

In addition to the rank-deficient problem, the conventional

cost function also tends to suffer from the VSI nonlinearity.

E. HIGH FREQUENCY SIGNAL INJECTION

The injection techniques of HF carrier signals have been

widely studied as a means for sensorless control. Moreover,

it can also be used to the PM temperature estimation, online

inductance estimation, as well as torque estimation [83]–[90].

In [82], [83], HF signal injection methods are proposed to

estimate the magnet temperature based on its correlation

with the HF stator resistance or inductance. The HF signal

injection-based estimation model is expressed as
[

vrdhf
vrqhf

]

=

[

Rdhf 0

0 Rqhf

] [

irdhf
irqhf

]

+ ρ

[

Ldhf 0

0 Lqhf

] [

irdhf
irqhf

]

+

[

0 − ωrLqhf
ωrLdhf 0

] [

irdhf
irqhf

]

, (29)

where vrdhf, v
r
qhf, i

r
dhf, and i

r
qhf are the dq-axis HF voltages

and currents, respectively. Rdhf, Rqhf, Ldhf, and Lqhf are the

dq-axis HF resistances and inductances, respectively.

The temperature dependencies of stator/rotor resistances

Rs and remanent magnet flux Br are [83]

Rs(Ts) = Rs(T0)(1+ α(Ts − T0)), (30)

Br(Tr ) = Br(T0)(1+ β(Tr − T0)), (31)

where T0 is the reference temperature. Ts and Tr are the

actual temperatures for stator resistance and rotor magnet.

α and β are the stator copper andmagnet thermal coefficients,

respectively.

After measuring the stator temperature, and subtracting

the stator resistive term from HF induced resistance, the PM

temperature can be determined by using (30)-(31) [82]. More

recently, in order to avoid the influence of magnetoresistive

effect on estimation accuracy, d-axis HF inductance is used
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TABLE 2. Summary of existing literature of online parameter estimation modelling techniques.

in [83] to estimate PM temperature, since Ldhf is a function

of d-axis magnetic saturation and temperature dependent

magnet remanent flux (31). Besides, online torque estima-

tion combined with parameter estimation is proposed in [84]

based on dq-axis pulsating HF signals, which can separately

estimate d-axis and q-axis inductances. In [85], HF square

wave voltages in the αβ-axis are injected to estimate dq-axis

inductances. To avoid the delay effect caused by voltage gen-

eration and digital filters, a combined rotating and pulsating

HF voltage injection technique is proposed in [89] calculate

dq-axis incremental inductances. Additionally, HF voltage

is superimposed on the fundamental excitation in [90] to

estimate self- and mutual incremental inductances, and then,

together with the estimated apparent inductance, an RLS

estimator is used to estimate Rs and ψpm. As above, the HF

signal-based modelling techniques cannot directly estimate

ψpm and is restricted to applications with a low fundamental

electrical frequency.

F. OTHERS

It is worth mentioning that some papers are primarily

concerned with a single parameter estimation for specific

applications. Two current injection techniques, i.e. ‘‘angle’’

and ‘‘magnitude’’, are introduced to estimate Rs for ther-

mal condition monitoring to prevent failure of the wind-

ing insulation, where a window function is developed to

suppress the disturbance of the periodic current injection

on the PMSM drive system [78] and [79]. By utilizing

zero-voltage vector, the location of the rotor position andψpm
can be estimated from the measured current variations in the

injected periods [92]. However, the additional zero-voltage

vector injection will increase the current ripple. To elimi-

nate the uncertainty of the electrical models of PMSMs and

drives, [93], [94] utilize the speed harmonic to estimate ψpm.

The relationship between the rotor flux linkage and the speed

harmonic is built by using the machine mechanical equation.

q -axis harmonic current is injected to build the full-rank

reference model. However, the proposed approach requires
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FIGURE 26. Summary of widely used estimation modelling techniques.

the accurate detection of the speed harmonic. As regard to the

rotor flux linkage estimation, ψpm is estimated based on the

PMSM model considering VSI nonlinearity in [117], and

then the estimated rotor flux linkage can monitor the thermal

condition of magnets by incorporating with KF to smooth

the prediction. In [118], ψpm is estimated based on multiple

sampling in each PWM period, which requires high current

sampling rates.

V. SUMMARY OF LITERATURE AND EVALUATION

The different online estimation modelling techniques in the

existing literature are summarised in Table 2 and presented

in Fig. 26, accounting for the rank-deficient and VSI nonlin-

earity issues, the saturation effect, as well as the features for

each method.

Table 3 summarizes the features of the main estimation

modelling techniques. As aforementioned, fixing one or two

parameters is the simplest method but requires the machine

nominal values. Meanwhile, both temperature and saturation

effects will reduce the estimation accuracy and may lead

to misconvergence. Even though the actual temperatures of

stator resistance andmagnet can be detected via invasive ther-

mal couples or thermal imager, direct temperature measure-

ment is inapplicable to low-cost industrial applications due to

constructional and cost issues. Multistep estimation methods

are usually not dependant on nominal machine parameter val-

ues, but cannot take into account the temperature rise in PMs.

The various current/voltage injection estimation methods can

be used in the non-magnetic saturation conditions and are

beneficial to multiple parameter estimation. Nevertheless,

the periodic signal injection gives rise to the parasitic effects

on the control performance, and the estimated results are

sensitive to the VSI nonlinearity. In contrast, the POPE mod-

elling method is robust against the influences of VSI and

variation of parameters. However, this approach has the draw-

back that the position-offsets affect the rotor speed and output

torque, and the rotor speed and load torque must be stable

especially if id 6= 0. The parameter estimation under variable

speed control is usually competitive in traction control, which

can maintain constant currents and take into account the

magnetic saturation. However, it is usually only applicable

to the cases with constant output torque, such as traction

control and wind power generation. Besides, as known from

the application of HF signal to sensorless control, the injected

frequency needs to be set significantly higher than the funda-

mental frequency.

VI. TYPICAL APPLICATIONS AND EXAMPLES

The online estimation of PMSM parameters has great sig-

nificance in industrial applications. The accurate electrical

and mechanical parameters can improve control performance

under both sensored and sensorless control. The variations

of parameters can also be used for condition monitoring and

fault diagnosis.

FIGURE 27. Application of online parameter estimation to determination
of mechanical parameters.

A. DETERMINATION OF MECHANICAL PARAMETERS

As previously discussed, the mechanical parameters,

i.e. the moment of inertia J , the friction coefficient B, and

the load torque TL , have critical effects on the dynamic

performance of the speed control, and are usually dependent

on the load characteristics. To date, several offline/online

estimation methods have been proposed [32]–[43], which are

summarised in Fig. 27.

Firstly, the no-load offline experimental estimation of

mechanical parameters for induction machine is developed

by utilizing the variations of impedance in [32], [33]. Sinu-

soidal torque input signals are developed to estimate J and

B in [34], [36]. With respect to online estimation, a POPE

and MRAS combined method is proposed in [35] to estimate

torque constant and mechanical parameters. The mechanical

parameters are estimated by two steps, i.e. estimation of B at

steady state (first step) and estimation of J under sinusoidal

perturbation of rotor speed (second step). The estimated

results are shown in Fig. 28. The POPE has been introduced

in Section IV C.

Regarding the observer-based methods, a disturbance

observer (DO) for load torque estimation is designed in [38]

to estimate TL in real-time while the other mechanical

uncertainties associated with the load torque are completely

ignored. Considering the practical disturbances in the servo

system, i.e. cogging torque, load torque, measurement errors,

dead-time effect, and parameter perturbation, a DO is devel-

oped in [39] to estimate multiple disturbances. Nevertheless,

since the disturbances are lumped together by utilizing DOs,
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TABLE 3. Evaluation of main modelling techniques for online parameter estimation.

FIGURE 28. MRAS estimated mechanical parameters [35]. (a) Friction
factor B. (b) Moment of rotor inertia (nominal value: 3.52 × 10−4kg· m2).

it is difficult to identify the individual parameter uncertainty.

Additionally, to mitigate the phase lag and the amplitude

attenuation caused by a low-pass filter (LPF), the authors

in [40] develop an extended SMO-based method to estimate

B, J and TL without incurring phase lag. A second-order ter-

minal sliding-mode observer (SMO) is proposed to estimate

mechanical parameters, such as B, J and TL , and achieves

fast convergence in finite time [41]. In [42], a SMO based

observer and two-moment of inertia estimation methods are

developed to estimate B, J and TL , where the estimation

error of load torque due to mismatches of the mechani-

cal parameters are considered. To identify the load torque

under variable-speed or variable-load servo drive system,

an improved adaptive SMO is proposed in [43]. The descrip-

tions of DO and SMO can be found in Appendix G.

B. IMPROVEMENT OF CONTROL PERFORMANCE

As is well known, the machine parameters are strongly

affected by operating and environmental conditions [76], and

consequently, the inaccurate estimation of machine parame-

ters will deteriorate the control performance. Fig. 29 presents

the applications of online parameter estimation to the control

performance improvement.

FIGURE 29. Application of online parameter estimation to control
performance improvement.

Regarding the most popular FOC, the PI regulators in

the current and speed control loops need accurate machine

parameters. Ld , Lq, Rs are essential for the design of PI con-

stants of current loop regulator; while ψpm and mechanical

parameters, such as B and J , are essential for the design of

the PI constants for the speed loop regulator. Moreover, it has
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FIGURE 30. Flowchart of design speed- and current-loop PI
regulators [21].

FIGURE 31. Responses of PI regulators from step change of rotor
speed [21].

been reported in [21], [22] that with the aid ofmultiple param-

eter estimation, the optimized PI regulators can be easily

determined. The flowchart of PI controller design is presented

in Fig. 30. The experimental performance of the step response

of rotor speed from 0 r/min to 100 r/min is shown in Fig. 31.

It is evident that the designed PI regulator can achieve small

overshoot and fast response of q-axis current.

DTC has many advantages such as lower machine param-

eter dependence, simpler implementation and faster dynamic

torque response [23], [24]. However, accurate knowledge

of the stator resistance is required to estimate the stator

flux vector and electromagnetic torque [25], [26]. If Rs is

under-estimated in the DTC system, the drive system will

tend to be unstable due to additional energy flowing into the

machine. Consequently, the accumulated energy will reduce

the system’s stability.

Additionally, model predictive control (MPC) is another

high-performance control method after FOC and DTC, and

has unique advantages, e.g. fast response, flexible and no

static error and overshoot. However, MPC is sensitive to

parameters [27]–[31]. In [28], instead of using a conventional

offline look-up table, the RLS estimator is used to online esti-

mate the incremental stator inductances by considering the

magnetic saturation effects under FCS-MPC system. More-

over, observer-based MPC methods for induction machines

are proposed in [29]–[31], which shows good robustness

against load disturbance and parameter uncertainties.

Besides, tominimize the torque ripple for PMSMdrive sys-

tems caused by asymmetric phase resistances, flux and cur-

rent harmonics, etc., the RLS, the adaptive observer-based,

the ANN estimators [18], and the harmonic injection-based

method [77], are developed to identify stator resistance, load

torque, inductances, and optimal current, respectively.

C. SENSORLESS CONTROL

Sensorless PMSMdrives have been receiving increased inter-

est for use in industrial applications since they do not need

position sensors, and thus, reduce the cost and size of the

drive system while increasing the overall system reliabil-

ity [58], [120]. Generally, the sensorless control can be clas-

sified into two basic categories: the PMSM model-based and

the rotor-saliency-based techniques.

To estimate the rotor position information, the PMSM

model-based sensorless control method does not rely on the

additional signal injection and usually utilizes the back-EMF

vector [55], [74], [95], [98], [107], [121], or the rotor flux

vector [58], [101], [122]–[124]. However, the model-based

method is sensitive to the variation of electrical parameters

and degraded at both standstill and low speed. To date,

numerous papers have been published to deal with the online

estimation of uncertain parameters under sensorless control

schemes, as shown in Fig. 32 and described as follows.

FIGURE 32. Application of online parameter estimation to sensorless
control.

Firstly, [55] investigates the influence of the voltage com-

pensation and the parameter variation on the performance of

the back-EMF based sensorless control, where the nonlin-

earity of VSI and the variation of Lq are identified based on

the RLS estimator. Besides, the stator resistance is the most

sensitive parameter at the low-speed range, and the inaccurate

value will result in large position error and instability risks.

Hence, the MRAS [58], [107], RLS estimators [98], [108],

and the reduced-order observer [122], are used to adapt stator

resistance under sensorless control. Meanwhile, the varia-

tion of dq-axis inductances caused by magnetic saturation

is the other issue for sensorless control and regardless of

the rotor speed [98]. The decrease of stator inductances due

to magnetic saturation will give rise to a lagged estimation

error of the rotor position. The inaccurate current distribution

in the dq-axis coordinates will further deteriorate the esti-

mation accuracy. The online inductance estimation methods

including RLS [55], [98], [108], the EKF [101] and the

observers [37], [123] and [124].
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The rotor-saliency-based or magnetic saturation induced

saliency-based method usually requires the injection of HF

signal into the phase windings and then measuring and

controlling the resultant HF current, which is often used

for starting and low-speed operation. However, it has been

reported in [125], [126] that the VSI nonlinearity and the

cross-coupling magnetic saturation could cause an estima-

tion error of the rotor position. In [127], an improved

signal-injection-method is proposed by compensating for the

cross-coupling magnetic saturation effect from the pre-FEA

calculated or pre-measured incremental mutual inductances.

Fig. 33 compares the position estimation errors between the

conventional and improved methods.

D. THERMAL CONDITION MONITORING

The online thermal condition monitoring of PMSMs is essen-

tial to the safe operation, the machine life-time and the

improved control performance, particularly for the most

vulnerable components of PM and the stator winding [6].

More specifically, the winding insulation will be damaged

when the winding temperature exceeds the allowed tem-

perature. Meanwhile, when the PM temperature exceeds

its Curie temperature, it will cause irreversible partial

demagnetization [129]–[132].

FIGURE 33. Measured rotor position errors [127]. (a) Conventional
method. (b) Improved method considering magnetic saturation.

The direct measurement of PM temperature under load

condition is still challenging since it is usually not practical

for thermal sensors to have a direct contact on the rotat-

ing rotor PMs. To date, several methods and devices have

been developed to directly measure the PM temperature,

i.e. infrared thermal imager and thermometer (limited to the

PM visibility), standard thermal sensors combined with wire-

less data transmission devices [87], [88], [131], and [132].

Nevertheless, these approaches are not feasible in the indus-

trial applications due to additional costs, constructional draw-

backs and risks of sensor failures [7].

Against the above background, the temperature dependen-

cies of the stator resistance and the rotor flux linkage are

used for the thermal indicators to monitor thermal conditions

indirectly and expressed as

Rs,s = Rs,0 [1+ α(Ts − T0)] , (32)

where Rs,s and Rs,0 are the stator resistances at the actual

temperature Ts and the reference temperature T0. α is the

temperature coefficient of copper.

ψpm,s = ψpm,0
[

1+ β(Tpm − T0)
]

, (33)

whereψpm,s andψpm,0 are the rotor flux linkages at the actual

temperature Tpm and the reference temperature T0. β is the

temperature coefficient of remanent flux density.

TABLE 4. Temperature characteristics of typical PM materials [7], [128].

Table 4 shows the physical properties of some typical PM

materials, where BHmax and Tmax are the maximum energy

product and the maximum operating temperature; αBr and

αHC are the temperature coefficients of remanent flux density

and the coercive field strength, respectively; ρ is the electrical

resistivity. The negative αHC means that the materials are

more vulnerable to irreversible magnet demagnetization.

In order to amplify the resistive voltage drop and

increase the resolution of the estimated stator resistance, two

current injection methods are proposed in [78], [79]. Mean-

while, the other online parameter estimation techniques,

e.g. AIs [62], [76]–[81], HF signal injection based meth-

ods [82], [83] and [88], as well as EKF [102], [133], are able

to track thermal states of the stator winding and the rotor

magnet by utilizing the temperature correlations (32)-(33).

For instance, the estimated values of Rs and ψpm based on

ANN algorithm [62] at the initial thermal state and after

heating are presented in Fig. 34. As can be seen, after heating

of 20 minutes, the estimated stator resistance increases from

0.388 � to 0.473 �, while the rotor flux linkage decreases

from 78.8 mWb to 73 mWb.

E. FAULT DIAGNOSIS

The online parameter estimation techniques are widely used

in detecting fault-related signals and do not rely on additional

measurement devices [1]–[3]. The most prevalent faults of

PMSMs can be categorized as follows, while the correspond-

ing applications of online parameter estimation are shown in

Fig. 35.

1) Electrical faults including short/open circuit faults.

2) PM demagnetization faults.

3) Mechanical faults including bearing faults and

static/dynamic eccentricity faults.
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FIGURE 34. Stator resistance and rotor flux linkage at initial thermal
states and after heating [62]. (a) Estimated stator resistance.
(b) Estimated rotor flux linkage.

FIGURE 35. Application of online parameter estimation to fault diagnosis.

Firstly, the interturn short-circuit (ITSC) fault is most com-

mon among all electrical faults and is usually caused by

mechanical stress, moisture, and partial discharge [67]–[71].

As this fault occurs, a high circulating current is generated

in the shorted circuit, which may propagate and further

lead to phase-to-phase, phase-to-ground, and demagneti-

zation faults. A comprehensive short-circuit current anal-

ysis under different fault scenarios can be found in [67]

based on the FEA model, where the fault resistance in the

short-circuit path is considered. In [68], a zero-sequence

voltage vector-based method is proposed to address the ITSC

in low-speed PMSMs. Reference [69] proposes an online

ITSC detecting method by utilizing the second-order har-

monics in the q-axis current in comparison to the non-fault

condition. Reference [70] proposes a stator fault detection

method by utilizing the stator current difference between the

measured and observer estimated stator currents, where the

disturbances caused by parameter uncertainties, asymmetric

stator and measurement noises are decoupled to avoid false

alarms. For model-predictive controlled PMSM, an ITSC

fault diagnosis method is proposed in [71] based on the

cost function and wavelet transform, where discrete wavelet

transfer (DWT) is used to extract the characteristic fault

features.

Secondly, as mentioned above, PM demagnetization will

deteriorate characteristics of the PM and result in the decrease

of output torque. The PM demagnetization is usually caused

by physical damage, high-temperature stress, inverse mag-

netic field and ageing. Since the rotor flux linkage is propor-

tional to the strength, the online parameter estimation of the

rotor flux linkage is widely used to detect demagnetization

faults and to evaluate the degree of demagnetization account-

ing for the variations of Ld , Lq and Rs [93], [94], and [118].

In addition, a measurement method for detecting rotor eccen-

tricity and local demagnetization for PMSM is proposed with

the aim of the analog Hall-effect field sensors [135].

Regarding bearing faults, they might manifest themselves

as rotor asymmetry faults [2], [3]. Otherwise, the ball bearing

related defects can be categorized as an outer bearing race

defect, an inner bearing race defect, a ball defect, or a train

defect. The vibration monitoring of mechanical characteristic

frequencies related to the bearings is widely used to detect

faulty operation. However, vibration measurement suffers

from additional cost and is not always feasible in industrial

applications. Hence, the stator current and speed harmonic

are used as fault signals to diagnose bearing faults. For

instance, to overcome the difficulty of extracting the weak

characteristic fault current signals, a full-order flux linkage

observer and improved analysis method of flux linkage peak

energy spectrum are proposed in [8], which can diagnose

different types of bearing faults for traction motor accu-

rately (e.g. outer/inner ring, rolling element, etc.), and it is

of practical significance in the engineering field. Moreover,

an online current signal based ANN is proposed in [136] to

diagnose the bearing faults for induction machines, while a

Luenberger speed observer is employed in [137] to perform

speed harmonic detection for bearing fault diagnosis in an

induction machine.

VII. OUTLOOK OF FUTURE RESEARCH TRENDS

According to the above overview, the techniques of online

parameter estimation have great research potential. The

future research trends could be initiated from the following

aspects:

1) As introduced before, the estimation of stator induc-

tances and rotor flux linkage considering the magnetic

saturation effect is still mainly based on the extensive

offline machine identification. Thus, online determina-

tion of the magnetic saturation level is worth further

investigating.

2) Novel estimation modelling techniques could be fur-

ther investigated to improve the robustness against the

influence of VSI nonlinearity and measurement errors.

3) Application of online parameter estimation to the

state-of-the-art control strategies to achieve better con-

trol performance and higher efficiency, e.g. finite-

control-set MPC and DTC, etc.

4) Application of different estimation modelling tech-

niques for special machines is one of the valuable

research tendencies, e.g. dual three-phase machines,
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open-winding machines, synchronous reluctance

machines, variable flux memory machine, etc.

5) Application of online parameter estimation to sensor-

less PMSM drives.

VIII. CONCLUSION

The state-of-the-art techniques of online parameter estima-

tion of PMSMs have been systemically overviewed in this

paper together with extensive examples. Firstly, the critical

rank deficient and ill- issues were emphasized and anal-

ysed. Secondly, the widely used modelling techniques for

PMSM parameter estimation, i.e. multistep estimation, cur-

rent/voltage injection, POPE, estimation under variable speed

control, as well as the HF signal injection, were highlighted,

in terms of with/without considering saturation and tem-

perature effects. Some typical industrial applications were

described, again, with examples, including determination

of mechanical parameters, performance improvement under

sensored and sensorless control, thermal condition monitor-

ing, as well as fault diagnosis. Finally, some future research

trends were predicted. The online parameter estimation tech-

niques overviewed are also applicable to induction machines

and synchronous reluctance machines.

APPENDICES

The most common modern estimation algorithms are

described in Appendices A-G and evaluated in Appendix H.

A. RLS ALGORITHM

Due to its easy implementation and good convergence proper-

ties, the RLS estimator is widely used in the online parameter

estimation [75], [76]. RLS is a numerical algorithm to recur-

sively estimate the parameters by minimizing the weighted

least square cost functions relating to the observed and com-

puted signals [138].

Firstly, it is assumed that the model is expressed as

y = 8x, (A.1)

where y and x are the output and input matrices. 8 is the

unknown parameters vector of the model.

By minimizing the least square of the predicted errors εi,

the objective function is defined as

εk = (yk − 8̂
T xk )

2
, (A.2)

where 8̂ is the unknown parameter vector.

The updating algorithm is calculated as

8̂k = 8̂k−1 + Kk

(

yk − x
T
k 8̂k−1

)

, (A.3)

Kk = Pk−1xk (λI + x
T
k Pk−1xk )

−1
, (A.4)

Pk =
Pk−1

λ
(I − Kkx

T
k ), (A.5)

where Kk is the gain matrix. λ is the weighting coefficient.

Pk is the covariance matrix. The subscripts k/k − 1 denote

sampling index. Since the RLS estimator uses the fixed gain,

the accuracy of the estimation is not guaranteed without the

parameter variation.

B. EKF ALGORITHM

The estimation process of the Kalman/extended Kalman filter

(KF/EKF) is similar to the RLS. The RLS updates the esti-

mation of a static parameter, while KF is able to update and

estimate an evolving state. Its main feature is the recursive

processing of the noise measurement risk [139], [140]. Since

the conventional KF cannot directly estimate the states for

non-linear systems, it extends to EKF by utilizing the first

order Taylor series for linearization. The EKF based estimator

is shown in Fig. 36.

FIGURE 36. Schematic parameter estimation based on EKF.

The nonlinear state equations are written as

xk+1 = f (xk , uk)+ wk , (A.6)

yk = h(xk )+ vk , (A.7)

where f is the function of a nonlinear system. u is the control

vector. w and v are the zero-mean white Gaussian system and

measurement noises with covariances Q and R, respectively.

w (t) takes into account the system disturbances and model

inaccuracies while v (t) considers measurement errors.

Generally, EKF based estimation has two steps: the predic-

tion step and the update step.

1) Prediction step
{

x̂ k+1|k = f
(

x̂ k|k , uk
)

,

P k+1|k = AkP k|kA
T
k + Q.

(A.8)

1) Update step











Kk+1 = P k+1|kH
T
k

[

HkP k+1|kH
T
k + R

]−1
,

x̂ k+1|k+1 = x̂ k+1|k + Kk+1(yk+1 − h(x̂ k+1|k ))

P k+1|k+1 = (I − Kk+1Hk)P k+1|k ,

(A.9)

Ak =
∂f (x, u)

∂x

∣

∣

∣

∣

x=x̂k

,

Hk =
∂h(x)

∂x

∣

∣

∣

∣

x=x̂k

, (A.10)

where Ak and Hk are the Jacobian matrices of the partial

derivatives of f and hwith respect to x and need to be updated

in every sampling period. However, the EKF may fail to

converge on the appropriate state values if the systemmodel is
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inaccurate. The computational burden increases significantly

as the order of system increases due to inverse matrix calcula-

tion. It processes input data with noise repeatedly which may

also lead to a high computational burden [45].

C. MRAS AND AO ALGORITHMS

Firstly, adaptive MRAS is widely used in the sensorless

control and online parameter estimation due to its guaran-

teed convergence and simple form with less computation

burden [105]. The structure of the MRAS is shown in Fig. 37.

FIGURE 37. Structure of model reference adaptive algorithm.

The MRAS estimator includes the reference model,

the independent adjustable model and the adaptive law,

in which the estimation error ε between the reference model x

and the adjustable model x̂ is calculated, and then fedback to

the proper adaptive law to adjust the values of the estimated

parameters.

Similar to the MRAS algorithm, the principle of AO is to

build an adjustable model with parameters to be estimated

and a reference model (practical machine). By utilizing the

appropriate adaptive law, the output difference between two

models, e.g. values of current/flux, are adjusted adaptively

until convergence.

The adaptive laws include theMIT rule, the Popov stability

criterion and the Lyapunov stability theorem. The MIT rule

is the simplest one but suffers from instability risks. In [119],

a MIT rule-based MRAS is proposed to estimate multi-

parameters, such as iron loss and stator resistances, stator

inductances, back EMF, as well as the viscous and inertia

constant. However, the MIT rule-based MRAS system lacks

stability design and is not feasible for practical applications.

Thus, the latter two adaptive laws are widely used. On the

one hand, by using the Popov stability criterion, the system

can be transferred into a nonlinear time variable feedback

system. On the other hand, the Lyapunov stability theorem

based MRAS estimator relies on the individual Lyapunov

function, which requires an experienced designer. In com-

parison, the Popov based MRAS estimator exhibits better

performance in practice due to its easy design process.

D. PSO ALGORITHM

The PSO algorithm is a nature inspired algorithm and was

first proposed by Kennedy and Eberhart in 1995 [142]. The

structure of the PSO based parameter estimation approach

can be illustrated in Fig. 38.

FIGURE 38. Structure of PSO algorithm based parameter estimation.

The PSO algorithms, e.g. improved PSO, self-learning

PSO (SLPSO), etc., have been widely used in the

multi-dimensional optimization and parameter estimation

due to its fast convergence. The standard PSO is taken as an

example and its updating rule is described as

vi+1 = wvi + c1r1
(

xp − xi
)

+ c2r2
(

xg − xi
)

, (A.11)

xi+1 = xi + vi, (A.12)

where w is the inertia weight. c1, c2 are the cognitive and

social acceleration constants, respectively. xp, xg are the

particle best and overall best locations, respectively. xi is

the ith particle location. vi represents the particle velocity.

r1 and r2 are the random numbers between 0 and 1. The

general steps of PSO for the parameter estimation are written

as follows.

Algorithm 1 PSO Algorithm for Parameter Estimation

Step 1: Initialization

Initialize parameters, optimization settings (number of

particle, maximum iterative number, terminal conditions).

Step 2: Data loading

Load measured data for parameter estimation.

Step 3: Update speed and position

Update particle’s velocity in (A.11).

Update particle’s position in (A.12).

Step 4: Update best personal and global best positions

If Fit(xi) < Fit(xp), then update xp← xi
If Fit(xp) < Fit(xg), then update xg← xp

Step 5: Evaluation

Evaluate the fitness of the global best position and the iter-

ative number, if not satisfy the terminal condition, return to

step 3, else go to step 6.

Step 6: Output estimated parameters

E. ANN

In comparison to the aforementioned estimators, i.e. EKF

and MRAS, the Adaline NN (ANN) algorithm requires less

computation time and convergence is achieved more quickly.

The mathematical model of the ANN is expressed as

O (Wi,Xi) =
∑n

i=0
WiXi, (A.13)

whereWi is the net weight and Xi is the input signal.
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FIGURE 39. Structure of an adaline NN.

The structure of the ANN is shown in Fig. 39. The activa-

tion functionO (Wi,Xi) of the network output node is a linear

function. The objective function is defined as minimizing

the sum of squared errors, and thus, the updated Wi in each

sampling period is presented as

Wi,k+1 = Wi,k + 2ηXi(Ôk − Ok ), (A.14)

where η is the convergence factor adjusting the convergence

speed. Ôk is the predicted output. k and k+1 are the sampling

indexes. The convergence factor η is limited to a proper range

of values.

FIGURE 40. Complete adaline NN based parameter estimation for PMSM.

Fig. 40 shows the complete ANN based estimation system

for PMSM. The least mean square (LMS) algorithm is used

to minimize the predicted and measured errors. The detailed

introduction of ANN can be found in [143].

F. GA

The process of parameter estimation by GAs is similar to the

PSO based estimator (see Fig. 38) and usually consists of

three steps [144]–[145].

1) Initialization. During the initialization of EA, a group

of solutions for cost functions will be generated ran-

domly, which is designated as the gene pool of a pop-

ulation. These solutions are generated in the form of

gene encoding.

2) Iterative evolution. All solutions will be processed by

various evolutionary operators, by which the optimal or

suboptimal solutions will be randomly worked out.

3) Termination. The evolution will be terminated if the

global optimal is obtained or the algorithm has reached

the maximum generation of evolution.

Therefore, GA is one of the most popular EAs and

widely employed in real industrial applications. Quantum

GA (QGA) is an improvement of GA and has superior per-

formance in the preservation of good solutions and quantum

binary encoding [144]. The procedures of the conventional

QGA are introduced as follows:

Algorithm 2 QGA for Parameter Estimation

Step 1: Initialization

Initialize parameters, optimization settings (initial

population, maximum generation number, etc.)

Step 2: Selection operator

A subpopulation is randomly selected to breed a new

generation in each successive generation.

Step 3: Crossover operator

Gene information will be interchanged by probability, and

no new gene bit generates in this operator.

Step 4: Mutation operator

New gene bits will be generated by mutation probability.

Step 5: Quantum rotation gate operator

This operator makes the genes converge to the fitter states.

Step 6: Termination

Judge whether the termination condition is satisfied go to

Step 7, or else return to Step 2.

Step 7: Output estimated parameters

G. DO AND SMO

DOs are widely used to estimate the disturbances of a PMSM

drive system, i.e. unmodeled dynamics, parametric uncertain-

ties, and external disturbances [146]. The schematic diagram

of a DO based control system is shown in Fig. 41.

FIGURE 41. Schematic diagram of DO based control system [146].

G(s) and Gn(s) represent the real physical plant and the

nominal model used for the controller design. Q(s) is a stable

filter. u is the control input. c is the feedback controller output.

yr is the reference signal. y and ȳ are the system andmeasured

outputs, respectively. n is the measurement noise. d , dl , and d̂l
are the external, actual lumped, and estimated disturbances,

respectively. The nominal plant Gn(s) is preserved in the

absence of the disturbance and uncertainty, and therefore,

the control system can be regarded as a classical feedback

loop with the controller C(s). However, the inner loop will

be activated in the presence of uncertainty to suppress the

influence of uncertainty.
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SMO is an observer with inputs as discontinuous functions

of the error between the estimated and measured outputs,

and has its unique advantages, i.e. high robustness to the dis-

turbances and the system parameter variations [147], [148].

The essence of the SMO is a HF switching feedback control,

which is composed of two parts, i.e. sliding surface and

control law. The system states can be switched by utilizing

signum function, sigmoid function, power function, etc.

H. EVALUATION OF ESTIMATION ALGORITHMS

As a summary, the characteristics of presented algorithms are

evaluated in Table 5.

TABLE 5. Major pros and cons of parameter estimation algorithms.
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