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Abstract
The ability to transport nanoparticles through porous media has interesting engineering applications, notably in reservoir 
capacity exploration and soil remediation. A series of core-flooding experiments were conducted for quantitative analysis of 
functionalized  TiO2 nanoparticles transport through various porous media including calcite, dolomite, silica, and limestone 
rocks. The adsorption of surfactants on the rock surface and nanoparticle retention in pore walls were evaluated by chemi-
cal oxygen demand (COD) and UV–Vis spectroscopy. By applying  TiO2 nanoparticles, 49.3 and 68.0 wt.% of surfactant 
adsorption reduction were observed in pore walls of dolomite and silica rock, respectively. Not surprisingly, the value of 
nanoparticle deposition for dolomite and silica rocks was near zero, implying that surfactant adsorption is proportional to 
nanoparticle deposition. On the other hand, surfactant adsorption was increased for other types of rock in presence of nano-
particles. 5.5, 13.5, and 22.4 wt.% of nanoparticle deposition was estimated for calcite, black and red limestone, respectively. 
By making a connection between physicochemical rock properties and nanoparticle deposition rates, we concluded that the 
surface roughness of rock has a significant influence on mechanical trapping and deposition of nanoparticles in pore-throats.

Keywords Surface chemistry · Nanoparticle deposition · Porous media · Surfactant adsorption

Introduction

Nowadays, nanotechnology has become one of the promising 
approaches in enhanced hydrocarbon recovery, soil remedia-
tion and reservoir characterization. 0D (e.g. QDs), 1D (e.g. 
CNTs), 2D (e.g. Graphene oxide) and 3D NPs (e.g. silica, 
titanium oxides and alumina) were successfully applied 
for reservoir exploration (Hu et al. 2019), foam stabilizing 
(Yekeen et al. 2017) and enhanced oil recovery (EOR) (Luo 
et al. 2016; Haruna et al. 2019). Due to the relatively small 

size of NPs, they are much more sensitive to the physical and 
chemical heterogeneities present in the subsurface. Trans-
port of bare or functionalized NPs through saturated porous 
media under different ionic strength conditions was a topic 
of several researches (Babakhani et al. 2017; Qin et al. 2020; 
Foroozesh and Kumar 2020). Bayat et al. (2014; 2015a, b, 
c) studied the transport of bare metal oxide NPs  (Al2O3 and 
 TiO2 NPs) through limestone including kaolinite, montmo-
rillonite, and illite (clay minerals). They concluded that the 
recovery of NPs in effluent solution had noticeably declined 
in the presence of clay minerals which was attributed to the 
trapping of NPs in pore-throats and morphology of the clays.

The NPs flooding is more effective than water flooding 
for subsurface applications but much less than chemical 
flooding. Therefore injection of NPs along with low salinity 
water (LSW) or chemicals (surfactant/polymer) is suggested 
to alter the rheological properties of injecting fluid, reduce 
IFT between oil/aqueous phases and decrease the surfactant 
adsorption on the pore walls of porous media (Olayiwola 
and Dejam 2019; Venancio et al. 2020). Surfactant slugs 
could decrease the interfacial tension (IFT) between oil and 
aqueous phases which results in reducing the fluid capillary 
force in pore-scale, mobilizing more residual crude oil in 
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pore structures. Furthermore, surfactants help to maintain 
NPs integrity in harsh subsurface conditions of reservoirs 
(Nourafkan et al. 2018a, b, 2019). Employing the synergistic 
effect between NPs and surfactant is a promising idea for the 
improvement of chemical flooding efficiency (Fig. 1) (Wu 
et al. 2017; De Avila et al. 2016; Venancio et al. 2020). 
Yekeen et al (2019) studied the amount of adsorption of dif-
ferent surfactants (CTAB, SDBS, Triton X-100) on Malay-
sia shale rock in the presence and absence of  SiO2 NPs. 
Maximum 49.83% and 81.33% reduction in the adsorbed 
surfactant on pore walls was reported at 3 wt% NaCl salinity 
and high temperature (80 °C), respectively. Venancio et al. 
(2020) showed that surface modification of silica NPs with 
alkyl groups (octyl and hexadecyl) increased the surfactant 
(SDS) recovery after nanofluid injection in an unconsoli-
dated porous medium. The reason was due to the additional 
hydrophobic interaction between NPs and surfactant tails 
which improved the colloidal stability of NPs as compared 

to bare silica NPs when dispersed in micellar solutions of 
SDS (Venancio et al. 2020). Betancur et al. (2019) evaluated 
the impact of magnetic NPs on the adsorption reduction of 
surfactants mixture (propoxy sulfate and olefin sulfonate) in 
the sand pack porous media.

Although several researches have been done for the evalu-
ation of functionalized NPs transport through porous media, 
but there is no consensus among researchers regarding the 
effect of rock properties on the efficiency of NPs transport. 
It has been long recognized that the mineralogy and surface 
structure of rocks significantly could affect the efficiency of 
NPs and chemical flooding (Arsalan et al. 2015; Liang et al. 
2020). Therefore, the effect of physicochemical properties 
of porous media on the retention of functionalized NPs in 
pore walls must be considered while designing the process. 
This study aims to address the gap in the literature by inves-
tigating the effect of pore wall’s properties on the transport 
of surfactant and functionalized NPs through five different 
types of reservoir rocks. The main important achievement 
of this study is that the efficiency of chemical flooding could 
significantly improve by adding NPs into flooding process 
specifically for reservoir rock with dense smooth surface 
(here silica and dolomite).

Experimental procedure

Materials and characterization

Anionic alkyl aryl sulfonic acid (AAS), nonionic alcohol 
ethoxylated (EA, C12-13/7EO) surfactants and Titanium 
(IV) oxide NPs were used as model formulation (surfactants 
mixture as chemical agents and NPs as carrier). Five differ-
ent types of reservoir rock were crushed and sieved. The 
particle size fraction of 250–425 μm was selected, washed 
three times with de-ionized water, and decanted to remove 
all dust particles. Then the rock grains were put inside an 
oven at 80 °C for 5 days to dry and remove residual humid-
ity to be ready for the BET analysis. A piece of dry rock 
was polished using different grades of sandpaper (including 
very-fine sandpaper size) to smooth the rock surface (Fig. 2). 
The polished and cleaned rock pieces were then washed with 

Fig. 1  Employing the synergistic effect between NPs and surfactant 
for chemical flooding

Fig. 2  The polished rock 
surfaces for contact angle 
measurement
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water and dried in an oven. A water droplet (usually 1–10 μl) 
was dispensed on top of rock pieces using a 0.74 mm outer 
diameter syringe needle and contact angle was calculated 
using a goniometer right after (CAM 2008, KSV instruments 
Ltd. Finland).

The surface chemistry and elemental analysis of rocks 
were analyzed using an SEM-EDEX analysis. The EDX 
analysis was performed for specific points or defined areas 
on sample surfaces for elemental analysis. Moreover, the 
Zeta potential and hydrodynamic size of rock particle as well 
as  TiO2 NPs were measured in brine by Malvern Zeta-sizer 
ZS instrument.

Core‑flooding tests

Figure 3 shows the schematic of core-flooding set-up. The 
brine and nanofluid slugs were injected into the core holder 
using a peristaltic pump and a syringe pump, respectively. 
The core-holder was filled with 10 g of different rock par-
ticles (250–425 micron) and all flooding tests were carried 
out at ambient temperature (22 °C). The permeability value 
in the range of 90–110 mD was calculated based on Darcy’s 
law using the average pressure gradient at both ends of the 
packed bed column during brine saturation (Supplementary 
document). The NP’s concentration in the effluent at the 
outlet of core-holder was measured using UV-spectropho-
tometer at a wavelength of 450 nm (Shimadzu, UV 1800). 
The calibration curve of  TiO2 NPs concentration versus UV 
absorption ratio (at wavelength of 450 nm) was generated 
with a series of standard samples. The concentration of  TiO2 
NPs in effluent solution was estimated using UV intensity by 
interpolation from the calibration curve. On the other hand, 
the stabilizer’s concentration was specified by chemical 

oxygen demand (COD). Core-flooding experiments were 
carried out as follows:

• 100 ml brine flooding at a flow rate of 2 ml/min to satu-
rate the rock particles in the core-holder.

• 20 ml surfactant slug or nanofluid (functionalized NPs 
with surfactants) at a flow rate of 0.5 ml/min.

• 20 ml brine post-flooding at a flow rate of 1 ml/min.

Results and discussion

Characterization of physical and chemical 
properties of different rocks

Limestone is a sedimentary rock, which composes a large 
amount of calcium carbonate mineral with some variable 
amounts of silica. According to SEM photos (Fig. 4) the 
grains of limestone are irregularly shaped and well-crystal-
lized grains are very rare. Elemental mapping of limestone 
rocks (Fig. S1) shows the existence of manganese and iron 
in both limestones. The black limestone contains a higher 
amount of magnesium oxide mineral, which is the main 
reason of black color. Goethite or hematite is the probable 
mineralogy of iron in the red limestone as previously investi-
gated by Cai et al. (2012); however, the existence of hematite 
is the reason for red color in limestone rock. The elemental 
mapping also verifies the existence of clay minerals (Alu-
mina and silica composition) in the limestone rocks.

The SEM and EDX images of other types of rocks have 
been provided in the supplementary document. The SEM 
photos of the calcite rock show the existence of OOlits struc-
ture inside the carbonate rock (Fig. S2). The vein of silica 
mineral is also detected in calcite rock (Fig. S2) while the 

Fig. 3  Schematic of core-flood-
ing set-up
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composition of dolomite substrate was uniform including 
magnesium and calcium (Fig. S3). Furthermore, the elemen-
tal map of silica rock (Fig. S4) confirms that the silicate 
crystals is the major fraction of rock structure which com-
bined with a minor fraction of Aluminosilicate mineral.

The surface charge of different rocks was obtained using 
electrophoresis measurements of crushed rock (Schramm 
et al. 1991). Rock particles smaller than 45 microns were 
separated using sieve analysis and suspended in deionized 
water followed by a high-speed centrifuge (5000 RPM for 
half an hour). The electrophoretic mobility of the final sus-
pension then was measured by Malvern zetasizer (Table 1). 
According to Table 1 all rocks have negative surface charges 
with the following trend:

Dolomite (least negative) < calcite < black limestone < red 
limestone < Silica (most negative).

Quantitative measurement of CA can determine the 
wettability of a rock. According to the CA’s data (Table 1, 
Fig. S5) the black limestone and silica have the lowest and 
highest degree of water wettability between rocks. Surface 
roughness, fluid composition, and rock mineralogy are the 
most important factors which affect the CA of rocks. First 

time, Wenzel (1936) investigated the effect of roughness on 
CA and proposed a relationship for the angle observed on 
both smooth and rough surfaces. Vijapurapu et al. (2002) 
also studied the impact of mineralogy and surface roughness 
on the wettability of different rocks including quartz, berea 
sandstone, dolomite, and calcite. Both studied reported that 
the CA values strongly depend on surface chemistry and 
roughness. However, the Wenzel equation did not match the 
observation of Vijapurapu.

Functionalizing of  TiO2 NPs with stabilizers

The AAS surfactant solution samples (15 ml, 0.3 wt%) at 
different salinities have been shown in Fig. S6. According 
to Fig. S6 the AAS surfactant made a cloudy solution or 
even is not soluble at salinity higher than 2 wt%. Clarity 
and long-term stability are important factors in the design 
of an injectable surfactant slug. A cloudy and unstable slug 
indicates an ineffective surfactant solution formulation in 
the desired salinity range. Thus, it will be necessary to find 
a suitable composition for formulating single-phase aque-
ous surfactant solutions at different salinities. Using additive 

Fig. 4  SEM photos of a black 
limestone and b red limestone

Table 1  The physical and chemical properties of different rocks

Rock type Silica Black limestone Red limestone Dolomite Calcite

Specific surface area  (m2/g) 0.877 ± 0.001 1.884 ± 0.003 3.09 ± 0.004 2.54 ± 0.021 1.46 ± 0.0013
Electrophoretic mobility 

(μm cm  V−1  s−1)
− 1.58 ± 0.09 − 1.07 ± 0.07 − 1.14 ± 0.04 − 0.83 ± 0.05 − 1.00 ± 0.07

Zeta potential (mV) − 20.6 − 14.2 − 15.2 − 11.1 − 12.1
Contact angle 20.09 68.23 37.88 29.83 40.89
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(such as a minor fraction of oil phase) or blend of surfactant 
can produce a suitable aqueous solution for injection. In this 
study, EA surfactant was added to AAS surfactant solution. 
The ethylene oxide groups in the structure of EA provide 
tolerance to salinity which produced a clear aqueous solu-
tion. In fact, the blending of AAS with EA promotes the 
resistance of micelles over a high salinity environment and 
shifts the unsolvable surfactants to become more hydrophilic 
results in the formation of a clear aqueous solution.

Critical micelle concentration (CMC) of AAS was deter-
mined by surface tension measurement of surfactant solution 
with air and conductivity method (Fig. 5). The conductivity 
of the solution was measured by a Mettler Toledo conduc-
tivity Meter (Seven2Go). The conductivity of anionic sur-
factant solution increased linearly with increasing surfactant 
concentration until it reached 2.4 ×  10–3 g/ml, beyond which 
the rate of conductivity increasing was slightly reduced. This 
point on the graph where the slope of the conductivity line 
was changed has been identified as the CMC. Therefore, the 
selected surfactant concentration for the EOR process could 
be sensible, considering the CMC value.

TiO2 NPs were selected in this study as an example 
carrier for surfactant molecules in porous media. The 
optimum condition of functionalizing (concentration of 
 TiO2 NPs, salinity, and optimum surfactants ratio) and 
formation of non-covalent grafting surfactants on NPs of 
solution were evaluated in our previous study (Nourafkan 
et al. 2018b). Briefly,  TiO2 suspensions were prepared 
by homogenizing 2000 ppm of  TiO2 nanopowders inside 
the 25% AAS-75% EA surfactants blend solution (4 wt% 
salinity) by an ultrasound probe running 15 min with an 
amplitude of 25. The reason for choosing 2000 ppm for 
NPs concentration has been provided in the supplemen-
tary document. The stability of nanofluid was checked 

by UV–visible method and no change was observed for 
adsorption peak of nanofluid after 1.5 h immobility. The 
zeta potential and hydrodynamic size of  TiO2 NPs in 
brine (4 wt.% salinity, neutral pH) were − 10.1 (mV) and 
147 nm respectively. The breakthrough curves (BTCs) of 
NPs were generated using on-line measurement of con-
centration data using UV–Vis analysis. So, the calculated 
concentrations in the effluent stream divided by the initial 
concentration of NPs were drawn versus the injection time 
expressed in pore volumes (PVs). Finally, the deposition 
of NPs (mg/g rock and mg/m2 rock) then calculated by 
mass balance calculation using BTCs. The breakthrough 
curves (BTCs) of  TiO2 NP, which shows relative adsorp-
tion, as a function of PV are provided in Fig. 6. The inten-
sity of spectra generally decreases by passing time, which 
shows that significant amounts of particles were exited 
from porous media during the flooding stage. However, the 
amount of NPs deposition rate (average intensity of spec-
tral data) are different for different rocks. For example, the 
average intensity of black limestone and calcite packs is 
lower compared to silica and dolomite packs which show 
more retention of NPs in these porous media. The intensity 
results of post brine flooding (blue points in Fig. 6) show 
that driving out of NPs is continued following by the brine 
flooding. However, after totally 20 PV, no more NPs can 
be cleaned out.

Figure 7a and Table 2 represented total weight percent 
of  TiO2 NPs which trapped in porous media and those dis-
charged during flooding and post-flooding which were cal-
culated from BTCs.

Figure 7a and Table 2 indicate that all NPs were dis-
charged from silica and dolomite porous media while other 
rocks have a high degree of NPs retention. Caldelas et al. 
(2011) stated that the specific surface area of rock has a 
linear effect on particle retention independently of lithology. 
However, in this study, the surface area of dolomite rock is 
relatively high in comparison to other rocks (Table 1) while 
NPs were completely recovered through porous media of 
dolomite. Guzman et al. (2006) also stated that the surface 
charge of rocks is a primary factor in the retention of  TiO2 
NPs in porous media. Different mechanisms of adsorption, 
gravitational sedimentation, interception, straining and 
mechanical trapping have been suggested for the deposi-
tion of NPs during transport through porous media, Fig. 8 
(Medjda et al. 2020; Agista et al. 2019).

During this sedimentation process, the particles having 
greater solid density than water settle on the rock surface. 
Due to the high stability of NPs, sedimentation is unlikely 
to be the main mechanism for NPs deposition in the cur-
rent study. Moreover, both Brownian motion and the short 
residence time of NPs could disable gravity sedimenta-
tion in the porous media. Independency of NPs deposition 
amount to the surface charge of the rocks could imply that 
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the adsorption does not play the main role in trapping the 
particles. Moreover, the hydrocarbon tail of surfactants does 
not let the NPs adsorb on the surface of water-wet rocks.

Straining is defined as any physical trapping of agglom-
erated NPs in pore-throats narrower than the size of larger 
particles after agglomeration (Babakhani et al. 2017). The 
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process also calls “log-jamming”. Here the high stability of 
 TiO2 NPs confirms the existence of a strong steric repulsion 
between particles which prevents their agglomeration during 
transport. According to Table 1 the surface charge of silica 
has most negativity and dolomite have the least negativity 
while both of them have minimum retention of NPs. With 
attention to the negative zeta potential value of  TiO2 NPs, 
more retention is expected in dolomite rock compared to 
other rocks. In fact, it seems that the electrostatic attraction 
between rock surface and NPs would have a minor effect on 
particle retention because both silica and dolomite rocks, 
with opposite surface charges, have the minimum amount 

of NPs deposition. There is the degree of inconsistency 
between our observation for the effect of surface area and 
surface charge and other studies which is probably due to 
two factors: functionalizing of NPs with surfactants blend 
and surface roughness of rocks. Functionalized surface was 
covered with a surfactant shell, which reduces the signifi-
cance of NP’s surface charge on NPs retention compared to 
the bare surface.

Moreover, the SEM images and BET analysis together 
reveal some detail about the surface roughness and topo-
graphical of the rocks. The SEM photo illustrated that the 
silica and dolomite rocks possessed a crystallized particulate 

Fig. 7  a Weight percent of 
trapped NPs in porous media, b 
adsorbed surfactants blend (25% 
AAS-75% EA) on rock surface 
with and without NPs

(a)

(b)

0

20

40

60

80

100

120

Calsite Dolomite Black 
limestone

Red 
limestone

Silica

Nanoparticles recovery  
after flooding

Nanoparticles recovery  
after post flooding

Nanoparticles Retention

N
an

op
ar

tic
le

s (
%

)

Type of rocks

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Calsite Dolomite Black 
limestone

Red 
limestone

Silica

Surfactant adsorption 
without NPs

Surfactant adsorption 
with NPs

Su
rf

ac
ta

nt
s (

g)

Type of rocks

Table 2  TiO2 NPs retention and surfactants adsorption in different porous media

Rock type Calcite Dolomite Black limestone Red limestone Silica

Surfactants adsorption without nanoparticles (mg/g rock) 1.16 0.5 1.06 1.98 1.44
Surfactants adsorption with nanoparticles (mg/g rock) 1.5 0.34 1.12 2.38 0.71
Surfactants adsorption without nanoparticles (mg/m2 rock) 0.529 0.131 0.37 0.427 1.094
Nanoparticle retention (wt%) 5.5 0 13.5 22.4 0
Nanoparticle retention (mg/m2 rock) 0.075 0 0.186 0.145 0
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morphology. The SEM images of limestone rocks also illus-
trate the existence of tiny irregular dents and bumps along 
with submicrometer particles (< 1 μm) on the surface of 
rocks which account for the highest measured BET surface 
area (Fig. 4). The rougher surface of limestone and calcite 
rocks caused more retention of NPs (Bayat et al. 2015a, b, 
c; Jian et al. 2016). SEM and EDEX analyses also were car-
ried out from the surface and bulk of different rock’s parti-
cles to prove the deposition of NPs. The titanium elemental 
map of bulk grains indicates a lower density of NPs in silica 
grains in compared to Black limestone and Calcite (Fig. S7). 
 TiO2 NPs clusters also vividly observed between submicron 
grains of rock (Fig. S8). Other researchers also stated that 
the irregular dents and bumps of rock surfaces lead to more 
NPs to be trapped (Bayat et al. 2015a, b, c; Bradford and 
Torkzaban 2008).

In absence of NPs and based on the mass of the rock (mg 
surfactant/g rock), the highest adsorption of surfactants 
belongs to the red limestone (Table 2); however, based on 
the surface of the rock (mg surfactant/m2 rock) the silica 
rock has adsorbed the highest fraction of the surfactants. 
All evidences confirm that the surfactants intend to adsorb 
on the rock surface containing Si and Al elements. The Si 
and Al elements (source of silica and clay mineral) were 
found in all rocks structure except the dolomite which has 
the least surfactants adsorption amount. Basically, the sur-
factant molecules could adsorb by forming electrostatic or 
hydrogen bonds between hydrophobic tail or hydrophilic 
head with the available surface of porous media (Zhang 
and Somasundaran 2006). High fraction of EA (75 wt%) 
and the possibility of formation of hydrogen bond between 

ethylene oxide group the hydroxyl groups at the rock sur-
face is the most probable mechanism for surfactant adop-
tion (Jian et al. 2016). On the other hand, AAS as an ionic 
surfactant intent to form an electrostatic bond with the 
opposite charge mineral in the rock structure (Cui et al. 
2012; Somasundaran and Krishnakumar 1997). The sur-
face density of hydroxyl groups for different rocks in this 
study is ordered as dolomite < limestone < Calcite < silica, 
because of the abundance of Si–O–H and Al–O–H groups 
at rock’s surface. The main mechanism of surfactants 
adsorption at the rock surface schematically illustrates in 
Fig. 9. Therefore, the amount of surfactant adsorption on 
dolomite and silica rock’s surfaces is expected to be rela-
tively lowest and highest, respectively.

In this research, we tried to study the synergistic effect 
between NPs and surfactant during the flooding process 
through different porous media. The following conclusions 
can be extracted from this study:

• The rate of surfactants adsorption strongly is a function 
of surface charge and chemistry of the porous media. A 
high fraction of surfactants blend (around 36 wt.%) was 
adsorbed on silica rock that would drastically reduce the 
efficiency of the practical application of chemical flood-
ing.

• The surfactant adsorption on silica and dolomite rock was 
reduced to half (around 18 wt.% for silica) after func-
tionalizing the surfactants with  TiO2 NPs. In fact, func-
tionalized NPs have the potential to preserve surfactant 
molecules from adsorption on the porous walls.

Fig. 8  Schematic diagram of 
main transport mechanisms of 
NPs deposition in porous media
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• In spite of the usefulness of NPs for reducing adsorption 
reduction of surfactant in silica and dolomite rocks, they 
have an adverse impact in the case of Calcite and lime-
stone rocks. Appling NPs increased the surfactant trap-
ping around 50 and 24 wt.% in Calcite and red limestone 
porous media.

• We concluded that the synergistic effect between NPs 
and surfactant has promising results as long as the NPs 
deposition in porous media is negligible.

• Making a connection between NPs deposition and phys-
icochemical properties of rock’s surface (charge, area, 
roughness, and wettability) in this study showed that the 
surface roughness has the most impact on the trapping 
of NPs. Therefore, the efficiency of functionalized NPs 
flooding is higher through pore walls with lower micro-
roughness.

Conclusion

There are several studies dealing with nanoparticle transport 
through porous media; however, there is still an absence of 
a comprehensive study to evaluate the potential of NPs as 
a chemical agent carrier through different types of porous 
media. Blend of anionic alkylaryl sulfonates and nonionic 
alcohol ethoxylated surfactant at optimum composition 
(25–75 wt %) and salinity (4 wt%) was used as a stable slug 
for functionalizing of  TiO2 NPs. The core-flooding experi-
ments have been performed in five different types of reser-
voir rocks. According to the results, the surface roughness of 
rock had the most impact on the retention of NPs inside the 
porous media. The SEM photos of limestone grain showed 
an irregular surface with rare crystal which caused more 
retention of NPs inside limestone rocks. The adsorption of 
alkylaryl sulfonates and alcohol ethoxylated blend greatly 
depend on the mineralogy of rock which was increased at 
rock surface containing a higher amount of silica and alu-
mina. The hydrogen bonding between the oxygen in the eth-
oxy groups and the hydroxyl groups of silica suggested as 

a likely mechanism which is accrued for adsorption of sur-
factant. Any specific connection between surfactant attach-
ment with wettability or ability of rock was not disclosed in 
this research. Adsorption of surfactant blend in presence of 
 TiO2 NPs was proportional with retention of NPs inside the 
column. Therefore, the role of NPs as a carrier for surfactant 
molecules is outstanding when the transport of NPs through 
porous media is as much as possible.
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