

This is a repository copy of *Preferential wheat (Triticum aestivum. L cv. Fielder) root growth in different sized aggregates.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/173872/</u>

Version: Accepted Version

Article:

Mawodza, T., Menon, M. orcid.org/0000-0001-5665-7464, Brooks, H. et al. (3 more authors) (2021) Preferential wheat (Triticum aestivum. L cv. Fielder) root growth in different sized aggregates. Soil and Tillage Research, 212. 105054. ISSN 0167-1987

https://doi.org/10.1016/j.still.2021.105054

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Preferential wheat (Triticum aestivum. L cv. Fielder) root growth in different sized aggregates
2	
3 4	Tinashe Mawodza* ^a , Manoj Menon ^a , Harriet Brooks ^a , Oxana V. Magdysyuk ^b , Genoveva Burca ^c , Stuart Casson ^d ,
5	^a Department of Geography, The University of Sheffield, Sheffield S10 2TN, United Kingdom
6	^b Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
7	° STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, OX11 0QX, United Kingdom
8	^d Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield
9	S10 2TN, United Kingdom
10	
11	*Corresponding author email: t.mawodza@sheffield.ac.uk
12	
13	Abstract
14	Soil structure is one of the most important environmental factors affecting root architectural development and
15	consequently plant yield. Understanding how plant roots respond to soils with variable soil structure is important
16	as it enables soil management practices that promote optimal root growth. Many contemporary, non-invasive
17	experiments investigating how plant root architecture responds to soil structural variations have often focused on
18	compaction, often neglecting the role of soil aggregate size in determining root configuration. To better understand
19	this, in this study, we used non-invasive neutron and X-Ray imaging to investigate how variable aggregate size
20	affects the early root architectural establishment in wheat plants. Sandy loam soil derived macro-aggregates of
21	two distinct sizes (0.25-0.5 and 2-4 mm) were used to infer the suitability of each aggregate size for use in wheat
22	seedbeds. We also grew wheat seedlings in partitioned containers with the two different aggregate size classes
23	filled side by side to establish whether there would be preferential growth of roots in either aggregate size class.
24	Our results showed significantly increased root growth in the smaller 0.25-0.5 mm aggregates as compared to the
25	larger 2-4 mm aggregates. This was mainly as a result of enhanced lateral root growth when the wheat plants were
26	grown in the finer aggregates. On the other hand, coarser aggregates induced significantly increased seminal root
27	axes which partially offset the differences in total root length between the two aggregate sizes. Plants growing in
28	partitioned containers similarly indicated preferential root growth in smaller aggregate with an even more
29	pronounced difference in root growth in the smaller aggregates. As inferred from our results, seedbeds dominated
30	by smaller macro-aggregates (finer soil tilth) may be optimal to enhance wheat seedling root growth in sandy
31	loam soils.
32	
33	Keywords: Soil aggregates, Soil Structure, Neutron computed tomography, X-Ray computed tomography
34	

35 1. Introduction

36 Even though they are often obscured underground, roots are an integral component of a plant's complex

- 37 physiology. They are responsible for numerous functions such as anchorage, aeration, carbohydrate storage and
- 38 most importantly, the acquisition of essential resources, namely water and nutrients from growth substrates (most
- 39 commonly soil). Since both water and plant nutrients are usually unevenly distributed within soil, roots often have
- 40 to forage to acquire these resources (Lynch 2019). As a result of this foraging, root systems inherently show a
- 41 great deal of plasticity which is governed by both environmental and genetic cues that optimise them for resource
- 42 acquisition (Topp 2016, Suralta et al. 2018, Fromm 2019). Understanding how these factors affect root growth
- 43 and architecture is essential for the improvement of agricultural productivity as plant yield and vigour is often
- 44 directly related to root performance (Wang *et al.* 2020).

45 Of all the environmental factors affecting root growth, soil structure is one of the most salient as it directly 46 influences the movement and distribution of water, air and heat as well as roots themselves (Bronick and Lal 47 2005). Soils with a poor structure often exhibit severely limited productivity as a result of suboptimal pore size 48 distribution and connectivity (Nimmo 2004). As soil aggregates have a direct bearing on a soil's pore 49 characteristics, their stability and distribution are often used as a proxy for soil structural integrity. To improve 50 aggregation and thereby soil structure in the long term, strategies such as reduced tillage, crop rotation, cover 51 crops as well as the addition of organic matter and conditioners are often carried out. Tillage itself, despite the 52 criticism associated with its prolonged use, is also often used to improve the temporal structure of soils for good 53 early root establishment (Bronick and Lal 2005, Jabro et al. 2015, Bahmani 2019). This is because it breaks down 54 large clumps of soil (clods) into smaller aggregates and individual particles which ensure good seed-soil contact 55 in the seedbed as well as an ideal pore network for root growth (Snyder and Vázquez 2005, Blunk et al. 2017).

56 Identifying the optimal tilth required for plant growth is important as more than 70% of roots of most crops grow 57 within the often cultivated top 15-30cm of soil (Braunack and Dexter 1988). Experimentally, however, 58 determining optimal soil tilth is challenging due to the difficulty of replication of post tillage field soil conditions 59 accurately (Braunack 1995). In account of this, soil aggregates of different size classes are often used as a 60 standardised proxy to characterise the ideal soil tilth required for plant growth (Braunack and Dexter 1989). These 61 distinct aggregate size classes often present unique structural differences between the soils under review thus 62 allowing for the response of roots to different structures to be characterised. For instance, larger soil aggregates 63 generally present a structure with larger inter-aggregate pores that allow for increased movement of water, heat 64 and air whilst reducing root-soil contact. On the other hand, finer soil aggregates have much smaller inter-65 aggregate pores that limit the bulk mobility of elements different via mas water flow but allow for better root-soil 66 contact that often increases plant nutrient availability (Snyder and Vázquez 2005).

In terms of the mechanics of root growth into these different sized aggregates, three possible fates are most likely (Dexter and Hewitt 1978, Hewitt and Dexter 1984, Whiteley and Dexter 1984). The first possibility is that the root is able to push the aggregate or soil particle out of its path, maintaining its trajectory. This is usually the case when roots grow in soil of low strength such as soil composed of small loosely connected aggregates or moist soil (Clark and Barraclough 1999, Ball *et al.* 2005, Bodner *et al.* 2014). The second possible fate would be to penetrate the aggregate, which normally occurs when the aggregate is larger than the root diameter and cannot displace it 73 out of its path due to strong bonding between the aggregate and the other surrounding aggregates. In this case, the 74 growing root preferentially forces itself through a plane of weakness in the encountered aggregate (Stirzaker et 75 al. 1996, Ball et al. 2005). The third possibility occurs when the root cannot displace the encountered aggregate 76 out of its path whilst the aggregate is of relatively higher strength and has little or no plane of weakness. In this 77 event the root first attempts to force itself through the aggregate by exerting axial strength. When the root reaches 78 its maximal axial strength, it then buckles (often increasing root thickness) and is subsequently deflected around 79 the soil aggregate (Whiteley et al. 1982, Logsdon et al. 1987, Logsdon 2013). This also occurs when roots 80 encounter an aggregate at an angle greater than 90° . In practice, however, these mechanisms of root growth into 81 the soil are not mutually exclusive and an intermediate behaviour usually occurs (Whiteley and Dexter 1984).

82 To understand how these mechanisms work in determining root growth in aggregates of different sizes, 83 experimentation is vital. Accordingly, several different studies have been carried out to understand root growth in 84 different structures with aggregates of sizes ranging between 250 µm up to 20 mm being used in both pot and 85 field experiments investigating plants from different species (Hadas 1975, Braunack and Dexter 1988, Alexander 86 and Miller 1991, Braunack 1995, Nakamoto 2002). For wheat specifically, there is considerable variability in the studies reporting optimal aggregate size for germination and root growth. Aggregates ranging between 1 and 2 87 88 mm were reported to produce superior germination as compared to other aggregate size classes (Dojarenko 1924, 89 Jaggi et al. 1972, Braunack and Dexter 1989). On the other hand, Kvasnikov (1928) found that 2-3 mm aggregates 90 performed better than the 1-2 mm aggregates. On the extreme ends, Håkansson and von Polgár (1984) also showed 91 that wheat roots performed best in the aggregates size class <1 mm especially under water-limited conditions 92 whilst Hagin (1952) showed that aggregates >2 mm were more optimal for wheat root growth. All these studies, 93 however, although informative used destructive and invasive root washing which limits conclusions that can be 94 made in terms of specific root architectural development as compared to non-invasive imaging techniques (Tracy 95 et al. 2010, Mairhofer et al. 2017). On the contrary, in a recent experiment, Mawodza et al. (2020) used non-96 invasive neutron imaging and visualised a distinct pattern of wheat root distributions in randomly segregated 97 different aggregates indicating a reduction in lateral root growth in larger aggregates.

98 Another important consideration when investigating root growth in different sized aggregates is the role that different type of roots play in resource acquisition and distribution. In the early growth of wheat plants, seminal 99 100 roots which are roots that emanate from the seed embryo are the thickest and most distinct root types. These are 101 partnered by smaller lateral roots of different orders which emanate from the seminal roots themselves and often 102 grow perpendicular to their parent seminals. The potential for resource extraction among these different type of 103 roots is dependent on their thickness and distribution with thicker roots more responsible for bulk water flow 104 whilst finer roots contribute more to resource acquisition from soil (Zarebanadkouki et al. 2013). As such the 105 thicker seminal roots are mainly responsible for bulk transport whilst finer lateral roots branching from these 106 seminal are thought to be responsible for the bulk of the water and nutrient acquisition. The distribution and 107 abundance of these roots in soils of different sized aggregates would give an indication of the extent and location 108 of resource acquisition in each media.

- 110 In this study, we investigate wheat root growth in aggregates of different size classes using non-invasive neutron
- and X-ray imaging. Based on the studies described above, we hypothesize that root growth would be better in
- smaller aggregates as compared to the larger aggregates. We also look at how wheat plants respond to growth in
- a partitioned experiment with the plant having the possibility of growth in either of two different aggregate size
- 114 classes. This novel approach would give us an idea of the potential preferential root growth in aggregates of
- 115 different size classes using non-invasive neutron computed tomography (NCT).

116 2. Materials and methods

117 2.1 Soil properties

118The soil used in this study was a sandy loam soil (70% Sand, 16% Clay, and 14% Silt) obtained from Cove Farm119 $(53^{\circ}30'03.7"N \ 0^{\circ}53'57.2"W)$ with an organic carbon content of 4.18 ± 0.18 %. This soil was air-dried and

mechanically sieved through a nest of sieves to obtain several macro aggregate fractions which were subsequently
 used for experimentation (including preliminary experiments). Selected chemical properties of the sieved bulk
 soil (sieved to 4mm), as well as the various sieved aggregate fractions, are described in Table 1.

123 2.2 Assessment of root growth differences in selected aggregates

124 2.2.1 Root growth in individual aggregate size classes

- 125 In the first experiment, two of the selected aggregate fractions (2-4 mm and 0.25-0.5 mm) were packed into bottom
- sealed cylindrical 1mm walled aluminium tubes (18 mm inner diameter × 100 mm height) to attain bulk densities
- 127 of 1.2 g cm⁻³ for the 0.25-0.5 mm size aggregates and 0.92 g cm⁻³ for the 2-4 mm aggregates. A single wheat seed
- was then sown 10 mm underneath the surface of the aggregates and irrigation was applied to a gravimetrically
- 129 determined volumetric moisture content (θ_v) of 16% with at least 5 replicates for each aggregate treatment. The
- 130 wheat in the aggregate filled tubes was then grown in a growth chamber maintained at $21^{\circ}C (day)/18^{\circ}C (night)$
- and 50% relative humidity. The above-mentioned moisture content was maintained by watering the tubes every
- day until 5 days before neutron imaging when they were allowed to dry to increase root/soil contrast during
- imaging. Plants were grown for 14 days before neutron imaging was carried out.

134 2.2.2 Partitioned aggregate experiment

135 The second experiment comprised of the same two aggregate sizes used in the first experiment, however, these 136 were alternatively poured into different sides of square prisms (20 mm \times 20 mm; h= 100 mm) separated by 137 cardboard. The prism shape is preferred over a cylinder so that the cardboard can be placed diagonally and securely 138 while filling aggregates. This set up is illustrated in Figure 1. After careful filling of the container to within 5 mm 139 of the brim, the cardboard partition was gently removed by pulling it slowly upwards, preserving the separation 140 of the differently sized aggregates. A single wheat seed was planted at the centre of each of the containers such 141 that the seed was in contact with both aggregates at planting. Watering was done every day with a syringe being 142 used to individually irrigate each aggregate partition. This watering at first was done to ensure that each of the 143 partitions received the equivalent of a gravimetrically determined θ_v of 16% as in the first experiment. This was 144 subsequently daily maintained by adding half of the gravimetrically estimated amount of water lost to each 145 partition. Similar to the first plant experiment, plants were also grown for 14 days with watering being stopped 5 146 days prior to neutron imaging.

147 2.3 Root and soil imaging

148 2.3.1 Neutron computed tomography (CT) for root analysis

149 Neutron imaging was carried out at the IMAT neutron imaging and diffraction facility of the ISIS neutron 150 spallation source at the Rutherford Appleton Laboratory (UK) (Burca et al. 2018) using an optical camera box 151 equipped with a 2048 \times 2048 pixels Andor Zyla 4.2 PLUS sCMOS camera for a standard white beam neutron 152 tomography with 0.7-7 Å energy range.. Scanning was performed following a modified version of the protocol 153 similar to that described in Mawodza et al. (2020) and Mawodza (2019). Six of the strongest plants were measured 154 in the first neutron imaging experiment and two plants in the second (partitioned) experiment.. For the first 155 experiment, the scanning of the cylindrical containers was done with a rotation step of 0.55° for each projection 156 with an exposure time of 30sec per radiography resulting in 654 projections over 6 hours of measurement with an 157 effective pixel size of 55µm. for a field-of-view of 112.7 mm × 112.7 mm. For the second experiment, however, 158 due to the shape of the square-shaped prisms that had a thicker cross-section, an increased number of projections 159 were collected which increased the image acquisition time of 10 hours with 966 projections being taken with a rotation step of 0.373° for each projection. A multiaxial tomography stage available on the IMAT, which allowed 160 161 for two simultaneously scans, was employed during this experiment for an efficient use of the beamtime allocated.

162 2.3.2 Neutron image processing

163 The neutron radiographies acquired were first cropped in NIMH Image J v1.50g (Schneider *et al.* 2012) to crop 164 out the alternate plant images from the same scan. These cropped images were then imported into Octopus 8.9 165 reconstruction software (Octopus 2019) which was then used to correct for neutron beam variation and camera 166 noise using the flat images and dark images taken before and after image acquisition. This is done using the 167 formula:

168
$$I' = N \cdot \frac{I_{raw} - I_{dark}}{I_{open \ beam} - I_{dark}}$$

Where I_{raw} is the raw image, I_{dark} is the image devoid of sample and beam, I_{open beam} is the open beam image
 containing beam characteristics without sample.

171 The corrected images were then reconstructed into a stack of .tiff files which were then imported into Avizo ® 172 9.0.1 (FEI 2015) for segmentation and analysis. To get the best results of segmentation, roots were manually 173 segmented using a limited range paintbrush editor in the segmentation module in the software. Segmentation took 174 an average of 4 hours per plant to complete. The segmented roots obtained from this process were then used to 175 calculate root lengths, thickness, surface area and volume for each root scan. Seminal root tortuosity was estimated 176 using the formula

177
$$\tau = \frac{L}{D}$$

Where L is the seminal root length and D is the straight line distance between the seed-root intersection and the root tip (Schwarz *et al.* 2010). Relative moisture distribution from NCT in plant samples was done to estimate the amount of water retained by each aggregate size at the time of imaging. This was calibrated for by using identical

cylinders containing the same soil type at different moisture contents to ensure that the relative moisture contentcould be quantified.

183 2.3.3 Flatbed scanning and WinRhizo® root analysis and biomass determination

Subsequent to neutron scanning, all the plants that were grown (including extra replicates) were destructively removed from their tubes and the soil attached to the roots was washed off over running water with a 2 mm size mesh. The cleaned roots were then placed into a transparent water-filled tray and scanned at 600 dpi using an Epson Expression 10000XL Pro flatbed scanner. The images produced were then analysed using WinRhizo® 2016a software (Arsenault *et al.* 1995, Wang and Zhang 2009). This analysis produced information on root length, thickness, volume and surface area. After this analysis, the roots were then excised from the shoot then both were dried at 60°C for 24 hours in an oven and weighed to determine dry root and shoot biomass.

191 2.3.4 X-Ray synchrotron imaging of soil aggregates

192 As aggregate size and packing influences pore size distribution and ultimately root growth patterns, it was vital 193 to investigate the pore size distribution produced by each macro aggregate size class used in our experiment. Since 194 the neutron imaging is not sensitive to most of the soil components responsible for soil structural differentiation (such as silica and aluminium), the use of non-invasive X-Ray imaging was key to obtaining detailed 195 196 understanding of the pore and particle distribution within the plant growth tubes used in this study. As such, 197 similarly packed plastic tubes containing aggregates of the two aggregate size classes (0.25-0.5 and 2-4 mm) were 198 scanned using high-resolution X-ray synchrotron imaging. This was done at the I12-JEEP beamline (Drakopoulos 199 et al. (2015) at the Diamond Light Source facility (UK). The soil columns were scanned using a monochromatic 200 beam with an image resolution of 1.3 μ m per pixel. The scans covered a volume of 19.77 mm³ within in each 201 column. Tomographic reconstruction was performed using the SAVU system (Atwood et al. 2015, Wadeson and Basham 2016). A filtered back projection (FBP) algorithm was used (Ramachandran and Lakshminarayanan 202 203 1971), as implemented in the ASTRA toolbox (van Aarle et al. 2016). A combination of grevscale based image 204 thresholding augmented by manual segmentation as described in Menon et al. (2020) was used to delineate 205 between soil particles and air spaces. The segmented images were then used to estimate the inter- and intra-206 aggregate pores within each of the scanned soil columns. For this study, although the complementary use of both 207 X-Ray and neutron CT for each of the specimens would have been more ideal to reveal a more detailed association 208 between root and soil structural features, this was however, not done as the imaging using the two techniques 209 could not be carried out concurrently due to logistical constraights.

210 2.3.5 Statistical analysis

- The statistical analyses for these experiments were performed using GraphPad Prism 8.0.1 (San Diego, California
 USA, www.graphpad.com). Two-tailed T-tests were used to separate between means.
- 213 **3. Results**

214 *3.1 Plant biomass production*

The total biomass produced by wheat seedlings grown in the smaller aggregate size class (0.25-0.5 mm) was significantly greater as compared to those grown in the larger aggregates (2-4 mm) with on average, an increase

- of 25% in the smaller aggregate size. In the larger aggregates, only root biomass was significantly reduced with
- 218 31% lower root dry mass as compared to the smaller sized aggregates as is illustrated in Figure 2a. Shoot biomass
- in the larger aggregates was also reduced by about 19%, although this difference was not statistically significant.
- 220 In terms of shoot: root ratio, there was a significant difference between plants growing in the two aggregate size
- classes with the smaller aggregates showing a comparatively higher (0.833 ± 0.041) ratio as compared to those
- 222 growing in the larger aggregates (0.692 ± 0.104) .
- 223 3.2 Root architectural properties in different aggregates

224 Root metrics and 3D volume-rendering were obtained from NCT while WinRhizo® measurements being used to 225 validate data from the non-invasive imaging. The total root system length grown in the two different aggregates 226 was comparable with no significant difference in plants grown in either size class as illustrated in Figure 3a. Root 227 growth patterns were however distinct, with plants growing in the smaller aggregates exhibiting significantly 228 increased lateral root growth as compared to the larger aggregates. Plants growing in the larger aggregates on the 229 other hand, had more abundant seminal roots, which somewhat compensated for the reduced lateral roots, this is 230 illustrated in Figure 3a and Figure 4. There were also no significant differences in root thickness between plants 231 grown in the different aggregates, however, plants grown in larger aggregates had marginally thicker (448 ±47 232 μ m) roots as compared to plants grown in the smaller aggregates (411 ± 32 μ m). Root tortuosity was also 233 significantly lower in the smaller aggregate size class as illustrated in Figure 3b.

234 *3.3 Root growth in partitioned aggregates*

235 The results from the partitioned tube experiment showed a similar trend to those shown in the experiment where 236 wheat seedlings were grown in the aggregate size classes separately. As detailed in Table 2, root length in the 237 larger aggregate size class was 38-49% shorter than those in the smaller aggregate size class. Other root properties 238 such as root surface area and volume also followed a similar trend being almost double in the smaller aggregates 239 as compared to the larger aggregates. Lateral root growth in the smaller aggregates also showed preferential 240 growth in the smaller aggregates with differences being clearly visible in the 3D renderings in Figure 5. The wheat 241 seedlings also all had 5 seminal roots similar to what was observed in the previous experiment when plants were 242 grown in the larger aggregates, even though aggregate of both size classes were used.

243

244 *3.4 Water distribution in the different aggregate size classes*

245 During neutron imaging, the water content of the growth tubes containing the different aggregates varied 246 significantly with the larger aggregates retaining much greater amounts of water compared to the smaller 247 aggregates, as shown in Figure 6a. Soil moisture content also increased towards the base of each of the growth 248 tubes for both aggregate size classes with roots near the base of the container being most pronounced especially 249 in the smaller aggregates, mainly as a result of increased moisture lower down the soil column. Roots growing in 250 the larger aggregate sizes also showed variable moisture content depending on their interaction with the moist 251 aggregates. As such roots traversing through the large inter aggregate pores in the large aggregates showed 252 relatively lower moisture contents within the pores indicating a reduction in moisture levels when they passed 253 through them as demonstrated in Figure 6b.

254 *3.5 Pore distribution*

- 255 The pore size distribution in the two aggregate size classes was distinctly different with the 0.25-0.5 mm
- aggregates having relatively fewer intra-aggregate pores as compared to the larger 2-4 mm aggregates. The 0.25-
- 257 0.5 mm aggregate size class was made up of numerous coarse sized sand particles in addition to similarly sized
- aggregates that tended to reduce the smaller intra-aggregate pores in this fraction. The inter-aggregate pores in the
- 259 2-4 mm aggregate size fraction were also much larger and more continuous, making up the largest proportion of
- 260 pores in this fraction. An illustration of the pore distribution in the different aggregate size classes is given in
- Figure 7 with metrics from these volumes being given in Table 3.

262 4. Discussion

263 The use of non-invasive neutron imaging, namely NCT, in this study represents a novel approach of looking at 264 root growth in different aggregate size classes as previously, studies looking into root architectural differences 265 only used destructive methods of studying root-aggregate interactions. These, although being useful, are not able 266 to capture the three-dimensional architectural differences to reveal how roots interact with aggregates and often 267 underestimate roots due to losses at washing. Our results revealed that wheat seedlings growing in the finer 268 aggregates showed marginally increased root length as compared to the coarser aggregates despite distinct 269 differences in root biomass. A more detailed analysis of the root growth patterns revealed that this marginal 270 difference was attributed to enhanced numbers of lateral root primordia in the finer aggregates as compared to the 271 coarser aggregates. This may have arisen as a consequence of better root-soil contact in the finer aggregates which 272 had the effect of improving lateral root initiation leading to increased hydropatterning (Orosa-Puente et al. 2018). 273 In the coarser aggregates, on the other hand, lateral root initiation was visibly limited with fewer but longer lateral 274 roots growing. The large inter aggregate pores as observed in the X-Ray tomography images of coarse aggregates 275 may have discouraged lateral root initiation as they would have to transverse large swathes of air to reach moist 276 soil which is undesirable for root resource acquisition (Stirzaker et al. 1996). The large pores similarly also mimic 277 bio pores which have been shown to encourage axial root expansion at the expense of lateral root growth (Ball et 278 al. 2005). Our results are similar to what was observed by Logsdon et al. (1987), Alexander and Miller (1991) as 279 well as Donald et al. (1987) who also reported a preference for axial root elongation as opposed to lateral root 280 system expansion in larger aggregates for maize. This axial elongation has also been shown to increase the ability 281 of roots to penetrate much deeper layers of soil to access moisture (Clark and Barraclough 1999, White and 282 Kirkegaard 2010, Gao et al. 2016). As a consequence, coarse aggregates may be ideal in environments where 283 surface dryness often persists and plants have to forage for water deeper in the soil profile.

284 In terms of biomass, productivity in smaller aggregates was enhanced as compared to that in the larger aggregates. This was as exemplified by the differences in root and shoot biomass production of wheat seedlings growing in 285 286 each aggregate size class. The observed differences could be explained by in several ways, firstly looking at the 287 soil chemical analysis, there was 68% difference in the phosphorus concentration between the two aggregates 288 which may have resulted in improved root biomass production in the smaller aggregates as P deficiencies are 289 known to enhance root foraging for the element. Secondly the differences in bulk density between the two different 290 aggregate sizes (0.92 vs 1.2) resulted in more soil material being available for resource acquisition thus potentially 291 improving root growth in the smaller aggregate size with higher bulk density. Furthermore improved root-soil

contact may have also played a role in improving plant growth. Our results are similar to the results obtained by

293 Misra et al. (1986a), Donald et al. (1987), Logsdon et al. (1987) and Alexander and Miller (1991) who also

reported improved shoot and root growth in finer aggregates. These results are however, contrary to the findings

by Agrawal *et al.* (1984) as well as Agrawal and Jhorar (1987) who showed better root growth in wheat plants

- growing in large aggregates (>2mm) over a 12 week period. The improved root growth in smaller aggregates in
- 297 our experiment was thought to be a result of a variety of factors such as improved root-soil contact, improved
- 298 nutrition as well as general ease of root penetration as roots required smaller amounts of energy to deflect smaller
- aggregates as opposed to the larger aggregates (Dexter 1978).
- 300 The high root to shoot ratio in the smaller aggregates in our experiments suggested that the seedlings growing in 301 this media could have experienced increased moisture deficiency as periodic droughting is known to increase root: 302 shoot ratio (Xu et al. 2015). Further evidence of this may lie in quicker drying in the smaller aggregates as 303 indicated by the lower soil water content observed during NCT imaging which could lead to temporal moisture 304 deficiencies. The drying, however, may also be explained by increased plant growth contributing to improved 305 water uptake which in turn contributes to increase foraging. It is worth noting however, that moisture variations 306 as estimated by neutron imaging do not represent absolute moisture contents and may overestimate moisture 307 contents due to hydrogen rich materials within the soil such as organic matter within soils (e.g. from mucilage or 308 soil organic matter). Differences in root: shoot ratio may also have been due to plants growing in smaller 309 aggregates experiencing a higher degree of phosphorus deficiency as increased root growth in preference to shoots 310 is often attributed to plants foraging for the element (Lynch 2007, Bhattacharya 2019). It noteworthy however, 311 that wheat germination and initial early root growth is predominantly externally influenced by soil physical 312 properties which govern factors such as access to aeration, moisture and soil temperature (Bouaziz and Hicks 313 1990, Bouaziz et al. 1990, Poole 2016). Soil nutrition although important only begins to play a dominant role after 314 the initial stages growth when seed resources begin to deplete which is why seed size and weight controls early 315 growth and vigour in wheat and other species (Ries and Everson 1973, Puri and Qualset 1978, Abd El Rahman 316 and Bourdu 1986).
- 317 Interactions between plant roots and different soil structures as derived from growth in different soil aggregates also revealed seminal root tortuosity of the plants grown in the smaller aggregates were smaller, indicating shorter 318 319 paths of downward trajectory as the seminal roots entered into the soil. This could be explained by the fact that in 320 the smaller aggregates, roots could more easily deflect them and continue their downward trajectory (Misra et al. 321 1986b, 1988, Popova et al. 2016). There was, however, no difference in root thickness in plants growing in both 322 aggregates suggesting that roots in the larger aggregates did not often buckle when attempting to enter the large 323 aggregates as has been demonstrated in other experiments such as the increased radial root expansion shown by 324 Logsdon et al. (1987) and Logsdon (2013) in maize plants. This may be due to the increased porosity in our
- 325 experiment, which allowed the roots to grow freely around the large aggregates instead of penetrating them.
- The partitioned root experiment provided a novel approach of looking at root growth in aggregates with no previous experiments in literature having elaborately been able to show root behaviour at the transition between different aggregate size classes. Root growth patterns were largely coherent to those shown when the seedlings were grown in single aggregates. This indicated that similar processes governed root growth in this setup. As such, preferential root growth was prevalent with the finer aggregates having almost double the root length as compared

331 to the coarser aggregates. The abrupt soil structural change brought about by the transition between different 332 aggregate size classes did not seem to affect root growth paths with roots not visibly changing direction at the 333 transition between these zones. Seminal root growth in the partitioned growth tubes was similar to what happened 334 in the larger aggregates with both plants having five seminal roots as opposed to an average of three in the finer 335 aggregates. This could have been due to the influence of the coarser aggregates that tend to encourage axial growth 336 in preference to lateral root growth (Clark and Barraclough 1999, White and Kirkegaard 2010). This is primarily 337 due to the notable absence of non-invasive imaging when studying plants growing in different aggregate sizes. 338 Non-invasive imaging was paramount in this experiment as separating roots for analysing architectural differences 339 destructively would be difficult without disturbing the root distribution patterns. Other related experiments 340 investigating how plant roots interact with soil structure that uses non-invasive imagery mainly focus on root 341 growth in relation to compaction. For instance, Tracy et al. (2012), Popova et al. (2016) and Burr-Hersey et al. 342 (2017) all showed non-invasively how roots behaved when growing in soils with compaction but did not, however, 343 show root behaviour specifically in relation to different aggregates.

344 In terms of segmentation, NCT images in the larger aggregates were much easier to segment as compared to those 345 in the smaller aggregates even though they were much drier at the time of imaging. This was primarily because 346 the smaller lateral roots seemed to dry along with the soil thus reducing their contrast with the soil. This is similar to what was reported by Mawodza et al. (2020) who showed variable water distribution throughout the roots with 347 348 reduced moisture especially in roots growing through pores. As soil structure was key in this particular experiment, the use of NCT in conjunction with X-Ray CT experiment would have been more informative. This 349 350 would have enable us to study both plant roots and soil structure simultaneously due to their complementarity 351 (Robinson et al. 2008, Moradi et al. 2013, Karch et al. 2017). This was, however, not possible as facility access 352 was limited and we couldwith only use NCT to study plant soil-interactions. NCT also has its own limitations 353 such as the relatively low resolution that can make it difficult to segment the smaller lateral roots. As such to 354 counteract this, we used flatbed scanning to provide additional information on the smaller features that may have 355 been missed using NCT.

356 5. Conclusions

357 In this study, we present a novel approach of investigating the interactions between soil aggregates and roots in 358 three dimensions using NCT. Our results clearly showed improved root growth in smaller macro-aggregates as 359 opposed to larger aggregates. These findings may have implications in terms of soil cultivation with soils 360 containing finer macroaggregates (finer tilth) being recommended for the better establishment of wheat plants 361 growing in well watered sandy loam soils. For deeper root growth especially in water limited conditions however, 362 soils with larger aggregates may be more ideal as this promotes better axial growth allowing roots to penetrate 363 deeper into the soil for better water acquisition. As soils in nature are unlikely to segregate into distinct sizes as it 364 was the case with the one used in this study, to further enhance our undertanding of root-aggregate interactions in 365 soils in their natural state, future research into cultivated soils with a more extensive range of aggregates may be 366 required to further determine how wheat plants respond to a wider variety of aggregates in agricultural soils.

367 Acknowledgements

- 368 This research was funded as part of a PhD studentship by the Grantham Centre for Sustainable Futures at the
- 369 University of Sheffield. Neutron imaging beamline grant (RB1820361) was provided by STFC ISIS Facility (doi:
- 370 10.5286/ISIS.E.RB1820361) as well as the I12 beamline (proposal mg22992) at Diamond Light Source Ltd., UK.

371 References

- van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A., De Beenhouwer, J., Joost
 Batenburg, K., and Sijbers, J., 2016. Fast and flexible X-ray tomography using the ASTRA toolbox. *Optics Express*, 24 (22), 25129.
- Abd El Rahman, N. and Bourdu, R., 1986. Effet de la taille et de la forme des grains sur quelques
 caractéristiques du développement du maïs au stade jeune. *Agronomie*, 6 (2), 181–186.
- 377 Agrawal, R.P. and Jhorar, B., 1987. Soil Aggregates and Growth of Wheat. J. Agronomy & Crop Science, 158,
 378 160–163.
- Agrawal, R.P., Mundra, M., and Jhorar, B.S., 1984. Seedbed tilth and nitrogen response of wheat. *Soil & Tillage Research*, 4, 25–34.
- Alexander, K.G. and Miller, M.H., 1991. The effect of soil aggregate size on early growth and shoot-root ratio
 of maize (Zea mays L.). *Plant and Soil*, 138 (2), 189–194.
- Arsenault, J.-L., Poulcur, S., Messier, C., and Guay, R., 1995. WinRHIZOTM, a Root-measuring System with a
 Unique Overlap Correction Method. *HortScience*, 30 (4), 906D 906.
- Atwood, R.C., Bodey, A.J., Price, S.W.T., Basham, M., and Drakopoulos, M., 2015. A high-throughput system
 for high-quality tomographic reconstruction of large datasets at diamond light source. *Philosophical*
- **387** *Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 373 (2043).
- Bahmani, O., 2019. Evaluation of the short-term effect of tillage practices on soil hydro-physical properties.
 Polish Journal of Soil Science, 52 (1), 43–57.
- Ball, B.C., Bingham, I., Rees, R.M., Watson, C.A., and Litterick, A., 2005. The role of crop rotations in
 determining soil structure and crop growth conditions. *Canadian Journal of Soil Science*, 85 (5), 557–577.
- Bhattacharya, A., 2019. Changing environmental condition and phosphorus-use efficiency in plants. *Changing Climate and Resource Use Efficiency in Plants; Academic Press: Cambridge, MA, USA*, 241–305.
- Blunk, S., Malik, A.H., de Heer, M.I., Ekblad, T., Bussell, J., Sparkes, D., Fredlund, K., Sturrock, C.J., and
 Mooney, S.J., 2017. Quantification of seed-soil contact of sugar beet (Beta vulgaris) using X-ray
 Computed Tomography. *Plant Methods*, 13 (1), 1–14.
- Bodner, G., Leitner, D., and Kaul, H.P., 2014. Coarse and fine root plants affect pore size distributions
 differently. *Plant and Soil*, 380 (1), 133–151.
- Bouaziz, A. and Hicks, D.R., 1990. Consumption of wheat seed reserves during germination and early growth as
 affected by soil water potential. *Plant and Soil*, 128 (2), 161–165.

- 401 Bouaziz, A., Souty, N., and Hicks, D., 1990. Emergence force exerted by wheat seedlings. *Soil and Tillage*402 *Research*, 17 (3–4), 211–219.
- Braunack, M., 1995. Effect of aggregate size and soil water content on emergence of soybean (Glycine max, L.
 Merr.) and maize (Zea mays, L.), 33, 149–161.
- Braunack, M.. and Dexter, A.., 1988. The Effect of Aggregate Size in the Seedbed on Surface Crusting and
 Growth and Yield of Wheat (Triticum aestivum L., cv. Halberd) Under Dryland Conditions, 11, 133–145.
- Braunack, M.. and Dexter, A.., 1989. Soil Aggregation in the Seedbed: a Review. II. Effect of Aggregate Sizes
 on Plant Growth M.V. *Soil & Tillage Research*, 14, 281–298.
- 409 Bronick, C.J. and Lal, R., 2005. Soil structure and management: A review. *Geoderma*, 124 (1–2), 3–22.
- 410 Burca, G., Nagella, S., Clark, T., Tasev, D., Rahman, I.A., Garwood, R.J., Spencer, A.R.T., Turner, M.J., and
- 411 Kelleher, J.F., 2018. Exploring the potential of neutron imaging for life sciences on IMAT. *Journal of*412 *Microscopy*, 00 (0), 1–6.
- 413 Burr-Hersey, J.E., Mooney, S.J., Bengough, A.G., Mairhofer, S., and Ritz, K., 2017. Developmental
- 414 morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed
 415 by X-ray computed tomography. *PLoS ONE*, 12 (7), 1–18.
- Clark, L.J. and Barraclough, P.B., 1999. Do dicotyledons generate greater maximum axial root growth pressures
 than monocotyledons? *Journal of Experimental Botany*, 50 (336), 1263–1266.
- 418 Dexter, A.R. and Hewitt, J.S., 1978. The deflection of plant roots. *Journal of Agricultural Engineering*419 *Research*, 23 (1), 17–22.
- 420 Dojarenko, A.G., 1924. The study of soil structure from the ratio of non-capillary and capillary porosity, and its
 421 significance in soil fertility. *Russ. J. Agric. Sci.*, 1, 451–474.
- 422 Donald, R., Kay, B., and Miller, M., 1987. The effect of soil aggregate size on early shoot and root growth of
 423 maize (Zea mays L.). *Plant and soil*, 103 (2), 251–259.
- 424 Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R., Magdysyuk, O., Vo, N., Hart, M., Connor, L.,
 425 Humphreys, B., Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster, A., Maio, N. De,
- Basham, M., Yuan, F., and Wanelik, K., 2017. beamlines 112 : the Joint Engineering , Environment and
- -20 Dashani, W., Tuan, T., and Wahenk, K., 2017. Ocaninies 112. the sound Engineering, Environment an
- 427 Processing (JEEP) beamline at Diamond Light Source beamlines, (2015), 828–838.
- 428 FEI, 2015. User's guide Avizo ® 9 [online].
- 429 Fromm, H., 2019. Root Plasticity in the Pursuit of Water. *Plants*, 8 (7), 236.
- Gao, W., Hodgkinson, L., Jin, K., Watts, C.W., Ashton, R.W., Shen, J., Ren, T., Dodd, I.C., Binley, A., Phillips,
 A.L., Hedden, P., Hawkesford, M.J., and Whalley, W.R., 2016. Deep roots and soil structure. *Plant Cell and Environment*.
- 433 Hadas, A., 1975. Water transfer to germinating seeds as afected by soil hydraulic properties and seed water

- 434 contact impediments in Heat and Mass Transfer in the BiosphereIn. Script Book, Wash—ington DC, 501.
- Hagin, J., 1952. Influence of soil aggregation on plant growth. *Soil Science*, 74 (6), 471–478.
- Håkansson, I. and von Polgár, J., 1984. Experiments on the effects of seedbed characteristics on seedling
 emergence in a dry weather situation. *Soil and Tillage Research*, 4 (2), 115–135.
- Hewitt, J.. and Dexter, A.., 1984. The behaviour of roots encountering cracks in soil: I1. Development of a
 predictive model. *Plant and Soil*, 28, 11–28.
- Jabro, J.D., Iversen, W.M., Stevens, W.B., Evans, R.G., Mikha, M.M., and Allen, B.L., 2015. Effect of three
 tillage depths on sugarbeet response and soil penetrability resistance. *Agronomy Journal*, 107 (4), 1481–
 1488.
- Jaggi, I.K., Gorantiwar, S.M., and Khanna, S.S., 1972. Effect of bulk density and aggregate size on wheat
 growth. *Journal of the Indian Society of Soil Science*, 20 (4), 421–423.
- Karch, J., Dudák, J., Žemlička, J., Vavřík, D., Kumpová, I., Kvaček, J., Heřmanová, Z., Šoltés, J., Viererbl, L.,
 Morgano, M., Kaestner, A., and Trtík, P., 2017. X-ray micro-CT and neutron CT as complementary
- 447 imaging tools for non-destructive 3D imaging of rare silicified fossil plants. *Journal of Instrumentation*,
 448 12 (12).
- 449 Kvasnikov, V. V, 1928. The structure of the soil and yields. *Russ. J. Agric. Sci*, 5, 459–482.
- Logsdon, S.D., 2013. Root Effects on Soil Properties and Processes: Synthesis and Future Research Needs, 4,
 173–196.
- 452 Logsdon, S.D., Parker, J.C., and Reneau, R.B., 1987. Root growth as influenced by aggregate size. *Plant and*453 *Soil*, 99 (2–3), 267–275.
- 454 Lynch, J.P., 2007. Roots of the second green revolution. Australian Journal of Botany, 55 (5), 493–512.
- Mairhofer, S., Pridmore, T., Johnson, J., Wells, D.M., Bennett, M.J., Mooney, S.J., and Sturrock, C.J., 2017. XRay Computed Tomography of Crop Plant Root Systems Grown in Soil. *Current Protocols in Plant Biology*, 2 (December), 270–286.
- 458 Mawodza, T., 2019. Plant-soil interactions: the impact of plant water use efficiency on root architecture and soil
 459 structure. The University of Sheffield.
- 460 Mawodza, T., Burca, G., Casson, S., and Menon, M., 2020. Wheat root system architecture and soil moisture
 461 distribution in an aggregated soil using neutron computed tomography. *Geoderma*, 359, 113988.
- Menon, M., Mawodza, T., Rabbani, A., Blaud, A., Lair, G.J., Babaei, M., Kercheva, M., Rousseva, S., and
 Banwart, S., 2020. Pore system characteristics of soil aggregates and their relevance to aggregate stability. *Geoderma*, 366, 114259.
- Misra, R.K., Alston, A.M., and Dexter, A., 1988. Root Growth and Phosphorus Uptake in Relation to the Size
 and Strength of Soil Aggregates. I. Experimental Studies, 11, 103–116.

- 467 Misra, R.K., Dexter, A.R., and Alston, A.M., 1986a. Penetration of soil aggregates of finite size. *Plant and Soil*,
 468 94 (1), 59–85.
- 469 Misra, R.K., Dexter, A.R., and Alston, A.M., 1986b. Penetration of soil aggregates of finite size. *Plant and Soil*,
 470 94 (1), 59–85.
- 471 Moradi, A.B., Hopmans, J.W., Oswald, S.E., Menon, M., Carminati, A., Lehmann, E., Anderson, S.H., and
 472 Hopmans, J.W., 2013. Applications of Neutron Imaging in Soil–Water–Root Systems, 113–136.
- 473 Nakamoto, T., 2002. Aggregate Size and Stability of Andosol as Affected by Soybean Root Growth under
 474 Controlled Conditions. *Plant Production Science*, 5 (4), 320–322.
- 475 Nimmo, J.R., 2004. Porosity and Pore Size Distribution. *Encyclopedia of Soils in the Environment*.
- 476 Octopus, 2019. Octopus reconstruction [online]. Available from: https://octopusimaging.eu/octopus/octopus 477 reconstruction [Accessed 1 Mar 2019].
- 478 Orosa-Puente, B., Leftley, N., von Wangenheim, D., Banda, J., Srivastava, A.K., Hill, K., Truskina, J., Bhosale,
- 479 R., Morris, E., Srivastava, M., Kümpers, B., Goh, T., Fukaki, H., Vermeer, J.E.M., Vernoux, T., Dinneny,
- J.R., French, A.P., Bishopp, A., Sadanandom, A., and Bennett, M.J., 2018. Root branching toward water
 involves posttranslational modification of transcription factor ARF7. *Science*, 362 (6421), 1407–1410.
- 482 Poole, N., 2016. Germination and Emergence | Factors Affecting Germination. *Cereal growth stages guide*,
 483 (February).
- 484 Popova, L., Van Dusschoten, D., Nagel, K.A., Fiorani, F., and Mazzolai, B., 2016. Plant root tortuosity: An
 485 indicator of root path formation in soil with different composition and density. *Annals of Botany*, 118 (4),
 486 685–698.
- 487 Puri, Y.P. and Qualset, C.O., 1978. Effect of seed size and seeding rate on yield and other characteristics of
 488 durum wheat. *Phyton*.
- Ramachandran, G.N. and Lakshminarayanan, A. V., 1971. Three-dimensional reconstruction from radiographs
 and electron micrographs: application of convolutions instead of Fourier transforms. *Proceedings of the National Academy of Sciences of the United States of America*, 68 (9), 2236–2240.
- 492 Ries, S.K. and Everson, E.H., 1973. Protein content and seed size relationships with seedling vigor of wheat
 493 cultivars 1. *Agronomy Journal*, 65 (6), 884–886.
- Robinson, B.H., Moradi, A., and Lehmann, E., 2008. Neutron Radiography for the Analysis of Plant Soil
 Interactions. *Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation*, 1–8.
- 496 Schneider, C. a, Rasband, W.S., and Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis.
 497 *Nature Methods*, 9 (7), 671–675.
- Schwarz, M., Cohen, D., and Or, D., 2010. Root-soil mechanical interactions during pullout and failure of root
 bundles. *Journal of Geophysical Research: Earth Surface*, 115 (4), 1–19.

- 500 Snyder, V.A. and Vázquez, M.A., 2005. Structure. *Encyclopedia of Soils in the Environment*, 4 (1958), 54–68.
- Stirzaker, R.J., Passioura, J.B., and Wilms, Y., 1996. Soil structure and plant growth: Impact of bulk density and
 biopores. *Plant and Soil*, 185 (1), 151–162.
- Suralta, R.R., Kano-Nakata, M., Niones, J.M., Inukai, Y., Kameoka, E., Tran, T.T., Menge, D., Mitsuya, S., and
 Yamauchi, A., 2018. Root plasticity for maintenance of productivity under abiotic stressed soil
 environments in rice: Progress and prospects. *Field Crops Research*, 220, 57–66.
- 506 Topp, C.N., 2016. Hope in change: The role of root plasticity in crop yield stability. *Plant Physiology*.
- Tracy, S.R., Black, C.R., Roberts, J.A., McNeill, A., Davidson, R., Tester, M., Samec, M., Korošak, D.,
 Sturrock, C., and Mooney, S.J., 2012. Quantifying the effect of soil compaction on three varieties of wheat
 (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). *Plant and Soil*, 353 (1–2), 195–
 208.
- Tracy, S.R., Roberts, J.A., Black, C.R., McNeill, A., Davidson, R., and Mooney, S.J., 2010. The X-factor:
 Visualizing undisturbed root architecture in soils using X-ray computed tomography. *Journal of Experimental Botany*, 61 (2), 311–313.
- Wadeson, N. and Basham, M., 2016. Savu: A Python-based, MPI Framework for Simultaneous Processing of
 Multiple, N-dimensional, Large Tomography Datasets.
- Wang, M.-B. and Zhang, Q., 2009. Issues in using the WinRHIZO system to determine physical characteristics
 of plant fine roots. *Acta Ecologica Sinica*, 29 (2), 136–138.
- Wang, X., Shen, J., Hedden, P., Phillips, A.L., Thomas, S.G., Ge, Y., Ashton, R.W., and Whalley, W.R., 2020.
 Wheat growth responses to soil mechanical impedance are dependent on phosphorus supply. *Soil and Tillage Research*, 205 (July 2020), 104754.
- White, R.G. and Kirkegaard, J.A., 2010. The distribution and abundance of wheat roots in a dense, structured
 subsoil Implications for water uptake. *Plant, Cell and Environment*, 33 (2), 133–148.
- Whiteley, G.M. and Dexter, A.R., 1984. Displacement of soil aggregates by elongating roots and emerging
 shoots of crop plants. *Plant and Soil*, 77 (2–3), 131–140.
- Whiteley, G.M., Hewitt, J.S., and Dexter, A.R., 1982. The buckling of plant roots. *Physiologia Plantarum*, 54
 (3), 333–342.
- Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., and Peng, S., 2015. Drought stress condition increases root to shoot
 ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. *Acta Physiologiae Plantarum*, 37 (2).
- Zarebanadkouki, M., Kim, Y.X., and Carminati, A., 2013. Where do roots take up water? Neutron radiography
 of water flow into the roots of transpiring plants growing in soil. *New Phytologist*, 199 (4), 1034–1044.

533 Table 1 Physicochemical properties of the aggregate fractions used in plant growth experiments

								Ex	changeat	ole base ca	tions		cmol
								(NH4OA	c) (mg/10)	0g)		(+)/kg
	pН	EC (µS/cm)	%SOM	%Sand	%Silt	%Clay	%N	Na	Κ	Ca	Mg	Р	CEC
	_										-	(mg/kg	
												soil)	
Bulk soil	6.8	205	5.59	70	16	14	0.19	3.02	27.85	349.50	28.35	35.49	20.63
		2/2					0.00					20.00	
<0.25 mm	6.9	262	5.51				0.22					28.00	
0 25-0 5 mm	7.0	182	3 58	74	14	12	0.14	2.04	26.20	283.00	22.50	25.64	16 74
0.20 0.0 11111	/.0	102	5.50				0	2.01	20.20	200.00	22.00	20101	10171
0.5-1mm	7.0	119	6.58				0.19					25.59	
1-2 mm	7.1	227	5.96				0.21					44.91	
2.4		200	6.40	(0)	10		0.00	0.71	20 70	447.00	22.00	10.1.1	24.44
2-4 mm	6.6	200	6.49	68	18	14	0.20	2.61	30.70	417.00	32.80	43.14	24.41
Ave of age	6.9	198	5.62				0.19					33.46	
fractions													

534

535

536

537 Figure 1 Aluminium container showing the set-up of the partitioned aggregates before the removal of the separating 538 cardboard

540 Figure 2 a) Plant biomass and b) root: shoot ratio of 14-day old wheat plants grown in the different aggregate size classes.

541 (*n=3*). The error bars indicate Standard Error of the mean. Symbols indicate a significant difference between means in t-542 tests (** $p = \le 0.01$)

545Figure 3 a) Total root length and b) average root tortuosity of 14-day old wheat seedlings growing in 0.25-0.5 and 2-4 mm546aggregates (n=3). The error bars indicate Standard Error of the mean for seminal and lateral roots. Symbols547indicate a significant difference between means in t-tests (*= ≤ 0.05 , **= ≤ 0.01)

Figure 4 Neutron CT and corresponding flatbed scan images of two selected replicates of the 14 day old wheat seedlings
 growing in a) 0.25-0.5 mm and b) 2-4 mm aggregates. The scale bar applies only to the NCT image on the left of each replicate.

Figure 5 a, c) Showing neutron CT images of two 14 day old wheat seedlings growing in partitioned prisms with aggregates
of 0.25-0.5 (right) and 2-4 (left) mm on either side of each tube. Relative soil moisture distribution in each side is given to
the left of each level whilst the extracted root is given on the right. Roots growing in each of the different aggregates are
coloured differently with purple being used to indicate roots growing in 2-4 mm aggregates whilst yellow is used for
indicate roots growing in 0.25-0.5 mm aggregates. b, d) show flatbed scan images of the corresponding plants after
washing.

560 Table 2 Root properties from plants grown in partitioned aggregates

	Root Length (mm)		Root Volume (cm ³)		Surface ar	ea (cm ²)	Average root diameter(mm)		
Aggregate size	0.25-0.5	2-4	0.25-0.5	2-4	0.25-0.5	2-4	0.25-0.5	2-4	
Plant 1	93.67	57.66	0.0998	0.0520	12.89	7.84	0.337	0.290	
Plant 2	114.60	57.52	0.1036	0.0747	13.95	8.63	0.326	0.398	

562

- 564 Figure 6 Showing relative moisture distribution in the two different aggregate sizes used for experimentation at the time of
- 565 imaging with the blue colour showing increased moisture content. a) Shows the moisture distribution within the whole soil
- growth column whilst b) shows a more detailed close up view of the two tubes indicating resolvable roots and other finer soil
 features

- Figure 7: X-Ray synchrotron image of 0.25-0.5 (left) and 2-4mm (right) aggregates showing both inter- and intra- aggregate
 pore spaces
- Table 3 Showing a breakdown of pore distribution in the different aggregate size classes as determined from the X-Ray
 synchrotron images

	% Inter-aggregate pores	% Intra-aggregate pores	Total porosity (m ³ /m ³)
0.25-0.5 mm	94.39	5.61	0.547
2-4 mm	77.67	22.33	0.653

569

1 Supplementary data

2 A. Preliminary screening for differences in plant properties

4 Figure 1: Shoot (a) and root (b) biomass of 4week old wheat plants grown in aggregates of different sizes

5 In this preliminary experiment, each of the four macro-aggregate size fractions (0.25-0.5, 0.5-1, 2-4mm), along 6 with the bulk (<4mm sieved soil) were filled into 435cm³ cylindrical pots (68mm diameter × 120mm height). A 7 single wheat (Triticum Aestivum. L cv. Fielder) seed was planted about 1cm underneath the surface of the soil and 8 the pots were watered to a volumetric moisture content (θ) of between 16 and 20%. This water content was 9 maintained during the course of this experiment by surface irrigation to the predetermined weight corresponding 10 to the above mentioned θ . These plants were grown for four weeks in a growth chamber maintained at a 11 temperature of 22°C (day)/18°C (night) and a relative humidity of 55% with light intensity averaging 400 µmol 12 $m^2 s^{-1}$. After this growth period, the plants were harvested and their shoots were excised and dried in an oven at 13 60°C for 48 hours to obtain dry root and shoot biomass. In this initial screening of the wheat seedlings did not 14 show significant differences in root and shoot properties. This was probably due to the greater amount of time 15 used to grow the plants which could have had an effect of masking the subtle differences in plant growth. This 16 may have happened due to the limited volume for root growth thus any differences that were seen early on became 17 subtle as the plants grew. However the most contrasting differences in root growth were seen between the largest 18 2-4mm and smallest 0.25-0.5mm aggregate sizes and thus these were used for further experimentation.

20 Figure 2 Preliminary experiment showing wheat plants growing in different size aggregates at a) 14 days and b) 28 days

21 B. Plant neutron CT scans

0.25-0.5mm aggregates

2-4 mm aggregates

25 Table S1 Selected root properties from experiment with individual aggregates grown separately

	0.25-0.5 mm	2-4 mm
Root thickness (mm)	$0.59 \pm 0.02*$	0.47 ± 0.01
Root: Shoot ratio (-)	$0.83 \pm 0.02*$	0.69 ± 0.04
Specific root length (mm g ⁻¹)	88.44 ± 2.54	94.81 ± 3.81*
Root tissue density (cm ³ g ⁻¹)	$25.02 \pm 1.30*$	16.78 ± 1.20
Root branching density (roots cm ⁻¹)	1.02 ± 0.04	1.27 ± 0.06