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Supplementary Material

On spike-and-slab priors for Bayesian equation discovery of
nonlinear dynamical systems via sparse linear regression

R. Nayek, R. Fuentes, K. Worden, E.J. Cross

This document comprises the derivation of the conditional probability distributions in the Gibbs sampling
scheme used for Discontinuous Spike-and-Slab (DSS) priors. The spike-and-slab prior has a hierarchical
form that can be expressed in the form of a directed acyclic graph (DAG), and hence, it will be useful to
understand the play of conditional independencies between the random variables in a DAG, before looking
to derive the conditional probability distributions of the Gibbs sampler.

1. Conditional independence in DAGs

Given three random variables, say X, Y and Z,

X ⊥ Y | Z (1)

implies that X and Y are probabilistically independent given Z = z. Conditional independencies between
random variables are easily visualised using DAGs, and whether or not two random variables (depicted by
the nodes in a DAG) are conditionally independent is decided based on their structure of their connection
i.e. the directed edges of the DAG. Figure 1 shows three different types of DAG structures.
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Figure 1: Three different types of directed acyclic graph structures.

In the first two DAG structures, 1(a) and 1(b), the conditioning on Z renders Y independent of X, and
therefore, graph structures similar to cases (a) and (b) would imply X ⊥ Y | Z. For DAG structure 1(c), X

and Y are marginally independent of each other, that is X ⊥ Y , however, when conditioned on Z, X and
Y become dependent, i.e. X 6⊥ Y | Z. The notion of conditional independence in DAGs would greatly aid
in finding the conditional probability distributions feeding the Gibbs sampler.
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2. Derivation of the conditional probability distributions of Gibbs sampler for DSS priors

2.1. DSS prior model specification

The DSS prior model used for linear regression with dictionary D ∈ R
N×P is summarised by the following

set of relations:

p
(

y | θ, σ2
)

= N
(

Dθ, σ2IN

)

(2a)

p (θ | z) = pslab (θr)
∏

i:zi=0

pspike (θi) (2b)

pspike (θi) = δ0 (2c)

pslab

(

θr | σ2, vs

)

= N
(

0, σ2vsA0,r

)

(2d)

p (vs) = IG (av, bv) (2e)

p (zi | p0) = Bern(p0) (2f)

p (p0) = Beta(ap, bp) (2g)

p
(

σ2
)

= IG (aσ, bσ) (2h)

Here, θr ∈ R
r×1 denotes the set of components of θ for which the corresponding zis take values 1. The

relations between the random variables can be visualised as in Figure 2.
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Figure 2: Graph of the hierarchical spike-and-slab model for linear regression; the variables in circles represent random variables,

while those in squares represent deterministic parameters.

Due to the DAG structure, the joint probability distribution over all random variables factorises as,

p
(

y, θ, z, p0, vs, σ2
)

= p
(

y | θ, σ2
)

p
(

θ | z, vs, σ2
)

p (z | p0) p (p0) p (vs) p
(

σ2
)

(3)

Note the conditioning on deterministic hyperparameters av, bv, ap, bp, aσ, bσ and the dictionary D has been
suppressed. The Gibbs sampler needs closed-form expressions of the conditional probability distributions of
each random variable given the data and all other random variables. However, due to the DAG structure, the
conditional probability distributions of the random variables become conditionally independent of certain
variables:

p
(

p0 | y, θ, z, vs, σ2
)

= p (p0 | z) (4a)

p
(

vs | y, θ, z, p0, σ2
)

= p
(

vs | θ, z, σ2
)

(4b)

p
(

σ2 | y, θ, z, p0, vs

)

= p
(

σ2 | y, θ, z, vs

)

(4c)

p
(

θ | y, z, p0, vs, σ2
)

= p
(

θ | y, z, vs, σ2
)

(4d)

p
(

z | y, θ, p0, vs, σ2
)

= p
(

z | θ, p0, vs, σ2
)

(4e)

At this point, it must be mentioned that the Dirac-delta spike distribution in DSS priors creates a nuisance
in the Gibbs sampling scheme; it prevents the creation of an irreducible Markov chain required for the chain
to reach a stationary distribution. Specifically, when zi = 0, the new value for θi will be θi = 0, which will
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in turn result in zi = 0 in a new draw, and the process keeps repeating itself. In other words, the chain
has absorbing states. This problem can be avoided by marginalising or integrating over θ to get rid of the
Dirac-delta function. Therefore, in the derivations of the conditional probability distributions for Eqs. 4c
and 4e, the procedure of marginalising over θ is performed to obtain an irreducible chain. As a result of
marginalisation over θ, the conditional probabilities Eqs. 4c and 4e become dependent upon y, and their
relations can be re-expressed as,

p
(

σ2 | y, θ, z, p0, vs

)

= p
(

σ2 | y, z, vs

)

(5a)

p
(

z | y, θ, p0, vs, σ2
)

= p
(

z | y, p0, vs, σ2
)

(5b)

2.2. Derivations of conditional probability distributions

In this section, the conditional sampling distributions used in Gibbs sampling with DSS priors are
derived.

2.2.1. Sampling distribution of p0

p (p0 | z) ∝ p (z | p0) p (p0)

∝

(

P
∏

i=1

pzi
0 (1 − p0)

1−zi

)

p
ap−1
0 (1 − p0)

bp−1
[∵ zi’s are independent]

∝ p
ap+sz

0 (1 − p0)
bp+P −sz

[

where sz =
P
∑

i=1

zi

]

p0 | z ∼ Beta (ap + sz, bp + P − sz) (6)

2.2.2. Sampling distribution of vs

p
(

vs | θ, z, σ2
)

∝ p
(

θ | z, vs, σ2
)

p (vs) p (z) p
(

σ2
)

∝ p
(

θ | z, vs, σ2
)

p (vs)
[

∵ p (z) and p
(

σ2
)

are constants w.r.t. vs

]

∝ N
(

θr | 0, σ2vsA0,r

)

IG (av, bv)

∝
1

(vsσ2)
r/2 |A0,r|1/2

exp

(

−
θT

r A−1
0,rθr

2σ2vs

)

v−av−1
s exp

(

−
bv

vs

)

∝ v
−(av+ r

2 )−1
s exp



−
bv +

θT
r A

−1

0,rθr

2σ2

vs





vs | θ, z, σ2 ∼ IG

(

av +
r

2
, bv +

θT
r A−1

0,rθr

2σ2

)

(7)

Note, r is the number of components of θ that fall in the slab and is equal to the number of non-zero
components of z. Since zis are binary variables, r = sz =

∑P
i=1 zi. When all zis are zero, vs is sampled

from the prior IG (av, bv).

2.2.3. Sampling distribution of σ2

The derivation of conditional distribution of σ2 will involve integrating out the parameter θ to avoid
dealing with the Dirac-delta spike distribution (as mentioned before).

p
(

σ2 | y, z, vs

)

∝

∫

p
(

y, θ, z, vs, σ2
)

dθ

∝

(∫

p
(

y | θ, σ2
)

p
(

θ | z, vs, σ2
)

dθ

)

p (z) p (vs) p
(

σ2
)

∝

(∫

p
(

y | θ, σ2
)

p
(

θ | z, vs, σ2
)

dθ

)

p
(

σ2
) [

∵ p (z) and p (vs) are constants w.r.t. σ2
]
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Upon integration, the components of θ belonging to the spike distribution are evaluated at zero and the rest
of the components of θ that belong to the slab (i.e. θr) remains to be integrated. Expanding the integrand
p
(

y | θ, σ2
)

p
(

θ | z, vs, σ2
)

, with θ now replaced by θr, one obtains,

1

(2πσ2)
N/2

exp

(

−
(y − Drθr)

T
(y − Drθr)

2σ2

)
(

det
(

A−1
0,r

))1/2

(2πvsσ2)
r/2

exp

(

−
θT

r A−1
0,rθr

2σ2vs

)

Simplifying and rearranging the terms involving θr leads to,

=⇒
1

(2πσ2)
N/2

(

det
(

A−1
0,r

))1/2

(2πvsσ2)
r/2

exp

(

−
yT y + θT

r Σ−1θr − 2θT
r Σ−1µ

2σ2

)

=⇒
1

(2πσ2)
N/2

(

det
(

A−1
0,r

))1/2

(2πvsσ2)
r/2

exp

(

−
(θr − µ)

T
Σ−1 (θr − µ)

2σ2

)

exp

(

−

(

yT y − µT Σ−1µ
)

2σ2

)

where Σ−1 =
(

DT
r Dr + v−1

s A−1
0,r

)

and µ = ΣDT
r y. On integrating out θr from the above expression, the

conditional distribution of σ2 reduces to:

p
(

σ2 | y, z, vs

)

∝
1

(σ2)
N/2

exp

(

−

(

yT y − µT Σ−1µ
)

2σ2

)

p
(

σ2
)

∝
1

(σ2)
N/2

exp

(

−

(

yT y − µT Σ−1µ
)

2σ2

)

(

σ2
)−aσ−1

exp

(

−
bσ

σ2

)

∝
(

σ2
)−(aσ+ N

2 )−1
exp

(

−
bσ + 1

2

(

yT y − µT Σ−1µ
)

σ2

)

σ2 | y, z, vs ∼ IG

(

aσ +
N

2
, bσ +

1

2

(

yT y − µT Σ−1µ
)

)

(8)

Note that when all zis are equal to zero, σ2 is sampled from IG
(

aσ + N
2 , bσ + 1

2

(

yT y
))

.

2.2.4. Sampling distribution of θ

The components of θ that correspond to zi = 0 are set to zero (as they belong to the spike Dirac-delta
distribution). The conditional distribution for the rest of the components belonging to the slab, represented
by θr, can be derived as follows:

p
(

θr | y, vs, σ2
)

∝ N
(

y | Drθr, σ2IN

)

N
(

θr | 0, σ2vsA0,r

)

∝ exp

(

−
(y − Drθr)

T
(y − Drθr)

2σ2

)

exp

(

−
θT

r A−1
0,rθr

2σ2vs

)

∝ exp

(

−
yT y + θT

r Σ−1θr − 2θT
r Σ−1µ

2σ2

)

∝ exp

(

−
(θr − µ)

T
Σ−1 (θr − µ)

2σ2

)

where Σ−1 =
(

DT
r Dr + v−1

s A−1
0,r

)

and µ = ΣDT
r y.

θr | y, vs, σ2 ∼ N
(

µ, σ2Σ
)

(9)

Note that the explicit conditional dependence of θr on z has been suppressed, because it is understood that
θr corresponds to those components of θ for which the corresponding zis take values of unity.
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2.2.5. Sampling distribution of z

In the derivation of sampling distribution of z, the parameter θ is marginalised to avoid dealing with the
Dirac-delta functions; as a consequence, the conditional probability distributions of zis become dependent
on y. Additionally, the sampling distribution is marginalised over the noise-variance parameter σ2 as this
step leads to a quicker convergence of the Markov chains. As such, the resulting sampling distribution of z,
p (z | y, p0, vs), is arrived at after performing integrations over both θ and σ2:

p (z | y, p0, vs) ∝

(∫ (∫

p
(

y, θ | z, vs, σ2
)

dθ

)

p
(

σ2
)

dσ2

)

p (z | p0) (10)

Since individual components of z are independent of each other, the conditional probability distributions of
zi are derived separately. The computation of conditional probability distribution over zi requires computing
the probability of zi = 1 compared to zi = 0, given the same values of z−i, vs and p0; the term z−i denotes
z with it’s ith component removed. Denote by ξi the probability with which one samples zi = 1, then ξi

can be expressed as:

ξi =
p (zi = 1 | y, z−i, vs, p0)

p (zi = 1 | y, z−i, vs, p0) + p (zi = 0 | y, z−i, vs, p0)

=
p (y | zi = 1, z−i, vs) p (zi = 1 | p0)

p (y | zi = 1, z−i, vs) p (zi = 1 | p0) + p (y | zi = 0, z−i, vs) p (zi = 0 | p0)

=
p (y | zi = 1, z−i, vs) p0

p (y | zi = 1, z−i, vs) p0 + p (y | zi = 0, z−i, vs) (1 − p0)

=
p0

p0 + p(y|zi=0,z
−i,vs)

p(y|zi=1,z
−i,vs) (1 − p0)

=
p0

p0 + Ri (1 − p0)

[

where Ri =
p (y | zi = 0, z−i, vs)

p (y | zi = 1, z−i, vs)

]

(11)

As seen above, the evaluation of ξi requires the computation of the marginal likelihood p (y | z, vs), which
will be derived next. The derivation of the marginal likelihood involves integrating the likelihood with
respect to the distribution over θ, followed by that over σ2.

Marginalisation over θ

p
(

y | z, vs, σ2
)

=

∫

p
(

y, θ | z, vs, σ2
)

dθ

=

∫

p
(

y | θ, σ2
)

p
(

θ | z, vs, σ2
)

dθ

=

∫

p
(

y | θr, σ2
)

p
(

θr | vs, σ2
)

dθr [∵ Dirac-delta functions are integrated out]

=

∫

N
(

y | Drθr, σ2IN

)

N
(

θr | 0, σ2vsA0,r

)

dθr

=

∫

1

(2πσ2)
N/2

exp

(

−
(y − Drθr)

T
(y − Drθr)

2σ2

)
(

det
(

A−1
0,r

))1/2

(2πvsσ2)
r/2

exp

(

−
θT

r A−1
0,rθr

2σ2vs

)

dθr

=
1

(2πσ2)
N/2

(

det
(

A−1
0,r

))1/2

(2πvsσ2)
r/2

exp

(

−

(

yT y − aT
N A−1

N aN

)

2σ2

)

∫

exp

(

−
(θr − aN )

T
A−1

N (θr − aN )

2σ2

)

dθr

=
1

(2πσ2)
N/2

(

det
(

A−1
0,r

))1/2
(det (AN ))

1/2

(vs)
r/2

exp

(

−

(

yT y − aT
N A−1

N aN

)

2σ2

)

where AN =
(

DT
r Dr + v−1

s A−1
0,r

)−1
and aN = AN DT

r y.
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Marginalisation over σ2

p (y | z, vs)

=

∫

p
(

y | z, vs, σ2
)

p
(

σ2
)

dσ2

=

(

det
(

A−1
0,r

))1/2
(det (AN ))

1/2

(2π)
N/2

(vs)
r/2

∫

1

(σ2)
N/2

exp

(

−

(

yT y − aT
N A−1

N aN

)

2σ2

)

IG (aσ, bσ) dσ2

=

(

det
(

A−1
0,r

))1/2
(det (AN ))

1/2

(2π)
N/2

(vs)
r/2

(bσ)
aσ

Γ (aσ)

∫

1

(σ2)
aσ+N/2+1

exp

(

−
bσ + 1

2

(

yT y − aT
N A−1

N aN

)

σ2

)

dσ2

=

(

det
(

A−1
0,r

))1/2
(det (AN ))

1/2

(2π)
N/2

(vs)
r/2

(bσ)
aσ

Γ (aσ)

Γ
(

aσ + N
2

)

(

bσ + 1
2

(

yT y − aT
N A−1

N aN

))(aσ+ N
2 )

where Γ (·) denotes the Gamma function. As such,

p (y | z, vs) =















Γ(aσ+ N
2 )

(2π)N/2

(bσ)aσ

Γ(aσ)
1

(bσ+ 1
2

(yT y))(
aσ+ N

2 )
when all zis are zero

Γ(aσ+ N
2 )

(2π)N/2(vs)r/2

(bσ)aσ

Γ(aσ)

(det(A
−1

0,r))
1/2

(det(AN ))1/2

(bσ+ 1
2 (yT y−aT

N
A

−1

N
aN))(

aσ+ N
2 )

otherwise
(12)

Finally, the sampling distributions of zi, i = 1, . . . , P , can be computed using a Bernoulli distribution:

zi | y, vs, p0 ∼ Bern (ξi) (13)

with ξi = p0

p0+Ri(1−p0) and Ri = p(y|zi=0,z
−i,vs)

p(y|zi=1,z
−i,vs) calculated using Eq. (12). Lastly, it should be mentioned

that to avoid numerical overflow errors, it is practical to use the logarithm of the marginal likelihoods
p (y | z, vs) to compute Ri = exp {log [p (y | zi = 0, z−i, vs)] − log [p (y | zi = 1, z−i, vs)]}.
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