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Abstract

This paper presents the use of spike-and-slab (SS) priors for discovering governing differential equations of

motion of nonlinear structural dynamic systems. The problem of discovering governing equations is cast

as that of selecting relevant variables from a predetermined dictionary of basis functions and solved via

sparse Bayesian linear regression. The SS priors, which belong to a class of discrete-mixture priors and

are known for their strong sparsifying (or shrinkage) properties, are employed to induce sparse solutions

and select relevant variables. Three different variants of SS priors are explored for performing Bayesian

equation discovery. As the posteriors with SS priors are analytically intractable, a Markov chain Monte

Carlo (MCMC)-based Gibbs sampler is employed for drawing posterior samples of the model parameters;

the posterior samples are used for basis function selection and parameter estimation in equation discovery.

The proposed algorithm has been applied to four systems of engineering interest, which include a baseline

linear system, and systems with cubic stiffness, quadratic viscous damping, and Coulomb damping. The

results demonstrate the effectiveness of the SS priors in identifying the presence and type of nonlinearity

in the system. Additionally, comparisons with the Sparse Bayesian (SBL) – that uses a Student’s-t prior

– indicate that the SS priors can achieve better model selection consistency, reduce false discoveries, and

derive models that have superior predictive accuracy. Finally, the Silverbox experimental benchmark is used

to validate the proposed methodology.

Keywords: Equation discovery, nonlinear system identification, sparse Bayesian learning, spike-and-slab

priors, model selection, Bayesian variable selection

1. Introduction

Spurred on by the rapid increase in computational power and growing rates of data collection, recent

years have seen a booming interest in discovering governing differential equations of motion of nonlinear

dynamical systems from time-series data [1–18]. Governing differential equations of motion are ordinary or

partial differential equations that characterise system behaviour and provide an understanding of the physics

of the underlying phenomena. Historically, such equations have been derived based on first principles and

some prior knowledge of the nature of the system; once known, they can be used for further analysis,

prediction and control of the system. In structural dynamics, the governing equations of motion can often
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be represented as a state-space model (SSM) of the form 1,

ẋ = M(x) + u (1)

where x is the state vector of system responses, ẋ is the time derivative of the state vector, M is the

function of states x embedding the equation of motion of the structure, and u is the vector of external input

forces that are assumed to enter linearly in Eq. (1). This form in equation is quite common in structural

dynamics, although a more general form of Eq. (1) would replace M with a function of both the state

and the input vectors. Due to the ubiquitous presence of nonlinearity in modern structural systems, the

structural equations of motion, represented by the model M, typically includes a number of nonlinear terms

in x. However, in most situations, the true form of M is unknown, and hence, there arises a need to recover

the model M, i.e. the underlying equations of motion. Formally, the task of recovering M involves solving

two sub-problems: model selection, which aims to identify a suitable form of M, and parameter estimation,

which determines the unknown parameters of the chosen form of M. Individually, both these problems

have received significant attention in the remit of structural dynamics as well as in the broader context

of nonlinear system identification, and the interested reader can find excellent review papers [19, 20] on

nonlinear system identification.

When the goal is to discover a parametric form of M, the identified model needs to satisfy two essential

attributes: (a) good prediction power, by the virtue of which it is able to predict future observations

effectively without suffering from over-fitting, and (b) interpretability, so that the model includes only a

few features (or predictors) that exhibit the strongest effect, thus providing a better understanding of the

underlying process. Typically, when prediction is the only aim, the actual choice of the features is of less

interest, as long as the fit to the data is good. However, when the aim is also to understand the physical

phenomena generating the responses – which is the case here – there is a need to search for the real but

unknown relationship between the responses and the features. For a good understanding of the relationship,

it is important to select only the relevant features i.e., the features that matter.

Traditional model selection procedures work by postulating a small set of interpretable models – chosen

based on expert intuition and domain knowledge. The “best” model is selected as the one that achieves a

desired balance of model complexity and goodness-of-fit, judged by some information-theoretic criteria such

as AIC [21], BIC [22], etc. Nonetheless, these traditional procedures can become prohibitive when prior

knowledge is limited and the number of candidate models is large (in the order of hundreds or greater). With

the rapid advancement in data-driven modelling in the last two decades, there has been an emergence of al-

ternative frameworks of model selection that rely less on expert knowledge and more on data. An early effort

towards data-driven modelling for equation discovery was symbolic regression [1, 2], which searches through

a library (or dictionary) of simple and interpretable basis functions to identify the parametric form of the

governing equations of a nonlinear dynamical system. While this approach works well for discovering inter-

pretable physical models, its dependence on evolutionary optimisation for selecting the relevant variables

from the dictionary makes it computationally expensive, and unsuited to large-scale problems. In a more

recent study [3], the model discovery process was reformulated in terms of sparse linear regression, which

1Note the explicit time dependence of the states x(t) and inputs u(t) has been suppressed to simplify notation.
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makes the basis function selection process amenable to solution using efficient sparsity-promoting algorithms,

thus providing a computationally-cheaper alternative. Since then, the sparse regression approach for data-

driven equation discovery of differential equations has been further developed in many studies. Examples

include sparse identification of biological networks with rational basis functions [4], model selection using

an integral formulation of the differential equation to reduce noise effects [5], model selection for dynami-

cal selection combining sparse regression and information criteria [6], extension of sparse identification to

nonlinear systems with control [7], discovery of coordinates for sparse representation of governing equations

[8], extracting structured differential equations with under-sampled data [9], sparse learning of stochastic

dynamical equations [10], model selection for nonlinear dynamical systems with switching behaviour [11], re-

covery of differential equations from short impulse response time-series data [12], identification of parametric

partial differential equations [13–15]. There are also studies that proposed black-box approaches using deep

neural networks [16–18] for equation discovery of differential equations; however, they are mostly useful for

forecasting and do not provide explicit equations for interpretation.

The work presented in this paper adopts the sparse-regression-based parametric-equation-discovery ap-

proach for recovering the governing equation of motion of a structural dynamic system. In this approach,

it is assumed that the function M consists of only a few terms, making it sparse in the space of possible

functions. The assumption is generally true for many systems of engineering interest, as their governing

physics is often simple and interpretable. To recover M, the idea is to first express M as a weighted linear

combination of a large number of simple intepretable basis functions (or basis functions), and then apply

algorithms to select a relevant subset of variables that best explains the measurements. As such, in this

approach, the model selection problem is turned into a basis function selection problem.

To elaborate on the procedure, consider the example of a Single Degree-of-Freedom (SDOF) oscillator

with equation of motion of the form,

mq̈ + cq̇ + kq + g (q, q̇) = u (2)

where m, c, k are the mass, damping, and stiffness, g is an arbitrary nonlinear function of displacement q

and velocity q̇; q̈ is the acceleration, and u is the input forcing function. An SSM for this system can be

written as,

ẋ1 = x2 (3)

ẋ2 =
1

m
(u − kx1 − cx2 − g(x1, x2)) (4)

with x1 = q and x2 = q̇. Eq. (3) can be ignored as it simply provides the definition of velocity; Eq. (4)

captures the governing equation of the structure’s motion. To uncover the underlying structure of the right

hand side of Eq. (4), a large dictionary of basis functions f1(x1, x2), f2(x1, x2), . . . , fl(x1, x2) is constructed,

containing several functional forms such as polynomial terms, trigonometric terms, etc. The left-hand side,

which represents acceleration ẋ2, is then expressed on the right as a weighted linear combination of the basis

functions of the dictionary,

ẋ2 ≈ θ1f1(x1, x2) + θ2f2(x1, x2) + · · · + θlfl(x1, x2) + θl+1u (5)

where {θ1, θ2, · · · , θl, θl+1} are the associated weights. Note that the input is also added to the dictionary

to identify its corresponding weight. Given noisy time-series measurements {x1,j , x2,j , ẋ2,j , uj}N
j=1, where j
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in the subscript indicates time point tj , the above problem reduces to a linear regression problem,
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ẋ2,2

...
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which can be written in a compact matrix-vector notation as,

y = Dθ + ǫ (7)

Here, y ∈ R
N×1 is a vector of observations of acceleration, D ∈ R

N×P is a dictionary2 matrix composed

using states (i.e. displacement and velocity) and input force, θ ∈ R
P ×1 is the vector of basis weights and

ǫ ∈ R
N×1 is the residual error vector taking into account model inadequacies and measurement errors. The

task is now to select which basis functions from the dictionary are to be included in the final estimated model

M̂. As only a few basis functions from the dictionary are assumed to contribute actively to the governing

dynamics, the solution of θ would be sparse, i.e. should have only a few weights that are significantly different

than zero; hence, it is reasonable to seek sparse solutions of θ in the above linear regression problem, as

illustrated in Figure 1.

Figure 1: Sparse linear regression for selection of relevant basis functions (shown in blue) in parametric equation discovery

approach.

Classical penalisation methods [23], including lasso, ridge, and elastic net penalties, can offer sparse

solutions to the linear regression problem. They are deterministic approaches that employ constrained

optimisation schemes to achieve sparse solutions, in that they add a convex penalty function to the usual

least-squares objective and shrink the small weights to zero while leaving out a few large weights. Another

popular deterministic method seeking sparse solutions to the linear regression problem is the sequential

threshold least-squares algorithm, which iteratively solves the least-squares problem while zeroing out the

small weights in successive iterations. This algorithm has been used in many works on equation discovery of

nonlinear dynamical systems, including [3]. However, a common drawback of the deterministic approaches is

2The number of columns in the dictionary has been redefined as P = l + 1
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that the results are sensitive to the choice of a regularisation parameter, and its tuning is required externally

by cross-validation.

In this work, a Bayesian approach [24, 25] is adopted over a deterministic penalisation or thresholding

approach, to solve the sparse linear regression problem. Apart from the usual advantage of uncertainty

quantification, the a Bayesian framework offers three additional advantages: (a) it allows for natural pe-

nalisation through prior distributions, (b) the penalty parameter is simultaneously estimated with other

model parameters and does not require determination through cross-validation, and (c) Bayesian techniques

using Markov Chain Monte Carlo (MCMC) sampling facilitate a more straightforward implementation of

non-convex penalty functions, unlike classical approaches which use convex penalty functions to achieve a

unique minimum.

In a Bayesian approach, sparsity is induced by placing sparsity-promoting (or shrinkage) priors on the

weights. These priors tend to shrink small weights to zero while allowing a few large weights to escape

shrinkage. The densities of these priors feature a strong peak at zero and heavy tails: the peak at zero

enforces most of the values to be (near) zero while heavy tails allow a few non-zero values. This structure

of the priors tends to produce a selective shrinkage of the weights of the linear model, i.e. the posterior

distributions of most weights are shrunk towards zero while a small set of weights have a large probability of

being significantly different from zero [26]. Examples of such priors include: Laplace [27], Student’s-t [24],

Horseshoe [28], and spike-and-slab [29–33]. An overview of various shrinkage priors used in sparse Bayesian

linear regression can be found in [34, 35].

The use of sparse Bayesian framework in data-driven equation discovery has been explored only very

recently, and the current state of research in this direction has been quite limited. A handful of research that

exists has mostly focussed on obtaining sparse solutions via SBL which is a particular implementation of the

Student’s-t prior [24]. Unlike common Bayesian algorithms that use MCMC-based random sampling, the

SBL performs a marginal likelihood optimisation to yield parameter posteriors. The SBL was used in [36, 37]

for equation discovery of nonlinear structural dynamic systems. A magnitude-based weight-thresholding was

combined with SBL in [14] for discovery of governing partial differential equations. Recently, [38] extended

the hybrid algorithm with a subsampling approach to discover governing equations of nonlinear systems

in the presence of outliers. Apart from equation discovery, SBL has also been developed and used in

different applications of structural health monitoring [39, 40], structural damage detection [41–43], input

force localisation and estimation [44], to name a few.

The critical challenge in the equation discovery approach is to learn the correct set of basis functions

from the dictionary D. Although the SBL can provide quick results, it is based on the Student’s-t prior

that has less selective shrinkage capabilities compared to priors such as the SS prior. Figure 2 provides a

visual illustration of the densities of the Student’s-t and SS priors. The Student’s-t prior is not as peaked

around zero, hence it allows some weights – which should truly be zero – to take non-zero values. In an

equation discovery setting, this issue may lead to more terms being selected than is true and may hinder

the interpretability of the learned model. On the other hand, an SS prior comprises a small (or a point)

mass at zero (the spike) for small weights, and a diffused density (the slab) for the large weights. The spike

is capable of shrinking the small coefficients towards zero; hence the SS prior can induce stronger selective

shrinkage of the coefficients compared to the Student’s-t prior. Previously, the authors proposed the use of
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SS priors in equation discovery of nonlinear systems [45], on which the current work builds.

(a) Student’s-t

Dirac-delta 

spike

Continuous 

spike
Continuous slab

(b) Spike-and-slab

Figure 2: Probability density functions of (a) the Student’s-t prior, and (b) the spike-and-slab (SS) prior with either a Dirac-

delta spike (displayed by an arrow pointing upwards) or a narrow continuous spike (displayed by dotted line).

This paper explores the performance of three different variants of SS priors in Bayesian equation discovery,

and compares the results with those from the SBL. The case studies considered here are restricted to SDOF

structural dynamic systems, and this is deemed sufficient to introduce and discuss the main aspects of the

proposed approach. The layout of the paper is as follows: Section 2 introduces the model of the three SS

prior variants used in this study, derives the MCMC procedure for sampling the model parameters, and

outlines the methodology for Bayesian basis function selection using SS priors. Section 3 presents numerical

demonstrations of equation discovery for four SDOF oscillators that are of interest in nonlinear structural

dynamics: a linear oscillator, a Duffing oscillator with cubic nonlinearity, an oscillator with quadratic

viscous damping and one with Coulomb damping. Next, the proposed approach is applied to the Silverbox

experimental benchmark in Section 4. Finally, Section 5 provides a critical discussion on the results obtained

with the SS priors, and Section 6 summarises the conclusions of the paper.

2. Bayesian basis function selection with spike-and-slab priors

The idea of basis function selection is to identify, out of P basis functions in the dictionary D, the

influential variables that have significant effect in explaining y. Each combination of variables corresponds

to a different model, and so basis function selection amounts to selecting a model from among 2P possible

models. In a Bayesian framework, the idea of distinguishing large effects from small effects is realised by

imposing prior distributions on the weight vector θ, such that they have a probability mass concentrated

around zero and the rest over a large range of the weight space. In this sense, the SS prior – featuring a

mixture of two distributions, one with a spike at zero and the other with a diffused density over a wide

range of possible values – conforms to a conceptual ideal and is often considered as the gold standard in

Bayesian basis function selection [34].

The first SS prior proposed for Bayesian basis function selection had a spike defined by a Dirac-delta

function at zero and a slab given by a uniform distribution [29]. Later on, the Dirac spike was replaced

with a zero-mean Gaussian distribution with a small (but fixed) variance, and the uniform slab by another

Gaussian distribution with a large variance [30]. In [33], the spike and slab distributions were considered

6



Variant Name Spike distribution Slab distribution

1 CSS Independent Student’s-t Independent Student’s-t

2 DSS-i Dirac-delta Independent Student’s-t

3 DSS-g Dirac-delta Correlated Student’s-t

Table 1: Variants of spike-and-slab priors considered in this study.

Gaussian but with bimodal priors on their variances. For a review of Bayesian basis function selection

strategies using SS priors, the reader is directed to [46].

In this paper, three different variants of SS priors, are used for basis function selection, as enumerated in

Table 1. The first variant uses a mixture of two continuous zero-mean Student’s-t distributions with different

(a small and a large) variances for the spike and the slab [33, 47], and is referred to as the continuous

spike-and-slab (CSS) prior. The next two variants feature a mixture of a discontinuous Dirac-delta spike

distribution and a continuous Student’s-t slab distribution, both centered at zero; they are jointly referred

to as the discontinuous spike-and-slab, in short DSS, priors. The two DSS prior variants differ in their slab

distributions, in that, one follows an independent Student’s-t and the other follows a correlated Student’s-t

(with the correlation fashioned as Zellner’s g-prior [48]), and are namely distinguished by their respective

suffixes, DSS-i and DSS-g. The dictionary will contain many correlated variables (as will be seen later); as

such, it is useful to find if a DSS prior that accounts for the correlation among the variables performs better

than its independent counterpart.

To address the two components of the SS priors, a latent indicator variable is introduced for each weight

θi. The latent indicator variable indicates the classification of a weight to one of the two components: the

indicator variable takes a value one if the weight is assigned to the slab component of the prior, and zero

otherwise. Since the posteriors using SS priors are analytically intractable, an MCMC-based Gibbs sampling

scheme is employed to estimate the posterior probabilities of weights and indicator variables for all three SS

prior variants. Basis function selection is then based on the posterior probability of the indicator variable

which is estimated by counting the frequency of ones. The details of the SS prior models and the procedure

of posterior computation and basis function selection follow next.

2.1. Model specification

For basis selection with SS priors, the linear regression problem in Eq. (7) is considered as part of a

larger hierarchical model. Treating the residual error ǫ as a vector of i.i.d. Gaussian noise variables with

variance σ2, the likelihood function can be written as,

y | θ, σ2 ∼ N
(
Dθ, σ2IN

)
(8)

where N stands for a Gaussian distribution. To specify a two-component SS prior, a vector of latent

indicator variables z = [z1, . . . , zP ]
T

is introduced, where zi takes a value 0 when θi belongs to the spike and

takes a value 1 when θi falls in the slab. Also, denote by θr ∈ R
r×1 the vector comprising those components
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of θ for which zi = 1. Then, the SS prior can be written as,

p (θ | z) = pslab (θr)
∏

i:zi=0

pspike (θi) (9)

where pspike and pslab denote the univariate spike and the multivariate slab distributions, respectively. The

DSS priors considered in this study have the following forms of spike and slab distributions:

DSS : pspike (θi) = δ0, and pslab (θr) = N
(
0, σ2vsA0,r

)
, A0,r =







Ir for DSS-i

N
(
DT

r Dr

)−1
for DSS-g

(10a)

CSS : pspike (θi) = N
(
0, σ2v1vsi

)
and pslab (θr) =

∏

i:zi=1

N
(
0, σ2v0vsi

)

(10b)

Note that Dr in Eq. (10a) is a dictionary matrix that includes only the columns of D for which zi = 1.

Similarly, θr ∈ Rr×1 is the set of components of θ for which the corresponding values of zi equals 1 i.e. the

components that belong to slab. The following points are to be noted:

• The spike distributions are considered independent of the slab distributions. The spike distribution

in DSS is modelled by a Dirac-delta function at zero, denoted by δ0, whereas that in CSS is modelled

by a zero-mean small-variance continuous distribution.

• The slab distributions for all three variants have their mean centred at zero and their (co-)variances

proportional to the product of measurement noise variance σ2 and slab variance vs. The inclusion of

the measurement noise in the prior allows it to scale naturally with the scale (i.e. the measurement

units) of the outcome y.

• It is natural to assume weight-specific slab variances that can modify the strength of each individual

prior [47]. While the CSS priors feature weight-specific slab variances vsi
, a common slab variance vs

is assumed for all weights in the DSS priors. A common slab variance is found to yield better results

for DSS priors.

• The difference in the variances of the spike and slab distributions in the CSS case is facilitated by the

use of constants v0 and v1 such that v0 ≪ v1, leading to a narrow spike and a wide slab.

• The covariance of the slab distribution of the DSS-g prior includes an additional scaling by the Fischer

information matrix N
(
DT

r Dr

)−1
, which accounts for the correlation among the basis functions; in

contrast, the DSS-i prior uses an independent slab distribution over each component of θ.

The marginal Student’s-t distributions for the respective slabs (and spikes in case of CSS priors) given the

noise variance are achieved by imposing an inverse-Gamma prior on the slab variance vs (or equivalently on

each vsi
for CSS priors),

vs ∼ IG (av, bv) (11)

The transformation of the Gaussian to Student’s-t prior on θ via the inverse-Gamma prior on vs is because

of the scale mixture property of Gaussians [49]. One could have alternatively used an exponential prior on

vs to obtain a marginal Laplace prior on θ, or simply treated vs as a constant to impose a Gaussian prior.

8



The motivation for modelling the slab using Student’s-t distributions lies in being able to provide a fair

comparison with the SBL, which also uses a Student’s-t prior.

In SS priors, each latent indicator variable zi is assigned an independent Bernoulli prior, controlled by

a common hyperparameter p0,

zi | p0 ∼ Bern(p0) (12)

Eq. (12) implies that the selection of a basis function from the dictionary D is independent of the inclusion of

any other basis functions in D. The hyperparameter p0 in Eq. (12) represents the fraction of the total basis

functions in D that are a priori expected to be selected in the final model; it can be assigned a fixed value.

For example, p0 = 1
2 implies that each basis function in D has equal chance of being selected and reflects

the prior belief that the model should include approximately half of the basis functions in D. However, here

p0 is allowed to be adaptively refined by the data via a Beta prior,

p0 ∼ Beta(ap, bp) (13)

Finally, the measurement noise variance σ2 is assigned an inverse-Gamma prior,

σ2 ∼ IG (aσ, bσ) (14)

Note that av, bv, ap, bp, aσ, bσ appearing in Eqs. (11), (13) and (14) are deterministic hyperparameters,

controlling the shape of the respective hyper-priors. The complete hierarchical SS model for linear regression

is illustrated in Figure 3.

y

D

σ2

aσ bσ

θ

vs

av bv

z

p0

ap bp

Figure 3: Graphical structure of the hierarchical spike-and-slab model for linear regression; the variables in circles represent

random variables, while those in squares represent deterministic parameters. Note, in case of DSS priors, the slab variance vs

is a scalar, while that for CSS priors would be a vector of weight-specific slab variances.

2.2. Posterior computation

Once the hierarchical form of the SS priors is specified, the next part entails extracting the infor-

mation relevant to basis function selection from the posteriors of z, θ and σ2. The joint posterior of

p
(
θ, z, vs, σ2, p0 | y

)
can be computed using Bayes’ theorem in the form,

p
(
θ, z, vs, σ2, p0 | y

)
=

p
(
y | θ, σ2

)
p
(
θ | z, vs, σ2

)
p (z | p0) p (vs) p

(
σ2
)

p (p0)

p (y)
(15)

9



where p
(
y | θ, σ2

)
is the likelihood, p

(
θ | z, vs, σ2

)
is the prior over weights, p (z | p0) is the prior over latent

indicator variables, p (vs) is the prior over slab variance, p
(
σ2
)

is the prior over measurement noise, p (p0)

is the prior over selection probability p0, and p (y) is the normalising constant. Exact Bayesian inference is

difficult with SS priors, and often MCMC techniques are employed to sample from the posteriors [31, 50]. In

this case, a Gibbs sampler [51] is used to draw samples from the posterior. Gibbs sampling needs knowledge

of the full conditional distributions which can be derived analytically with the use of conjugate priors. It

should be mentioned that the sampling schemes for the DSS and CSS priors differ slightly as a result of the

need to integrate out the Dirac-delta function in the case of DSS priors. The Gibbs sampling scheme for

the CSS prior has been adopted from [47], and details of the sampling steps are provided in Appendix A.

Below, the Gibbs sampling steps for the parameters θ, z, p0, vs and σ2 of the DSS priors are provided. The

derivation of the conditional densities are provided in a supplementary document accompanying this paper.

(a) The components of θ that correspond to zi = 0 (i.e. belong to the Dirac-delta spike) are set to zero.

The rest of the components belonging to the slab, represented by θr, are sampled as follows,

θr | y, vs, σ2 ∼ N
(
µ, σ2Σ

)
(16)

where Σ =
(
DT

r Dr + v−1
s A−1

0,r

)−1
and µ = ΣDT

r y.

(b) σ2 is sampled from an inverse Gamma distribution as follows,

σ2 | y, z, vs ∼ IG

(

aσ +
N

2
, bσ +

1

2

(
yT y − µT Σ−1µ

)
)

(17)

(c) vs is sampled from an inverse Gamma distribution as follows,

vs | θ, z, σ2 ∼ IG

(

av +
sz

2
, bv +

1

2σ2
θT

r A−1
0,rθr

)

(18)

where sz =
∑P

i=1 zi.

(d) p0 is sampled from a Beta distribution as follows,

p0 | z ∼ Beta (ap + sz, bp + P − sz) (19)

(e) The conditional distribution of z is expressed componentwise. The odds of zi = 1 to zi = 0 are

computed, given the values of other z components, denoted here as z−i. The components of z are

sampled (in a random order) as follows,

zi | y, vs, p0 ∼ Bern(ξi), with ξi =
p0

p0 + p(y|zi=0,z−i,vs)
p(y|zi=1,z−i,vs) (1 − p0)

(20)

In the above sampling step, the marginal likelihood p (y | z, vs) after integrating out θ and σ2 is

obtained as,

p (y | z, vs) =
Γ(aσ + 0.5N)

(2π)N/2(vs)sz/2

(bσ)
aσ

Γ(aσ)

(
det
(
A−1

0,r

))1/2
(

det
((

DT
r Dr + v−1

s A−1
0,r

)−1
))1/2

(

bσ + 0.5yT
(

IN − Dr

(
DT

r Dr + v−1
s A−1

0,r

)−1
DT

r

)

y
)(aσ+0.5N)

(21)
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where Γ(·) denotes the Gamma function and det(·) denotes the determinant operator. However, when

all zis are zero, the marginal likelihood reduces to a much simpler form

p (y | z, vs) =
Γ(aσ + 0.5N)

(2π)N/2

(bσ)
aσ

Γ(aσ)

1

(bσ + 0.5yT y)
(aσ+0.5N)

(22)

By repeated successive sampling using Eqs. (16) to (20), the following Markov chain is produced,

θ(0), σ2(0)
, v(0)

s , p
(0)
0 , z(0), . . . , θ(l), σ2(l)

, v(l)
s , p

(l)
0 , z(l), . . . (23)

which embeds the Markov chains for z, θ and σ2. The first few samples of the chain are discarded as

burn-in, and the remaining J samples are used for basis function selection, as described next.

2.3. Basis function selection and posterior prediction

As mentioned previously, there are 2P models possible with P basis functions in the dictionary, where

a model is indexed by which of the zis equal one and which equal zero. For example, the model with zero

basis functions has z = 0, whereas the model that includes all basis functions has z = 1. Finding the

model with highest posterior probability is often challenging when P is large, as one would probably need

more than 2P samples to explore the entire space of models. In this work, the marginal posterior inclusion

probabilities (PIP), p (zi = 1 | y), are used to select those basis functions whose corresponding probability

is more than a fixed probability threshold. The PIPs are approximated using J Gibbs samples, as follows,

p (zi = 1 | y) ≈
1

J

J∑

j=1

I

(

z
(j)
i = 1

)

(24)

where I (·) stands for an indicator function. Specifically, one selects the ith basis function from D and

includes it in the final model if,

p (zi = 1 | y) > 0.5 (25)

The higher the posterior mean of the indicator variable, the higher is evidence that the parameter θi might

be different from zero and therefore the corresponding basis function will have an impact on y. The above

criterion implies the selection of basis functions that appear in at least half of the visited models. The final

estimated model M̂ so obtained corresponds to the median probability model [52], and is computationally

advantageous since estimating this model often requires fewer Gibbs iterations than are required for the

highest probability model. The model M̂ is chosen as the discovered governing equations of motion in this

study. Post basis function selection, the estimated mean and covariance of the parameter vector θ, denoted

by µ̂θ and Σ̂θ, respectively, will feature non-zero components only at indices corresponding to those of the

selected basis functions.

Subsequently, predictions with the estimated model M̂ can be performed using µ̂θ and Σ̂θ via the

expressions,

µy∗ = D∗µ̂θ (26)

Σy∗ = D∗Σ̂θD∗T + µ̂σ2IN∗ (27)

where D∗ ∈ R
N∗×P is the test dictionary, defined at a set of N∗ previously-unseen test data points,

µy∗ ∈ R
N∗×1 is the predicted mean of the target test vector, Σy∗ ∈ R

N∗×N∗

is the predicted covariance of
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the target test vector, and µ̂σ2 ∈ R is the mean of the measurement noise variance estimated using J Gibbs

samples of σ2.

3. Numerical studies

In this section, the performance of the proposed sparse Bayesian algorithms in discovering governing

equations is investigated. SDOF oscillators of the form expressed by Eq. (4) containing the nonlinear term

g(x1, x2) are considered, where x1 and x2 represent the displacement and velocity states of the oscillator.

Different forms of the nonlinearity g(x1, x2) lead to different systems of engineering interest. Four different

cases of nonlinearities g(x1, x2) are considered in this study, as enumerated in Table 2.

System Name g(x1, x2)

1 Linear 0

2 Duffing k3x3
1 k3 = 105

3 Quadratic viscous damping c2x2|x2| c2 = 2

4 Coulomb friction damping cF sgn (x2) cF = 1

Table 2: Simulation cases.

The first system is a linear system, used here to verify if the proposed method is capable of ruling out

the existence of any nonlinearities in the dynamical system. The second system is a Duffing oscillator, with

a cubic displacement nonlinearity g(x1, x2) = k3x3
1; it can be used to represent many physical systems and

has been widely used in a large number of studies in nonlinear system identification [19]. In structural

systems, the nonlinearity can be used to represent hardening geometric nonlinearity arising as a result of

large displacements; as the displacement increases, the nonlinear restoring force becomes greater than that

expected from the linear term alone. The third system includes a quadratic viscous damping nonlinearity

g(x1, x2) = c2x2|x2|, where | · | denotes the absolute value. This type of damping occurs in fluid flows

through orifices or around a slender member. The former situation is common in automotive dampers,

whereas the latter occurs in fluid loading of offshore structures [53]. The fourth system includes a Coulomb

friction damping nonlinearity g(x1, x2) = cF sgn (x2), where sgn (·) denotes the signum function. This type

of nonlinearity is encountered in situations that involve interfacial motion or sliding [54], such as dry sliding

occurring in bolted joints. The four SDOF systems are simulated using the following parameters:

• The parameters of the linear system are taken as: m = 1, c = 2, and k = 1000.

• The three other nonlinear systems use the same values of parameters for the underlying linear part

and only differ in the additional nonlinear term g(x1, x2). The respective forms and the values of

g(x1, x2) are provided in Table 2.

• The systems are excited using a bandlimited – passband [0, 100]Hz – Gaussian excitation with zero

mean and standard deviation of 50.

• The displacement x1 and velocity x2 for each system are simulated using a fixed-step fourth-order

Runge-Kutta numerical integration scheme, with a sampling rate of 1000Hz.

12



• The acceleration ẋ2 is obtained using Eq. (4).

Before commencing equation discovery, one requires the knowledge of the time-series data of displace-

ment, velocity, acceleration and input force signals from forced vibration testing of the system; the ac-

celeration data is used as the measurement vector y whereas the displacement, velocity, and input force

data are used in composing the basis functions of the dictionary D (see Eq. (6)). It is assumed that noisy

measurements of all input and outputs, i.e., displacement x1, velocity x2, acceleration ẋ2, and input force

u are available, and the noisy signals are used to compose the dictionary D and the target measurement

vector y. The noise in the measurements is modelled as sequences of zero-mean Gaussian white noise with

a standard deviation equal to 5% of the standard deviation of the simulated quantities.

In this work, the dictionary D is constructed with 36 basis functions, where each basis function represents

a certain function of the states x1 and x2:

D =
{

P 1(x), . . . , P 6(x), sgn (x) , |x|, x ⊗ |x|, u
}

(28)

Here, P γ(x) denotes the set of terms in the polynomial expansion of the sum of state vectors (x1 +x2)γ . The

dictionary consists of basis functions that are terms from polynomial orders up to γ = 6 and certain other

terms. The term sgn (x) represents the signum functions of states, i.e., sgn (x1) and sgn (x2). Similarly, |x|

denotes the absolute functions of states, i.e., |x1| and |x2|. The tensor product term x ⊗ |x| represents the

set of functions: x1|x1|, x1|x2|, x2|x1| and x2|x2|. Note that the total number of models that can be formed

by combinatorial selection of all 36 basis functions in the dictionary is 236, and grows exponentially as the

number of basis functions increases.

An issue with the constructed dictionary in Eq. (28) is that it is often ill-conditioned. This happens

due to a combined effect of (a) the large scale difference among the basis functions and (b) the presence of

strong linear correlation between certain basis functions. Appropriate scaling of the columns can help to

reduce the difference in scales and improve the conditioning of the dictionary. For the purpose of Bayesian

inference, the columns of the training dictionary are normalised (i.e. they are centered and scaled to have

zero mean and unit standard deviation). Additionally, the training measurement data are detrended to have

zero mean; as such there is no need to include a constant intercept term in the dictionary. Put formally, the

training dictionary and the target vector (Ds, ys) input to the Bayesian inference algorithm have the forms,

Ds = (D − 1µ
D

) S−1
D

ys = y − 1µy

(29)

where 1 denotes a column vector of ones, µ
D

is a row vector of the column-wise means of D, SD is a

diagonal matrix of the column-wise standard deviations of D, and µy is the mean of the training target

measurement vector y. Note that this modification implies that, post Bayesian inference, the estimated

mean and covariance of the scaled coefficients θs, denoted by µ̂θs and Σ̂θs , have to be transformed back to

the original space using the relations,

µ̂θ = S−1
D

µ̂θs

Σ̂θ = S−1
D

Σ̂θsS−1
D

(30)

For Bayesian inference with the SS priors, the Gibbs sampler is commenced with the following initial

values of the hyperparameters: p
(0)
0 = 0.1, v

(0)
s = 10, and σ2(0)

is set equal to the residual variance from

13



ordinary least-squares regression. Additionally, for the CSS prior, each component of the vector of weight-

specific slab variances is initialised to the value of v
(0)
s , and the two variance-scaling constants are set to

v0 = 1
N and v1 = 100v0, respectively. Note that both v0 and v1 are made to depend on the sample size

to ensure model selection consistency [47]. To facilitate faster convergence of the Gibbs sampler to a good

solution, the initial vector of binary latent variables z(0) is computed by starting off with z1, . . . , zP set to

zero and then activating the components of z that reduce the mean-squared error on the (training) data,

until an integer number (≈ p
(0)
0 P ) of components of z are equal to one. Given all the other parameters, the

initial value of θ(0) is obtained by sampling from Eq. (16). The deterministic prior parameters are set to the

following values: ap = 0.1, bp = 1 are chosen for the Beta prior on p0 to promote selection of sparse models,

av = 0.5, bv = 0.5 for inverse-Gamma prior on slab variance, and aσ = 10−4, bσ = 10−4 are chosen for a

non-informative prior on measurement noise. Four Markov chains are used for Gibbs sampling with 5000

samples in each chain. The first 1000 samples of each chain are discarded as burn-in, and the remaining

4000 × 4 = 16000 samples are used for posterior computation. To ensure variability across the chains, each

of them is initialised with randomly perturbed values of the aforementioned initial hyperparameters. The

multivariate potential scale reduction factor R̂ [55], which estimates the potential decrease in the between-

chain variance with respect to the within-chain variance, is applied to assess the convergence of the generated

samples of θ; a value of R̂ < 1.1 is adopted to decide if convergence has been reached.

Figure 4: Basis function selection based on marginal posterior inclusion probability (PIP), p (zi = 1 | y). The horizontal axes

represent the collection of 36 basis functions; the functions having marginal PIP > 0.5 are included in the final estimated

model.
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Figure 4 demonstrates the procedure of basis function selection for the four systems, based on the

marginal PIP, p (zi = 1 | y), i = 1, . . . , 36. When p (zi = 1 | y) = 1, it implies that the ith basis function had

been selected in all Gibbs posterior samples, while p (zi = 1 | y) = 0 implies the ith basis function has never

been selected. As mentioned in Section 2.3, only those basis functions are included in the final estimated

model whose corresponding marginal PIPs are greater than the set threshold of 0.5 (shown by the dotted

line in red in Figure 4). It can be seen that the estimated models for all the four systems are able to select

the true basis functions out of the pool of 36 basis functions. For DSS priors, the computed marginal PIPs

corresponding to the true basis functions are close to one, which indicates a strong selection probability.

However, the selection probabilities with CSS priors are not as strong; they exhibit smaller PIPs for the

relevant variables, compared to those from DSS priors. The weaker selection probability with CSS priors is

apparent in the Duffing oscillator case, where the true relevant variables x1 and x3
1 draw marginal PIPs of

around 0.9, while a irrelevant variable x5
1 receives a marginal PIP of 0.3. Similarly, x2 is selected with PIP

of 0.8 whereas x2 |x2| gets discarded with a PIP of 0.3. Although this behaviour occurs more frequently with

CSS priors, it can also happen with DSS priors, especially in situations when there are strong correlations

between certain basis functions causing the Bayesian algorithm to be confused as to which of the set of

correlated basis functions should be selected.

Figure 5: Estimates of parameters of the selected basis functions. The left vertical axes represents absolute posterior means

and the right axes illustrated the associated coefficient of variations (CoVs) of the estimated parameters inferred using CSS,

DSS-i and DSS-g priors.

Figure 5 plots the absolute posterior means and coefficient of variations (CoVs) of the parameters that

correspond to the selected basis functions in Figure 4; the CoVs are expressed as percentage ratios of
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the means to the standard deviations. The mean values of the parameters are found to agree very well

with the corresponding true values, and the posterior CoVs are quite small for the parameters associated

with variables u and x1. Higher COVs are seen for parameter estimates associated with variables that are

functions of x2. The greater uncertainty associated with variables x2 and functions of x2 is because of two

factors: (a) small values of the parameters associated with these variables and (b) presence of many other

correlated variables in the dictionary, which, coupled together, confuses the Bayesian learner. It is also noted

that the posterior standard deviations of the parameters inferred with CSS priors are comparatively larger

than those inferred with the DSS priors. For illustration, the pairwise joint posteriors of the parameters

for the Duffing oscillator case are plotted in Figure 6. Clearly, the posterior samples with CSS priors can

be seen to spread over a larger parameter space in the plots. This behavior with CSS priors is caused by

the less restrictive continuous spike distribution, which occasionally allows the irrelevant variables to take

non-zero weights and biases the weights of the relevant parameters, thereby inducing a greater spread in

the weights (or parameters) of the relevant variables. The posterior mean values of the parameters inferred

with CSS priors are, however, found to agree well with the true values of the parameters. It should also be

mentioned that the posteriors obtained with SS priors can be multi-modal, as seen from Figure 6.

Figure 6: Pairwise joint posteriors of the parameters k
m

, c
m

, and k3

m
corresponding to the selected basis functions x1, x2, and

x3

1
, for the Duffing oscillator case. The red circles indicate the true values of parameters.
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Equation discovery performance comparison using Monte Carlo simulations

In this section, Monte Carlo simulations are used to assess the equation discovery performance of the

proposed MCMC algorithms with SS priors – hereafter collectively referred to as the MCMC-SS algorithms.

Furthermore, the popular SBL algorithm [24, 56] using a Student’s-t prior is implemented for the sake

of comparison of equation discovery results. The freely available SparseBayes software [57] is used for

implementing the SBL.

1000 different realisations for each of the four systems, as summarised in Table 2, were considered.

The realisations were created by introducing random perturbations of 0.1κ to the nominal values of the

parameters c, k, k3, c2, cF , such that the new realisations have parameters c̄ = (1 + 0.1κ)c, k̄ = (1 + 0.1κ)k,

and so on. The variable κ was sampled from a standard Gaussian distribution N (0, 1) for each realisation.

Note that the nominal values of parameters are the ones that were used in the previous numerical study. In

order to assess the performance, the following performance metrics are defined:

• Weight estimation error, eθ =
‖θ̂−θ‖

2

‖θ‖
2

, where θ̂ is the estimate of the true weight vector θ. In the case

of SS priors, θ̂ is obtained as the mean estimate of the posterior sample, whereas in the case of SBL,

it is obtained as the maximum a posteriori estimate. Similarly, one can also define a scaled weight

estimation error, eθs =
‖SD(θ̂−θ)‖

2

‖SDθ‖
2

.

• Test set prediction error, ep =
‖y∗−D

∗θ̂‖
2

‖y∗‖
2

× 100, where y∗ is the test set of responses, D∗ is the

unscaled test dictionary, and θ̂ is the estimate of the unscaled weight vector obtained using training

data. 2000 data points were used for training and another 2000 data points for testing.

• False discovery rate (FDR), defined as the ratio of the number of false basis functions selected to

the total number of basis functions selected in the estimated model. A good basis function selection

algorithm should output a model with fewer false discoveries and result in a low FDR.

• Exact model selection indicator, denoted by M̂ = M, is an indicator variable that takes value 1 when

the estimated model M̂ has the exact same basis functions as the true model M, and is zero otherwise.

• Superset model selection indicator, denoted by M̂ ⊃ M, is an indicator variable that takes value 1

when the estimated model M̂ includes all the basis functions present in the true model M, and is

zero otherwise.

The above performance metrics are evaluated for each of the 1000 different realisations for all four

systems, and the averages of the results are reported in Table 3.

Table 3 shows that all the proposed MCMC-SS algorithms outperform the SBL in all metrics of perfor-

mance. It may be noted that the weight errors, given by eθ, appear quite high for both SBL and MCMC-SS

algorithms, however, their median and mode values are comparatively quite small. The high mean values

are caused by the long tails of the error distributions, as exemplified in Figure 7 for the Duffing oscillator

case. In general, the MCMC-SS algorithms yield quite low levels of parameter estimation errors and false

discoveries compared to the SBL. The SBL includes a lot of false discoveries, which is a major deterrent in

equation discovery, as selecting the correct set of basis functions is crucial for drawing scientific conclusions

based on the estimated model. Moreover, the models estimated by MCMC-SS surpass those by SBL in terms
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Type Alg. eθs eθ ep FDR M̂ = M M̂ ⊃ M

Linear

SBL 0.010 502.261 0.097 0.576 0.005 0.999
MCMC-CSS 0.006 6.735 0.074 0.002 0.993 0.995

MCMC-DSS-i 0.004 6.479 0.073 0.002 0.993 1.000
MCMC-DSS-g 0.004 1.513 0.071 0.001 0.997 1.000

Duffing

SBL 0.070 47.377 0.091 0.560 0.001 0.976
MCMC-CSS 0.028 4.101 0.080 0.051 0.778 0.972

MCMC-DSS-i 0.030 5.130 0.079 0.040 0.842 0.977
MCMC-DSS-g 0.023 3.761 0.077 0.026 0.898 0.977

Quadratic
damping

SBL 0.017 1546.542 0.073 0.497 0.003 0.931
MCMC-CSS 0.017 0.005 0.072 0.006 0.876 0.886

MCMC-DSS-i 0.018 0.004 0.072 0.031 0.850 0.855
MCMC-DSS-g 0.020 0.004 0.072 0.031 0.845 0.847

Coulomb
damping

SBL 0.013 1034.780 0.092 0.496 0.003 0.993
MCMC-CSS 0.010 1.476 0.071 0.002 0.769 0.775

MCMC-DSS-i 0.011 0.004 0.071 0.018 0.835 0.838
MCMC-DSS-g 0.009 0.004 0.070 0.010 0.838 0.840

Table 3: Comparison of results from SBL, MCMC-CSS, MCMC-DSS-i and MCMC-DSS-g, averaged over 1000 realisations.

Small values of es
θ
, eθ, ep, FDR are better, whereas average values of M̂ = M and M̂ ⊃ M closer to one are better; bold

numbers highlight the best performing metric.

of predictive accuracy as well. Among the three variants of MCMC-SS algorithm, the DSS priors yield quite

similar results and often tend to perform slightly better than the CSS prior. The SBL, however, is found to

do better in superset model selection rate for the cases of quadratic viscous damping and Coulomb friction

damping. In those cases, the SBL is able to include all the relevant variables in the estimated model more

often than the MCMC-SS algorithms. The weaker sparsity-promoting property of the SBL allows it more

often include all the relevant variables but with many other false discoveries.
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Figure 7: Histograms of weight errors, eθ, for the Duffing oscillator case, using 1000 Monte Carlo samples.

Overall, the MCMC-SS algorithms show very strong model selection consistency; they are able to select

the true models more often and show extremely low rates of false discoveries – an important requirement for

intepretability of discovered equations. It can be inferred that the SBL (using the Student’s-t prior) very

rarely finds the exact true model and will likely include many false discoveries. That being said, the SBL is

remarkably fast compared to the MCMC-SS algorithms. A comparison of the average runtimes of the four

sparse Bayesian learning algorithms are provided in Table 4; the algorithms are run on a 64-bit Windows
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10 PC with Intel Xeon E5-2698v4 CPU @ 2.20GHz. The SBL is undoubtedly the cheapest in terms of

computational time, while all the MCMC-SS algorithms are orders of magnitude more expensive than the

SBL. Note that the MCMC algorithms could be more time-consuming if the number of sampling iterations

were increased. Between the three SS prior variants, the MCMC algorithm implemented with CSS priors

is much cheaper than the DSS priors; the increased computational time for the DSS priors is due to the

calculation of the marginal likelihood in Eq. (21), needed for integrating out the Dirac-delta function.

SBL MCMC-CSS MCMC-DSS-i MCMC-DSS-g

0.03s 3.89s 36.22s 34.59s

Table 4: Average computational runtimes of SBL and MCMC-SS (run with single chain for 5000 sampling iterations).

4. An experimental application on Silverbox benchmark

This section presents an application of SS priors for Bayesian equation discovery of the Silverbox bench-

mark [58, 59]. The Silverbox is an electrical circuit resembling a Duffing oscillator with a moving mass m, a

viscous damping c and a nonlinear spring k(q). The circuit is designed to relate the displacement q(t) (the

output) to the force u(t) (the input) by the following differential equation,

mq̈(t) + cq̇(t) +
(
a + bq2(t)

)

︸ ︷︷ ︸

k(q(t))

q(t) = u(t) (31)

The input-output data for the Silverbox benchmark consist of force and displacement measurements. The

data here were supplied as part of the Nonlinear System Identification Benchmarks workshop held at VUB

Brussels and Eindhoven University over the last few years. More details on the experiment and benchmark

data can be found in [58, 59].

The Schroeder80mV.mat dataset of the Silverbox benchmark has been used here for the application. A

section of the input-output data consisting of 10400 samples (between 0.14s and 17.2s), as shown in Figure 8,

was used for training the sparse Bayesian algorithms; the input data comprised a random-phase multi-sine

excitation containing 1342 odd harmonics of a base frequency 8192/fsampHz and the sampling rate fsamp

in the experiments was 610.35Hz. Both the displacement and force signals were detrended before use. As

the displacement and force signals were the only data measured, numerical differentiation was employed to

obtain the velocity and acceleration signals from the displacement data. This case, therefore, serves as a

measurement scenario where only one output response is observed.

The results of parameter estimation from MCMC-SS and SBL algorithms are presented in Table 5. The

MCMC-SS algorithms selected five basis functions which include the correct linear stiffness term x1, the

viscous damping x2, the nonlinear cubic stiffness x3
1, the input force u, and a spurious term 3x1x2

2. A

comparison of the posterior means (µ̂θ) of the weights from the MCMC-SS algorithms reveals that the cubic

term x3
1 is the dominant term followed by x1, u and x2, while the weight associated with the spurious term

3x1x2
2 is quite small. As observed previously, the SBL selected many more basis functions apart from the

set of basis functions deemed relevant by the MCMC-SS algorithms. However, most of the spurious terms

are associated with large standard deviations compared to their mean values, and may be disregarded based
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Figure 8: The portion of input-output measurement data from Silverbox that was used in training the sparse Bayesian

algorithms; the input consists of random-phase multi-sine excitation.

on the degree of uncertainty. For example, the spurious term x2
1 selected by SBL has a posterior standard

deviation comparable to its posterior mean, and can be ignored.

To assess the predictive power of the discovered models, an independent input-output dataset – where the

input excitation is a chirp signal going from high to low frequencies – was used for testing. The test input-

output signals correspond to a set of 10500 force-displacement samples from the Schroeder80mV.mat dataset,

and the ‘true’ test acceleration was obtained by numerical differentiation of the measured displacement

data. To illustrate the prediction performance, the result from the MCMC-DSS-i algorithm is used as a

representative, and the predicted mean and confidence intervals (CIs) of the test acceleration signal from the

algorithm are plotted alongside the ‘true’ test acceleration signal in Figure 9 for a subset of 500 samples. The

prediction results show a good match around resonance (bottom-right subplot of Figure 9), which occurs at

lower frequencies of the down-chirp input. However, some discrepancies are seen at higher input frequencies

(bottom-left subplot); nonetheless, the ‘true’ values are always captured by the predicted CIs. It was found

that the test set prediction results were very similar for all the four sparse Bayesian algorithms, with the

prediction errors being 0.1197 for SBL and 0.1192 for all three MCMC-SS algorithms. Note that, despite the

inclusion of many spurious basis functions in the model found by SBL, the prediction error of SBL model

appears to be not much different from that of the MCMC-SS models. It was found that prediction errors were

largely dominated by the errors in the input time-series (which is selected in all models), while most of the

chosen state-dependent basis functions, be they correct or spurious, played a dominant effect only near the

region of resonance. As such, the prediction errors from SBL and MCMC-SS algorithms are largely similar

except in a small region of resonance, where the MCMC-SS algorithms show a smaller prediction error than

the SBL. Figure 10 illustrates this event by comparing the time-histories of test-set prediction errors from

SBL and MCMC-DSS-i algorithms. A rectangular box surrounding the neighbourhood of resonance shows

the prediction error of MCMC-DSS-i is lower than that from SBL. Due to this localised small difference,
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Relevant

variables

Estimated mean and standard derivations of unscaled weights (µ̂θ ± σ̂θ)

SBL MCMC-CSS MCMC-DSS-i MCMC-DSS-g

−x1 (14.99 ± 0.09) × 104 (15.04 ± 0.10) × 104 (15.10 ± 0.04) × 104 (15.10 ± 0.03) × 104

−x2 26.29 ± 0.77 25.70 ± 1.24 25.32 ± 0.46 25.31 ± 0.45

−2x1x2 1.93 ± 3.85 0 0 0

−x2
1 −1326.04 ± 1831.99 0 0 0

−3x1x2
2 0.94 ± 0.17 0.73 ± 0.22 0.69 ± 0.11 0.70 ± 0.08

−3x2
1x2 −34.45 ± 24.56 0 0 0

−x3
1 (35.67 ± 7.33) × 104 (38.47 ± 8.97) × 104 (40.62 ± 2.85) × 104 (40.69 ± 1.94) × 104

−10x3
1x2

2 −2.57 ± 2.26 0 0 0

−6x5
1x2 −2484.65 ± 3006.48 0 0 0

−sgn(x2) −17.75 ± 17.76 0 0 0

−x1 |x1| (15.12 ± 16.55) × 103 0 0 0

u (10.17 ± 0.04) × 104 (10.17 ± 0.04) × 104 (10.17 ± 0.04) × 104 (10.17 ± 0.04) × 104

Table 5: basis function selection and parameter estimation results for the Silverbox nonlinear benchmark using SBL and

MCMC-SS algorithms; leftmost column enumerates the set of basis functions deemed relevant by at least one of the four sparse

Bayesian algorithms, and the rest of columns show the posterior means and standard deviations of the estimated unscaled

weights.

the results of prediction from SBL and MCMC-SS algorithms are very similar for the Silverbox benchmark.

In summary, Bayesian equation discovery performed on the Silverbox benchmark, showed that MCMC-

SS algorithms are able to select fewer relevant basis functions compared to the SBL, while furnishing a

comparable prediction error. The MCMC-SS algorithms selected a model with five basis functions, while

the SBL included many more basis functions in addition to the ones selected by MCMC-SS algorithms. For

test set model predictions, both the SBL and the MCMC-SS algorithms were found to closely match the

true test set responses near resonance while there were greater discrepancies in predictions away from the

region of resonance. Overall, the models inferred with MCMC-SS algorithms can be considered better with

significantly lower number of basis functions and more interpretability.

5. Discussion

From the standpoint of equation discovery, the results of Bayesian basis function selection and parameter

estimation using the MCMC-SS algorithms are quite encouraging. The estimated models (or governing

equations) are not only more interpretable but also superior in prediction, compared to the SBL. However,

unlike SBL, the MCMC-SS algorithms are based on random sampling and are orders of magnitude more

expensive than the SBL. For faster implementation of Bayesian inference with SS priors, one may consider

employing alternative methods such as expectation maximisation [60], variational Bayes [61–63], expectation

21



50 100 150 200 250 300 350 400 450 500 550

Time (samples)

-5

0

5

A
m

p
li

tu
d

e 
(V

/s
2
)

10
4

pred CI pred mean true

200 205 210 215 220
-1

0

1

A
m

p
li

tu
d

e 
(V

/s
2
)

10
4

400 405 410 415 420
-5

0

5
10

4

Figure 9: Plot of test set predictions of the Silverbox nonlinear benchmark using the MCMC-DSS-i algorithm (shown for a

subset of 500 samples); testing with down-chirp input excitation. The top figure along with the “zoomed-in” bottom figures

show the predicted mean and 3σ confidence interval (CI) of the test acceleration plotted alongside with ‘true’ acceleration.

Predictions are better at lower input frequencies (bottom-right figure) than at higher input frequencies (bottom-left figure).
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Figure 10: Plot of test set prediction errors from the SBL and the MCMC-DSS-i algorithms on the Silverbox nonlinear

benchmark (shown for a subset of 500 samples). Prediction errors are largely similar except near resonance (marked by a

rectangular box).

propagation [64], etc.

The dictionary of candidate basis functions plays a significant role in practical implementation of equation

discovery algorithms. The success in discovering correct equations greatly hinges on whether or not the true

basis functions are included in the dictionary. Absence of the true basis functions in the dictionary will

lead to discoveries of terms that are strongly correlated with the true basis functions. For example, if

sin(x) is a true variable that is not included in the dictionary, one will end up selecting correlated basis
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functions such as x, x3, x5, . . . from a polynomial-based dictionary. Ideally, the dictionary should consist

of as many diverse bases as possible, not just polynomial bases. In practice, however, putting more basis

functions in the dictionary increases the correlation between basis functions and causes ill-conditioning of

the dictionary matrix. The DSS-g prior was introduced to account for the correlation structure of the bases

in the dictionary; its use was found to result in reduced uncertainty in the parameter estimates, however,

the mean values of the parameter estimates were not found to be significantly different from that of the

DSS-i prior. It was also found that a severely ill-conditioned dictionary can cause poor mixing (or even

local entrapment) of the Markov chains and can induce incorrect selection of basis functions from a set of

correlated basis functions. Parallel-tempering algorithms [65] can aid in improving the mixing of chains;

however, they would significantly increase the computational burden. A reasonable approach would be

to assess the dictionary for strongly-correlated basis functions prior to Bayesian inference, and if possible,

eliminate some of them after careful deliberation. For example, basis functions x and sin(x) are highly

correlated for small values of x, and one may choose to exclude sin(x) from the dictionary to prevent ill-

conditioning, as has been done here. In the experience of the authors, the SBL is more robust in handling

ill-conditioned dictionaries than MCMC-SS algorithms.

It should also be mentioned that the accuracy of the equation discovery approach can be greatly affected

by errors in the state variables x, present either in the form of measurement noise or state estimation

errors. Since the basis functions are dependent on the states x, even moderate amounts of errors in x

can nonlinearly corrupt the constructed bases in the dictionary, and will eventually result in discovering

incorrect equations. In the numerical study in Section 3, measurements of all three response variables, i.e.,

displacement, velocity and acceleration were assumed, and a relatively small noise was used to corrupt the

measurements. While all three variables can be measured for a small system in a laboratory setup, it would

be prohibitive to do so in practice, especially for large structural systems. A truly pragmatic approach

would be to measure acceleration – the most commonly measured quantity in structural testing – and

estimate the displacement and velocity from it. However, a naive numerical integration of the acceleration

to obtain displacement or velocity may not work well, as even small amounts of noise in the displacement or

velocity could deteriorate the equation discovery results. Recently, a promising optimisation framework was

proposed in [66], that leverages automatic differentiation and sparse regression to simultaneously separate

the noise signal from the measured data as well as recover the governing differential equations via numerical

time-stepping constraints. This approach could be combined with a sparse Bayesian learning framework to

make the equation discovery procedure more robust. Future efforts will look at developing robust approaches

of equation discovery using acceleration measurements.

6. Conclusions

This paper presents a novel application of SS priors in Bayesian equation discovery of structural dynamic

systems, which aims at discovering the governing ordinary differential equations of motion of a structural

system from measured input-output data. The equation discovery procedure is tantamount to a simultaneous

model selection and parameter estimation problem in system identification. Using a dictionary of nonlinear

bases variables composed using the measured data, the problem of Bayesian model selection is turned
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into a Bayesian basis function selection problem and solved via sparse linear regression, thus bypassing a

combinatorially large search through all possible candidate models. The SS priors are well-known to possess

superior sparsity-enforcing properties compared to the Laplace or Student’s-t priors, owing to their two-

component mixture distributions of a narrow spike and a comparably flat slab. As such, their use in basis

function selection has the potential to derive more parsimonious and interpretable equations of motion. In

this paper, three different variants of SS priors – namely the CSS, DSS-i and DSS-g – are employed as prior

distributions, and MCMC-based Gibbs sampling algorithms are derived to select the relevant variables and

estimate associated parameters.

Using a series of numerical simulations, it has been demonstrated that the proposed MCMC-SS algo-

rithms correctly identify the presence and type of various nonlinearities such as a cubic stiffness, a quadratic

viscous damping, and a Coulomb friction damping. Furthermore, using Monte Carlo simulations, the perfor-

mance of MCMC-SS has been compared to SBL, which uses the Student’s-t prior. It is found that MCMC-SS

algorithms display stronger model selection consistency than SBL. Additionally, the predictive accuracy of

the models selected by MCMC-SS is found to be highly competitive to that of the models estimated by

SBL.
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Appendix A. Gibbs sampling scheme for CSS prior

The Gibbs sampling steps for the CSS prior are adopted from the BASAD algorithm [47]. Note that,

as mentioned in Section 2.1, the CSS priors involve a vector of slab variances, that is, a slab variance vsi
is

associated with each weight θi. The steps for the parameters θ, z, p0, vsi
and σ2 are as follows:

(a) θ is sampled from a Gaussian distribution as follows,

θ | y, z, vs, σ2 ∼ N
(
µ, σ2Σ

)
(A.1)

where Σ =
(
DT D + V−1

)−1
, µ = ΣDT y, and V is a diagonal matrix with elements Vi,i =

vsi
(v0(1 − zi) + v1zi), i = 1, . . . , P .

(b) σ2 is sampled from an inverse Gamma distribution as follows,

σ2 | y, θ, vsi
∼ IG

(

aσ +
N

2
+

P

2
, bσ +

1

2

(

(y − Dθ)
T

(y − Dθ) + θT V−1θ
))

(A.2)

(c) The vector of weight-specific slab variances is sampled componentwise. The ith component, vsi
, is

sampled from an inverse Gamma distribution as follows,

vsi
| θ, z, σ2 ∼ IG

(

av +
1

2
, bv +

0.5θ2
i

2σ2 (v0(1 − zi) + v1zi)

)

(A.3)
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(d) p0 is sampled from a Beta distribution as follows,

p0 | z ∼ Beta

(

ap +

P∑

i=1

zi, bp + P −
P∑

i=1

zi

)

(A.4)

(e) The conditional distribution of z is expressed componentwise. The odds of zi = 1 to zi = 0 are

computed. The components of z are sampled as follows,

zi | θi, vsi
, σ2, p0 ∼ Bern(ξi), with ξi =

p0

p0 +
p(θi|zi=0,vsi

,σ2)
p(θi|zi=1,vsi

,σ2)
(1 − p0)

(A.5)

In the above sampling step, the probabilities p
(
θi | zi = 0, vsi

, σ2
)

and p
(
θi | zi = 1, vsi

, σ2
)

can be

computed by evaluating the Gaussian densities over θi, as follows:

p
(
θi | zi = 0, vsi

, σ2
)

=
1

√

2πσ2v0vsi

exp

(

−
θ2

i

2σ2v0vsi

)

p
(
θi | zi = 1, vsi

, σ2
)

=
1

√

2πσ2v1vsi

exp

(

−
θ2

i

2σ2v1vsi

)
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