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ABSTRACT

Realistic theoretical models of magnetohydrodynamic wave propagation in the different solar magnetic
configurations are required to explain observational results, allowing magnetoseismology to be conducted
and provide more accurate information about local plasma properties. The numerical approach described in
this paper allows a dispersion diagram to be obtained for any arbitrary symmetric magnetic slab model of solar
atmospheric features. This proposed technique implements the shooting method to match necessary boundary
conditions on continuity of displacement and total pressure of the waveguide. The algorithm also implements
fundamental physical knowledge of the sausage and kink modes such that both can be investigated. The
dispersion diagrams for a number of analytic cases which model magnetohydrodynamic waves in a magnetic
slab were successfully reproduced. This work is then extended by considering density structuring modelled
as a series of Gaussian profiles and a sinc(x) function. A further case study investigates properties of MHD
wave modes in a coronal slab with a non-uniform background plasma flow, for which the governing equations
are derived. It is found that the dispersive properties of slow body modes are more greatly altered than those
of fast modes when any equilibrium inhomogeneity is increased, including background flow. The spatial
structure of the eigenfunctions is also modified, introducing extra nodes and points of inflexion which may
be of interest to observers.

Key words: magnetohydrodynamics (MHD) – waves

1 INTRODUCTION

The understanding of excitation and propagation of magnetohydro-
dynamic (MHD) waves is an important field of research in solar
and plasma physics. It is thought that these waves may contribute to
coronal heating due to their observed ubiquity throughout the solar
atmosphere. These waves may be able to transfer sufficient amounts
of energy to the upper layers of the solar atmosphere and undergo
dissipation, consequently heating up localised plasma. Dissipation
processes may include, but not be limited to, resonant absorption
(Hollweg & Yang 1988; Ruderman & Roberts 2002; Howson et al.
2019), Alfvén wave phase mixing (Heyvaerts & Priest 1983;
Ofman & Aschwanden 2002) and transformation of waves via para-
metric processes (Voitenko & Goossens 2002; Fedun et al. 2004;
Voitenko & Goossens 2004; Vásconez et al. 2015). Complete un-
derstanding of the properties of these waves including their dis-
persive nature is essential in determining their contribution to the
energy budget of the solar atmosphere.

The dispersion diagram provides a useful tool in understanding
the properties of various MHD waves. It indicates the permittable
phase speeds at which trapped waves propagate and provides in-
formation about their dispersive characteristics. Previously, there

⋆ E-mail: sjskirvin1@sheffield.ac.uk

has been a number of studies devoted to the analysis of MHD
wave properties in different magnetic configurations. Roberts (1981)
and Edwin & Roberts (1982) investigated MHD waves in Cartesian
geometry modelled as a magnetic interface and a magnetic slab
respectively. The magnetic slab has been investigated in both a
magnetic and a field free environment. A visual representation of
the magnetic slab is shown in Figure (1). These theoretical stud-
ies have provided the fundamental models which describe wave
propagation for magnetic waveguides found in the solar atmo-
sphere. Further extensions of these models were provided by in-
troducing steady background plasma flows (Nakariakov & Roberts
1995a), linear background flows (Zaqarashvili 2011) and also mov-
ing to cylindrical geometry (Edwin & Roberts 1983), with magnetic
twist (Erdélyi & Fedun 2007, 2010) and curvature of the waveguide
(Verwichte et al. 2006a,b), to name but a few. Generalising the tra-
ditional slab model of a solar waveguide to a more realistic case
has been an extensive area of research. For example, coronal loops
have been modelled in planar geometry with smooth density profiles
(Lopin & Nagorny 2015a) although these studies consider a contin-
uous background plasma profile and do not match any boundary
conditions, simply because there are no distinct boundaries in the
model. The period ratio of the fundamental mode to twice the first
overtone P1/2P2 was investigated by Macnamara & Roberts (2011)
for a coronal loop with an Epstein profile in density. The authors
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2 S. J. Skirvin et al.

found that there were striking similarities to that of the step function
considered traditionally, suggesting that the step function profile for
density may actually be a useful model for wave investigations.
Chen et al. (2018) derived a generalised dispersion relation for fast
waves in a cold coronal slab with a finite plasma-β (ratio of plasma
pressure to magnetic pressure). However, in this investigation con-
tinuous transverse profiles are considered split into three regions
where the middle regime is allowed to be arbitrary.

Previous works have developed a number of techniques to
numerically solve the differential equation with carefully chosen
profiles for plasma density or Alfvén speeds (Oliver et al. 1993;
Verwichte et al. 2006a; Soler et al. 2017; Thackray & Jain 2017).
These studies also focus on coronal structures, namely coronal
loops, where plasma pressure is assumed negligible and the plasma-
β is zero. The cold plasma-β limit restricts these investigations to
fast magnetoacoustic waves only as it is assumed that the Lorentz
force dominates. The behaviour of MHD waves propagating in
coronal loops with specific inhomogeneous density profiles has
also been studied before in both planar and cylindrical geometries,
see e.g. Edwin & Roberts (1988); Nakariakov & Roberts (1995b);
Lopin & Nagorny (2015a,b); Li et al. (2018). The specific choice
of the density profile could result in an analytical derivation of the
dispersion relation. However, in the majority of these cases a contin-
uous density profile is considered, such that there are no boundaries
of the waveguide and as a result, no boundary conditions to be
matched. Studies of wave behaviour in the context of different re-
alistic background plasma profiles are important as they provide
information on group velocity as a function of density structure
(Edwin & Roberts 1988), and, therefore, on how the waves may
transfer their energy. Whilst this research has greatly advanced un-
derstanding of wave phenomena in coronal structures, the dispersion
relation is derived in all cases through carefully chosen plasma pro-
files allowing an analytical solution to be obtained. To model wave
propagation in a realistic magnetic configuration with a spatially
varying plasma equilibrium in the presence of background flows, a
numerical approach has to be used. Very recently Claes et al. (2020)
have developed a numerical code to solve the full MHD spectrum
for any given 1D equilibrium. In the approach presented by the au-
thors a finite element method (FEM) was implemented to identify
the permittable eigenvalues.

In this paper, the numerical methodology for obtaining so-
lutions located on the dispersion diagram based on the shooting
method approach will be introduced in Section 2 to a case of a mag-
netic slab in Cartesian (planar) geometry. In Section 3 the results
of the proposed method are directly compared to previous studies
of wave propagation and analytically derived dispersion diagrams.
These comparisons are done under the context of both static and
steady background plasma flows. In Section 4 the developed method
will be applied to inhomogeneous density profiles which take the
form of a Gaussian distribution and a sinc(x) function, better known
as sin(x)/x, which have not been previously investigated and can not
be solved analytically. Finally in Section 5 the properties of MHD
waves in a coronal slab in the presence of a Gaussian non-uniform
background flow is investigated.

2 METHOD

The set of ideal, compressible MHD equations used in the investi-
gation are:

dρ

dt
+ ρ∇ · v = 0, (1)

Figure 1. The magnetic slab model traditionally used to model features
observed in the solar atmosphere. Red arrows represent magnetic field lines
and intend to show the different magnetic configurations in each regime
internal and external to the waveguide. Blue arrows represent the vertical
equilibrium velocity field which may be non-uniform in spatial coordinate x.
The slab is assumed to be homogeneous and unbounded in the y-dimension.
Parameters ρ, P, U0 and B denote plasma density, pressure, background
flow and magnetic field respectively. Subscripts i and e relate to internal
and external properties respectively. The special scenarios in this work in-
vestigate a spatially varying density profile ρ0i (x) and vertical background
flowU0i (x). In reality any/all equilibrium background plasma variables are
allowed to be inhomogeneous and the numerical approach presented is ca-
pable of handling such a scenario. The specific spatial profiles considered
in this work are shown in Figures (6), (12) and (16) for inhomogeneous
equilibrium density and also Figure (21) for an inhomogeneous background
flow.

ρ

(

dv

dt

)

= −∇p +
1

µ0
(∇ × B) × B, (2)

d

dt

(

p

ργ

)

= 0, (3)

∂B

∂t
= ∇ × (v × B) , (4)

∇ · B = 0, (5)

where ρ is the plasma density, v is the velocity field, p is the
plasma pressure, B is the magnetic field, µ0 and γ are the magnetic
permeability of free space and the ratio of specific heats respectively.
d
dt
=

∂
∂t
+U0i

∂
∂z

is the total (material) derivative.
By linearising the system of Equations (1)-(5) and seeking

wave solutions of the form ei(kz−ωt) where k is the wavenumber
and ω its frequency, a governing differential equation can be de-
rived for either the transverse velocity perturbation v̂x or displace-
ment component, ξ̂x and also an expression for the total pressure
perturbation P̂T . Total pressure is defined as plasma plus magnetic
pressure given by p+B2/2µ0. After matching boundary conditions,
namely the continuity of v̂x and P̂T , a transcendental dispersion
equation for ω and k is retrieved. The solutions of such equation
will give the permittable ’trapped’ physical wave modes which can
propagate through the waveguide. This approach previously works
due to the analytical solution of the governing differential equa-
tion being known, however, breaks down when the format of the
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Magnetoacoustic waves in inhomogeneous waveguides 3

differential equation becomes more complicated and no known an-
alytical solution exists. Such reasons that the differential equation
in v̂x may become more complicated could be from adding extra
inhomogeneities into the original equilibrium, such as not assuming
the plasma properties are uniform in space and unchanging in time.
The physical nature, such as size and shape, of the inhomogeneities
are important as they influence propagation of MHD waves along
waveguides and may significantly effect their dispersive nature.

The plasma properties inside and outside the slab are assumed
to be known, dependant upon whether photospheric or coronal
conditions are being investigated. The general differential equation
takes the following form for a magnetic slab:

v̂
′′
x + F(x, ω, k, c0, vA, cT )v̂′x + G(x, ω, k, c0, vA, cT )v̂x = 0, (6)

c0 =

√

γp

ρ
, vA =

B
√
ρµ0
, cT =

c0vA√
c0 + vA

,

where F and G are arbitrary functions, c0, vA and cT are the sound,
Alfvén and tube speeds respectively. A prime denotes a deriva-
tion with respect to the spatial coordinate x. Note that equation
(6) may be with respect to P̂T also. The functions F and G are
usually constant or zero in previous studies (see e.g. Roberts 1981;
Edwin & Roberts 1982; Nakariakov & Roberts 1995a) due to the
uniform plasma being investigated. However, these functions be-
come more complicated and non constant if, for example, an in-
homogeneous plasma is considered. When the differential equation
is with respect to horizontal velocity perturbation then the corre-
sponding total pressure perturbation expression for a magnetic slab
takes the form:

P̂T = A(x, ω, k, c0, vA, cT ) B(x, v̂x, v̂′x), (7)

with A and B again arbitrary general functions.
In this paper, a numerical method to obtain the dispersion

diagram is presented without requiring the corresponding dispersion
relation, usually obtained analytically. This method takes advantage
of the shooting method, a numerical analysis technique designed to
solve a boundary value problem (BVP) by reducing it to an initial
value problem (IVP). It also requires that all quantity profiles are
symmetric about the centre of the waveguide.

Let’s consider a magnetic slab in two-dimensional planar ge-
ometry such that the internal plasma parameters are different to the
external plasma parameters but both regimes are uniform. There are
certain conditions which need to be met to identify the permittable
wave modes in this model. Firstly, the waves are required to be lat-
erally evanescent outside the waveguide, such that the local wave
amplitude tends to zero infinitely far from the waveguide, confin-
ing waves to exist only within the slab. Secondly, v̂x and P̂T must
be continuous at the boundaries of the waveguide. To satisfy the
first condition, it can be assumed that the wave amplitude, v̂x is
extremely small far away from the slab hence v̂

′
x must too be very

small.
Numerically, it is not required to consider the point at infin-

ity so long as the domain is restricted to be considerably larger
than the width of the waveguide. The location of infinity must be
chosen such that it supports a sufficient number of wavelengths
for the wave amplitude to decay. The boundaries of the slab pro-
vide a BVP, however, here a BVP solver cannot be used because
there is not enough information about v̂x or P̂T at the boundary.
In the shooting method, the value of either function at an initial
point is known, with the aim to effectively guess the format of the
function derivatives until a solution is found that goes through the

second boundary value. Fortunately, under the assumption that the
perturbations decay far away from the waveguide, it is known that
at a location covered by enough wavelengths both v̂x and v̂

′
x are

very small, almost zero. Therefore using these initial conditions,
Equation (6) can be solved numerically exterior to the slab up to
the boundary. By assuming the solutions are evanescent outside the
waveguide, in this paper we seek trapped modes and ignore leaky
waves which may undergo damping due to wave leakage away from
the waveguide (Stenuit et al. 1998). Focusing solely on v̂x for the
moment, the condition restricting P̂T will be implemented later.

The solution for v̂x is found numerically exterior to the slab up
to and including the boundary using a numerical solver for ordinary
differential equations (ODEs). Therefore, the second order differ-
ential equation in v̂x is reduced to first order by introducing a new
variable and the initial values of both v̂x and v̂

′
x are assumed very

small (≪ 1). Solving this set of equations provides values at each
x location for both v̂x and v̂

′
x . At the boundary, a value of v̂x has

now been obtained, however, the value of v̂′x inside the slab is not
known. Therefore, the shooting method is implemented to ’shoot’
to the opposite boundary depending on what wave mode is being
investigated, for example sausage or kink.

Magnetoacoustic wave modes are split into sausage and kink
depending if the boundaries of the waveguide oscillate out of or in
phase with each other, respectively. The sausage mode is the anti-
symmetric solution about x = 0 and the kink mode is the symmetric
solution for v̂x . These wave modes can be further separated into sur-
face and body respectively, if the wave amplitude exists only at the
boundary or oscillates throughout the waveguide (Edwin & Roberts
1982; Priest 2014). Therefore, enough information is known at spe-
cific locations in the domain to find solutions for either the kink
or sausage modes by applying the aforementioned conditions. If
the sausage mode is being investigated, the algorithm is design to
’shoot’ from the one boundary to the other requiring the values to be
anti-symmetric. When investigating the kink mode, the algorithm
finds a solution on the opposite boundary with a value of v̂x equal
to the known boundary value. Assuming symmetry of the model
in this way means that the solution does not need to be found in
the other external region. The method of shooting for the internal
region, where in this paper the plasma density and background flow
is allowed to be non-uniform, reduces Equation (6) to first order and
obtains values for v̂x and v̂

′
x at every spatial location. It should be

noted that in a non-uniform plasma Equation (6) can possess singu-
larities which correspond to solutions lying inside the slow/Alfvén
continuum.

The total pressure P̂T , Equation (7), must also be continuous
across the slab boundaries and an ω, k pair will only exist if both
conditions are met. The equation describing P̂T can be derived
from the momentum Equation (2) and contains a term multiplied
by v̂

′
x . When reducing the differential Equation (6) to first order, the

solution for v̂′x is obtained trivially at all locations in the domain.
Therefore, this value can be used to calculate the value for P̂T at
the boundary for both the internal and external plasma parameters
of the slab. A match for P̂T is obtained if the internal and external
values are within a given small accuracy parameter ǫ of each other.
If this is the case then the corresponding phase speed, from the ω, k
solution, is plotted on the dispersion diagram. It is highly unlikely
that an ω, k pair from the initial sampling will be an exact solution,
therefore a numerical bisection method is adopted alongside the
shooting method. The wavenumber is fixed and the algorithm iter-
ates through different wave frequencies. The value of the internal
eigenfunction solution at the boundary and the external eigenfunc-
tion solution at the boundary for each frequency is stored. The value

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
b
1

1
4
3
/6

2
5
3
2
2
3
 b

y
 g

u
e
s
t o

n
 1

0
 M

a
y
 2

0
2
1



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

4 S. J. Skirvin et al.

of eigenfunction difference at the boundary changes sign when an
exact solution is passed (i.e. goes from positive to negative). When
this condition is true, the algorithm goes back to the previous fre-
quency sampled and the step size is reduced in order to locate the
exact eigenvalue. The solutions are split into their separate branches
on the dispersion diagram and fitted with a high order polynomial
curve.

3 COMPARISON WITH KNOWN SOLUTIONS

3.1 Magnetic slab case

In this section the results of the method will be compared to re-
sults previously obtained by Edwin & Roberts (1982) in which a
magnetic slab embedded in a stationary magnetic environment is
investigated. The graphical representation of this problem is shown
in Figure 1. The analytic dispersion relation is derived with a closed
form solution by assuming that all plasma quantities including sound
and Alfvén speed are uniform in all regions. The known analytic
dispersion relation is given by Equation (11) in Edwin & Roberts
(1982) and solutions of this transcendental equation give the result-
ing dispersion diagram. Here, the functions F and G are constant
and therefore Equation (6) can be written as:

v̂
′′
x − m2

i v̂x = 0, (8)

where

m2
i =

(

k2
v

2
Ai

− ω2
) (

k2c2
i
− ω2

)

(

c2
i
+ v

2
Ai

) (

k2c2
Ti

− ω2
) .

The corresponding total pressure perturbation given by Equation
(7) can be written as:

P̂T = i
ρi

ω

(

c2
i + v

2
Ai

)

(

k2c2
Ti

− ω2
)

(

k2c2
i
− ω2

)

dv̂x

dx
, (9)

which is proportional to the derivative in the velocity perturbation.
Equations (8) and (9) providing the two boundary conditions which
require to be continuous. All variables outside of the slab will have
indexes e but take the same form as Equations (8) and (9). Following
the procedure outlined in Section 2 the shooting method is applied
to solve equation (8). A solution will only be obtained if a value of
frequency and wavenumber simultaneously satisfies Equations (8)
and (9) for v̂x and P̂T .

It can be seen in Figure 2a that the obtained solutions for sur-
face waves and body waves fits well those results found previously
by Edwin & Roberts (1982, see Figure 3) under photospheric con-
ditions (vAe < ci < ce < vAi). Typically, obtaining solutions for
body modes, located between cTi < vph < ci (vph = ω/k) for the
photospheric case, tends to be more difficult due to the reduced step
size required when numerically solving the dispersion relation by
the bisection method, however this method finds the exact solutions
with no alterations in the algorithm. More MHD wave modes could
be retrieved by increasing the number of samples in the domain,
however this comes at a cost of increased numerical intensity, so
a balance must be found. This also includes higher harmonics of
body modes which will be retrieved also with increasing resolution.

The results of the calculation for the scenario of a magnetic slab
under coronal conditions (ce < ci < vAi < vAe) are shown in Fig-
ure 2b and can be compared to Figure 4 in Edwin & Roberts (1982).

Similarly to the photospheric case the phase speed solutions are re-
covered well for both the sausage and kink modes. Under coronal
conditions as stated in Edwin & Roberts (1982) only body modes
exist, indicating here the power of this method to recover body mode
solutions with no additional steps required in the algorithm. It can
be seen only specific branches of the fast body waves are recovered,
presumably these are the first harmonics and higher harmonics will
be identified with greater resolution.

3.2 Magnetic slab with steady flow

The magnetic slab model can be further extended to investigate
observed features by the inclusion of a background steady flow.
Previous studies have included the addition of a steady background
plasma flow, see e.g. Nakariakov & Roberts (1995a); Zaqarashvili
(2011); Ebadi et al. (2011). It is well known that the introduction
of a background flow into the model increases the amplitude of
the wave perturbations. The flow also gives the waves an observed
phase shift when compared to the no flow magnetic slab model,
proportional to the speed of the flow. Furthermore, introducing a
background flow supports development of the Kelvin-Helmholtz
instability at the boundary of the flux tube.

In the presence of a steady background plasma flow, the struc-
ture of Equation (6) remains the same, but the wave frequency is
now phase shifted by a magnitude proportional to the plasma flow
speed U0, that is ω becomes ω − kU0. As a result the coefficient in
Equation (6) becomes:

m2
i =

(

k2
v

2
Ai

−Ω2
) (

k2c2
i
−Ω2

)

(

c2
i
+ v

2
Ai

) (

k2c2
Ti

−Ω2
) ,

and

Ω = ω − kU0i,

whereΩ is the phase shifted frequency. Now that a flow has been in-
troduced, two conditions at the boundaries of the slab still required
to be satisfied. Whereas before, the continuity of total pressure and
horizontal velocity perturbation were the conditions, the latter is
replaced by the continuity of the horizontal displacement perturba-
tion. This is due to the additional background flow U0, which can
locally amplify the wave displacement at the boundary and needs
to be accounted for. Therefore the new boundary conditions which
need to be satisfied are given by:

vxi(x = ±x0)
Ω0i

=

vxe(x = ±x0)
Ω0e

, (10)

as explained in Nakariakov & Roberts (1995a) where ±x0 are the
locations of the slab boundaries (see Figure 1).

Equations (6) and (7) along with condition (10) are used in
order to attempt to retrieve ω and k pairs on the dispersion dia-
gram. Nakariakov & Roberts (1995a) have found that the properties
of magnetoacoustic waves in a magnetic slab with a background
flow were not drastically different to those of the static model, al-
though for specific values of external flow, the dispersion diagram
was slightly different as certain wave modes disappeared from the
diagram.

Figure 4a shows the results of the methodology under photo-
spheric conditions with a downward steady flow external to the slab.
The phase velocity axis is normalised relative to the internal Alfvén
speed so that direct comparison can be made with the results of Fig-
ure 2b in Nakariakov & Roberts (1995a). The obtained results show
a good agreement of those first retrieved by Nakariakov & Roberts
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Magnetoacoustic waves in inhomogeneous waveguides 5

Figure 3. The numerical solutions for a uniform magnetic slab under (a) photospheric conditions given by ce = 1.3ci , vAi = 1.9ci and vAe = 0.8ci . (b)
Coronal conditions given by ce = 0.4ci , vAi = 1.2ci and vAe = 3ci . Red curves denote sausage mode, blue curves show kink mode.

Figure 5. The numerical solutions of the presented technique plotted on the dispersion diagram for a magnetic slab with a steady background flow under
(a) photospheric conditions given by ci = 0.67vAi , ce = 0.75vAi and vAe = 0 with an external flow of Ue = −0.15vAi and no internal flow. (b) Coronal
conditions given by ci = 0.3vAi , ce = 0.2vAi and vAe = 2.5vAi with an internal flow of Ui = 0.35vAi and no external flow. Same as Figure (3) but for a
slab model with a steady background flow.

(1995a) and it is possible to sample regions between specific char-
acteristic speeds such that higher resolution can be obtained in the
regions cut off by the presence of the flow. The corresponding coro-
nal solutions are shown in Figure 4b with a steady internal flow
of v0 = 0.35vAi and no external flow. Again, the same solutions
are obtained as those shown in Figure 1c in Nakariakov & Roberts
(1995a) including the backward propagating body modes at small
vph .

The next section extends these uniform cases and adds inho-
mogeneity into the model by changing the form of Equations (6)
and (7).

4 NON-UNIFORM DENSITY PROFILES

The properties of MHD waves in a non-uniform plasma have
been investigated before and the general formalism for any
1D inhomogeneity, including stratification along the direction
of non-uniformity, has previously been presented in (see e.g.
Goedbloed et al. 2010; Goedbloed et al. 2019; Roberts 2019).

In this section, a spatially dependant internal plasma density is
introduced into the model. This significantly changes the expression
given by Equation (6) from the case of a uniform slab, namely the
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6 S. J. Skirvin et al.

Figure 6. Density profile modelled as a Gaussian with a varying inho-
mogeneity in a coronal slab. Width of inhomogeneity given by W = 105

(black), W = 3 (yellow), W = 1.5 (green), W = 0.9 (red). A spatial profile
proportional to a sinc(x) (e.g. sin(x)/x) function (blue) is also modelled.
In all cases the density is discontinuous at the waveguide boundary and
tends towards ρe (shown) at the boundary. The boundaries of the slab are
indicated by the red dashed lines.

function F(x) is no longer equal to zero. The governing equation
now reads:

v̂
′′
x +

F ′(x)
F(x) v̂

′
x + m2

i (x)v̂x = 0, (11)

where:

F(x) = ρi(x)

(

c2
i
(x) + v2

Ai
(x)

) (

k2c2
Ti
(x) − ω2

)

(

k2c2
i
(x) − ω2

) ,

and

m2
i (x) =

(

k2
v

2
Ai
(x) − ω2

) (

k2c2
i
(x) − ω2

)

(

c2
i
(x) + v2

Ai
(x)

) (

k2c2
Ti
(x) − ω2

) .

The equivalent expression for P̂T is given by equation (9) where all
quantities are now a function of x.

Consider a magnetic slab embedded in a stationary, uniform
and magnetised environment under coronal conditions (ce < ci <

vAi < vAe). Background plasma flow is ignored and the character-
istic speeds are chosen to match those given in the coronal case in
section 3.1. Inside the magnetic slab, a Gaussian profile in plasma
density is introduced, see Figure 6, given by the expression:

ρi(x) = ρe + (ρ0i − ρe) exp

(

−(x − xc)2

W2

)

,

where xc is the centre of the Gaussian located at x = 0, W is
the standard deviation (i.e. the width) of the density distribution
and ρ0i is the maximum internal density given by the value in
section 3.1. The other equilibrium density structuring investigated
in this work considers a sinc(x) function. The motivation behind
modelling a sinc(x) profile comes from observations of magnetic
bright points (MBP’s) which have been observed to have spatial
intensity distributions similar to such a profile (see e.g. Jess et al.

2010). To fit the numerical domain, the normalised sinc(x) function
is modelled in this work using:

ρi(x) =
ρ0i

4
(sinc(10x) + 3) ,

for a coronal slab and is normalised such that the maximum is
comparable to the uniform slab case. Pressure balance is accounted
for by a change in temperature inside the slab. The width of the
Gaussian profile determines the gradient of the inhomogeneity. The
characteristic speeds are therefore also spatially dependant. This
specific case corresponds to a cool magnetic flux tube.

4.1 Inhomogeneous magnetic slab under coronal conditions

The solar atmosphere is highly inhomogeneous and types of inho-
mogeneity could arise from non-uniform density and magnetic field
structuring, or unsteady flows. Investigating the trapped wave modes
of a solar waveguide within a non-uniform background plasma is
relevant to study from a theoretical point of view such that models
can be created which more accurately represent those seen in obser-
vations. Typically this investigation is done analytically, however,
when plasma variables are non-uniform in space, the governing
MHD equations become more complicated to solve. Some specific
plasma profiles have been previously extensively investigated, cho-
sen such to allow the derivation of an analytic dispersion relation
and as such retrieve solutions on the dispersion diagram. A review
of the density profiles which have been studied before are given
in Table 4 of Li et al. (2018). Here, the proposed numerical ap-
proach will be applied to investigate density profiles which can not
be analysed analytically.

For a large Gaussian width, the inhomogeneity inside the slab
is weak and the plasma is similar to the uniform case described in
Section 3.1, therefore corresponding to the same results as the uni-
form case. This case is shown in Figure 7a, where the characteristic
speeds at the boundary (subscript ’B’) correspond to the uniform
speeds in Figure 2b. The width of the profile here is chosen to be
W ≫ 2x0, i.e. many orders of magnitude larger than the width of
the waveguide. By changing the width of the inhomogeneity (i.e. the
standard deviation W), the value of ρ0i decreases at the boundary
compared to the uniform case and alters the trapped modes of the
system. Seen in Figures 7b, 7c, 7d are the resulting dispersion dia-
grams for the density profiles in Figure 6. The fast body solutions are
still bounded between vAe and vAi however are cut off by the internal
Alfvén speed at the boundary for a large Gaussian inhomogeneity
(W < 1) as it is not possible for trapped global eigenfrequencies to
enter this continua. Slow body waves in an inhomogeneous coronal
slab are bounded between the tube speed at the boundary of the
waveguide (cTB) and the maximum internal sound speed due to the
density structuring for small inhomogeneity. This can be seen in
Figures 7b and 7c, unlike the uniform case, where the slow body
waves are trapped between ci and cTi . Furthermore, the band lo-
cated between cTB and maximum cTi is a resonant region known
as the cusp (slow) continuum. This band is due to the singularity
in Equation (11), when vph = cTi which provides great interest as
resonant absorption can occur here and has been subject to previous
analytical investigation. Firstly by Keppens (1996) who studied this
effect in a cylinder with an unmagnetised surrounding and later by
Yu et al. (2017a,b) in a photospheric slab with a weakly magnetised
surrounding. It is worth further noting that the work by Keppens
(1996) also investigated the leaky modes, which can radiate energy
away from the waveguide. This study however is beyond the scope
of the current paper and will be investigated in future work.
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Magnetoacoustic waves in inhomogeneous waveguides 7

Figure 8. Dispersion diagrams showing the trapped solutions in a coronal slab with density structuring of a Gaussian form shown by the profiles in Figure 6.
The case when the width of the density profile, W is, (a) W ≫ 2x0, (b) W = 3, (c) W = 1.5, (d) W = 0.9. The characteristic speeds at the boundaries are
sub scripted ’B’. The maximum characteristic speeds are shown by the opposite edge of the shaded region. Blue region corresponds to the slow continuum
cT i (x), green region the inhomogeneous sound speed band and orange region is the Alfvén continuum vAi (x). Darker shades occur where there is an overlap
of two inhomogeneous regions.

Turning focus now to the spatial profile modelled as a sinc(x)
function. This profile is shown by the blue line in Figure 4. The
value of ρ0i at the boundary for the sinc(x) profile is similar to that
of a Gaussian profile with W = 1.5, however the structuring inside
the slab is much different. The dispersion diagram shown in Figure
9 has similar characteristics to those shown in Figure (7c) with
slight change in the positioning of slow body modes such that the
majority of these branches now lie inside the green shaded region
which represents the spatial sound speed band.

Comparisons of the eigenfunctions P̂T and v̂x for all possible
modes are shown in Figure 11. For the fast modes, both sausage and
kink, equilibrium inhomogeneity has a minor effect on the physi-
cal properties of the wave mode. It can be seen in Figure 10a that
as the Gaussian inhomogeneity is increased, the anti-nodes of the
fast sausage mode shift towards the center of the waveguide, an

effect which has been shown in coronal loop analysis by Verth et al.
(2007). The amplitude of the total pressure perturbation is also
locally increased at the centre of the waveguide as the Gaussian
inhomogeneity is increased. Figure 10b indicates the nodes of the
total pressure perturbation become more pronounced as the inho-
mogeneity increases, a similar albeit more minor effect can be seen
in the spatial structure of the v̂x eigenfunction. It is worth mention-
ing here that the profile proportional to sinc(x) does not appear to
affect the physical spatial distribution of the eigenfunctions for fast
modes in a coronal plasma, suggesting that these modes may not be
a suitable choice to use for spatial coronal-seismology.

However for the slow modes, the inhomogeneity has a much
greater effect. Figure 10c shows the perturbed eigenfunctions for
the slow body sausage mode. It is obvious that increasing the in-
homogeneity away from a uniform plasma has a clear effect on the
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8 S. J. Skirvin et al.

Figure 9. Dispersion diagram for a spatial profile proportional to sinc(x)
under coronal conditions. Labels and colours consistent with Figure 8.

physical properties of this mode. Decreasing the Gaussian width
creates extra nodes and anti-nodes in the resulting v̂x perturbation,
these extra anti-nodes may be misinterpreted in observational data
as an entirely different mode. Increased inhomogeneity also has an
effect on P̂T , changing the center of the waveguide from having a
maximum to having a minimum at this location for the slow sausage
mode. The slow body kink mode is also greatly affected by small
inhomogeneity compared to the uniform slab. As Gaussian inho-
mogeneity is increased, the maximum v̂x perturbation is achieved
closer to the boundaries of the waveguide, rather than obtaining a
single maximum at the centre in the uniform scenario. The total
pressure perturbation shown in Figure 10d is still zero at the center
of the waveguide as expected for the kink mode however displays an
anti-symmetric behaviour to the uniform scenario as the Gaussian
profile in density becomes more pronounced. The slow body modes
in a coronal plasma may be a good indicator into the underlying
plasma density structure. The v̂x distributions in Figure 10c appear
to be proportional to the derivative of the corresponding equilibrium
density profiles shown in Figure 4.

4.2 Inhomogeneous magnetic slab under photospheric

conditions

For photospheric conditions (i.e. vAe < ci < ce < vAi), the density
profiles investigated are shown in Figure 12 to model an evacuated
magnetic slab. Under these conditions, the Gaussian density main-
tains the same expression as that for the coronal case, however the
sinc(x) function must be normalised to the numerical domain and
now takes the form:

ρi(x) =
ρ0i

4
(sinc(10x) + 5) .

This model may better represent those conditions found in sunspot
umbrae and penumbrae, with a continuous internal density profile.
The case when the width of the profile is large compared to the
width of the waveguide is shown in Figure 13a and is comparable
to the uniform case shown in Figure 2a as expected. Adding extra
density inhomogeneity into the internal region alters the plasma
properties at the boundary compared to the centre.

Figures 13b, 13c and 13d show this and the shaded regions

denote the area covered by the inhomogeneity for each character-
istic speed. Slow surface waves are trapped at speeds below cTB

and above vAe. This result is expected from theory presented by
Edwin & Roberts (1982). Shown in Figure 13c the value of cTB sur-
passes vAe and as a result slow surface waves cease to exist. An in-
teresting region to note is the area contained within cB < vph < ci .
As extra inhomogeneity is added into the equilibrium, this region
becomes larger. Due to the presence of the boundary layer in the
model provided by the width of inhomogeneity, this region varies
continuously between the boundary cB and minimum value of in-
ternal sound speed ci . Likewise compared to the coronal case this
introduces Alfvén and cusp resonant singularities into the differen-
tial equation and provides the possibility for dissipation processes
to occur. Figure 15 is the resulting dispersion diagram for a photo-
spheric equilibrium with a density structure modelled as a sinc(x)
function. The algorithm finds eigenvalues very similar to the Gaus-
sian scenario with a width equal to 0.9 as shown in Figure 13d.
Interestingly, the shape of the equilibrium inhomogeneity, does not
appear to have a great affect on the eigenvalues of the equilibrium
system. Similar to the coronal case this is true for fast modes, which
may not feel the inhomogeneity as much as slow modes as they are
able to travel across magnetic field lines and as such travel more
freely across any inhomogeneity.

Figure 18 shows the perturbed eigenfunctions for the fast sur-
face sausage and fast surface kink mode under photospheric condi-
tions. It is clear that inhomogeneity in the form of a Gaussian or a
sinc(x) function has very little effect on the physical behaviour of
the total pressure and velocity perturbation.

Due to the decreasing density ratio at the boundary for Gaus-
sian widths with larger inhomogeneity, the cusp continuum band be-
comes larger, therefore cutting off the slow surface and body modes.
To further investigate these further, we consider initial density pro-
files with a similar Gaussian width but smaller inhomogeneity, see
Figure 16.

Displayed in Figure 20 are the perturbed eigenfunctions for
body sausage and body kink modes under photospheric conditions
and equilibrium density structure shown in Figure 16. Again, it is
clear that any equilibrium inhomogeneity, even minor changes in the
form of a Gaussian profile, has a significant effect on the properties
of slow modes. The v̂x perturbation for the sausage mode has anti-
nodes which shift again towards the centre of the waveguide, an
affect mirrored by the P̂T perturbation of the kink mode, due to the
asymmetry of the kink and sausage modes.

5 CORONAL SLAB IN PRESENCE OF

INHOMOGENEOUS BACKGROUND FLOW

In this section, an analysis of magnetoacoustic wave properties in
the case of a magnetic slab of uniform plasma in the presence of
a non-uniform background flow will be conducted. The governing
equations are derived under the context that the background plasma
flow is symmetrically-arbitrary and spatially varying. This scenario
is very applicable to the solar atmosphere. Jet-like features and
waveguides with a background flow are routinely observed in the
solar atmosphere, including spicules, fibrils and prominences to
name a few (de Pontieu et al. 2007; Berger et al. 2010; Pereira et al.
2011). Due to current spatial resolution limits of ground and space
based telescopes, the spatial profiles of these flows are still unknown
however it is common in fluid dynamics that flows are not steady
(e.g. Orszag & Kells 1980).

The discussed magnetic configuration in the form of a magnetic
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Magnetoacoustic waves in inhomogeneous waveguides 9

Figure 11. Comparisons of the eigenfunctions P̂T and v̂x for all the spatial profiles considered in Figure 4. The colour scheme is consistent with Figure 4.
(a) Fast sausage mode, (b) fast kink mode, (c) slow sausage mode and (d) slow kink mode. An eigenvalue of kx0 = 2 was chosen for all plots. All curves
normalised such that their values are equal to unity at the boundary.

is shown in Figure (1). In our model, we assume that the magnetic
field aligned plasma flow is present only inside the magnetic slab
e.g. v0i = (0, 0,U0i(x)). The solution for the case exterior to the
slab is the same as that shown in Section 3.1. The general formu-
lation for a non-uniform equilibrium, including background plasma
flow, has been previously derived in Frieman & Rotenberg (1960);
Goedbloed et al. (2019). Here we present a specific case of Equation
(13.11) from Goedbloed et al. (2019), in which the plasma proper-
ties are uniform expect for a symmetric inhomogeneous background
plasma flow, which unlike previous studies is allowed to be discon-
tinuous across the slab boundary. This chosen configuration of an
inhomogeneous vertical background flow aligned with the mag-
netic field eliminates any magnetic shear effects, including those
associated with the background flow.

The set of linearised, Fourier-decomposed MHD Equations

(1)-(5) for each perturbed quantity in the presence of an inhomoge-
neous background plasma flow described above are:

−iΩ(x)ρ̂1 + ρ0
(

v̂
′
x + ik v̂z

)

= 0, (12)

−iρ0Ω(x)v̂x = −P̂′
1 +

B0

µ0

(

ik B̂x − B̂′
z

)

, (13)

−iρ0Ω(x)v̂z + ρ0U ′
0i(x)v̂x = −ikP̂1, (14)

−iΩ(x)P̂1 + c2
0 ρ0

(

v̂
′
x + ik v̂z

)

= 0, (15)

−iΩ(x)B̂x = ikB0v̂x, (16)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

n
ra

s
/s

ta
b
1

1
4
3
/6

2
5
3
2
2
3
 b

y
 g

u
e
s
t o

n
 1

0
 M

a
y
 2

0
2
1



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

10 S. J. Skirvin et al.

Figure 12. Density profile modelled as a Gaussian with a varying inhomo-
geneity in a photospheric slab. Width of inhomogeneity given by W = 105

(black), W = 3 (yellow), W = 1.5 (green), W = 0.9 (red). A spatial profile
proportional to a sinc(x) function (blue) is also modelled. In all cases the
density is discontinuous at the waveguide boundary and tends towards ρe
(shown) at the boundary. The boundaries of the slab are indicated by the red
dashed lines.

−iΩ(x)B̂z = B̂xU ′
0i(x) − B0v̂

′
x, (17)

where Ω(x) = ω − kU0i(x) is the spatially Doppler shifted
frequency and a prime denotes a differentiation with respect to the
spatial coordinate x.

Equations (12)-(17) can be combined to eliminate all perturbed
quantities other than v̂x and as such derive a governing equation for
velocity amplitude:

v̂
′′
x + D(x)v̂′x +

[

−Ω
′′(x)
Ω(x) − Ω

′(x)
Ω(x) D(x) − m2

i (x)
]

v̂x = 0, (18)

where,

D(x) = 2Ω′(x)
Ω(x)

[

Ω
2(x)
Ω

2
c(x)

−
k2c2

Ti

Ω
2
T
(x)

]

, (19)

where,

Ω
2
s(x) = k2c2

i −Ω
2(x)

Ω
2
T (x) = k2c2

Ti −Ω
2(x)

Ω
′(x) = −kU ′

0i(x), Ω
′′(x) = −kU ′′

0i(x),

m2
i (x) =

[

k2
v

2
Ai

−Ω2(x)
] [

k2c2
i
−Ω2(x)

]

(

c2
i
+ v

2
Ai

)

[

k2c2
Ti

−Ω2(x)
]

=

Ω
2
A
(x) Ω2

s(x)
(

c2
i
+ v

2
Ai

)

Ω
2
T
(x)
,

with

Ω
2
A(x) = k2

v
2
Ai −Ω

2(x).

Equation (18) has no known closed form analytical solution,
due to it’s complicated nature caused by the spatially varying co-
efficients. It can be seen that if the spatial dependence on flow is

removed (i.e. an initial constant flow) that Ω(x) → ω − kU0i = Ω,
as such m2

i
(x) is also no longer a function dependant on space.

Furthermore, Ω′′(x) = Ω′(x) = 0 such that Equation(19) becomes
equal to zero. Equation (18) now becomes:

v̂
′′
x − m2

i v̂x = 0, (20)

which is the same result as shown in Equation (8) but with a Doppler
shift with respect to the flow velocity for the steady flow scenario.
Likewise, if magnetic field is neglected (B = 0) such that vAi, cTi =
0 and assume an incompressible plasma (ci → ∞), where in this
limit the sound speed becomes unbounded, the governing Equation
(18) becomes:

v̂
′′
x −

(

Ω
′′(x)
Ω(x) + k2

)

v̂x = 0, (21)

as given in Timofeev (2000). Equation (21) is a form of Rayleigh’s
equation (see e.g Chandrasekhar 1961), a well known previously
obtained expression in hydrodynamics concerning inviscid shear
flows (Rayleigh 1879; Hirota et al. 2014). The corresponding ex-
pression for the total pressure perturbation P̂T inside a magnetic
slab with a spatially varying background plasma flow is given by:

P̂T = −i
ρi

Ω(x)
(

c2
i + v

2
Ai

) Ω
2
T
(x)

Ω
2
s(x)

(

v̂
′
x − Ω

′(x)
Ω(x) v̂x,

)

(22)

The set of Equations (18) and (22) provides the required expres-
sions for the numerical analysis. Similar to the analysis conducted
in Section 4, an internal Gaussian flow profile is considered with the
spatial profiles analysed shown in Figure 21 given by the expression:

U0i(x) = Aexp

(

−(x − xc)2

W2

)

,

where A is the velocity amplitude, xc = 0 is the centre of the slab,
W is the width of the Gaussian and assuming that there is no plasma
flow outside the slab.

The resulting dispersion diagrams for a magnetic slab un-
der coronal conditions with an inhomogeneous Gaussian inter-
nal background plasma flow for certain cases of Figure 21 are
shown in Figure 23. As the maximum of the Gaussian flow lo-
cated at xc = 0 remains constant for all cases, the maximum
Doppler shift on the waves in all cases also remains constant.
There is not much difference in the dispersive properties between
the fast body modes - both forward and backward propagating, as
the inhomogeneity is increased. The dispersive properties of the
slow body modes however, are much more affected by the non-
uniformity of the background plasma flow. The region bounded
between −cTi + UB < vph < −cTi + U0i is a band in which flow
related resonances are present. This region is not shown in Figure
23 and although this phenomena is not investigated further in this
paper, it has been studied before analytically (Taroyan & Erdélyi
2002).

Displayed in Figure 25 are enlarged regions of the dispersion
diagrams in Figure 23 to display the region of forward and backward
propagating slow body modes in detail. Seen in Figure 24a are the
slow body modes for a magnetic slab under coronal conditions with
a background plasma flow which is effectively uniform. The for-
ward and backward propagating waves in this case are symmetric in
the sense that they are trapped between the respective positive and
negative phase speed bands, but asymmetric around the wave fre-
quency caused by the Doppler shift of the steady background flow.
However, as the inhomogeneity of the background flow is increased,
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Magnetoacoustic waves in inhomogeneous waveguides 11

Figure 14. Dispersion diagrams showing the trapped solutions in a photospheric slab with density structuring of a Gaussian profile. Same as Figure 8 with (a)
W ≫ 2x0, (b) W = 3, (c) W = 1.5, (d) W = 0.9.

this symmetry is broken as shown in Figures 24b, 24c, 24d. This
is due to forward propagating slow modes being trapped between
cTi +U0i and ci +UB , where U0i is the maximum flow speed and
UB being the flow speed at the boundary of the slab. The backward
propagating modes are trapped between −cTi +UB and −ci +U0i .
Furthermore, this causes the cut off values of certain branches on
the dispersion diagram to vary depending on wavenumber and the
value of the flow speed at the boundary.

The eigenfunctions P̂T and v̂x in the presence of an inhomo-
geneous background flow are shown in Figure 27. Similar to the
study of inhomogeneous density profiles, the equilibrium inhomo-
geneity appears to have little effect on the spatial properties of fast
propagating wave modes.

Shown in Figure 29 are the eigenfunctions for the slow forward
and backward propagating sausage and kink modes for the model
shown in Figure 21. Figures 28a and 28b show the spatial behaviour
of the eigenfunctions for a forward propagating slow body mode.

The perturbation of v̂x corresponding to the sausage mode obtains
an extra point of inflexion caused by the inhomogeneity of the
background plasma flow. For both the v̂x perturbation which corre-
sponds to the sausage mode and the P̂T perturbation corresponding
to the kink mode, the maximum value of the eigenfunction anti-
node shifts towards the centre of the waveguide, where the flow
speed is a maximum and it’s gradient is zero. If it were possible
to model a Gaussian flow stretching to infinity, the corresponding
spatial eigenfunctions would become discontinuous at the centre of
the waveguide.

6 CONCLUSIONS

In this paper we have developed a generalised mathematical model
that represents some possible equilibria cases in the solar atmo-
sphere. A new numerical approach, based on the shooting method,
has been developed for obtaining the eigenvalues and eigenfunctions
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Figure 15. Dispersion diagram for a spatial profile proportional to sinc(x)
(i.e. sin(x)/x) under photospheric conditions.

Figure 16. Modified density profiles modelled as a Gaussian with a varying
inhomogeneity in a photospheric slab to study the body modes in more
detail. Width of inhomogeneity given byW = 105 (black),W = 3 (yellow),
W = 2 (magenta), W = 1.5 (green), W = 1.25 (indigo). In all cases the
density is discontinuous at the waveguide boundary and tends towards ρe
(shown) at the boundary. The boundaries of the slab are indicated by the red
dashed lines.

for magnetoacoustic wave modes present in different equilibria and
allows for an arbitrarily symmetric spatial plasma structuring inside
the waveguide. The numerical method is utilised along with the
physical properties of MHD sausage and kink wave modes.

The technique has been tested by comparison with known re-
sults in e.g. a magnetic slab under different magnetic regimes. Fur-
thermore, a constant steady field aligned plasma flow is introduced
for which the known solutions are obtained under both photospheric
and coronal conditions. The method is then applied to a waveguide
in which the internal plasma structuring is modelled as a Gaussian
profile. The analytical function used to describe this density distri-
bution cannot derive a dispersion relation analytically. It is found

that the cut off values for slow body modes are dependant upon the
values of the sound speed at the boundary cB and cusp speeds cTB

and the size of internal inhomogeneity in both coronal and photo-
spheric conditions. Also, this technique can be useful to identify
the bands in which resonance can occur and potentially lead to dis-
sipation processes such as resonant absorption and phase mixing.
The new properties of MHD wave modes in a non-uniform mag-
netic slab have been studied. Whilst fast surface and body modes
are not greatly affected by the equilibrium inhomogeneity, the phys-
ical eigenfunctions of slow body modes are significantly altered.
We have found that even for an equilibrium Gaussian density dis-
tribution of sufficient width, an extra node and point of inflexion
appears in the spatial structure of the eigenfunctions. This result
is important for the interpretation of observational signatures of
MHD wave modes as it shows non-uniform equilibria may lead to
the misunderstanding of their spectral patterns.

To further show the strength of this technique, an example
of a coronal slab with a non-uniform background flow was investi-
gated. The general governing equations for the perturbations of total
pressure and velocity were derived, which reduce to the known ex-
pressions when inhomogeneity is ignored. These equations were
then solved numerically to obtain eigenvalues and plot the disper-
sion diagrams for a number of different non-uniform background
flow profiles. The non-uniform flow created an asymmetry between
the bands in which forward and backward propagating slow body
waves are trapped within the waveguide. A similar behaviour to a
non-uniform plasma density is observed with the resulting eigen-
functions also. As the inhomogeneity of the background flow is
increased, the spatial structure of slow body waves - both forward
and backward propagating - become distorted, while the fast modes
remain unaltered.

The major benefit of the presented methodology is that more
complicated plasma equilibrium can be introduced into the original
slab model. Non-uniform plasma flow profiles which more accu-
rately reflect those observed in e.g. sunspots can be included and
the resulting wave analysis can be conducted. It is well known that
the resonant absorption and phase mixing mechanisms rely upon
the presence of a non uniform plasma or inhomogeneous boundary
layer - for which this method could provide a better understand-
ing of in terms of wave properties. This would previously not have
been achievable due to the complicated mathematics involved and
the numerous simplifications and assumptions needed to be able to
obtain an analytical solution to the MHD equations.

Immediate future steps involve extending the current work
to a cylindrical model, which perhaps models solar features such
as sunspots, jets and coronal loops more appropriately. This will
be possible using the introduced methodology as the physics re-
mains the same however the differential operators take a differ-
ent form in cylindrical geometry. Further extensions could include
modelling asymmetric profiles, for example non-steady asymmet-
ric background plasma flows, in which the physics for MHD wave
modes would be modified slightly. Another very important aspect
which can be studied is the behaviour of complex wave frequencies.
Complex frequencies would provide more information on the phys-
ical behaviour of wave damping, leaky modes and any instabilities
that are present in a static or steady equilibrium. Implementation
of asymmetry, extra geometries and complex frequencies will help
move a step closer to developing a technique which can be used
in wave analysis for a general arbitrary model. The power of this
being that it can be used alongside observational data to conduct
magnetoseismology with a realistic model to best fit observational
results and provide a greater insight into the physical properties of
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Figure 18. Comparisons of the eigenfunctions PT and vx for all the photospheric spatial profiles considered in Figure 12. The colour scheme is consistent
with Figure 12. (a) Fast surface sausage mode, (b) fast surface kink mode. An eigenvalue of kx0 = 2 was chosen for all plots. All curves normalised such that
their values are equal to unity at the boundary.

Figure 20. Comparisons of the eigenfunctions P̂T and v̂x for all the photospheric spatial profiles considered in Figure 16. The colour scheme is consistent
with Figure 16. (a) Body sausage mode, (b) body kink mode. An eigenvalue of kx0 = 3 was chosen for all plots. All curves normalised such that their values
are equal to unity at the boundary.

these waves and their potential contribution to the energy budget of
the solar atmosphere.

The numerical code, Sheffield Dispersion Diagram Code
(SDDC) introduced and applied in this work is available on the
Plasma Dynamics Group (PDG) website 1 along with the user man-
ual which explains some cases shown in this work. This code and
the accompanying tools have been developed using Python an open-
source and community-developed programming language.

1 http://pdg.group.shef.ac.uk/UI.html#Codes
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Figure 21. Background flow profile modelled as a Gaussian with a varying
inhomogeneity in a uniform coronal slab. Width of inhomogeneity given by
W = 105 (black), W = 3 (yellow), W = 2.5 (dark blue), W = 2 (magenta),
W = 1.75 (red), W = 1.5 (green) and W = 1.25 (cyan). In all cases the
flow is discontinuous at the waveguide boundary. The boundaries of the slab
are indicated by the red dashed lines. The maximum flow speed is 0.3 such
that the flow is both subsonic (ci = 1) and sub Alfvénic (vAi = 1.2) to
avoid any flow related instabilities.
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Magnetoacoustic waves in inhomogeneous waveguides 15

Figure 23. The dispersion diagrams show the trapped solutions in a coronal slab with a background Gaussian flow of selected profiles from Figure 21. Width
of flow profile given by (a) W ≫ 2x0, (b) W = 3, (c) W = 1.75, (d) W = 1.25. The plasma slab under coronal conditions given by ci = 1, vAi = 1.2ci ,
ce = 0.4ci , vAe = 3ci , U0i = 0.3ci . Red curves denote the sausage mode and blue curves show the kink mode.
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.

Figure 27. Comparisons of the eigenfunctions P̂T and v̂x for all the flow profiles considered in Figure 21. (a) Fast forward sausage mode, (b) fast forward
kink mode. An eigenvalue of kx0 = 3 was chosen for all plots. All curves normalised such that their values are equal to unity at the boundary
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Figure 29. Comparisons of the eigenfunctions P̂T and v̂x for all the flow profiles considered in Figure 21. (a) Slow forward sausage mode, (b) slow forward
kink mode, (c) slow backward sausage mode, (d) slow backward kink mode. An eigenvalue of kx0 = 1.1 was chosen for plots (a) and (b). An eigenvalue of
kx0 = 0.9 was chosen for plots (c) and (d). All curves normalised such that their values are equal to unity at the boundary. The eigenfunction plot for the case
when W = 1.25 is not shown in (d) due to the kx0 value beyond the cut off regime.
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