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Evaluation of Data-Driven and Process-Based
Real-Time Flow Forecasting Techniques for

Informing Operation of Surface Water Abstraction

Mohammed Yassin1; Alemayehu Asfaw2; Vanessa Speight3;

and James D. Shucksmith4

Abstract: This paper presents an approach to managing surface water abstraction utilizing real-time flow forecasting and control techniques.

To evaluate the effectiveness of alternative data-driven and process-based methods, flow forecasts at a case study site (River Dove, UK) using

(1) a probability-distributed rainfall-runoff model (PDM), (2) PDM coupled with an autoregressive integrated moving average (ARIMA)

error predictor, and (3) a long short-term memory (LSTM) neural network are integrated into a water resources management model coupled

with genetic algorithm optimization to simulate and compare water abstractions, reservoir storage, downstream river flows, and pumping

energy costs. When compared to historical data, results show that both PDM plus ARIMA and LSTM forecasts led to improved water

abstraction operations, i.e., increased water abstraction volumes during dry periods while maintaining river environmental flows, as well

as reduced pumping costs. Cost savings were found to be sensitive to the accuracy of the forecasting technique only within specific flow

ranges. This study demonstrates the water resource benefits of real-time flow forecasting in supporting flexible water pumping schedules and

further discusses the benefits of alternative modeling approaches in the specific context of controlling water abstraction. DOI: 10.1061/

(ASCE)WR.1943-5452.0001397. This work is made available under the terms of the Creative Commons Attribution 4.0 International

license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: River abstraction; Real-time flow forecasting; Energy efficiency; Catchment water resources.

Introduction

Ensuring the resilience and security of water supplies will be one of

the most significant challenges facing water utilities worldwide given

the potential impacts of climate change and population growth

(Cosgrove and Loucks 2015). Surface waters are important sources

of drinking water supply, and in many catchments, abstractions from

these sources are governed by environmental regulations with spe-

cific minimum so-called hands-off ecological river flows (Boddy

et al. 2019). Current climate predictions suggest significant reduc-

tions in seasonal river flows in many regions (including the UK) over

the next 40 years (IPCC 2014), making it increasingly difficult to

maintain a balance between water supply and protection of the

aquatic environment. The development of new water resource

options (e.g., impoundments) is costly, so there is a need to develop

techniques for maximizing the potential and resilience of exist-

ing water resource assets without compromising environmental

regulations. Real-time data sets have been found to be increasingly

valuable in many water management contexts to aid adaptive water

management and to secure environmental flows in river basins

(Ellison et al. 2019). However, surface water abstraction operations

are not commonly supported by real-time data and river flow fore-

casts and as such operational (i.e., hourly to daily) abstraction deci-

sions are frequently made conservatively to avoid breach of

regulatory license conditions. As a result, many opportunities to sus-

tainably abstract more water may be missed (Asfaw et al. 2016).

Some studies have shown that the use of real-time data and river

flow forecasts can provide better understanding of water availability

in rivers and, hence, help make informed water abstraction decisions.

For instance, Asfaw (2018) showed that the use of river flow fore-

casts in water abstraction management can help inform adaptive res-

ervoir management policies that maintain appropriate balance

between water supply and the environment. Ellison et al. (2019) also

showed that real-time weather and flow data could be utilized to in-

crease the capacity of stakeholders in agricultural catchments to

make informed decisions to improve agricultural productions while

considering environmental requirements, particularly in dry periods.

Another major challenge for water utilities is to supply clean

water at minimum capital and operational cost. Approximately,

75% of operational costs of drinking water supply systems are

attributed to energy use, and most of this energy is used for pump-

ing water during abstraction, treatment, and distribution processes

(Abkenar et al. 2015). One opportunity for reducing operational

costs is by optimizing water pumping schedules by shifting oper-

ations to low electricity tariff periods. A genetic algorithm (GA) is a

type of evolutionary optimization algorithm that has been increas-

ingly used for this purpose. For instance, De Wrachien et al. (2017)

used a GA to develop a framework for optimizing pump operations

in complex water networks. Abkenar et al. (2015) evaluated
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GA using discrete and continuous methods for optimizing pump

operations of water distribution systems. Moradi-Jalal et al.

(2004) used a GA to develop a model for the optimal design

and operation of water distribution networks. Fecarotta et al.

(2018) used an optimization algorithm for optimal pump schedul-

ing of urban drainage station under variable flow conditions. How-

ever, all of the aforementioned studies focused on optimizing

operations within water distribution networks and drainage systems

within which flows are well defined (e.g., with hydrodynamic mod-

els), and to date little focus has been given to problems associated

with raw surface water abstraction systems (in which water avail-

ability is influenced by rainfall, hydrological processes, and local

environmental regulations). Optimization of pump operations dur-

ing surface water abstraction requires a detailed understanding of

catchment hydrological processes and coordination of pump oper-

ations and anticipated costs with water availability in real time,

hence the need for integration with real-time river flow forecasting

models. Any such methodologies must also consider the resilience

of water resource assets, site-specific operational rules, and envi-

ronmental regulations (e.g., minimum flow requirements).

While hydrological modeling is commonly used in water resour-

ces management studies and system optimization, most studies in the

literature focus on integrating long-term flow predictions and water

resources management models for water resources planning and op-

timization of reservoir operational policy (e.g., Quinn et al. 2018;

Canuto et al. 2019; Giuliani et al. 2019; Dong et al. 2020) over yearly

or larger timescales. For example, Quinn et al. (2018) integrated syn-

thetic streamflows (generated using Cholesky decomposition of re-

sampled historical monthly flows) with a multireservoir optimization

model to explore how changes in monsoonal dynamics and human

pressures affected multireservoir operating policies for flood protec-

tion, hydropower, and agricultural water supply in the Red River ba-

sin in Vietnam over a period of 100 years using a monthly time step.

Giuliani et al. (2019) integrated river flow forecasts (improved using

states of global climate indexes such as Southern and North Atlantic

Oscillations captured via a multivariate extreme learning machine

method) and a reservoir optimization framework to assess the impli-

cations of improved flow forecasts on the reservoir operations of

Lake Como in northern Italy over a period of 15 years and using

a daily time step. Dong et al. (2020) coupled a hydrological model

and a reservoir management scheme to study the implications of res-

ervoir operating policies on the hydrologic regime of the Poyang

Lake Basin in China over a period of 20 years and using a daily

time step. Most of these studies used daily or monthly time resolu-

tions of climate inputs and flow predictions and focused on studying

long-term implications (over a period of 15 years or longer) of po-

tential changes in climate and human pressures on water resources,

with the aim of identifying robust operation policies and adaptive

water resources management plans. To the best of the authors knowl-

edge, optimization-based approaches have yet to be applied to ab-

straction management operations and control at subdaily temporal

scales utilizing real-time data and models.

Different methods exist for real-time river flow forecasting; they

can be broadly classified into process-based models and data-

driven models. Process-based models simulate river flows of a

catchment using physical or semiphysical equations that take ac-

count of various processes of the hydrologic cycle, while data-

driven models can learn relationships between variables and relate

inputs to outputs without a detailed understanding of the physical

processes (Noori and Kalin 2016; Yaseen et al. 2016). An example

of a process-based model is the probability-distributed rainfall-

runoff model (PDM) (Moore 2007). Real-time flow forecasting

in the PDM can be enhanced by complementing the model with

forecast updating methods such as error prediction, which allows

for the incorporation of information from the most recent flow ob-

servations. The PDM model has been widely used for real-time

flow forecasting in various catchments across the world (e.g., Cabus

2008; Pechlivanidis et al. 2010; Liu et al. 2015). While process-

based models can be efficient in forecasting river flows, their

calibration is sometimes difficult due to the large, broad ranges,

and complex interactions of model parameters. An alternative

data-based method for river flow forecasting is artificial neural net-

works (ANNs) (Noori and Kalin 2016; Yaseen et al. 2016). A re-

cent ANN method that has been used for river flow forecasting is

the long short-term memory (LSTM) network (e.g., Le et al. 2019;

Sudriani et al. 2019; Hu et al. 2020). An advantage of LSTM over

other methods is its ability to learn long-term temporal dependen-

cies in data, this has shown to provide accurate river flow forecasts.

Hu et al. (2020) showed that the performance of a LSTM model in

forecasting peak flows of small river catchments was better than

other data-driven methods, such as support vector regression and

multilayer perceptron. Couta et al. (2019) showed that the perfor-

mance of LSTM was better than the performance of a process-

based model (generalized watershed loading model) in forecasting

river flows of the Jinghe catchment in China.

Both process- and data-driven modeling types can be prone to

problems such as overfitting (i.e., adding unnecessary complexity)

and underfitting (i.e., missing necessary details), which degrade a

model’s ability to explain or forecast data (Höge et al. 2018). For

instance, including unnecessary physical equations or parameters

in process-based models or adding unnecessary terms in data-

driven models to improve model calibration can result in overfit-

ting, meaning that the model can suffer from high flexibility and

poor parameter identifiability with predictions exhibiting a large

variance. In overfitting, the model will adapt itself too closely to

training (within sample) data by fitting to noise (i.e., small training

error). This reduces the model’s ability to generalize to test (out-of-

sample) data (i.e., large test error) (Hastie et al. 2008; Höge et al.

2018). In such cases, the model is likely to be unable to accurately

predict flow patterns that are not well represented in the training

data but are within the plausible ranges of natural variability. More

incoming data (containing new information) can help reduce the

risk of overfitting and ensure that the model has an appropriate pre-

dictive capability (Höge et al. 2018). On the other hand, in under-

fitting or oversimple models, the models can exhibit high bias

between predictions and data and will also produce poor general-

izations (Hastie et al. 2008; Höge et al. 2018). Ideally, therefore,

models should be developed by trading off variance against bias

in such a way that minimizes test error, and they should be evalu-

ated based on performance which is related to the models’ appli-

cation (Jakeman et al. 2006).

Current applications and hence testing and evaluation of

real-time river flow models mainly focus on flood forecasting and

management (e.g., Seo et al. 2009; Rogelis and Werner 2018); little

focus has been given to how such techniques could be used to sup-

port surface water abstraction management decisions. For this rea-

son, studies of flow forecasting techniques often focus on the

performance of various methods in predicting the arrival and mag-

nitude of peak flows. However, real-time surface water abstraction

decisions generally require flow forecasting capabilities which pri-

marily focus on flow conditions ranging between minimum environ-

mental flows and water abstraction capacity (Vaze et al. 2011).

The aim of this paper is to develop a novel technique for real-

time surface water abstraction operation and to evaluate effective-

ness when using different data-driven and process-based real-time

flow forecasting models. This evaluation is conducted by testing

the approach at a case study site (River Dove catchment, UK) dur-

ing the period 2017–2018 (which includes a significant period of

© ASCE 04021037-2 J. Water Resour. Plann. Manage.
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dry weather). The paper examines how the performance of the flow

forecasting technique used influences the outputs of the surface

water abstraction system with associated implications for opera-

tional decision-making. Flow forecasts from three different models

are used and compared in this study; these inclue (1) PDM,

(2) PDM coupled with an autoregressive integrated moving average

(ARIMA) error predictor, and (3) LSTM.

The paper is organized as follows. The section “Methods” pro-

vides background on the case study catchment and describes the

structure of the surface water abstraction technique and its different

components. The section “Results” presents the results of the

historical analysis conducted at the case study site. The implica-

tions of the developed methodology for water resource manage-

ment are discussed in the section “Discussion.” Finally, the

section “Conclusion” presents the study’s conclusions and dis-

cusses future work.

Methods

A retrospective analysis of the period 2017–2018 at the case study

site was conducted where the optimal hourly pumping (i.e., water

abstraction) schedule for each day within this period was sought.

The resulting simulations of water abstraction volumes, reservoir

storage levels, flows downstream of the abstraction point, and

energy costs using flow forecasts from the three studied methods

were compared with the corresponding historical observations of ab-

stractions, reservoir storage levels, downstream river levels, and en-

ergy costs to investigate the implications for water resources

management and the effectiveness of the approach and models used.

Study Area

The Dove catchment, located in the UK midlands, was used as a

case study site for this study. The catchment drains an area of ap-

proximately 1,020 km2 and includes Churnet, Tean, Manifold, and

Hamps subcatchments. Its elevations range between 550 and 50 m

above sea level from its source to its confluence. The River Dove is

72 km long and flows generally south to its confluence with River

Trent. The catchment is predominantly rural, and pasture is the

main agricultural use (Environment Agency 2014). An environ-

ment agency flow gauging station (Marston on Dove) is located

at the outlet of the catchment. Water from River Dove is abstracted

at a site downstream of the flow gauging station and stored in

pumped storage reservoirs for water supply purposes. Pumps at

the site are of fixed speed (i.e., they operate at a defined flow rate

that is set to either on or off).

Fig. 1 shows the study area and locations of the flow gauging

station and abstraction site. Composite radar rainfall data at tem-

poral and spatial resolution of 5 min and 1 km2 for the catchment

during the period 2004–2018 were obtained from the UK Met

Office (2003) and daily potential evaporation data were obtained

from the UK Met Office’s MORCES system (Hough and Jones

1997). Flow measurements at 15 min at the outlet of the catchment

were obtained from UK Environment Agency for the same period

(a total of 490,560 data points). These measurements were used

for model calibration and validation. For all modeling approaches,

the data set was split into 70% and 30% for calibration and vali-

dation, respectively (resulting in 343,392 points for calibration and

147,168 points for validation).

Model Structure

The surface water abstraction technique in this study is developed

by integrating flow forecasting models with a water resources

management model coupled with GA. Three alternate flow fore-

casting methods (described in the following sections) were config-

ured and tested for predicting river flows of the Dove catchment at

the abstraction site with a lead time of 24 h using flow observations,

rainfall, and potential evapotranspiration (PET) observations up to

the forecast origin over the full period of analysis (October 1,

2017–September 30, 2018). This lead time is used because it is

the same as the catchment response time (lag time between the

centroid of rainfall event and peak discharge in the catchment),

so rainfall forecasts are not required to make flow predictions at

the abstraction site. The 24-h forecasted flows from each method

are then incorporated into the water resources management model,

which represents the onsite catchment abstraction system in terms

of conveyance infrastructure, abstraction license conditions, reser-

voir storage, water demand, and energy use plus associated costs.

The water resources management model is coupled with a GA op-

timization that searches for the optimal pump schedule for the given

24-h period based on electricity tariff and site operational con-

straints (i.e., pump schedule that meets all operational constraints

at the minimum cost). Fig. 2 shows a schematic of the methodol-

ogy, and the following sections explain each component in detail.

Probability Distributed Rainfall-Runoff Model

The PDM (Moore 2007) is tested as a process-based model in this

study for river flow forecasting. PDM is a conceptual rainfall-

runoff model that transforms rainfall and PET data into river

flows at the outlet of a catchment. The model uses a probability

density function to characterize the variability of soil-moisture

capacity in the catchment. Rainfall in the model is partitioned into

direct runoff, groundwater recharge, and soil-moisture storage.

Direct runoff is routed through a surface storage component that

uses two linear reservoir cascades (O’Connor 1982) to calculate

surface runoff. Groundwater recharge is routed through a subsur-

face storage component that uses a nonlinear storage model

(Horton Izzard equation) (Dooge 1973) to calculate base flow. Total

river basin flow then is calculated as the sum of surface runoff and

base flow.

To drive the PDM model to simulate river flows, composite

radar rainfall data between 2004 and 2018 with spatial and tempo-

ral resolutions of 1 km2 and 5 min, respectively, along with PET

data, from the UK Met Office, are used. The first year is used as

a warm-up period for the model, and the remaining period was split

into two parts, with 2005–2013 used for calibration and 2014–2018

used for model validation. To calibrate the model, a Markov chain

Monte Carlo technique called DiffeRential Evolution Adaptive

Metropolis (DREAM) (Vrugt 2016) is used to estimate the pos-

terior probability distributions of model parameters and their opti-

mal values. Further details of this method can be found in Asfaw

et al. (2016).

Probability-Distributed Rainfall-Runoff Model with Error
Predictor

The PDM in this study is also complemented by a forecast updating

method based on an error prediction (Moore 2007). A feature of

errors from conceptual rainfall-runoff models is that they tend to

persist, forming a sequence of positive errors (overestimation) or

negative errors (underestimation). This structure in the error se-

quence can be analyzed, and an error predictor can be developed

for the prediction of future errors between simulated and observed

flows. Predicted errors are then added to predictions of the

deterministic rainfall-runoff model to provide an updated flow

forecast. One of the most commonly used error predictors is the

© ASCE 04021037-3 J. Water Resour. Plann. Manage.
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autoregressive integrated moving average (ARIMA) given in the

following form [Eq. (1)]:

εt ¼ cþ ∅1εdt−1 þ ∅2εdt−2þ · · · þ∅pεdt−p þ θ1at−1

þ θ2at−2þ · · · þθqat−q þ at ð1Þ

where c is constant; εt−1; εt−2; : : : are the past errors between si-

mulated and observed flow values; at−1; at−2; : : : are the past

residual errors from a moving average model; ∅ and θ are coeffi-

cients; p is the number of autoregressive terms; d is the degree of

differencing; and q is the order of moving average. The last three

parameters are used for fitting the ARIMA model and usually de-

noted by ARIMAðp; q; dÞ.
A third-order autoregressive model with one degree differencing

and dependence on three past model errors (3,1,3) was found to be

an appropriate choice for real-time flow forecasting of the Dove

catchment with a lead time of 24 h (Moore 2007).

Artificial Neural Network

A data-driven methodology is also used in this study to forecast

flows of River Dove, namely, the LSTM neural network. Generally,

ANNs are able to identify relationships from a given pattern and

hence relate input and output variables in a complex system. They

consist of interconnected neurons that are organized based on a par-

ticular arrangement (Noori and Kalin 2016). For instance, a feed-

forward network has links connecting neurons from the input layer,

through to one or more hidden layers, to an output layer (Dawson

and Wilby 2001). Each link is assigned with a weight that repre-

sents the relative strength of corresponding neurons to predict the

input-output relationships (Govindaraju and Ramachandra 2000).

Another arrangement is that of recurrent neural networks (RNNs),

which have a chainlike structure of repeating modules that are used

as memory cells to store important information from previous

processing steps (Le et al. 2019). Unlike feedforward networks,

RNNs use feedback loops to feed information back from outputs

to inputs of a previous layer (Kumar et al. 2004). This recursive

structure allows RNNs to handle temporal dependencies between

observations. One limitation of RNNs is their limited ability to

learn long-term temporal dependencies due to the gradient vanish-

ing problem over the long term (Kim et al. 2018). LSTM is

a class of RNNs developed by Hochreiter and Schmidhuber

(1997) to overcome the gradient problem in RNNs using memory

Fig. 1. Location of Dove catchment, Marston flow gauging station, and abstraction site. [Reprinted from Geomorphology, Vol. 47 (1), J.M. Goodson,

A.M. Gurnell, P.G. Angold, and I.P. Morrissey, “Riparian seed banks along the lower River Dove, UK: their structure and ecological implications,”

pp. 45–60, © 2002, with permission from Elsevier.]
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cells and gates to regulate flows into and out of memory cells. Fig. 3

shows a typical LSTM network unit (Olah 2015). This structure of

LSTM makes it possible to learn long-term dependencies in data

for prolonged periods of time (Le et al. 2019). Further details about

the architecture of LSTM networks and underlying equations can

be found in Hochreiter and Schmidhuber (1997) and Le et al.

(2019). Recent examples of the use of LSTM in hydrological ap-

plications can be found in Le et al. (2019), Sudriani et al. (2019),

and Hu et al. (2020).

The LSTM neural network in this study consisted of three

layers. The first two layers contained 50 neurons each, followed

by an output layer. The LSTM network was trained using rainfall,

PET, and flow data of the Dove catchment during the period

2005–2013. Development, training, and validation of the LSTM

model was conducted using Keras [Python (version 3.7.3) deep

learning library] (Chollet 2015). Training of the network focused

on minimizing a loss function by updating weights: the loss func-

tion used in this study is the mean square error, and the adaptive

moment optimization algorithm (ADAM) is used to minimize the

loss. A batch size of 30 and 1,000 epochs was found to give the best

performance for forecasting flows in the Dove catchment with a

lead time of 24 h.

Flow Forecast Model Validation

Fig. 4 shows a sample of simulated and observed flows of River

Dove at the Marston gauging station during the validation period

for three different forecasting models: (1) PDM, (2) PDM and

ARIMA, and (3) LSTM. Fig. 5 shows the corresponding empirical

cumulative distribution function (ECDF) of the residuals between

(a) (b) (c)

Fig. 2. Schematic diagram showing components of developed methodology for optimizing water abstractions and pumping operations based on fore-

casted river flows from process-based and data-driven models. G = total number of generations used in genetic algorithm; and i = iteration number.

© ASCE 04021037-5 J. Water Resour. Plann. Manage.
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simulated and observed flows from the three models. These results

suggest that variation between simulated and observed flows is

greater in the PDM-only model compared to variations for the

PDM coupled with ARIMA and LSTM models. Nash Sutcliffe ef-

ficiency (NSE) values for the PDM plus ARIMA model and

the LSTM model during the validation period (2014–2018)

(i.e., out-of-sample data) were greater than 0.90, suggesting a good

performance of these models when representing flows in the Dove

at the outlet of the catchment (Moriasi et al. 2007). A similar per-

formance was reported by Fan et al. (2020) and Kratzert et al.

(2018) showing that ANN models can provide comparable results

to conceptual rainfall-runoff models in forecasting river flows. On

the other hand, the NSE value for the PDM only model during val-

idation period (2014–2018) was 0.65. This demonstrates the sig-

nificant improvements in the performance of PDM when the

model is coupled with ARIMA. Similar results were reported by

Liu et al. (2015), which showed that when NSE values are rela-

tively low (e.g., NSE ≤ 0.65), there is sufficient room for ARIMA

to update flow forecasts and improve performance. To further check

the model performance on unseen data, a k-fold cross validation

with k ¼ 4 (9 years for calibration and 3 years for validation) is

used to evaluate the capabilities of the three forecasting models

in reproducing flows at the outlet of the catchment. The values

of the NSE coefficient for all folds using PDM coupled with

ARIMA and LSTM ranged from 0.84–0.92 and 0.82–0.91 during

calibration and validation, respectively. On the other hand, the NSE

coefficient for the PDM-only model ranged from 0.66–0.72 and

0.62–0.66 during calibration and validation, respectively. The

NSE values during validation showed patterns similar to those

of the NSE values during calibration for all three forecasting mod-

els. These results suggest the ability of both PDM coupled with

ARIMA and LSTM models to predict out-of-sample data satisfac-

torily, and hence that the models are not overfitted.

It is worth mentioning that all models in this study underesti-

mated some peak flows. However, in this study, the predictions

of service flows (the range between minimum environmental

Fig. 3. LSTM neural network unit. [Adapted from Olah (2015).]

Fig. 4. Simulated flows of River Dove at Marston gauging station

during validation period from PDM, PDM and ARIMA, and LSTM

models compared to corresponding observed flows at 15-min time step.

Fig. 5. Empirical cumulative distribution function (ECDF) of differ-

ence between simulated and observed flows (residuals) of River Dove

during validation period.
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flow and the maximum capacity of the abstraction pumping infra-

structure) are of greater significance because the focus of this study

is to inform water abstraction management decisions. Further

evaluation of the different techniques in the context of abstraction

systems therefore requires coupling of the forecasting methods to a

water resources management model such that the performance in

terms of cost savings and resource efficiency can be quantified over

the full analysis period.

Water Resources Management Model

Forecasted flows from each of the forecasting models are incorpo-

rated into a water resources management model coupled with GA

optimization. The water resources management model uses an

hourly on/off pump schedule for each 24-h period, generated by

the GA (see the following section), to calculate water abstraction

volume, and the model then subsequently calculates resulting cor-

responding reservoir storage levels, residual river flows to the

downstream of the abstraction point, energy requirements, and as-

sociated costs. This is calculated based on an hourly time step with

resulting outputs aggregated over each 24-h period. For a time step

(t) of each 24-h period, water available for abstraction (At) is cal-

culated based on forecasted flow at time t (Qt) and regulatory mini-

mum flow requirement ðQminÞ [Eq. (2)]

At ¼

(

0 Qt ≤ Qmin

Qt −Qmin Qt > Qmin

ð2Þ

Abstraction of water from the river (St) is then constrained by an

intake capacity (CIntake) and reservoir capacity (CReservoir) [Eq. (3)]

St ¼ minðAt;CIntake;CReservoir − Rt−1Þ ð3Þ

where Rt−1 is reservoir storage at the previous time step; and

CReservoir − Rt−1 is the free volume present in the reservoir. Then

volume in the storage reservoir at each time step (Rt) is calculated

using Eq. (4), where Dt is water demand at time t

Rt ¼ Rt−1 þ St −Dt ð4Þ

The energy required for pumping water into the reservoir (Et) is

calculated using Eq. (5)

Et ¼ ðρStgHÞ=δ ð5Þ

where ρ = water density; g = gravitational acceleration constant;

H = head (fixed based on site data); and δ = pump efficiency.

The cost of pumping water at each time step (Zt) is calculated by

multiplying Et by the corresponding electricity tariff (Pt) [Eq. (6)]

Zt ¼ Et × Pt ð6Þ

The daily volume of water abstracted is then calculated by sum-

ming all water abstraction volumes during the 24-h lead time

[Eq. (7)]

S ¼
X

24

t¼1

St ð7Þ

Similarly, the daily energy cost for pumping water is calculated

using Eq. (8)

Z ¼
X

24

t¼1

Zt ð8Þ

Reservoir storage is calculated at each time step based on his-

torical water demand data, water abstraction from the river, and

operational constraints. Water abstraction from the river is con-

strained by intake capacity [250 Million Litres/day (Ml/day)]

and total storage capacity (19,845 m3).

The study used historical water demand and electricity tariff

data during the 2017–2018 period as provided by the water utility.

The electricity tariff can vary on an hourly basis, with times

between 16:00 and 19:00 generally being most expensive. The im-

plementation of this methodology is therefore dependent on knowl-

edge of the electricity tariff and anticipated water demand over the

forecast lead time. In the UK such anticipated price tariff informa-

tion is supplied to industrial users in advance (Watson and Rai

2013). Water utilities also commonly utilize water demand models

to predict usage over similar periods (Romano and Kapelan 2014).

The water resources management model is coupled with GA

optimization, which involves searching for the optimal pump

schedule (from a solution space of 224 possible pump schedules)

using an objective function to minimize energy plus GA penalty

costs (see subsequent discussion) within the 24-h period (Zmod)

while also considering the site operational constraints and water

resource requirements.

Genetic Algorithm for Optimizing Pump Operations

AGA is an evolutionary optimization method that has been used by

many different researchers (Abkenar et al. 2015; Wang et al. 2009;

De Wrachien et al. 2017) for optimizing water pump operations. A

feature of evolutionary optimization methods is that they are able to

find optimal solutions from a large solution space by evaluating a

relatively small group of potential solutions (Abkenar et al. 2015).

This is most likely because these methods use stochastic operators,

such as crossover and mutation, that are less likely restrict searches

to a local optimum compared to traditional optimization methods,

which depend on the existence and continuity of the derivative of a

loss function (Simpson et al. 1994).

In GAs, a random group of solutions is first created to form the

initial population. In this case, each candidate solution is a 24-bit

binary string (chromosome) with ones and zeros corresponding to

hourly pump on and off conditions, respectively. The GA is used to

determine a single pump schedule over 24 h, so the solution space

consists of 224 possible solutions.

Under the initial generation, a GA randomly selects two solu-

tions (parents), and each iteration applies crossover and mutation

processes to generate new solutions with modified chromosomes

(children). A group of best solutions (children) is then selected

from a current generation to form a subsequent generation. Repeat-

ing these processes over a given number of generations, the GA

moves toward an optimal solution (i.e., pump schedule that meets

all operational constraints at minimum cost). In this model, the GA

used probabilities for crossover and mutation of 0.65 and 0.15, re-

spectively. With a population size of 2,000 pump schedules, the GA

would stop when 400 generations were produced without a signifi-

cant increase in fitness or after reaching a total of 800 generations.

Approximately, optimal solutions were converged to in under 50

generations (see convergence plot in the Supplemental Materials,

which demonstrates the performance of the GA over its run time).

The final pumping schedule reported by the GA in this application

is the best pumping schedule found during the optimization

process.

The optimization algorithm in this study has different opera-

tional water resource targets for the winter and summer seasons.

During winter (October 1–April 1), the algorithm attempts to fill

the reservoir up to 95% of its total capacity (according to the current

water abstraction protocol of the water utility) by the end of the

season. This is done by calculating the change in reservoir storage
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during the 24-h period (ΔR) and comparing it to a daily target of

increase in reservoir storage (μ) estimated based on the need to fill

the reservoir up to 95% of its capacity by April 1. A penalty value

(u) is added to the daily cost of pumping (Z) for solutions that result

in ΔR being less than μ [Eq. (9)]

Zmod ¼

(

Z þ u ΔR < μ

Z otherwise
ð9Þ

The GA is set to minimize the total daily cost, including any

penalties (Zmod), so the use of the penalty value will reduce the

chances that the method will select a solution that violates the daily

filling target (ΔR > μ). The value of u is directly proportional to

the difference between R̄ and μ. This ensures that the GA will al-

ways prioritize solutions that increase reservoir storage volumes

during this period.

During summer (April 1–September 30), the algorithm attempts

to maintain storage levels above a predefined reservoir control

curve while also matching abstraction to daily water demand.

The reservoir control curve defines the storage volumes that must

be maintained to ensure a reliable water supply to meet water de-

mand and that are predefined by the water utility. Penalty values are

added to the cost of solutions that violate any of these requirements

during the summer period and, hence, reduce the chances of selec-

tion by the GA [Eq. (10)]

Zmod ¼

(

Z þ ur þ ud Rt < Rcontrol or DS < 1

Z otherwise
ð10Þ

where Rcontrol is the corresponding reservoir storage volume based

on the reservoir operational control curve; DS is water demand sat-

isfaction calculated by dividing the estimated amount of supplied

water by the actual water demand; ur is a penalty value added when

the reservoir level falls below the control curve; and ud is a penalty

value added when DS < 1. If the summer targets are met, no pen-

alty values are added (ur and ud are both equal to zero). The value

of ur increases linearly as the difference between Rt and Rcontrol

increases, and the value of ud increases linearly as the DS value

decreases. This ensures that the GA will prioritize solutions that

are closer to meeting summer resource targets (i.e., solutions that

result in the highest reservoir storage levels and water demand

satisfaction).

Results

Fig. 6(a) shows simulations of daily water abstractions from River

Dove for the analysis period based on the results of the GA in-

formed by flow forecasts using (1) PDM, (2) PDM coupled with

ARIMA, and (3) the LSTM model compared with historical water

abstraction volumes, and Fig. 6(b) shows the corresponding missed

water volumes (i.e., difference between simulated and observed

water abstractions) based on the three forecasting methods. Gen-

erally, simulated water abstraction volumes were found to be ap-

proximately at intake capacity during October–November. Then

water volumes slightly dropped until May, possibly due to more

expensive electricity rates, which resulted in turning off pumps

more frequently to avoid high costs. During the period from June

to September, water abstraction volumes fluctuated owing to re-

duced river water availability above the specified minimum envi-

ronmental flows.

Simulated water abstractions resulting from the three flow fore-

casting methods were generally greater than observed abstractions

during the period October–May. Occasionally, observed water ab-

stractions were greater than simulated abstractions, which might be

because the GA suggested turning off pumps during high tariff

periods, thereby resulting in relatively less water abstraction from

the river. Simulation results suggest that on average 25 Ml=day of

additional water would have been abstracted during the period

October–May if any of the three flow forecasting methods had been

used based on the difference between observed and GA-simulated

abstraction values. During the summer period (June–September),

underestimation of flows by the PDM-only approach resulted in

Fig. 6. (a) Simulated daily water abstraction resulting from optimization algorithm using PDM, PDM coupled with ARIMA, and LSTM models

compared to actual abstractions from River Dove; and (b) corresponding missed water volumes (i.e., difference between simulated and observed)

during historical period 2017–2018. Change in water resources operational targets occurs on April 1.
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the optimization algorithm suggesting no abstractions most of the

time, likely because of the need to satisfy the minimum river flow

requirement. More accurate flow forecasts by both PDM coupled

with ARIMA and by LSTM models allowed additional water

volumes (on average 25 Ml=day) to be abstracted during the

June–September period without breaching minimum flow regula-

tions when compared to historical values. Intermittent periods of

higher abstraction proposed by these simulations during the dry

summer periods suggest that the method successfully identifies op-

portunities for increased abstraction during short periods of higher

river flow.

Fig. 7 shows a comparison of simulated reservoir storage levels

resulting from running the model with flow forecasts from PDM,

PDM coupled with ARIMA, and LSTM models together with his-

torical reservoir storage levels and the operational control curve.

Simulation results from the three flow forecasting techniques sug-

gest that the reservoir could have been filled with 600 Ml (equiv-

alent to 3% of its total capacity) of additional water by the start of

summer if any flow forecasting scheme had been used. During

summer, rapid declines in reservoir storage levels, which cause lev-

els to fall below the control curve, could have been avoided using

flow forecasts of PDM coupled with ARIMA or LSTM models. On

the other hand, underestimation of flows during the low-flow peri-

ods by the PDM-only model resulted in insufficient abstraction

and, hence, reservoir levels dropping below the control curve.

Fig. 8(a) shows a comparison of simulated flows in River Dove

downstream of the abstraction point resulting from running the op-

timization algorithm using flow forecasts of the three different

techniques—PDM, PDM coupled with ARIMA, and LSTM—

together with observed historical flows downstream of the abstrac-

tion point and regulatory minimum flow requirement of 159 Ml=

day. The figure suggests insignificant differences in the perfor-

mance of GA during winter for the three flow forecasting methods.

However, the accuracy of flow forecasts has a significant impact on

the performance of the GA during the low-flow period between

June and September [Fig. 8(b)]. During this period, underestima-

tion of low flows by the PDM-only model resulted in simulated

river flows downstream of the abstraction point falling below

the minimum flow requirement. However, more accurate forecasts

by the PDM coupled with ARIMA and LSTM models resulted in

simulated river flows being below the actual flows (due to increased

abstractions) but above the minimum flow requirement, suggesting

additional water (2,500 Ml) could have been abstracted during the

low-flow period without breach of environmental license condi-

tions. The analysis shows that opportunities to sustainably abstract

more water during the low-flow period have been missed approx-

imately 75% of the time.

Fig. 7. Simulated reservoir storage levels from optimization algorithm

using PDM, PDM coupled with ARIMA, and LSTMmodels compared

to actual storage levels and operational curve during period 2017–2018.

Fig. 8. Simulated flows of River Dove downstream of abstraction point resulting from optimization algorithm using flow forecast from PDM,

PDM coupled with ARIMA, and LSTM models compared with actual observations (a) during historical period October 2017–September 2018;

and (b) during low-flow period (June–September).
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Fig. 9 shows estimated (modeled) pumping costs resulting from

implementing the optimization algorithm using flow forecasts of

PDM, PDM coupled with ARIMA, and LSTM models compared

to actual historical energy costs. This figure suggests a possible cost

savings of approximately £0.35 million for this site per annum if

flow forecasts from PDM coupled with ARIMA or LSTM models

were used in the optimization algorithm. This is due to the optimi-

zation algorithm’s successfully avoiding pumping during high elec-

tricity tariff periods where operational constraints at the site

allowed this. The figure also shows that during summer the cost

savings per month were higher, suggesting that the optimization

algorithm led to higher savings when balancing all water resource

requirements (i.e., water demand, reservoir storage, and minimum

river flow requirements) while also considering energy costs.

Hence, more accurate flow predictions (using PDM coupled with

ARIMA or LSTMmodels) during dry/summer periods allowed im-

proved coordination of pump operations (and energy use) with

water availability in real time, compared to both historical perfor-

mance and the decisions made by the GA based on flow forecasts of

PDM only. Inaccurate flow forecasts from the PDM-only model

resulted in lower energy costs because of decisions by the optimi-

zation algorithm to switch off pumps due to insufficient predicted

water in the river for abstraction. This further highlights the impor-

tance of including periods of low flow in hydrological model

calibration/training and validation data sets when applied in the

context of informing water abstraction operations.

Discussion

Though it should be noted that day-to-day operational abstraction

decisions may be influenced by a greater range of factors than can

fully be accounted for in the proposed approach, when compared to

historical records simulation results based on flow forecasts from

PDM coupled with ARIMA and LSTM models suggest that the

developed technique for surface water abstraction has the potential

to increase water abstraction volumes (on average 25 Ml=day of

additional water) without compromising environmental licenses

and significantly reducing operational costs at the case study site

(≈ 20% per annum). Simulation results suggested that opportuni-

ties to abstract more water, especially during dry periods such as the

one in 2018, can have significant impacts in terms of raising res-

ervoir levels and avoiding the need to trigger drought management

actions. Such opportunities to abstract more water sustainably by

taking better advantage of short periods of increased river flows and

increased reservoir levels can help maintain the supply–demand

balance during droughts and, hence, contribute to improving resil-

ience against such events. This in turn increases the potential of

existing water supply systems and also reduces the need for future

investments associated with developing new water resources (esti-

mated at £1 million/Ml/day of water in the UK) (OFWAT 2015).

Simulation results showed comparable performance of the GA

during winter (October–April) for all three flow forecasting meth-

ods, suggesting that the algorithm is less sensitive to the accuracy of

flow forecasts during wetter seasons. This is because there always

tends to be sufficient water in the river during winter to meet both

demand and environmental requirements, so the optimization be-

comes less sensitive to the accuracy of the flow forecast. Setting

the appropriate abstraction schedule during this period mainly con-

stitutes a balance between storage targets and pumping costs. Re-

sults at the case study site demonstrate some energy cost savings

(10%) from the proposed method when compared to observed data

as well as minor differences in stored water levels. However, during

the dry season (May–September), the GA methodology based on

the PDM-only flow forecast failed to abstract sufficient water to

maintain storage levels owing to less accurate predictions of flows

compared to the other two forecast models (PDM coupled with

ARIMA and LSTM model). This highlights that the performance

of a flow forecasting technique has a significant impact on deci-

sions made by the optimization algorithm during low-flow periods

and, hence, operational pumping costs. During this period, the

available flow in the river becomes a more relevant constraint,

meaning the performance of the methodology is sensitive to the

accuracy of the flow forecast. Overestimation of flows when river

levels are close to the minimum flow requirement can result in the

GA’s suggesting abstraction of water while in reality there is no

water available for abstraction. Similarly, underestimation of flows

can result in the GA’s suggesting small abstractions when in fact

water is available and could be used to offset water demand or fill

reservoirs. Cost savings and increases to abstraction volumes are

also more significant in summer/dry periods due to the GA’s ability

to more effectively balance storage, cost, and environmental targets

than traditional techniques, for example, by taking better advantage

of short periods of increased river flow forecasts by the PDM and

ARIMA or ANN methods.

When considering the relative merits of different modeling ap-

proaches, the work highlights the value of considering the end-use

application within any evaluation, rather than simply considering

the accuracy of predictions in isolation. That is, the value of the

model should be considered in light of its ability to answer the

question of interest to the user, as discussed in Minsky (1965).

For example, within this study, all the hydrological models under-

estimated peak flows. This might be because climatic inputs in this

study are averaged over the catchment, so rainfall and evaporation

data used in the hydrological models might have contained bias that

propagated into streamflow forecasts. This could possibly be ad-

dressed by increasing complexity, such as through the use of

bias-correction methods (e.g., quantile mapping or generalized lin-

ear models) to reduce bias (Zhang et al. 2015).

However, as previously discussed, during high flows water ab-

straction operations and resulting cost efficiencies at the site are

largely insensitive to the accuracy of flow forecasts (as a result

Fig. 9.Monthly estimated pumping costs (GBP £ ,000) resulting from

optimization algorithm using flow forecast from PDM, PDM coupled

with ARIMA, and LSTM models compared with actual costs during

historical period October 2017–September 2018.
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of the pump’s capacity being lower than the water available in

the river). During the summer/dry months, the PDM and ARIMA

or LSTM methods were observed to have a similar accuracy

(NSE ≥ 0.90) and demonstrated a predictive capability sufficient

for modeling purposes to inform water abstraction decision-making

during the analysis period and preserve environmental flows. Only

slight differences were observed in the performance of the GA

based on the PDM coupled with ARIMA and LSTM flow forecast-

ing models (e.g., predictions of annual energy costs within 0.30%).

This may be attributed to (1) the availability of considerable

amounts of informative data for this catchment (i.e., including

periods of low flows); and (2) a lack of significant changes to

the hydrological system during the period covered by the forecast

model.

Hence, when considering the relative merits of data-driven ver-

sus process-based models in the context of water resources man-

agement, the usefulness of the model should not be merely

measured by its methodological correctness and accuracy but

should also consider the degree to which it can help water managers

and decision makers (Solomathine and Ostfeld 2008) and potential

transferability to alternate catchments. The water resources appli-

cation sought in this study is concerned with the estimation of total

volumes of water at the outlet of the catchment, with service flows

(the range between the minimum river flow requirement and the

capacity of the abstraction site) being of particular interest. Hence,

detailed understanding of hydrological processes (as provided by

process-based models) are not strictly required. Within this catch-

ment, results indicate that the data-driven model (LSTM) is able to

capture service flows and deliver predictive performance that is

equal to the performance of the process-based model (PDM

coupled with ARIMA), and only slight differences in the perfor-

mance of the GA based on the two flow forecasting techniques

are observed. This demonstrates the capabilities of data-driven

models in this context and the potential value of such models in

informing operational decision-making concerning water abstrac-

tion. However, within this study, sufficient data were available

for a detailed calibration and validation (including over low-flow

periods). A potential risk in both process-based and data-driven

models in catchments where data is limited is that they converge

to a model that is apparently true based on the limited available data

but that may not be able to constrain predictions to a plausible range

(Höge et al. 2018). Further investigations in scenarios with more

limited data sets are required to ensure the robustness of these

methods against future uncertainties and to check the predictive

capabilities of PDM plus ARIMA and LSTM in more data-scarce

environments. A validation of the applicability of the LSTM model

compared to process-based models in a wider variety of catchments

is also required (i.e., transferability of the LSTM model to other

catchments).

Another factor that can influence the model selection process is

the computational time required for model calibration. The calibra-

tion of process-based models is sometimes more challenging due to

complex interactions between parameters. Coupling a process-

based rainfall-runoff model with an error prediction method to up-

date flow forecasts increases the number of parameters requiring

calibration and, hence, significantly increases computational times.

For example, calibrating the PDM coupled with ARIMA using the

calibration data set (2005–2013) can take up to 1 day using a stan-

dard PC. The LSTM model tends to require shorter computational

times for calibration (up to 8 h). Model comparison in this context

could be further extended by generating multiple working hypoth-

eses of each modeling type with varying complexities (Khatami

et al. 2019) and evaluating models based on model selection criteria

that aim to find the model of optimal complexity (optimal trade-off

between goodness of fit and model complexity) for a given mod-

eling goal (Höge et al. 2018).

It should also be noted that the optimization algorithm in this

study is developed based on a catchment with a time of concentra-

tion of approximately 24 h. Implementing the optimization algo-

rithm on catchments with different times of concentrations may

require different configurations of the flow forecasting schemes,

water demand and energy price information, and the adjustment

of forecast lead time and duration of pump schedule accordingly.

There is further potential to develop systems for pump schedule

optimization based on longer lead times via the incorporation of

radar rainfall predictions; however, more work is needed to under-

stand how increased uncertainties associated with rainfall forecasts

could be accounted for in such methods (Nguyen and Bae 2019;

Tian et al. 2019).

One limitation of this study is that time encoding of the pump

schedule is simplified as 24-bit binary string with all site pumps

able to be turned on and off sharply at the start of each hour. In

more complex operations, a more practical encoding of the pump

schedule may be required that would allow for a flexible start and

end of each site pump’s duty cycle. Moreover, the investigation in

this study is limited to fixed speed pumps. The incorporation of

variable-speed pumps into the problem will require adjusting the

solution array to include information about the rotational speed

of pumps. The technique described here can be further developed

via the use of continuous encoding methods that use pairs of genes

to indicate the start and end of each pump’s duty cycle (Abkenar

et al. 2015; Wang et al. 2009), or genes in the solution array could

include fractional numbers between the minimum speed ratio of

each pump and 1 (fully on) instead of binary on and off conditions.

However, these options are likely to considerably increase the size

of the solution space together with convergence times (Abkenar

et al. 2015). This study could also be extended by expanding

the search space to explore time-adapting schedules (i.e., different

pumping schedules through the year) and, hence, assess how sea-

sonally varying schedules impact water resource operations.

In this study, water resources management is considered based

on a fixed environmental flow. New reforms in surface water ab-

straction management may introduce more robust environmental

flow designations, including interannual variation in environmental

flows to improve the balance between ecological requirements and

water demand (DEFRA 2019). Some studies (e.g., Hough et al.

2019) have shown that varying environmental flows throughout

the year can improve ecological function while also increasing

the overall volume of water available for use. Hence, the use of

such optimization algorithms in light of such designations may fur-

ther improve the resilience of water supply systems.

The developed optimization algorithm could also be linked to

water quality models that are able to forecast short-term fluctua-

tions of pollutant loads in surface water (e.g., Asfaw et al. 2018).

This could enable coordination of pump operations with water

availability and water quality in real time while also considering

energy costs, hence providing a more comprehensive tool for infra-

structure operators to manage surface water abstractions. It is also

anticipated that such methodologies will be of increasing relevance

under more flexible electricity systems (i.e., more decentralized en-

ergy generations, renewable energy, and electricity storage) with a

larger variability in energy availability and corresponding periods

of surplus, low-cost energy supplies.

Future work may also extend the approach to enable optimiza-

tion of pumping and water release operations in multireservoir sys-

tems. This can include a multiobjective optimization algorithms

coupled with real-time models and environmental data to help in-

form coordinated multipurpose operations of reservoir systems that
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consider various factors, such as flood control, water supply, and

environmental requirements, along with energy costs. Most current

studies in the literature pertaining to the optimization of operations

of multireservoir systems focus on restoring flows for downstream

ecosystems (e.g., Mao et al. 2016) or maximizing the potential of

hydropower generation (e.g., Anand et al. 2018; Ahmadianfar

et al. 2019).

Conclusion

This work compared the ability of different real-time flow forecast-

ing techniques to improve subdaily raw water abstraction opera-

tions. A novel technique for surface water abstraction was

developed for this purpose by integrating river flow forecasting,

a water resources management model, and a genetic optimization

algorithm. Using the developed algorithm, a retrospective analysis

for the study period (2017–2018) was conducted comparing his-

torical water abstractions, reservoir storage levels, river flows

downstream of the abstraction point, and energy costs with simu-

lations based on river flow forecasts from three different forecasting

methods. The methods for flow forecasting in this study included

process-based models (PDM rainfall-runoff model only and PDM

rainfall-runoff model coupled with ARIMA) and a data-driven

(LSTM) model. Comparison of results from the three forecasting

techniques suggested that the performance of flow forecasting has

significant impacts on the decisions made by the water abstraction

model during low-flow periods where water availability is a key

constraint. PDM coupled with ARIMA and LSTM models showed

comparable accuracy in forecasting river flows at the outlet of the

catchment, which was significantly better than the performance of

PDM only. Simulation results showed that the GA-based technique

has the potential to significantly increase water abstraction volumes

and reduce operational energy costs without compromising envi-

ronmental licenses at similar sites, in particular by taking advantage

of short-term periods of elevated river flow. This suggests the ben-

efits of utilizing real-time flow forecasting and flexible water

pumping schedules to maximize the value of existing surface water

resources, and in some cases this may reduce the need for signifi-

cant investment to increase the resilience of supply. The study also

suggested that real-time data-driven models can have a predictive

performance similar to that of process-based models in this context,

illustrating their potential value in informing operational decision-

making concerning water abstraction. Live operational testing

of the modeling-led abstraction methods at a range of sites is re-

quired to fully validate the approach and robustly quantify the po-

tential of the technique to increase supply resilience and lower

energy costs.
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