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Abstract—This letter investigates the resource allocation 

problem for multiple Unmanned Aerial Vehicles (UAVs)-served 

Machine-to-Machine (M2M) communications. Our goal is to 

maximize the sum-rate of UAVs-served M2M communications by 

jointly considering the transmission power, transmission mode, 

frequency spectrum, relay selection and the trajectory of UAVs. In 

order to model the uncertainty of stochastic environments, we 

formulate the resource allocation problem to be a Markov game, 

which is the generalization of Markov Decision Process (MDP) for 

the case of multiple agents. However, owning to the UAVs mobility 

poses the difficulty of perceiving the environment, we propose a 

Long Short-Term Memory (LSTM) with Generative Adversarial 

Networks (GANs) framework to better track and forecast the 

UAVs mobility and improving the network reward. Numerical 

results demonstrate that the proposed framework outperforms the 

conventional LSTM and Deep Q-Network (DQN) algorithms. 

 
Index Terms—Unmanned aerial vehicles, M2M 

communications, Resource allocation, Long short-term memory, 

Generative adversarial networks 

 

I. INTRODUCTION 

ACHINE-to-Machine (M2M) communication emerges 

as a facilitator for Internet of Things (IoTs), has currently 

attracted extensive interests from both industry and academia. 

Owning to its inherent nature of massive and pervasiveness of 

Machine-Type Devices (MTDs) connectivity, most existing 

M2M communications rely on cellular infrastructure since the 

Base Stations (BSs) are capable of providing centralized, 

Quality of Service (QoS) guaranteed and secured services. 

However, in contrast to Human-to-Human (H2H) 

communications, parts of the MTDs in M2M communications 

are environmental-oriented which are typically deployed in 

remote areas. In such situation, the utilization of conventional 

cellular infrastructure is impracticable.  

Fortunately, Unmanned Aerial Vehicles (UAVs) have been 

recently proposed to serve as aerial BSs for providing cost-

effective and on-demand wireless coverage services in future 
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wireless communications, attributed to its flexible deployment 

[1]. In addition, the channel provided by UAV-served 

communications are probably Line-of-Sight (LoS), which is 

also beneficial to the performance of wireless communications 

[2]. Consequently, in this letter, we intend to investigate 

multiple UAVs served as aerial BSs to facilitate the M2M 

communications in the area, where the conventional cellular 

infrastructure is unavailable. The goal of this work is to 

maximize the sum-rate of UAVs-served M2M communications 

from the perspective of resource allocation. More specifically, 

in order to model the uncertainty of stochastic environments, 

we formulate the resource allocation problem to be a Markov 

game by jointly considering the transmission power, 

transmission mode, frequency spectrum, relay selection and the 

trajectory of UAVs. In the game, each UAV acts as a learning 

agent and enables to effectively learn from the environment to 

make the allocation decision. However, owning to the fact that 

each UAV has different mobility pattern and the conventional 

Reinforcement Learning (RL) algorithms have shed little light 

on the possible influence of UAVs mobility on the perceived 

demand of resource [3]. Therefore, we propose a Long Short-

Term Memory (LSTM) [4] with Generative Adversarial 

Networks (GANs) [5] framework, ca-called Generative 

Adversarial LSTM Networks to better track and forecast UAVs’ 
mobility and thus improving the network reward. Numerical 

results demonstrate that the proposed framework is superior to 

the conventional LSTM and Deep Q-Network (DQN) 

algorithms.  

II. SYSTEM MODEL 

In this letter, we consider a time-slotted multi-UAVs-served 

M2M communications scenario. We deploy M UAVs denoted 

as 𝑈𝑚  (𝑚 ∈ {1, 2, … , 𝑀}) and N M2M pairs denoted 

as 𝐷𝑛  (𝑛 ∈ {1, 2, … , 𝑁}). The ground MTDs in M2M pairs are 

randomly distributed in a square area of  𝑅 × 𝑅. Each M2M pair 

has a transmitter (MTD_Tx) and a receiver (MTD_Rx). In this 

model, 𝑊𝑡𝑜𝑡𝑎𝑙  bandwidth is available and which is equally 

divided into F orthogonal sub-channels as  𝑊𝑒𝑎𝑐ℎ =
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{𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , 2∙𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , … , (𝐹−1)∙𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , 𝑊𝑡𝑜𝑡𝑎𝑙} . Without loss of 

generality, we assume that 𝐹 = 𝑀 and each sub-channel is pre-

assigned to the UAV. Meanwhile, M2M links are allowed to 

reuse the pre-occupied UAV sub-channel to enhance the 

spectrum efficiency. Thus, we define a binary indicator α𝑚,𝑛 ∈{0, 1}, ∀𝑚 ∈ (1, 2, … , 𝑀) and ∀𝑛 ∈ (1, 2, … , 𝑁) to denote if the n-

th M2M link currently reuses the m-th UAV spectrum. It is 

reasonable to note that each M2M link can reuse no more than 

one spectrum of UAV link at a time. Therefore, one constraint 

can be derived as Eq. (1).  ∑ α𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑀
𝑚=1             (1) 

In addition, we assume that the Channel State Information 

(CSI) between MTD_Tx and MTD_Rx and that between MTDs 

and UAV are known by UAV [6]. Therefore, in every time slot, 

the M2M pairs can be categorized into two transmission modes: 

1) M2M mode and 2) M-U-M mode. If the channel gain 

between MTD_Tx and MTD_Rx is better than that between 

MTDs and UAV, the M2M pair communicates in M2M mode. 

Otherwise, it works in M-U-M mode. Hence, we define another 

indicator  𝛽𝑛 ∈ {0, 1}, ∀𝑛 ∈ (1, 2, … , 𝑁) to denote which 

transmission mode is utilized by n-th M2M pair. We set 𝛽𝑛 =1 indicates the M-U-M mode is currently used. Otherwise, 

M2M pair communicates in M2M mode. Notably, each M2M 

pair can only operate in one transmission mode and each UAV 

can only serve as a relay for one M2M pair in a time slot. 

Therefore, we can get another constraint as Eq. (2). ∑ 𝛽𝑛 ≤ 𝑀, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1             (2) 

Moreover, it is worth noting that which UAV is served as a 

relay for a certain M2M pair in M-U-M mode is critical to the 

performance of network. Therefore, we define another 

parameter δ𝑚,𝑛 ∈ {0, 1}, ∀𝑚 ∈ (1, 2, … , 𝑀) and ∀𝑛 ∈ (1, 2, … , 𝑁) 

as an indicator of the m-th UAV is served as the relay for the n-

th M2M pair. ∑ δ𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1             (3) 

In M2M mode, we can obtain the instantaneous transmission 

rate of n-th M2M pair in t-th time slot based on Shannon’s 
theorem. 𝑇𝑅𝑛𝑀2𝑀(𝑡) = 𝑊𝑒𝑎𝑐ℎ ∙ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡))        (4) 

Where, 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡) can be given by Eq. (5). 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡) = 𝑝𝑛𝑀2𝑀 ∙ 𝑔𝑛𝑇𝑥_𝑅𝑥𝐼𝑛𝑀2𝑀(𝑡) + 𝑛0       (5) 

in which, 𝐼𝑛𝑀2𝑀(𝑡)= ∑ δ𝑚,𝑗 ∙ (𝑝𝑗𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑔𝑚𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉𝑗 + 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑔𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥𝑗)2𝑛,𝑖,𝑗∈𝑁𝑀2𝑀𝑗≠𝑀2𝑀𝑛𝑀2𝑀𝑗≠𝑀2𝑀𝑖+ ∑ α𝑚,𝑖 ∙ 𝑝𝑖𝑀2𝑀 ∙ 𝑔𝑖𝑇𝑥_𝑅𝑥𝑛,𝑖∈𝑁𝑀2𝑀𝑖≠𝑀2𝑀𝑛
               (6) 

The expression of 𝐼𝑛𝑀2𝑀(𝑡) includes two items, the first item 

indicates the interference from M-U-M link and the second item 

is the interference from other M2M links which recently uses 

the same pre-assigned spectrum of m-th UAV. 

In M-U-M mode, we consider a 3-Demensional (3D) 

Cartesian coordinate, in which 𝐶𝑈𝐴𝑉,𝑚(𝑡) =[𝑥𝑈𝐴𝑉 , 𝑦𝑈𝐴𝑉 , 𝑧𝑈𝐴𝑉]𝑇 ∈ ℝ3×1  and 𝐶𝑀𝑇𝐷,𝑛(𝑡) =[𝑥𝑀𝑇𝐷 , 𝑦𝑀𝑇𝐷 , 𝑧𝑀𝑇𝐷]𝑇 ∈ ℝ3×1  denote the coordinate of m-th 

UAV and n-th M2M pair in t-th time slot, respectively. We 

assume that all MTDs are located on the ground. For explicitly, 

we use 𝐶𝑀𝑇𝐷_𝑇𝑥,𝑛(𝑡) = [𝑥𝑀𝑇𝐷_𝑇𝑥, 𝑦𝑀𝑇𝐷_𝑇𝑥, 𝑧𝑀𝑇𝐷_𝑇𝑥]𝑇  and 𝐶𝑀𝑇𝐷_𝑅𝑥,𝑛(𝑡) = [𝑥𝑀𝑇𝐷_𝑅𝑥 , 𝑦𝑀𝑇𝐷_𝑅𝑥, 𝑧𝑀𝑇𝐷_𝑅𝑥]𝑇  to denote the 

coordinates of the n-th MTD_Tx and MTD_Rx in t-th time slot, 

respectively. Therefore, we can obtain the distance between m-

th UAV and n-th MTD in t-th time slot as Eq. (7). 𝐷𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) = √∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡) − 𝐶𝑀𝑇𝐷,𝑛(𝑡) ∥2          (7) 

Meanwhile, we suppose that all the UAVs will fly back to 

the base after complete the mission, so the Eq. (8) should be 

satisfied. Similarly, the trajectories of each UAV also 

constrained to its mobility speed and the minimum distance 

with other UAVs. Therefore, Eq. (9) and Eq. (10) should be 

satisfied. 𝐶𝑈𝐴𝑉,𝑚(1) = 𝐶𝑈𝐴𝑉,𝑚(𝑇)        (8) ∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡 + 1) − 𝐶𝑈𝐴𝑉,𝑚(𝑡) ∥≤ 𝑉𝑚𝑎𝑥          (9) ∥ 𝐶𝑈𝐴𝑉,𝑚∈𝑀(𝑡) − 𝐶𝑈𝐴𝑉,∀𝑗≠𝑚,∀𝑗∈𝑀(𝑡) ∥≥ 𝐷𝑚𝑎𝑥           (10) 

Despite the flying UAVs are capable of providing a LoS link 

with ground MTDs, it also depends on the practical 

environment. Therefore, the randomness appearance of the LoS 

and Non-LoS should be considered. One commonly used 

expression can be given as Eq. (11) [7, 8]. 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (t)= 11 + 𝑎 ∙ 𝑒𝑥𝑝[−𝑏 ∙ (𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) − 𝑎)]         (11) 

Where, a and b are the constants that depend on the carrier 

frequency and environment. 𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) is the elevation 

angle, which is expressed as Eq. (12). 𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) = 180𝜋 ∙ sin (𝑧𝑈𝐴𝑉/𝐷𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡))         (12) 

Herein, we can obtain the average path loss between m-th 

UAV and n-th MTD in t-th time slot as expressed by Eq. (13). 𝑃𝐿𝑚,𝑛(𝑡) = 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) ∙ 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) +(1 − 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡)) ∙ 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝑁𝐿𝑜𝑆 (𝑡) (13) 

where, 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) = 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) + 𝜂𝐿𝑜𝑆      (14) 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝑁𝐿𝑜𝑆 (𝑡) = 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) + 𝜂𝑁𝐿𝑜𝑆      (15) 

Here, 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) is the free space path loss between 

m-th UAV and n-th MTD in t-th time slot. 𝜂𝐿𝑜𝑆 and 𝜂𝑁𝐿𝑜𝑆 are 

the mean additional losses for LoS and NLoS, respectively. 

After above discussion, we can get the instantaneous 

transmission rate of n-th M2M link in t-th time slot in M-U-M 

mode. However, different from M2M mode, M-U-M link 

consists of two parts: MTD_Tx-UAV and UAV-MTD_Rx links. 𝑇𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) = 𝑊𝑒𝑎𝑐ℎ∙ 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡))        (16) 𝑇𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) = 𝑊𝑒𝑎𝑐ℎ∙ 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡))         (17) 

where, 
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𝑆𝐼𝑁𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡)= 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑔𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑃𝐿𝑚,𝑛−1 (𝑡)𝐼𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) + 𝑛0          (18) 𝑆𝐼𝑁𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡)= 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑔𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑃𝐿𝑚,𝑛−1 (𝑡)𝐼𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) + 𝑛0          (19) 

in which, 𝐼𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) = 𝐼𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡)= ∑ α𝑚,𝑖 ∙ 𝑝𝑖𝑀2𝑀 ∙ 𝑔𝑖𝑇𝑥_𝑅𝑥2𝑛,𝑖∈𝑁𝑀2𝑀𝑖≠𝑀2𝑀𝑛
      (20) 

It is worth noting that in M-U-M mode, the first half time slot 

is used for transmission of MTD_Tx-UAV link and the second 

half time slot is used by UVA for forwarding the data to the 

MTD_Rx. Hence, the effective transmission rate of the M-U-M 

mode is given by Eq. (21). 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡)= 12 ∙ min (𝑇𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡), 𝑇𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡))        (21) 

Therefore, we can get the sun-rate of the UAV-served M2M 

Communication systems as Eq. (22). 𝑆𝑅 = ∑ ∑ ∑(1 − 𝛽𝑛) ∙ 𝑇𝑅𝑛𝑀2𝑀(𝑡) + 𝛽𝑛 ∙𝑁
𝑛=1

𝑀
𝑚=1𝑡 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡) (22) 

To this end, the resource allocation problem can be 

formulated as: max{α𝑚,𝑛,   𝛽𝑛,   δ𝑚,𝑛 }{ 𝑝𝑛𝑀2𝑀,   𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉,𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥}    𝑆𝑅      (23) 

s.t. ∑ α𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑀
𝑚=1   
∑ 𝛽𝑛 ≤ 𝑀, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1   
∑ δ𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1  α𝑚,𝑛, 𝛽𝑛 , δ𝑚,𝑛 ∈ {0, 1} ∀𝑚 ∈ (1, 2, … , 𝑀), ∀𝑛 ∈ (1, 2, … , 𝑁)   𝐶𝑈𝐴𝑉,𝑚(1) = 𝐶𝑈𝐴𝑉,𝑚(𝑇) ∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡 + 1) − 𝐶𝑈𝐴𝑉,𝑚(𝑡) ∥≤ 𝑉𝑚𝑎𝑥  ∥ 𝐶𝑈𝐴𝑉,𝑚∈𝑀(𝑡) − 𝐶𝑈𝐴𝑉,∀𝑗≠𝑚,∀𝑗∈𝑀(𝑡) ∥≥ 𝐷𝑚𝑎𝑥 0 ≤ 𝑝𝑛𝑀2𝑀 ≤ 𝑝𝑚𝑎𝑥𝑀𝑇𝐷   0 ≤ 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ≤ 𝑝𝑚𝑎𝑥𝑀𝑇𝐷 , 0 ≤ 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ≤ 𝑝𝑚𝑎𝑥𝑈𝐴𝑉   

From Eq. (23), we found that the problem is a mixed integer 

nonlinear programming problem and owning to the reward of 

each UAV is only dependent on the current state and action that 

is satisfied by the properties of Markov chain [9]. Therefore, we 

formulate the problem as a Markov game, which is defined by 

a 4-elements tuple (UAV, S, {𝐴𝑚}𝑚∈𝑀 , {𝑟𝑚}𝑚∈𝑀  ) that is 

described as below: 

1) 𝑈𝐴𝑉 ≜ {1, … , 𝑚, … , 𝑀} is a set of agents, which are the 

UAVs in the work. 

2) 𝑆 ≜ {𝑆1, … , 𝑆𝑚, … , 𝑆𝑀} is the global state spaces for the 

all UAVs and the 𝑆𝑚 denotes the state space of the m-th UAV. 

In this work, the state of each UAV  𝑆𝑚𝑘 =

(𝑔𝑘𝑇𝑥_𝑅𝑥 , 𝑔𝑘𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 , 𝑔𝑘𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 , 𝐼𝑘𝑀2𝑀 , 𝐼𝑘𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 , 𝐼𝑘𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥)
, where, 𝑘 is the number of time steps. 

3) {𝐴𝑚}𝑚∈𝑀 are the set of action spaces for the all UAVs and 𝐴𝑚 denotes the action space of the m-th UAV. It is obvious that 

the action should be the resource allocation strategy which 

including the transmission power  (𝑝𝑛𝑀2𝑀, 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 

and  𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ), spectrum multiplexing factor ( α𝑚,𝑛 ), 

transmission mode (𝛽𝑛) and relay selection (δ𝑚,𝑛). 

4) {𝑟𝑚}𝑚∈𝑀 are the immediate rewards for the UAVs with 𝑟𝑚 ≜ 𝑆 × 𝐴1 × … × 𝐴𝑀 → ℝ. For instance, the reward of m-th 

UAV will be obtained after all actions of the UAVs are 

performed. In this game, we assume that all UAVs are rational 

and selfish and thus all the UAVs start at an initial state 𝑠0 ∈ S 

and select their own actions 𝑎 = 𝑎1, … , 𝑎𝑀  non-cooperatively 

and simultaneously. At the meanwhile, they will receive the 

immediate rewards with the new observations. In this repeated 

procedure, all the UAVs try to find their optimal strategies to 

maximize own long-term rewards. We define the immediate 

reward function 𝑟𝑚(𝑡) of m-th UAV in t-th time slot as Eq. (24) 

and thus the long-term reward can be expressed by Eq. (25). 

𝑟𝑚(𝑡) = {∑(1 − 𝛽𝑛) ∙ 𝑇𝑅𝑛𝑀2𝑀(𝑡) + 𝛽𝑛 ∙𝑁
𝑛=1 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡) 0   (24) 

𝑅𝑚 = ∑ 𝛾𝑚∞
𝑡=0 𝑟𝑡𝑚(𝑠𝑡𝑚, 𝜋𝑚∗ (𝑠𝑡𝑚))        (25) 

Eq. (24) indicates that if all constrains in Eq. (23) are satisfied, 

m-th UAV obtains 𝑟𝑚(𝑡), otherwise, the reward is 0. In Eq. (25), 𝜋∗is the equilibrium of the game. Thus, we can define the Nash 

Q-function of the m-th UAV as Eq. (26). 𝑄𝑚∗ (𝑠, 𝑎𝑚, 𝑎−𝑚) = 𝑟𝑚(𝑠, 𝑎𝑚 , 𝑎−𝑚) + 𝑉𝑚(𝑠′, 𝜋1∗, … , 𝜋𝑚∗ )  (26) 

Where, 𝑎−𝑚 is the actions of all UAVs except m-th UAV. 𝑉𝑚(𝑠′, 𝜋1∗, … , 𝜋𝑚∗ ) is the total discounted reward that all the 

UAVs follow the equilibrium strategies. 

In this work, due to the fact that more historical information 

will beneficial to the UAVs to learn the environment quickly, 

we implement LSTM algorithm to derive the approximate value 

of 𝑄𝑚∗ (𝑠, 𝑎𝑚 , 𝑎−𝑚). In this process, all previous states will be 

firstly inputted into LSTM and then be stored and predicted to 

calculate and estimate the optimal strategy. After the 

approximation, the optimal policy can be presented by Eq. (27). 𝜋∗(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑚𝑚∈𝑀(𝑄𝑚∗ (𝑠, 𝑎𝑚, 𝑎−𝑚))     (27) 

Notably, in this letter, we propose to use Generative 

Adversarial LSTM Networks to solve the maximization 

problem. There are two reasons for this adoption: 1) LSTM is 

an effective Recurrent Neural Network (RNN) architecture for 

prediction and it enables to capture the temporal variation 

regularity of resource allocation due to UAVs mobility. Thus, 

as a type of RNN, LSTM algorithm can efficiently handle 

sequence problems and it is reasonable to use LSTM to learn 

the relationship between historical and future states; 2) GAN is 

normally used while the existing dataset is small for training 

and it enables to create a virtual environment in which a more 

comprehensive dataset can be generated by a real dataset with 

synthetic data.  

Specifically, in the proposed Generative Adversarial LSTM 

Networks framework, there are two inputs for the GANs: 1) a 

limited set of unlabelled real channel gain and interference from 
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other M2M and M-U-M links and 2) synthetic data simulated 

based on the model in [10]. Therefore, we can acquire a large 

observation dataset to emulate the multi-UAVs-served M2M 

communications. Explicitly, how to guarantee the similarity of 

the generated dataset is significant. In order to ensure the output 

of the generator indistinguishable from discriminator, we 

assume that the generator’s neural network is trained as Eq. (28). 𝜔𝐺∗ = 𝑎𝑟𝑔 min𝜔𝐺 max𝜔𝐷 𝑓(𝜔𝐺 , 𝜔𝐷)= 𝑎𝑟𝑔 min𝜔𝐺 𝑓(𝜔𝐺 , 𝜔𝐷∗ (𝜔𝐺)) (28) 

s.t. 𝔼𝑠~𝑔𝑠𝑖𝑚[||𝐹(𝑠; 𝜔𝐺)||] < 𝜖𝑟 

Where, 𝜔𝐺  is the weight of the neural network in generator 

that used to generate synthetic data. 𝑠 is the input of generator 

and the real-like data 𝐹(𝑠; 𝜔𝐺) is the output of the generator. 

In our problem, 𝑠 is the synthetic state variables (channel gain 

and interference from other M2M and M-U-M links) that we 

generated to train our LSTM algorithm. 𝜔𝐷 is the weight of the 

neural network in discriminator. 𝜔𝐷∗  is the optimal weight for 

the discriminator. 𝑔𝑠𝑖𝑚 is the distribution of the synthetic data. 

From Eq. (28), we can guarantee the similarity of 𝑠 

and 𝐹(𝑠; 𝜔𝐺).  

III. SIMULATION RESULTS AND ANALYSIS 

A. Network Setting 

We consider a multi-UAVs-served M2M communication 

scenario in an area of 1000m × 1000m × 40m. 𝑀 = 6 UAVs 

are deployed flying over the area and 𝑁 = 40 M2M pairs are 

uniformly deployed in the area. In this simulation, the 

bandwidth of each subchannel 𝑊𝑒𝑎𝑐ℎ  is set to 75KHz. The 

constants a and b in the expression of presence probability of 

LoS are set to 9.61 and 0.16, respectively [11]. Moreover, the 

carrier frequency 𝑓 is set to 2GHz, 𝜂𝐿𝑜𝑆 = 1 and 𝜂𝑁𝐿𝑜𝑆 = 20. 

Tensorflow 1.13.1 with Python 3.6.5 is used to build a deep 

learning network and the OpenAI-Gym library is utilized to 

build reinforcement learning environment. The LSTM model 

has 2 hidden layers and each layer has 64 neurons. The output 

layer is a fully connected layer with only one neuron whose 

activation function is Rectified Linear Unit (ReLU). The 

learning rate is set to 0.01 initially and decreases exponentially 

to 0.001. 

B. Results Analysis 

In the proposed framework, GANs is responsible for 

generating a comprehensive and effective dataset to train the 

LSTM networks. Consequently, we firstly evaluate the 

similarity of the generated data and the real data in the 

simulation. Fig. 1 compares the GANs-generated dataset and 

the real dataset. In this evaluation, we take the channel gain 

between MTD_Tx and MTD_Rx in M2M mode as an example. 

It is clear that the GANs-generated dataset has the similar 

distribution with the real dataset. 

Fig. 2 presents the trajectory of each UAV in 3D coordinate 

from the proposed Generative Adversarial LSTM Networks 

algorithm to get the maximum sum-rate of M2M 

communications in the formulated model. From the figure, we 

can see that the changing of UAVs’ location in each time slot 

makes a significant impact on the sum-rate of M2M 

communications since the proposed model also considers the 

location of each UAV to allocate resource for maximizing the 

sum-rate of M2M communications. 

 
Fig. 1. Comparison of GANs-generated channel gain and the real data 

 
Fig. 2. The trajectory of each UAV under the proposed framework 

Fig. 3 gives the comparison of the average sum-rate of M2M 

communications among three different algorithms. It is obvious 

that the proposed Generative Adversarial LSTM Networks 

algorithm has the best performance. However, it is worth noting 

that the conventional LSTM algorithm has the barely faster 

convergence speed as compared to Generative Adversarial 

LSTM Networks algorithm. This is due to the reason that the 

generator and discriminator in GANs need time to generate data. 

 
Fig. 3. Comparison for average sum-rate with different algorithms 

IV. CONCLUSION 

In this letter, we introduce a resource allocation strategy for 
multi-UAVs-served M2M communications. We jointly consider 
the transmission power, transmission mode, frequency 
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spectrum, relay selection and the trajectory of UAVs to 
formulate the problem as a Markov game. After that, a 
Generative Adversarial LSTM Networks framework is 
proposed to solve the problem of maximizing the sum-rate of 
M2M communications. In the proposed framework, LSTM is 
used to learn the relationship between historical and future 
states and the GANs is responsible for generating more 
comprehensive dataset for training the LSTM. Finally, 
simulation results validate the effectiveness of the proposed 
Generative Adversarial LSTM Networks framework. 
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Abstract—This letter investigates the resource allocation problem for multiple Unmanned Aerial Vehicles (UAVs)-served Machine-

to-Machine (M2M) communications. Our goal is to maximize the sum-rate of UAVs-served M2M communications by jointly considering 

the transmission power, transmission mode, frequency spectrum, relay selection and the trajectory of UAVs. In order to model the 

uncertainty of stochastic environments, we formulate the resource allocation problem to be a Markov game, which is the generalization 

of Markov Decision Process (MDP) for the case of multiple agents. However, owning to the UAVs mobility poses the difficulty of 

perceiving the environment, we propose a Long Short-Term Memory (LSTM) with Generative Adversarial Networks (GANs) 

framework to better track and forecast the UAVs mobility and improving the network reward. Numerical results demonstrate that the 

proposed framework outperforms the conventional LSTM and Deep Q-Network (DQN) algorithms. 

 
Index Terms—Unmanned aerial vehicles, M2M communications, Resource allocation, Long short-term memory, Generative 

adversarial networks 

 

I. INTRODUCTION 

ACHINE-to-Machine (M2M) communication emerges as a facilitator for Internet of Things (IoTs), has currently attracted 

extensive interests from both industry and academia. Owning to its inherent nature of massive and pervasiveness of Machine-

Type Devices (MTDs) connectivity, most existing M2M communications rely on cellular infrastructure since the Base Stations 

(BSs) are capable of providing centralized, Quality of Service (QoS) guaranteed and secured services. However, in contrast to 

Human-to-Human (H2H) communications, parts of the MTDs in M2M communications are environmental-oriented which are 

typically deployed in remote areas. In such situation, the utilization of conventional cellular infrastructure is impracticable.  

Fortunately, Unmanned Aerial Vehicles (UAVs) have been recently proposed to serve as aerial BSs for providing cost-effective 

and on-demand wireless coverage services in future wireless communications, attributed to its flexible deployment [1]. In addition, 

the channel provided by UAV-served communications are probably Line-of-Sight (LoS), which is also beneficial to the 

performance of wireless communications [2]. Consequently, in this letter, we intend to investigate multiple UAVs served as aerial 

BSs to facilitate the M2M communications in the area, where the conventional cellular infrastructure is unavailable. The goal of 

this work is to maximize the sum-rate of UAVs-served M2M communications from the perspective of resource allocation. More 

specifically, in order to model the uncertainty of stochastic environments, we formulate the resource allocation problem to be a 

Markov game by jointly considering the transmission power, transmission mode, frequency spectrum, relay selection and the 

trajectory of UAVs. In the game, each UAV acts as a learning agent and enables to effectively learn from the environment to make 

the allocation decision. However, owning to the fact that each UAV has different mobility pattern and the conventional 

Reinforcement Learning (RL) algorithms have shed little light on the possible influence of UAVs mobility on the perceived demand 

of resource [3]. Therefore, we propose a Long Short-Term Memory (LSTM) [4] with Generative Adversarial Networks (GANs) 

[5] framework, ca-called Generative Adversarial LSTM Networks to better track and forecast UAVs’ mobility and thus improving 
the network reward. Numerical results demonstrate that the proposed framework is superior to the conventional LSTM and Deep 

Q-Network (DQN) algorithms.  
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II. SYSTEM MODEL 

In this letter, we consider a time-slotted multi-UAVs-served M2M communications scenario. We deploy M UAVs denoted as 𝑈𝑚 (𝑚 ∈ {1, 2, … , 𝑀}) and N M2M pairs denoted as  𝐷𝑛  (𝑛 ∈ {1, 2, … , 𝑁}) . The ground MTDs in M2M pairs are randomly 

distributed in a square area of  𝑅 × 𝑅. Each M2M pair has a transmitter (MTD_Tx) and a receiver (MTD_Rx). In this model, 𝑊𝑡𝑜𝑡𝑎𝑙 
bandwidth is available and which is equally divided into F orthogonal sub-channels as  𝑊𝑒𝑎𝑐ℎ ={𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , 2∙𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , … , (𝐹−1)∙𝑊𝑡𝑜𝑡𝑎𝑙𝐹 , 𝑊𝑡𝑜𝑡𝑎𝑙}. Without loss of generality, we assume that 𝐹 = 𝑀 and each sub-channel is pre-assigned 

to the UAV. Meanwhile, M2M links are allowed to reuse the pre-occupied UAV sub-channel to enhance the spectrum efficiency. 

Thus, we define a binary indicator α𝑚,𝑛 ∈ {0, 1}, ∀𝑚 ∈ (1, 2, … , 𝑀) and ∀𝑛 ∈ (1, 2, … , 𝑁) to denote if the n-th M2M link currently 

reuses the m-th UAV spectrum. It is reasonable to note that each M2M link can reuse no more than one spectrum of UAV link at 

a time. Therefore, one constraint can be derived as Eq. (1).  ∑ α𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑀
𝑚=1             (1) 

In addition, we assume that the Channel State Information (CSI) between MTD_Tx and MTD_Rx and that between MTDs and 

UAV are known by UAV [6]. Therefore, in every time slot, the M2M pairs can be categorized into two transmission modes: 1) 

M2M mode and 2) M-U-M mode. If the channel gain between MTD_Tx and MTD_Rx is better than that between MTDs and UAV, 

the M2M pair communicates in M2M mode. Otherwise, it works in M-U-M mode. Hence, we define another indicator 𝛽𝑛 ∈{0, 1}, ∀𝑛 ∈ (1, 2, … , 𝑁) to denote which transmission mode is utilized by n-th M2M pair. We set 𝛽𝑛 = 1 indicates the M-U-M 

mode is currently used. Otherwise, M2M pair communicates in M2M mode. Notably, each M2M pair can only operate in one 

transmission mode and each UAV can only serve as a relay for one M2M pair in a time slot. Therefore, we can get another 

constraint as Eq. (2). ∑ 𝛽𝑛 ≤ 𝑀, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1             (2) 

Moreover, it is worth noting that which UAV is served as a relay for a certain M2M pair in M-U-M mode is critical to the 

performance of network. Therefore, we define another parameter δ𝑚,𝑛 ∈ {0, 1}, ∀𝑚 ∈ (1, 2, … , 𝑀) and ∀𝑛 ∈ (1, 2, … , 𝑁)  as an 

indicator of the m-th UAV is served as the relay for the n-th M2M pair. ∑ δ𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1             (3) 

In M2M mode, we can obtain the instantaneous transmission rate of n-th M2M pair in t-th time slot based on Shannon’s theorem. 𝑇𝑅𝑛𝑀2𝑀(𝑡) = 𝑊𝑒𝑎𝑐ℎ ∙ 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡))        (4) 

Where, 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡) can be given by Eq. (5). 𝑆𝐼𝑁𝑅𝑛𝑀2𝑀(𝑡) = 𝑝𝑛𝑀2𝑀 ∙ 𝑔𝑛𝑇𝑥_𝑅𝑥𝐼𝑛𝑀2𝑀(𝑡) + 𝑛0       (5) 

in which, 𝐼𝑛𝑀2𝑀(𝑡) = ∑ δ𝑚,𝑗 ∙ (𝑝𝑗𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑔𝑚𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉𝑗 + 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑔𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥𝑗)2𝑛,𝑖,𝑗∈𝑁𝑀2𝑀𝑗≠𝑀2𝑀𝑛𝑀2𝑀𝑗≠𝑀2𝑀𝑖
+ ∑ α𝑚,𝑖 ∙ 𝑝𝑖𝑀2𝑀 ∙ 𝑔𝑖𝑇𝑥_𝑅𝑥𝑛,𝑖∈𝑁𝑀2𝑀𝑖≠𝑀2𝑀𝑛

      (6) 

The expression of 𝐼𝑛𝑀2𝑀(𝑡) includes two items, the first item indicates the interference from M-U-M link and the second item is 

the interference from other M2M links which recently uses the same pre-assigned spectrum of m-th UAV. 

In M-U-M mode, we consider a 3-Demensional (3D) Cartesian coordinate, in which 𝐶𝑈𝐴𝑉,𝑚(𝑡) = [𝑥𝑈𝐴𝑉 , 𝑦𝑈𝐴𝑉 , 𝑧𝑈𝐴𝑉]𝑇 ∈ ℝ3×1 

and 𝐶𝑀𝑇𝐷,𝑛(𝑡) = [𝑥𝑀𝑇𝐷 , 𝑦𝑀𝑇𝐷 , 𝑧𝑀𝑇𝐷]𝑇 ∈ ℝ3×1 denote the coordinate of m-th UAV and n-th M2M pair in t-th time slot, respectively. 

We assume that all MTDs are located on the ground. For explicitly, we use 𝐶𝑀𝑇𝐷_𝑇𝑥,𝑛(𝑡) = [𝑥𝑀𝑇𝐷_𝑇𝑥, 𝑦𝑀𝑇𝐷_𝑇𝑥, 𝑧𝑀𝑇𝐷_𝑇𝑥]𝑇  and 𝐶𝑀𝑇𝐷_𝑅𝑥,𝑛(𝑡) = [𝑥𝑀𝑇𝐷_𝑅𝑥 , 𝑦𝑀𝑇𝐷_𝑅𝑥, 𝑧𝑀𝑇𝐷_𝑅𝑥]𝑇  to denote the coordinates of the n-th MTD_Tx and MTD_Rx in t-th time slot, 

respectively. Therefore, we can obtain the distance between m-th UAV and n-th MTD in t-th time slot as Eq. (7). 𝐷𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) = √∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡) − 𝐶𝑀𝑇𝐷,𝑛(𝑡) ∥2          (7) 

Meanwhile, we suppose that all the UAVs will fly back to the base after complete the mission, so the Eq. (8) should be satisfied. 

Similarly, the trajectories of each UAV also constrained to its mobility speed and the minimum distance with other UAVs. 

Therefore, Eq. (9) and Eq. (10) should be satisfied. 𝐶𝑈𝐴𝑉,𝑚(1) = 𝐶𝑈𝐴𝑉,𝑚(𝑇)        (8) ∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡 + 1) − 𝐶𝑈𝐴𝑉,𝑚(𝑡) ∥≤ 𝑉𝑚𝑎𝑥          (9) ∥ 𝐶𝑈𝐴𝑉,𝑚∈𝑀(𝑡) − 𝐶𝑈𝐴𝑉,∀𝑗≠𝑚,∀𝑗∈𝑀(𝑡) ∥≥ 𝐷𝑚𝑎𝑥           (10) 

Despite the flying UAVs are capable of providing a LoS link with ground MTDs, it also depends on the practical environment. 

Therefore, the randomness appearance of the LoS and Non-LoS should be considered. One commonly used expression can be 
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given as Eq. (11) [7, 8]. 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (t) = 11 + 𝑎 ∙ 𝑒𝑥𝑝[−𝑏 ∙ (𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) − 𝑎)]         (11) 

Where, a and b are the constants that depend on the carrier frequency and environment. 𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) is the elevation angle, 

which is expressed as Eq. (12). 𝜃𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡) = 180𝜋 ∙ sin (𝑧𝑈𝐴𝑉/𝐷𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛(𝑡))         (12) 

Herein, we can obtain the average path loss between m-th UAV and n-th MTD in t-th time slot as expressed by Eq. (13). 𝑃𝐿𝑚,𝑛(𝑡) = 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) ∙ 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) +(1 − 𝑃𝑟𝑏𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡)) ∙ 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝑁𝐿𝑜𝑆 (𝑡) (13) 

where, 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐿𝑜𝑆 (𝑡) = 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) + 𝜂𝐿𝑜𝑆      (14) 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝑁𝐿𝑜𝑆 (𝑡) = 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) + 𝜂𝑁𝐿𝑜𝑆      (15) 

Here, 𝑃𝐿𝑈𝐴𝑉,𝑚−𝑀𝑇𝐷,𝑛𝐹𝑆 (𝑡) is the free space path loss between m-th UAV and n-th MTD in t-th time slot. 𝜂𝐿𝑜𝑆 and 𝜂𝑁𝐿𝑜𝑆  are the 

mean additional losses for LoS and NLoS, respectively. 

After above discussion, we can get the instantaneous transmission rate of n-th M2M link in t-th time slot in M-U-M mode. 

However, different from M2M mode, M-U-M link consists of two parts: MTD_Tx-UAV and UAV-MTD_Rx links. 𝑇𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) = 𝑊𝑒𝑎𝑐ℎ ∙ 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡))        (16) 𝑇𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) = 𝑊𝑒𝑎𝑐ℎ ∙ 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡))         (17) 

where, 𝑆𝐼𝑁𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) = 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑔𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ∙ 𝑃𝐿𝑚,𝑛−1 (𝑡)𝐼𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) + 𝑛0          (18) 

𝑆𝐼𝑁𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) = 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑔𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ∙ 𝑃𝐿𝑚,𝑛−1 (𝑡)𝐼𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) + 𝑛0          (19) 

in which, 𝐼𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡) = 𝐼𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡) = ∑ α𝑚,𝑖 ∙ 𝑝𝑖𝑀2𝑀 ∙ 𝑔𝑖𝑇𝑥_𝑅𝑥2𝑛,𝑖∈𝑁𝑀2𝑀𝑖≠𝑀2𝑀𝑛
      (20) 

It is worth noting that in M-U-M mode, the first half time slot is used for transmission of MTD_Tx-UAV link and the second 

half time slot is used by UVA for forwarding the data to the MTD_Rx. Hence, the effective transmission rate of the M-U-M mode 

is given by Eq. (21). 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡) = 12 ∙ min (𝑇𝑅𝑚,𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉(𝑡), 𝑇𝑅𝑚,𝑛𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥(𝑡))        (21) 

Therefore, we can get the sun-rate of the UAV-served M2M Communication systems as Eq. (22). 𝑆𝑅 = ∑ ∑ ∑(1 − 𝛽𝑛) ∙ 𝑇𝑅𝑛𝑀2𝑀(𝑡) + 𝛽𝑛 ∙𝑁
𝑛=1

𝑀
𝑚=1𝑡 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡) (22) 

To this end, the resource allocation problem can be formulated as: max{α𝑚,𝑛,   𝛽𝑛,   δ𝑚,𝑛 }{ 𝑝𝑛𝑀2𝑀,   𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉,𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥}    𝑆𝑅      (23) 

s.t. ∑ α𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑀
𝑚=1   
∑ 𝛽𝑛 ≤ 𝑀, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1   
∑ δ𝑚,𝑛 ≤ 1, (∀𝑛 ∈ 𝑁) 𝑁
𝑛=1  α𝑚,𝑛, 𝛽𝑛 , δ𝑚,𝑛 ∈ {0, 1} ∀𝑚 ∈ (1, 2, … , 𝑀), ∀𝑛 ∈ (1, 2, … , 𝑁)   𝐶𝑈𝐴𝑉,𝑚(1) = 𝐶𝑈𝐴𝑉,𝑚(𝑇) ∥ 𝐶𝑈𝐴𝑉,𝑚(𝑡 + 1) − 𝐶𝑈𝐴𝑉,𝑚(𝑡) ∥≤ 𝑉𝑚𝑎𝑥  ∥ 𝐶𝑈𝐴𝑉,𝑚∈𝑀(𝑡) − 𝐶𝑈𝐴𝑉,∀𝑗≠𝑚,∀𝑗∈𝑀(𝑡) ∥≥ 𝐷𝑚𝑎𝑥 0 ≤ 𝑝𝑛𝑀2𝑀 ≤ 𝑝𝑚𝑎𝑥𝑀𝑇𝐷   0 ≤ 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 ≤ 𝑝𝑚𝑎𝑥𝑀𝑇𝐷 , 0 ≤ 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 ≤ 𝑝𝑚𝑎𝑥𝑈𝐴𝑉   
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From Eq. (23), we found that the problem is a mixed integer nonlinear programming problem and owning to the reward of each 

UAV is only dependent on the current state and action that is satisfied by the properties of Markov chain [9]. Therefore, we 

formulate the problem as a Markov game, which is defined by a 4-elements tuple (UAV, S, {𝐴𝑚}𝑚∈𝑀, {𝑟𝑚}𝑚∈𝑀 ) that is described 

as below: 

1) 𝑈𝐴𝑉 ≜ {1, … , 𝑚, … , 𝑀} is a set of agents, which are the UAVs in the work. 

2) 𝑆 ≜ {𝑆1, … , 𝑆𝑚, … , 𝑆𝑀} is the global state spaces for the all UAVs and the 𝑆𝑚 denotes the state space of the m-th UAV. In 

this work, the state of each UAV 𝑆𝑚𝑘 = (𝑔𝑘𝑇𝑥_𝑅𝑥 , 𝑔𝑘𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 , 𝑔𝑘𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥 , 𝐼𝑘𝑀2𝑀 , 𝐼𝑘𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 , 𝐼𝑘𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥), where, 𝑘 is the number 

of time steps. 

3) {𝐴𝑚}𝑚∈𝑀 are the set of action spaces for the all UAVs and 𝐴𝑚 denotes the action space of the m-th UAV. It is obvious that 

the action should be the resource allocation strategy which including the transmission power  (𝑝𝑛𝑀2𝑀 , 𝑝𝑛𝑀𝑇𝐷_𝑇𝑥−𝑈𝐴𝑉 

and 𝑝𝑚𝑈𝐴𝑉−𝑀𝑇𝐷_𝑅𝑥), spectrum multiplexing factor (α𝑚,𝑛), transmission mode (𝛽𝑛) and relay selection (δ𝑚,𝑛). 

4) {𝑟𝑚}𝑚∈𝑀 are the immediate rewards for the UAVs with 𝑟𝑚 ≜ 𝑆 × 𝐴1 × … × 𝐴𝑀 → ℝ. For instance, the reward of m-th UAV 

will be obtained after all actions of the UAVs are performed. In this game, we assume that all UAVs are rational and selfish and 

thus all the UAVs start at an initial state 𝑠0 ∈ S and select their own actions 𝑎 = 𝑎1, … , 𝑎𝑀  non-cooperatively and simultaneously. 

At the meanwhile, they will receive the immediate rewards with the new observations. In this repeated procedure, all the UAVs 

try to find their optimal strategies to maximize own long-term rewards. We define the immediate reward function 𝑟𝑚(𝑡) of m-th 

UAV in t-th time slot as Eq. (24) and thus the long-term reward can be expressed by Eq. (25). 

𝑟𝑚(𝑡) = {∑(1 − 𝛽𝑛) ∙ 𝑇𝑅𝑛𝑀2𝑀(𝑡) + 𝛽𝑛 ∙𝑁
𝑛=1 𝑇𝑅𝑚,𝑛𝑀−𝑈−𝑀(𝑡) 0   (24) 

𝑅𝑚 = ∑ 𝛾𝑚∞
𝑡=0 𝑟𝑡𝑚(𝑠𝑡𝑚, 𝜋𝑚∗ (𝑠𝑡𝑚))        (25) 

Eq. (24) indicates that if all constrains in Eq. (23) are satisfied, m-th UAV obtains 𝑟𝑚(𝑡), otherwise, the reward is 0. In Eq. (25), 𝜋∗is the equilibrium of the game. Thus, we can define the Nash Q-function of the m-th UAV as Eq. (26). 𝑄𝑚∗ (𝑠, 𝑎𝑚, 𝑎−𝑚) = 𝑟𝑚(𝑠, 𝑎𝑚 , 𝑎−𝑚) + 𝑉𝑚(𝑠′, 𝜋1∗, … , 𝜋𝑚∗ )  (26) 

Where, 𝑎−𝑚 is the actions of all UAVs except m-th UAV. 𝑉𝑚(𝑠′, 𝜋1∗, … , 𝜋𝑚∗ ) is the total discounted reward that all the UAVs 

follow the equilibrium strategies. 

In this work, due to the fact that more historical information will beneficial to the UAVs to learn the environment quickly, we 

implement LSTM algorithm to derive the approximate value of 𝑄𝑚∗ (𝑠, 𝑎𝑚 , 𝑎−𝑚). In this process, all previous states will be firstly 

inputted into LSTM and then be stored and predicted to calculate and estimate the optimal strategy. After the approximation, the 

optimal policy can be presented by Eq. (27). 𝜋∗(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑚𝑚∈𝑀(𝑄𝑚∗ (𝑠, 𝑎𝑚, 𝑎−𝑚))     (27) 

Notably, in this letter, we propose to use Generative Adversarial LSTM Networks to solve the maximization problem. There are 

two reasons for this adoption: 1) LSTM is an effective Recurrent Neural Network (RNN) architecture for prediction and it enables 

to capture the temporal variation regularity of resource allocation due to UAVs mobility. Thus, as a type of RNN, LSTM algorithm 

can efficiently handle sequence problems and it is reasonable to use LSTM to learn the relationship between historical and future 

states; 2) GAN is normally used while the existing dataset is small for training and it enables to create a virtual environment in 

which a more comprehensive dataset can be generated by a real dataset with synthetic data.  

Specifically, in the proposed Generative Adversarial LSTM Networks framework, there are two inputs for the GANs: 1) a 

limited set of unlabelled real channel gain and interference from other M2M and M-U-M links and 2) synthetic data simulated 

based on the model in [10]. Therefore, we can acquire a large observation dataset to emulate the multi-UAVs-served M2M 

communications. Explicitly, how to guarantee the similarity of the generated dataset is significant. In order to ensure the output of 

the generator indistinguishable from discriminator, we assume that the generator’s neural network is trained as Eq. (28). 𝜔𝐺∗ = 𝑎𝑟𝑔 min𝜔𝐺 max𝜔𝐷 𝑓(𝜔𝐺 , 𝜔𝐷) = 𝑎𝑟𝑔 min𝜔𝐺 𝑓(𝜔𝐺 , 𝜔𝐷∗ (𝜔𝐺)) (28) 

s.t. 𝔼𝑠~𝑔𝑠𝑖𝑚[||𝐹(𝑠; 𝜔𝐺)||] < 𝜖𝑟 

Where, 𝜔𝐺  is the weight of the neural network in generator that used to generate synthetic data. 𝑠 is the input of generator and 

the real-like data 𝐹(𝑠; 𝜔𝐺) is the output of the generator. In our problem, 𝑠 is the synthetic state variables (channel gain and 

interference from other M2M and M-U-M links) that we generated to train our LSTM algorithm. 𝜔𝐷 is the weight of the neural 

network in discriminator. 𝜔𝐷∗  is the optimal weight for the discriminator. 𝑔𝑠𝑖𝑚 is the distribution of the synthetic data. From Eq. 

(28), we can guarantee the similarity of 𝑠 and 𝐹(𝑠; 𝜔𝐺).  

III. SIMULATION RESULTS AND ANALYSIS 

A. Network Setting 

We consider a multi-UAVs-served M2M communication scenario in an area of 1000m × 1000m × 40m. 𝑀 = 6 UAVs are 
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deployed flying over the area and 𝑁 = 40 M2M pairs are uniformly deployed in the area. In this simulation, the bandwidth of each 

subchannel 𝑊𝑒𝑎𝑐ℎ  is set to 75KHz. The constants a and b in the expression of presence probability of LoS are set to 9.61 and 0.16, 

respectively [11]. Moreover, the carrier frequency 𝑓 is set to 2GHz, 𝜂𝐿𝑜𝑆 = 1 and 𝜂𝑁𝐿𝑜𝑆 = 20. Tensorflow 1.13.1 with Python 

3.6.5 is used to build a deep learning network and the OpenAI-Gym library is utilized to build reinforcement learning environment. 

The LSTM model has 2 hidden layers and each layer has 64 neurons. The output layer is a fully connected layer with only one 

neuron whose activation function is Rectified Linear Unit (ReLU). The learning rate is set to 0.01 initially and decreases 

exponentially to 0.001. 

B. Results Analysis 

In the proposed framework, GANs is responsible for generating a comprehensive and effective dataset to train the LSTM 

networks. Consequently, we firstly evaluate the similarity of the generated data and the real data in the simulation. Fig. 1 compares 

the GANs-generated dataset and the real dataset. In this evaluation, we take the channel gain between MTD_Tx and MTD_Rx in 

M2M mode as an example. It is clear that the GANs-generated dataset has the similar distribution with the real dataset. 

Fig. 2 presents the trajectory of each UAV in 3D coordinate from the proposed Generative Adversarial LSTM Networks 

algorithm to get the maximum sum-rate of M2M communications in the formulated model. From the figure, we can see that the 

changing of UAVs’ location in each time slot makes a significant impact on the sum-rate of M2M communications since the 

proposed model also considers the location of each UAV to allocate resource for maximizing the sum-rate of M2M 

communications. 

 
Fig. 1. Comparison of GANs-generated channel gain and the real data 

 
Fig. 2. The trajectory of each UAV under the proposed framework 

Fig. 3 gives the comparison of the average sum-rate of M2M communications among three different algorithms. It is obvious 

that the proposed Generative Adversarial LSTM Networks algorithm has the best performance. However, it is worth noting that 

the conventional LSTM algorithm has the barely faster convergence speed as compared to Generative Adversarial LSTM Networks 

algorithm. This is due to the reason that the generator and discriminator in GANs need time to generate data. 
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Fig. 3. Comparison for average sum-rate with different algorithms 

IV. CONCLUSION 

In this letter, we introduce a resource allocation strategy for multi-UAVs-served M2M communications. We jointly consider the 
transmission power, transmission mode, frequency spectrum, relay selection and the trajectory of UAVs to formulate the problem 
as a Markov game. After that, a Generative Adversarial LSTM Networks framework is proposed to solve the problem of 
maximizing the sum-rate of M2M communications. In the proposed framework, LSTM is used to learn the relationship between 
historical and future states and the GANs is responsible for generating more comprehensive dataset for training the LSTM. Finally, 
simulation results validate the effectiveness of the proposed Generative Adversarial LSTM Networks framework. 
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