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Abstract

The CogNLP-Sheffield submissions to the

CMCL 2021 Shared Task examine the value

of a variety of cognitively and linguistically

inspired features for predicting eye tracking

patterns, as both standalone model inputs and

as supplements to contextual word embed-

dings (XLNet). Surprisingly, the smaller pre-

trained model (XLNet-base) outperforms the

larger (XLNet-large), and despite evidence

that multi-word expressions (MWEs) provide

cognitive processing advantages, MWE fea-

tures provide little benefit to either model.

1 Introduction and Motivation

Many researchers now agree that eye movements

during reading are not random (Rayner, 1998); as a

result, eye-tracking has been used to study a variety

of linguistic phenomena, such as language acqui-

sition (Blom and Unsworth, 2010) and language

comprehension (Tanenhaus, 2007). Readers do not

study every word in a sentence exactly once, so fol-

lowing patterns of fixations (pauses with the eyes

focused on a word for processing) and regressions

(returning to a previous word) provides a relatively

non-intrusive method for capturing subconscious

elements of subjects’ cognitive processes.

Recently, cognitive signals like eye-tracking data

have been put to use in a variety of NLP tasks,

such as POS-tagging (Barrett et al., 2016), de-

tecting multi-word expressions (Rohanian et al.,

2017) and regularising attention mechanisms (Bar-

rett et al., 2018): the majority of research utilis-

ing eye-tracking data has focused on its revealing

linguistic qualities of the reading material and/or

the cognitive processes involved in reading. The

CMCL 2021 Shared Task of Predicting Human

Reading Behaviour (Hollenstein et al., 2021) asks a

*Equal Contribution

slightly different question: given the reading mate-

rial, is it possible to predict eye-tracking behaviour?

Our ability to quantitatively describe linguistic

phenomena has greatly increased since the first

feature-based models of reading behaviour (i.e.

Carpenter and Just (1983)). Informed by these

traditional models, our first model tests ‘simple’

features that are informed by up-to-date expert lin-

guistic knowledge. In particular, we investigate

information about multi-word expressions (MWEs)

as eye-tracking information has been used to de-

tect MWEs in context (Rohanian et al., 2017;

Yaneva et al., 2017), and empirically MWEs appear

have processing advantages over non-formulaic lan-

guage (Siyanova-Chanturia et al., 2017).

Our second model is motivated by evidence that

Pre-trained Language Models (PLMs) outperform

feature based models in ways that do not corre-

late with identifiable cognitive processes (Sood

et al., 2020). Since many PLMs evolved from the

study of human cognitive processes (Vaswani et al.,

2017) but now perform in ways that do not cor-

relate with human cognition, we wished to inves-

tigate how merging cognitively inspired features

with PLMs may impact predictive behaviour. We

felt this was a particularly pertinent question given

that PLMs have been shown to contain information

about crucial features for predicting eye tracking

patterns such as parts of speech (Chrupała and Al-

ishahi, 2019; Tenney et al., 2019) and sentence

length (Jawahar et al., 2019).

We therefore had the goals of providing a com-

petitive Shared Task entry, and investigating the

following hypotheses: A) Does linguistic/cognitive

information that can be predicted by eye-tracking

features prove useful for predicting eye-tracking

features? B) Can adding cognitively inspired fea-

tures to a model based on PLMs improve perfor-

mance in predicting eye tracking features?
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2 Task Description

The CMCL 2021 Shared Task of Predicting Read-

ing Behaviour formulates predicting gaze features

from the linguistic information in their associated

sentences as a regression task. The data for the task

consists of 991 sentences (800 training, 191 test)

and their associated token-level gaze features from

the Zurich Cognitive Language Processing Corpora

(Hollenstein et al., 2018, 2020). For each word, the

following measures were averaged over the reading

behaviour of the participants: FFD (first fixation du-

ration, the length of the first fixation on the given

word); TRT (total reading time, the sum of the

lengths of all fixations on the given word); GPT

(go past time, the time taken from the first fixation

on the given word for the eyes to move to its right

in the sentence); nFix (number of fixations, the total

quantity of fixations on a word, regardless of fixa-

tion lengths) and fixProp (fixation proportion, the

proportion of participants that fixated the word at

least once). Solutions were evaluated using Mean

Absolute Error (MAE). For more details about the

Shared Task, see Hollenstein et al. (2021).

3 Related Work

Transformer architectures Bidirectional En-

coder Representations from Transformers (BERT)

(Devlin et al., 2019) is a Language Representation

model constructed from stacked Neural Network at-

tention layers and ‘massively’ pre-trained on large

Natural Language Corpora. In contrast with tradi-

tional language models, BERT is pre-trained in two

settings: a ‘cloze’ task where a randomly masked

word is to be predicted, and next sentence predic-

tion. BERT or derivative models have been used

to achieve state-of-the-art baselines on many NLP

tasks (Devlin et al., 2019; Yang et al., 2019). Anal-

ysis studies have shown that BERT learns complex,

task-appropriate, multi-stage pipelines for reason-

ing over natural language, although there is evi-

dence of model bias. XLNet (Yang et al., 2019)

is an autoregressive formulation of BERT which

trains on all possible permutations of contextual

words, and removes the assumption that predicted

tokens are independent of each other.

Similar studies To our knowledge, studies that

attempt to predict cognitive signals using language

models are fairly few and far between. Djokic et al.

(2020) successfully used non-Transformer word

embeddings to decode brain activity recorded dur-

ing literal and metaphorical sentence disambigua-

tion. Since RNNs may be considered more ‘cog-

nitively plausible’ than Transformer based mod-

els, Merkx and Frank (2020) compared how well

these two types of language models predict differ-

ent measures of human reading behaviour, finding

that the Transformer models more accurately pre-

dicted self-paced reading times and EEG signals,

but the RNNs were superior for predicting eye-

tracking measures.

In a slightly different task, Sood et al. (2020)

compared LSTM, CNN, and XLNet attention

weightings with human eye-tracking data on the

MovieQA task (Tapaswi et al., 2016), finding sig-

nificant evidence that LSTMs display similar pat-

terns to humans when performing well. XLNet

used a more accurate strategy for the task but was

less similar to human reading.

Though these studies may indicate that Trans-

former models are not the most suited to eye-

tracking prediction, they are still considered State

of the Art in creating broad semantic representa-

tions and general linguistic competence (Devlin

et al., 2019). As such, we hoped they would allow

us to investigate Carpenter and Just’s speculation

that the dominance of word length and frequency

for predicting eye-tracking behaviour may reduce

“as the metrics improve for describing higher-level

factors” like semantic meaning (1983, p. 290).

4 Experimental Design1

We pursued both feature engineering and deep

learning approaches to the task; though both meth-

ods performed well independently, there was little

improvement in predictive capability when com-

bining their features (see Table 1). As such, we

developed and submitted two models: Model 1

(Feature Rich) and Model 2 (XLNet). Additional

details about the feature combinations used in our

final models can be found in Appendices A and C.

4.1 Linguistic Features

Each word in the training vocabulary was encoded

as a one-hot vector. Since function words are more

likely to be fixated than open class words (Carpen-

ter and Just, 1983), we included POS information

generated by Spacy (Honnibal et al., 2020) (hon-

ouring the tokenisation in the training data). We

included a a binary indicator for whether a word

1For reproducibility purposes, our program code (includ-
ing details of hyperparameters) is available here: CogNLP-
Sheffield-CMCL-2021
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was the first or last in its sentence to incorporate

the knowledge that first and last fixations on a line

are 5-7 letter spaces from the two respective ends

(Rayner, 1998). We generated raw frequencies

(proportion per million words) and Zipf frequen-

cies (Van Heuven et al., 2014).

Finally, concreteness norms (a measure of how

‘abstract’ a given word is) were included as features

(mean, standard deviation, and the % of partici-

pants familiar enough with the word to accurately

judge its concreteness; Brysbaert et al. (2014)). We

specifically tested concreteness due to the unusu-

ally large coverage of the norms.

4.2 Reading Specific Features

Word length has been empirically demonstrated as

a very good predictor of gaze features in many stud-

ies (i.e. Rayner and McConkie (1976); Carpenter

and Just (1983). Duration of fixation is observed

to increase for words that exceed the mean saccade

length (7-9 letters), and probability of fixation is re-

duced for words shorter than half the mean saccade

length (Rayner and McConkie, 1976). Therefore,

as features we included both the raw word lengths,

and categorical variables representing word length

as a proportion of a mean saccade length.

Since readers may store information about ad-

jacent words (Rayner, 1975, 1998; Barrett, 2018),

we also experimented with supplying features from

previous and future words to each target word.

4.3 Type Summary Statistics from GECO

Following Barrett et al. (2016), we used the mono-

lingual data from the GECO corpus (Cop et al.,

2017) to generate type-level summary statistics for

each word. Specifically, we averaged the gaze fea-

tures across the 12 participants who completed the

reading task, and normalised these features to re-

flect the normalisation of the Shared Trask train-

ing data. We then averaged these values again at

the type (word) level. For words present in the

task training data but not the GECO data, we es-

timated the values using means for words in the

GECO data of a similar frequency (according to

the wordfreq).

4.4 Multi-word Expression Features

We generated an MWE lexicon and summary met-

rics using the Wikitext-103 corpus (Merity et al.,

2016) and mwetoolkit (Ramisch, 2012). We

chose Wikitext-103 since it provided a large vari-

ety of possible MWEs in a similar context to the

ZuCo reading material (Hollenstein et al., 2020).

We produced two indicator features for the pres-

ence of MWEs: a binary indicator, and a categor-

ical variable summarising the syntactic pattern of

the MWE, motivated by Yaneva et al.’s evidence

that MWEs of different syntactic patterns display

different eye-tracking characteristics (2017).

Following the method of Cordeiro et al. (2019),

we joined component words of MWEs in Wikitext-

103 using underscores (i.e. climate change be-

came climate_change) and then generated Skip-

gram word embeddings (Mikolov et al., 2013)

for all single words and MWEs identified in

Wikitext-103. Using the feat_comp function in

mwetoolkit (Ramisch, 2012), these MWE em-

beddings were used to compute compositionality

scores and weights (Cordeiro et al., 2019). 2

MWEs identified in the training data were as-

signed MWE embeddings and compositionality

information as features, and non-MWEs were as-

signed single word embeddings and zero values for

compositionality.

Figure 1: XLNET Feature Prediction Model

4.5 XLNet

In order to obtain Massively Pre-trained Language

Model features we used XLNet. We finetuned a

model that was pre-trained on BooksCorpus (Zhu

et al., 2015), English Wikipedia, Giga5 (Courtney

Napoles, Matthew R. Gormley, 2012), ClueWeb

2012-B (Callan et al., 2009), and Common Crawl

text (Crawl, 2019). For predictions, we took the

final hidden representation of the first sub-word

token encoding of each word. We concatenated

this feature with an integer representing the total

word length in characters to encourage the model

to explicitly attend to word length. We tested the ef-

fectiveness of sub-word aggregation but found this

2The score represents the degree to which the meaning of
the MWE can be worked out from the meanings of its con-
stituent words (i.e. ‘climate change’ has high compositionality,
‘cloud nine’ has low compositionality), and the weights esti-
mate the semantic contribution of each word in the expression.
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Figure 2: Feature Importance by Target for Model 1 (Left) and Model 2 (Right).

reduced the model’s accuracy by an average of 0.04

MAE, which we speculate is due loss of informa-

tion in the pooling operation whilst head sub-word

units already contain contextual information. We

then passed the concatenated sub-word and word-

length features to a 3-layer dense Neural Network

which was used to predict the Shared Task’s five

target features. This 3-layer multi-feature Network

was found to be optimal through experimentation.

For stability, we used the Huber loss objective,

which approximates L2 loss for small values and L1

loss for large values. We trained using the AdamW

optimiser and with learning rates and training du-

ration chosen through grid search across 3-fold

cross-validation, obtaining an optimal learning rate

of 0.00001 and 800 epochs.

4.6 Regressors

To form predictions for the Feature Rich model we

used a Random Forest Regressor implemented by

scikit-learn (Pedregosa et al., 2011) with

parameters [max_depth = 7, n_estimators =

100, max_features = None]. For the XLNet

model, we collected the XLNet final state embed-

dings (identical to those fed into the DNN in Figure

1) along with the features [word-len, CAT-pos,

zipf-frequency, Is-EOS, Is-SOS]. We then

trained scikit-learn’s ElasticNetCV for

5-fold validation with parameters [max_iter

= 10000, l1_ratio=[0.1,0.3,0.5,0.7,1],

cv=5].

5 Results

In Table 1 we present the MAE on validation splits

of the training data. This information informed our

choice of model submissions alongside a prefer-

ence for models using more cognitive features.

Model/Split 1 2 3 Mean

ElasticNet(XLNet + ALL Features ) 3.918 3.927 3.891 3.912

Feature Rich/Model 1 4.017 4.023 3.981 4.007

BERT-base-cased 4.030 4.045 3.977 4.012

ElasticNet(BERT-base-cased) 3.986 4.024 3.969 3.993

XLNet-base-cased 3.988 3.956 3.935 3.959

XLNet-base-cased (random init) 4.608 4.722 4.695 4.675

XLNet-large-cased 3.929 4.039 3.960 3.976

ElasticNet(XLNet-base-cased)/Model 2 3.921 3.924 3.896 3.914

Table 1: Model MAE on Development Splits

We submitted two sets of predictions from

Model 2 ( ElasticNet(XLNet-base-cased)) and one

set of predictions from Model 1 (Feature Rich).

Table 2 shows the ranking of Models 1 and 2 in
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Rank Team (model) MAE

1 LAST 3.8134

2 TALEP 3.8328

. . .

5
CogNLP@Sheffield
(XLNet/Model 2)

3.9565

. . .

7 MTL782_IITD 4.0639

-
CogNLP@Sheffield
(Feature Rich/Model 1)

4.0689

. . .

- MEAN BASELINE 7.3699

13 IIIT_DWD 9.7615

Table 2: Ranking on the CMCL Shared Task Test Data.

the overall task. Our overall standing is shown to

be 5th, with an MAE delta of 0.143 behind the

best model. Whilst a prediction which combined

Models 1 and 2 was slightly more accurate (see

Table 1), we regard this improvement as within

margin of error. We therefore focussed on Models

1 and 2 separately since this allowed for clearer

comparisons between the two approaches.

6 Analysis and Discussion

Our results (Table 1) support both our hypotheses

introduced in Section 1.

We did not anticipate that XLNet-base would

outperform XLNet-large, which had more pre-

training data and layers. This is possibly due to the

limited amount of training data specific to the task

for fine-tuning, resulting in the larger model under-

fitting. We are able to confirm that the knowledge

XLNet learns through massive pre-training crucial

to its performance in this arena - removal of this

knowledge through weight randomisation increases

MAE from 3.959 to 4.675. Hence we believe that

both structure and pre-training of XLNet-base con-

tribute to its success in this task.

We use normalised permutation feature impor-

tance (see Appendix B) to better understand the

value of different features and present it on a per-

target basis for each model in Figure 2.

The most interesting outcome of our experiments

was the fact that XLNet embeddings subsume infor-

mation contained across most features except word

length (especially in predicting nFix). It may be

that the use of word-pieces obfuscate word length

information thus requiring the explicit addition of

that information. While the usefulness of features

such as word length is consistent with the literature,

we were surprised by the relative unimportance

of MWE information given that many neurocogni-

tive studies have demonstrated differences in how

they are processed (Siyanova-Chanturia et al., 2011,

2017; Cacciari and Tabossi, 1988). An additional

surprise is that even though the Skip-gram embed-

dings provide semantic information about single

words as well as MWEs, the Feature Rich models

make little use of them. Many of the Feature Rich

models utilize the GECO features, which may be

because they provide approximate guidance about

the distributions of the various gaze features that

would be difficult to learn directly given the spar-

sity of the training data.

7 Conclusion and Future Work

This work describes our submissions to the 2021

CMCL Shared Task: we contributed a Feature Rich

model inspired by cognitive and linguistic informa-

tion, and model predominantly based on contextual

XLNet-base embeddings. We find that only a lim-

ited subset of the cognitive features (such as word

length) are helpful in the XLNet model. To our sur-

prise, neither XLNet-large embeddings nor MWE

features provide performance improvements. How-

ever, we believe this indicates a need for further

research into MWE representations as opposed to

suggesting that MWEs are unimportant for creating

effective cognitive models.
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A Features Used

We use the following features for each model. +N

and +P indicate that associated data for the two

next and two preceding words were included, re-

spectively.

A.1 Model One Features

[CAT-pos+N+P, CAT-word+N+P,

Conc-M+N+P, Conc-SD+N+P,

Is-EOS+N+P, Is-SOS+N+P,

Percent-Known+N+P,

comp-score+N+P, comp-weights+N+P,

geco-FFD-mean+N+P,

geco-FFD-std+N+P,

geco-GPT-median+N+P,

geco-GPT-std+N+P,

geco-TRT-mean+N+P,

geco-fixProp-mean+N+P,

geco-fixProp-std+N+P,

geco-nFix-median+N+P,

geco-nFix-std+N+P,

is-mwe+N+P, is-strange+N+P,

mwe-cat+N+P, saccade-cat+N+P,

saccade-cat-binary+N+P,

w2v-embedding+N+P,

word-frequency+N+P, word-len+N+P,

zipf-frequency+N+P]

A.2 Model Two Features

[XLNET-embed, CAT-pos, Is-EOS,

Is-SOS, word-len, zipf-frequency]

B Permutation Feature Importance

We use permutation feature importance (Breiman,

2001) to better understand the impact of differ-

ent features on each of the different models. This

method measures the base error of the model

against the error when one feature is randomly per-

muted, allowing for quantification of importance.

That is for feature i:

FIi = Ebase − Epermi

We note that permutation methods have a ten-

dency of attributing higher importance to corre-

lated features (Nicodemus et al., 2010), whilst

still being informative. Alternatives include per-

feature retraining (Lei et al., 2016; Mentch and

Hooker, 2016) which was computationally in-

tractable within the timeframe of the CMCL task

duration.
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C Description of features

Feature (generated at the

word-level unless specified)
Description Data and tools used

CAT_word One hot word encoding

CAT_pos Categorical encoding of Part-of-Speech tag Honnibal et al. (2020)

Is_EOS Binary variable indicating if word is the last in its sentence

Is_SOS Binary variable indicating if word is the first in its sentence

Conc_M

Mean concreteness norm assigned to the lemmatized form of the word.

Words not covered by the dataset of norms were given a’neutral’ score

of 3 (concreteness rated on a Likert scale from 1-5)

Brysbaert et al. (2014)

Conc_SD

Standard deviation of concreteness values assigned to lemmatized form

of word. Words not covered by the dataset of norms were assigned the

mean of Conc_SD for all other words

Brysbaert et al. (2014)

Percent_Known

Proportion of participants asked to estimate concreteness norms that

were familiar enough with the word to judge its concreteness. Words

not covered by the dataset of norms were assigned a value of 1

Brysbaert et al. (2014)

word_len Number of characters in the word

saccade_cat
Categorical representation of number of characters in relation to average

saccade length (categories were 1-3, 4-7, 8-10 and 11+ letters)

saccade _cat_binary
Binary categorical representation of number of characters in relation to

average saccade length (categories were 1-3 letters and 4+ letters)

word_frequency Frequency of word per million words Speer et al. (2018)

zipf_frequency Frequency of word per million words on the zipf scale Speer et al. (2018)

NEXT_n_FEAT

Attaches FEAT for the next n words to the current word

(i.e. NEXT_1_Is_EOS attaches Is_EOS for the next word to the

current word)

PREV_n_FEAT Attaches FEAT for the previous n words to the current word

geco_FEAT_mean

Mean average of all measurements of FEAT for this word in GECO. If

the word was not present in GECO, the mean of means for words with

comparable frequency in natural language was used

Cop et al. (2017)

geco_FEAT_median

Median average of all measurements of FEAT for this word GECO. If

the word was not present in GECO, the mean of medians for words with

comparable frequency was used

Cop et al. (2017)

geco_FEAT_std

Standard deviation of all measurements of FEAT for this word in GECO.

If the word was not present in GECO, mean of standard deviations for

words with comparable frequency was used

Cop et al. (2017)

is_mwe Binary indicator showing if word is part of an MWE in this context Ramisch (2012)

mwe_cat

Categorical representation of whether the word is part of an MWE in this

context, where categories are based on syntactic patterns (i.e. adjective

noun compound, verb + preposition phrase)

Ramisch (2012)

Loper and Bird (2002)

w2v_embedding

300 dimensional Skip-gram embedding for the word or MWE. If the

word is part of an MWE in this context, the Skip-gram embedding trained

for the MWE is used instead. Embeddings are trained using the

Wikitext-103 corpus, where multiword expressions are reformatted to be

concatenated using underscores (i.e. multiword_expression)

Ramisch (2012)

Mikolov et al. (2013)

Rehurek and Sojka (2011)

Merity et al. (2016)

comp_score
Compositionality score for the MWE calculated using mwetoolkit.

Words not part of MWEs are assigned a value of 0

Ramisch (2012)

Cordeiro et al. (2019)

comp_weights

Weights used for each word to calculate the comp_score for the MWE

(certain words may contribute more semantic meaning to an MWE than

others). Words not part of MWEs are assigned a value of 0

Ramisch (2012)

Cordeiro et al. (2019)

is_strange
Binary indicator of non-standard formatting or non-alphanumeric

characters in the current word (generated using regular expressions)


