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Abstract Vertebrate macrophages are a highly heterogeneous cell population, but while

Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently

these cells were considered to represent a homogeneous population. Here, we present our

identification of enhancer elements labelling plasmatocyte subpopulations, which vary in

abundance across development. These subpopulations exhibit functional differences compared to

the overall population, including more potent injury responses and differential localisation and

dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating

plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves

wound responses, causing the overall population to resemble more closely the subpopulation

marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased

levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this

demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in

subpopulation specification and function and facilitates the use of Drosophila to study macrophage

heterogeneity in vivo.

Introduction
Macrophages are key innate immune cells responsible for clearing infections, debris, and apoptotic

cells, the promotion of wound healing and are necessary for normal development (Wynn et al.,

2013). However, their aberrant behaviour can also cause or exacerbate numerous human disease

states, including cancer, atherosclerosis, and neurodegeneration (Wynn et al., 2013). Macrophages

are a highly heterogeneous population of cells, which enables them to carry out their wide variety of

roles, and this heterogeneity arises from diverse processes. These processes include the dissemina-

tion and maintenance of tissue resident populations (Gordon and Plüddemann, 2017) and the abil-

ity to adopt a spectrum of different activation states (termed macrophage polarisation), which can

range from pro-inflammatory (historically termed as M1-like) to anti-inflammatory, pro-healing (M2-

like) macrophage activation states (Martinez and Gordon, 2014; Murray, 2017).

Macrophage heterogeneity is not limited to mammals, appearing conserved across vertebrate lin-

eages – both in terms of polarisation and the presence of tissue resident populations. For example,

evidence suggests the existence of pro-inflammatory macrophage populations in zebrafish (Nguyen-

Chi et al., 2015), with polarisation also a well-defined phenomenon in other fish species

(Wiegertjes et al., 2016). Zebrafish are also known to contain tissue resident macrophages such as

myeloid-derived microglia (Ferrero et al., 2018; Xu et al., 2016). Vertebrate macrophages interact

with and can become polarised in response to signals produced by Th1 and Th2 cells, leading to

acquisition of M1-like and M2-like activation states, respectively (Murray, 2017), while B- and T-cell-

based adaptive immunity is thought to have evolved in teleost fish (Buchmann, 2014). Therefore,

the absence of an adaptive immune system may restrict the diversity of macrophage populations in
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more simple organisms that possess only an innate immune system. However, the fact that macro-

phage markers can be highly divergent, even when comparing mammals as closely related as mice

and humans (Murray and Wynn, 2011), has hampered investigation of whether this is indeed the

case, indicating a need for alternative markers and approaches.

Macrophage heterogeneity has been extensively studied in mammalian systems and, although

this has provided a good understanding of how macrophages determine their polarisation state, this

has also identified considerable complexity with many activation states possible (Murray et al.,

2014). Additional complexity arises with both M1-like and M2-like macrophages found at the same

sites of pathology, for example within atherosclerotic plaques (Colin et al., 2014). Furthermore, the

cytokine profiles that can be induced in vitro depend on the exact activation methods used experi-

mentally and these do not necessarily reflect polarisation states in vivo (Vogel et al., 2014), while

other macrophage subpopulations may be missed by in vitro approaches. Given these intricacies, it

is clear that we need to better understand the fundamental components and pathways responsible

for the specification of different macrophage subtypes, particularly in vivo. Recently, the ‘macro-

phage-first’ hypothesis has been proposed, re-emphasising the idea that acute signals can polarise

macrophages ahead of the involvement of T cells (Wiegertjes et al., 2016). Consequently, organ-

isms without a fully developed adaptive immune system represent intriguing models in which to

examine this idea and better understand macrophage heterogeneity in vivo.

Drosophila melanogaster has been extensively utilised to study innate immunity (Buchon et al.,

2014), but lacks an adaptive immune system. Fruit fly blood is specified in two waves – an embryonic

wave in the head mesoderm and in the larval lymph gland, with those cells released at the end of lar-

val development (Gold and Brückner, 2015). Blood cell proliferation has also been shown to occur

in haematopoietic pockets attached to the larval body wall (Leitão and Sucena, 2015;

Makhijani et al., 2011). These waves of haematopoiesis generate three types of blood cell (also

referred to as hemocytes): plasmatocytes, crystal cells, and lamellocytes. Of these, plasmatocytes

are functionally equivalent to vertebrate macrophages (Evans et al., 2003; Wood and Jacinto,

2007), with the capacity to phagocytose apoptotic cells and pathogens, secrete extracellular matrix,

disperse during development and migrate to sites of injury (Ratheesh et al., 2015). Although Dro-

sophila blood lineages are considerably less complex than their vertebrate equivalents, they are

specified via transcription factors related to those used during vertebrate myelopoiesis, including

GATA and Runx-related proteins (Evans et al., 2003). Furthermore, plasmatocytes utilise

evolutionarily conserved genes in common with vertebrate innate immune cells to migrate (e.g.

SCAR/WAVE, integrins, and Rho GTPases [Comber et al., 2013; Evans et al., 2013; Paladi and

Tepass, 2004; Siekhaus et al., 2010; Stramer et al., 2005]) and phagocytose (e.g. the CED-1 family

member Draper [Manaka et al., 2004] and CD36-related receptor Croquemort [Franc et al., 1996]).

Given these striking levels of functional and molecular conservation, Drosophila has been extensively

used for research into macrophage behaviour in vivo with its genetic tractability and in vivo imaging

capabilities facilitating elucidation of different macrophage behaviours conserved through evolution

(Ratheesh et al., 2015; Wood and Jacinto, 2007). However, despite these evolutionarily-conserved

commonalities, the plasmatocyte lineage has, until very recently, been considered a homogeneous

cell population. Hints that Drosophila plasmatocytes may exhibit heterogeneity exist in the literature

with variation in marker expression observed in larval hemocytes (Anderl et al., 2016; Kurucz et al.,

2007a; Shin et al., 2020) and non-uniform expression of TGF-b homologues upon injury or infection

in adults (Clark et al., 2011). Recent single-cell RNA-sequencing (scRNAseq) experiments performed

on larval hemocytes have also suggested the presence of multiple clusters of cells, which were inter-

preted as representing either different stages of differentiation or functional groupings

(Cattenoz et al., 2020; Tattikota et al., 2019). However, the in vivo identification of subtypes and

insights into the roles and specification mechanisms of potential macrophage subtypes in Drosophila

has not yet been described.

Here, we describe the first identification and characterisation of molecularly and

functionally distinct plasmatocyte subpopulations within Drosophila melanogaster. Drawing on a col-

lection of reporter lines (https://enhancers.starklab.org/; Kvon et al., 2014), we have identified regu-

latory elements that define novel plasmatocyte subpopulations in vivo. We show that these

molecularly distinct subpopulations exhibit functional differences compared to the overall plasmato-

cyte population and that the proportion of cells within these subpopulations can be modulated by

external stimuli such as increased levels of apoptosis. Furthermore, we show that misexpression of a
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gene associated with a subpopulation-specific enhancer element is able to modulate plasmatocyte

behaviour in vivo, thereby identifying novel effector genes of plasmatocyte subpopulation function.

Together our findings reveal that macrophage heterogeneity is a fundamental and

evolutionarily conserved characteristic of innate immunity that pre-dates the development of the

adaptive immune system. This significantly extends the utility of an already powerful genetic model

system and provides further avenues to understand regulation of innate immunity and macrophage

heterogeneity.

Results

Drosophila embryonic plasmatocytes do not behave as a uniform
population of cells
The macrophage lineage of hemocytes (plasmatocytes) has historically been considered a homoge-

neous population of cells. However, careful analysis of plasmatocyte behaviour in vivo suggested to

us that this lineage might not be functionally uniform. For instance, imaging the inflammatory

responses of plasmatocytes to epithelial wounds, we find that some cells close to injury sites rapidly

respond by migrating to the wound, while other neighbouring cells fail to respond (Figure 1a;

Video 1). We also find that plasmatocytes exhibit variation in their expression of well-characterised

plasmatocyte markers such as crq-GAL4 (Figure 1b–b’; Franc et al., 1996; Stramer et al., 2005)

and display a broad diversity in their migration speeds within the embryo (random migration at

stage 15; Figure 1c–d). These professional phagocytes also display differences in their capacities to

phagocytose apoptotic cells with some cells engulfing many apoptotic particles, whereas others

engulf very few, if any (Figure 1e). Furthermore, phagocytosis of microorganisms by larval hemo-

cytes also varies significantly from cell-to-cell in vitro (Figure 1f). These differences within the plas-

matocyte lineage led us to hypothesise that this cell population is more heterogeneous than

previously appreciated.

Discrete subpopulations of plasmatocytes are present in the
developing Drosophila embryo
Given the diversity in plasmatocyte behaviour observed (Figure 1), we hypothesised that macro-

phage heterogeneity represents an evolutionarily conserved feature of innate immunity, which there-

fore originally evolved in the absence of an adaptive immune system. To address this and look for

molecular differences between plasmatocytes, we examined transgenic enhancer reporter lines (VT-

GAL4 lines) produced as part of a large-scale tilling array screen (Kvon et al., 2014) that had been

annotated as labelling hemocytes (http://enhancers.starklab.org/). Based on examination of the pub-

lished VT-GAL4 expression patterns, we identified VT-GAL4 lines that appeared to label reduced

numbers of plasmatocytes in the embryo, reasoning that plasmatocyte subpopulations could be

molecularly identified on the basis of differences in reporter expression. While a number of the

enhancers appeared to label all plasmatocytes (e.g. VT41692-GAL4), we identified several that

labelled discrete numbers of plasmatocytes (Figure 2a). We next confirmed that the cells labelled by

these VT-GAL4 lines were plasmatocytes by using these constructs to drive expression of UAS-tdTo-

mato in the background of a GAL4-independent, pan-hemocyte marker (srpHemo-GMA – serpent

enhancer region driving expression of a GFP-tagged actin-binding domain of Moesin; Figure 2b–d).

As initially predicted based on their morphology and position during embryogenesis, each of the

VT-GAL4 lines marking potential subpopulations did indeed express in the hemocyte lineage

(Figure 2e). These subpopulation cells were identified as plasmatocytes based upon their morphol-

ogy, the absence of lamellocytes in embryos and the non-migratory nature of crystal cells

(Wood and Jacinto, 2007) and could be observed to follow both the dorsal and ventral migration

routes (Ratheesh et al., 2015) used by plasmatocytes during their developmental dispersal

(Figure 2e). In order to quantify the proportion of cells labelled by each VT-GAL4 line, we counted

the number of cells labelled on the ventral midline of the developing stage 15 embryo, using VT-

GAL4 lines to drive expression from UAS-GFP. This verified reproducible and consistent labelling of

discrete subsets of plasmatocytes (Figure 2f–h), suggesting that these cells represent stable subpo-

pulations within this macrophage lineage.
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Figure 1. Heterogeneity of Drosophila embryonic plasmatocyte responses. (a) GFP (green) and nuclear red stinger

(magenta) labelled plasmatocytes on the ventral side of a stage 15 embryo at 0 min (a) and 60 min post-wounding

(a’); plasmatocyte tracks at each timepoint are overlaid (a–a’) or shown in full (a’’). Examples of plasmatocytes

failing to respond to the wound (w) indicated via asterisks; square bracket (a) indicates neighbouring

plasmatocytes, one of which responds to wounding, while the other fails to respond (see Video 1). (b) Imaging of

plasmatocytes labelled using crq-GAL4 to drive expression of GFP reveals a wide range in levels of crq promoter

activity within plasmatocytes at stage 15; (b’) Close-up of cells marked by an asterisk in (b). (c) Overlay of

plasmatocyte tracks of cells shown in (b) showing significant variation in their random migration speeds. (d)

Scatterplot of plasmatocyte random migration speeds (taken from 23 embryos); line and error bars show mean

and standard deviation, respectively. (e) Imaging the ventral midline at stage 15 shows a wide range in the amount

of apoptotic cell clearance (green in merge; labelled via the caspase-sensitive reporter GC3ai) undertaken by

plasmatocytes (magenta in merge, labelled via srpHemo-3x-mCherry reporter); (e’–e’’) mCherry and GC3ai

channels; (e’’’) close-ups of cells devoid/full of engulfed GC3ai particles (indicated by asterisks in (e)). (f) Larval

hemocytes (green in merge, labelled via Hml(D)-GAL4-driven expression of GFP) exhibit a range in their capacities

to engulf calcofluor-labelled yeast (blue in merge) in vitro; (f’–f’’) GFP and yeast channels; white lines indicate cell

edges in (f’’); asterisks in (f’’) indicate cells that have failed to phagocytose yeast; white arrows in (f’’) indicate cells

that have phagocytosed multiple yeast particles; magenta arrow in (f’’) indicates close-up of region indicated in

(f’’’). Scale bars represent 20 mm (a–a’’, b, c, e–e’’), 10 mm (e’’’, f–f’’), or 5 mm (b’, f’’’). See Supplementary file 1

for full list of genotypes.

The online version of this article includes the following source data for figure 1:

Source data 1. Numerical data used to plot panel (d) of Figure 1.
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To characterise these subpopulations further,

their overlap with the known plasmatocyte

markers Eater, Croquemort, and Simu was inves-

tigated using novel GAL4-independent VT-RFP

reporters, which we generated using the same

enhancer sequences and insertion sites originally

characterised by the Stark lab (Kvon et al.,

2014). While we were unable to detect embry-

onic expression of eater at this stage of develop-

ment (Figure 2—figure supplement 1), reporters

for crq and simu (crq-GAL4,UAS-GFP and simu-

cytGFP), which also encode phagocytic receptors

(Franc et al., 1996; Kurant et al., 2008), clearly

labelled embryonic plasmatocytes (Figure 2—fig-

ure supplement 2). simu-cytGFP-labelled plas-

matocytes with little cell-to-cell variation

(Figure 2—figure supplement 2a), whereas crq-

GAL4,UAS-GFP displayed considerable hetero-

geneity (Figure 1b–b’; Figure 2—figure supple-

ment 2b–c). However, there was little correlation

of simu or crq marker expression with subpopula-

tion cells, since all cells expressed similar levels of

simu, while both crq and VT-RFP expression

appeared to vary independently of each other

(Figure 2—figure supplement 2a–b). Taken

together, we were able to detect discrete subpo-

pulations of plasmatocytes in the embryo, but

these subpopulations showed no clear segrega-

tion with existing plasmatocyte markers.

Subpopulations of Drosophila
plasmatocytes vary across
development: subpopulation

dynamics in larvae and white pre-pupae
Having identified subpopulations of plasmatocytes in the embryo, we then examined other stages of

development to see whether their presence was maintained or modulated over time. In order to

exclude potential expression in non-hemocyte cells (e.g. the non-plasmatocyte cells apparent in

Figure 2e), we labelled subpopulation cells specifically using a split GAL4 approach (Pfeiffer et al.,

2010), employing the serpent enhancer (a well-characterised hemocyte marker; Lebestky et al.,

2000; Rehorn et al., 1996) and VT enhancers to express the transcriptional activation domain (AD)

and DNA binding domains (DBD) of GAL4 independently. Only when co-expressed in the same cell

do the AD and DBD heterodimerise and allow expression of UAS transgenes (Figure 3—figure sup-

plement 1a). Characterising the split GAL4 lines in the embryo via expression of the EGFP-derivative

Stinger (Barolo et al., 2000) confirmed that this split GAL4 approach labels discrete subpopulations

of plasmatocytes within the embryo, although with a higher proportion of cells labelled compared to

the original VT-GAL4 lines (Figure 3—figure supplement 1b–d) – a difference likely due to a combi-

nation of amplification via the split GAL4 system and enhanced detectability of Stinger, which accu-

mulates in the nucleus due to its nuclear localisation signal. Similar trends in the proportions of

plasmatocytes labelled in a variety of locations across the embryo were observed for each subpopu-

lation; for example, VT32897-labelled cells were the least frequently observed in the lateral head

region and on the dorsal and ventral sides of the embryo (Figure 3—figure supplement 1b–d). As

per Figure 2e, this suggests there are no clear biases between the dispersal routes undertaken by

subpopulation cells.

While serpent expression decreases in hemocytes during larval stages, we found that srpHemo-

AD;srpHemo-DBD in concert with UAS-stinger was sufficient to label large numbers of cells in both

L1 and L2 larvae (Figure 3a–b), consistent with previous publications (Gyoergy et al., 2018).

Video 1. Plasmatocytes in similar positions within the

embryo do not respond equally to inflammatory

stimuli. GFP (green) and red stinger (magenta) labelled

plasmatocytes responding to an epithelial wound at

stage 15. Tracks of cell movements are shown via dots

and lines. Magenta circles show cells responding to the

wound; blue circles indicate cells that are the same

distance from the wound but fail to respond to the

wound. Movie corresponds to stills shown in Figure 1a

and lasts for 60 min post-wounding. Scale bar

represents 20 mm. See Supplementary file 1 genotype

in full.

https://elifesciences.org/articles/58686#video1
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Figure 2. Identification of enhancers labelling discrete plasmatocyte subpopulations in Drosophila. (a) Lateral views of stage 13/14 embryos with in situ

hybridisation performed for GAL4 for indicated VT-GAL4 lines (anterior is left). Taken with permission from http://enhancers.starklab.org/ (n.b. these

images are not covered by the CC-BY 4.0 licence and further reproduction of this panel would need permission from the copyright holder); VT41692-

GAL4 represents an example in which the majority of plasmatocytes are labelled. (b) Schematic diagram showing screening approach to identify

Figure 2 continued on next page
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Following hatching of embryos, we cannot use cell morphology to discriminate between plasmato-

cytes and other hemocyte lineages (crystal cells and lamellocytes) and therefore refer to subpopula-

tion cells as hemocytes for post-embryonic stages of development. Quantification of the numbers of

subpopulation cells that could be detected using the split GAL4 system to drive expression from

UAS-stinger showed that roughly 50% of serpent-positive hemocytes were labelled in L1 larvae for

each VT subpopulation (Figure 3a–c). We cannot exclude the possibility that some of the cells

labelled in L1 larvae are fat body cells as serpent is known to be expressed in the fat body

(Rehorn et al., 1996). Therefore, it is possible that greater than 50% of hemocytes are labelled at

this stage; nonetheless, a significant proportion of subpopulation cells are not labelled via these split

GAL4 reporters in L1 larvae (Figure 3a–c). At this stage of development, most hemocytes are found

in sessile patches attached to the body wall (Lanot et al., 2001; Makhijani et al., 2011) – this is also

the case for the majority of subpopulation cells, since live imaging shows little movement relative to

other cells during larval crawling, although some circulating cells could be observed (Video 2).

In contrast to the significant numbers of cells present in L1 and L2 larvae, imaging of L3 larvae

containing split srpHemo-AD and VT-DBD reporters (abbreviated to VTn) revealed that fewer sub-

population cells could be detected at this stage (Figure 4a–f). This decrease in subpopulation cells

does not seem to be linked to lower levels of serpent expression because blood cells are robustly

labelled in positive control L3 larvae (srpHemo-AD in combination with srpHemo-DBD; Figure 4b),

suggesting that serpent expression is not limiting our ability to detect subpopulation cells. More-

over, a reduction in subpopulation cells can also be seen when using the original VT-GAL4 lines to

drive stinger expression at this stage (i.e. independent of a reliance on serpent expression for label-

ling; Figure 4—figure supplement 1a).

Using this approach, VT32897 and VT17559 labelled the most cells (Figure 4c–d), with only the

occasional cell present in VT57089 larvae (Figure 4e) and cells largely absent from VT62766 larvae

(Figure 4f). Labelled cells were also present in the head region, along the dorsal vessel (the fly heart)

and between the salivary glands (which themselves exhibit non-specific labelling) in VT32897 larvae.

The VT32897 head region cells are likely to represent sessile hemocytes, whereas cells at the remain-

ing two sites probably correspond to serpent-positive nephrocytes and garland cells (Brodu et al.,

1999; Das et al., 2008), respectively (Figure 4d). VT57089 shows additional staining in the head

region (potentially the Bolwig organ; Figure 4e) and, as per the dorsal vessel-associated cells in

VT32897 (Figure 4d), hemocytes can also be found in these regions when the total hemocyte popu-

lation is labelled using srpHemo-AD and srpHemo-DBD in positive controls (Figure 4b; Video 3).

Furthermore, these larval distributions closely resemble patterns observed using VT-GAL4 reporters,

albeit with a loss of non srp-dependent labelling due to our split GAL4 approach (data not shown).

Figure 2 continued

subpopulations of plasmatocytes: VT-GAL4-positive plasmatocytes will express both GMA (green) and tdTomato (magenta) – white cells in the

schematic. (c–d) Images showing the ventral midline at stage 14 of negative control (no driver; w;UAS-tdTom/+;srpHemo-GMA) and positive control (w;

srpHemo-GAL4/UAS-tdTom;srpHemo-GMA) embryos. (e) Images showing embryos containing VT-GAL4-labelled cells (via UAS-tdTomato, shown in

magenta) at stage 13 (first row, ventral views), stage 14 (second row, dorsal views), and stage 15 (third row, ventral views). The entire hemocyte

population is labelled via srpHemo-GMA (green); arrows indicate examples of VT-GAL4-positive plasmatocytes; asterisks indicate VT-GAL4-positive

cells that are not labelled by srpHemo-GMA. N.b. VT62766-GAL4 image contrast enhanced to different parameters compared to other images owing

to the very bright labelling of amnioserosal cells (cells on dorsal side of embryo destined to be removed during dorsal closure; labelled with an asterisk)

in the stage 14 image. (f) Labelling of smaller numbers of plasmatocytes on the ventral midline at stage 15 using VT-GAL4 lines indicated and UAS-GFP

(green); boxed regions show close-ups of VT-GAL4-positive plasmatocytes (f’). (g) Ventral view of positive control embryo (w;srpHemo-GAL4,UAS-GFP)

and example plasmatocyte (g’) at stage 15. (h) Scatterplot showing numbers plasmatocytes labelled using VT-GAL4 lines to drive expression from UAS-

GFP on the ventral midline at stage 15; lines and error bars represent mean and standard deviation, respectively. p-Values calculated via one-way

ANOVA with a Dunnett’s multiple comparison post-test (all compared to srpHemo-GAL4 control); n = 9 embryos per genotype. Scale bars represent

150 mm (a) or 10 mm (c–g). See Supplementary file 1 for full list of genotypes; overlap of VT enhancer expression with known plasmatocyte markers can

be found in Figure 2—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data used to plot panel (h) of Figure 2.

Figure supplement 1. Subpopulation cells do not express eater in the embryo.

Figure supplement 2. crq and simu do not specifically mark subpopulation cells in the developing embryo.

Figure supplement 2—source data 1. Numerical data used to plot panel (c) of Figure 2—figure supplement 2.
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Live imaging of L3 larvae confirmed that hemocytes were predominantly attached to the body wall,

but that small numbers of cells could be detected in circulation (Video 4).

To quantify the proportion of hemocytes that were labelled in L3 larvae and address any bias in

localisation, L3 larvae were bled and then the carcasses scraped (as described in Petraki et al.,

2015) to compare numbers of cells in circulation with those more tightly adhered to tissue, respec-

tively. This approach confirmed the low numbers of cells observed in L3 larval images and revealed

no bias in subpopulation localisation, with similar proportions present in circulation and adhered to

tissue for each subpopulation (Figure 4g). Quantification of subpopulation localisation along the L3

body axis suggested that VT57089 and VT62766 cells exhibit a bias toward the posterior of the lar-

vae compared to the total population (Figure 4h–h’).

Figure 3. Plasmatocyte subpopulations are present in large numbers in L1 and L2 larvae. (a–b) Images of L1 (a) and L2 larvae (b) with cells labelled

using the split GAL4 system (srpHemo-AD in combination with srpHemo-DBD or the VT-DBD transgene indicated) to drive expression from UAS-

stinger. Scale bars represent 150 mm; white lines show edge of the larva; images contrast enhanced to 0.3% saturation. (c) Scatterplot showing numbers

of Stinger-positive cells labelled via the split GAL4 system per larva; numbers of cells were quantified from flattened L1 larvae. w1118;UAS-stinger/+

larvae were used as negative controls; all conditions are significantly different compared to the positive control (w1118;srpHemo-AD/UAS-stinger;

srpHemo-DBD/+) via a one-way ANOVA with a Dunnett’s multiple comparison post-test: srp vs w, p<0.0001; srp vs VT17559 p<0.0001; srp vs VT32897,

p=0.0013; srp vs VT57089, p=0.0029; srp vs VT62766, p=0.0047; n = 5 for w control, srp, VT17559, VT32897, and VT57089 and n = 6 for VT62766. See

Supplementary file 1 for full list of genotypes; a schematic and validation of this split GAL4 approach in the embryo can be found in Figure 3—figure

supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Numerical data used to plot panel (c) of Figure 3.

Figure supplement 1. Using a split GAL4 approach to label plasmatocyte subpopulations.

Figure supplement 1—source data 1. Numerical data used to plot panel (e) of Figure 3—figure supplement 1.

Figure supplement 1—source data 2. Numerical data used to plot panel (f) of Figure 3—figure supplement 1.

Figure supplement 1—source data 3. Numerical data used to plot panel (g) of Figure 3—figure supplement 1.
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The striking decrease in proportion of sub-

population cells that can be detected in L3 lar-

vae compared to earlier stages suggests

reprogramming of cells leading to a loss of

enhancer activity. To test this hypothesis, split

GAL4 lines were used in lineage tracing experi-

ments via G-TRACE (Evans et al., 2009). In this

approach, current expression of reporters is

marked via Red Stinger and also leads to the

permanent expression of Stinger via the activity

of a co-expressed FLP recombinase. As such, the

expression of both fluorophores indicates cur-

rent split GAL4 activity, while the expression of

Stinger alone indicates historical activity in cells

where expression has since ceased (Figure 4—

figure supplement 1b). Analysing the total com-

plement of current and historic subpopulation

cells in L3 larvae via G-TRACE revealed that a

significant proportion of subpopulation cells

were positive for historical expression only

(Stinger expression alone; Figure 4—figure sup-

plement 1c). This confirms that subpopulation

cells from earlier timepoints survive in vivo but

change their transcriptional profile – a finding

consistent with reprogramming events rather

than a loss of cells themselves.

Imaging of white pre-pupae (WPP), the stage

that marks the beginning of pupal development

and metamorphosis, showed very similar pat-

terns across the split GAL4 VT enhancer lines (Figure 5a–f), with a further reduction in the numbers

of cells labelled. It was possible to observe the occasional cell moving in circulation within WPP,

strongly suggesting these cells are hemocytes (Video 5 and Video 6). Live imaging of VT32897 WPP

also confirmed association of cells with the pumping dorsal vessel (Figure 5d; Video 7). Significantly,

this data indicates that the presence of subpopulations within embryos is not simply a consequence

of slow accumulation of fluorescent proteins by weak drivers, since these enhancer-based reporters

do not label an ever-increasing number of cells as development proceeds. Overall, the numbers of

hemocytes within subpopulations that can be detected decreases over larval and early pupal stages,

suggesting that plasmatocyte subpopulations are developmentally regulated and exhibit plasticity.

This reprogramming could reflect specific and changing requirements for specialised plasmatocyte

subpopulations across the life cycle, for example, an association with processes required for organo-

genesis (Charroux and Royet, 2009; Defaye et al., 2009; Regan et al., 2013). The differential local-

isation of some subpopulation cells also indicates the potential that molecularly and

functionally different macrophage populations are present at specific tissues in the fly.

Subpopulation cells return in large numbers during pupal development
Since subpopulation cells appear associated with stages of development when organogenesis and

tissue remodelling occur, we hypothesised that some hemocytes may be reprogrammed via changes

in expression leading to reactivation of the enhancers that mark these subpopulations. This would

enable subpopulations to return during metamorphosis. Imaging pupae at various times after pupar-

ium formation (APF) revealed that subpopulation cells re-emerged in large numbers during this

stage, but with distinct dynamics between subpopulations labelled with different enhancers

(Figure 6a–f). For instance, VT17559 cells are already present in substantial numbers by 18 hr APF

(Figure 6c), whereas VT32897 reporter expression reappears between 24 and 48 hr APF

(Figure 6d). VT57089 and VT62766 cells increased in numbers more gradually over the course of

pupal development (Figure 6e–f). Different subpopulations appear present in subtly distinct

Video 2. Localisation and dynamics of subpopulation

cells within L1 larvae. Movies showing localisation and

movement of cells labelled using split GAL4 lines

(srpHemo-AD in combination with VT17559-DBD,

VT32897-DBD, VT57089-DBD, or VT62766-DBD) to

drive expression from UAS-stinger in L1 larvae. Images

taken from timelapse series of single focal planes to

enable rapid imaging. The majority of cells detected

appear attached to the body wall, since they do not

shift their relative positions during larval movements,

although some cells can be seen in circulation. Scale

bars represent 200 mm. See Supplementary file 1 for

full list of genotypes.

https://elifesciences.org/articles/58686#video2
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Figure 4. Plasmatocyte subpopulations are greatly reduced in L3 larvae but exhibit distinctive localisations. (a–f) Dorsal and ventral views of negative

control L3 larvae (a, no GAL4), positive control L3 larvae with hemocytes labelled via serpent (b, UAS-stinger driven by srpHemo-AD;srpHemo-DBD) and

L3 larvae containing cells labelled through expression of UAS-stinger via srpHemo-AD and the VT-DBD transgenes indicated (c–f). Arrowheads indicate

non-specific expression of Stinger in salivary glands and gut (a’ – also visible in dorsal images (c’–f’) but not labelled) and possible proventricular region

hemocytes/garland cells (b); arrows (b, b’) indicate regions shown in close-ups of potential hemocyte population in the head region (b’’) and in the

Bolwig organ (b’’’); boxes indicate individual hemocytes (c, e) and labelling in the head region (d), proventriculus/of Garland cells (d’), and Bolwig organ

(e) shown at enhanced magnification in inset panels; asterisks in (d) denote region shown as a close-up and at a reduced brightness in (d’’) in order to

reveal detail of cells along the dorsal vessel; fractions indicate the number of larvae exhibiting a particular localisation out of the total imaged. (g)

Scatterplot showing the proportion of subpopulation cells labelled via the split GAL4 system in circulation (initial bleed) compared to the proportions in

resident/adhered populations (scraping of the carcass) in the indicated genotypes. Proportions obtained via each method compared via Student’s t-test

(n = 10 larvae per genotype; p=0.77 (VT17559), p=0.13 (VT32897), p=0.27 (VT57089), p=0.60 (VT62766)). (h) Bar chart showing the relative proportions of

Figure 4 continued on next page
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locations in pupae (Figure 6). Further work will be required to understand if subpopulation specifica-

tion occurs in situ or cells are specified and then migrate to these regions.

Subpopulations display distinct dynamics and localisation in adults
Immediately after adults hatch, large numbers of split GAL4-labelled cells can be observed across all

lines and are present in selected regions that overlap with the overall adult hemocyte population

(Figure 7a–e). The overall hemocyte population remains detectable as adults age (0–6 weeks;

Figure 7a); however, not all subpopulations exhibit an identical localisation or dynamics during this

time (Figure 7b–e). VT57089 and VT62766 cells largely disappear by 1 week (Figure 7d–e) and the

majority of VT17559-labelled cells are absent by 2 weeks (Figure 7b). By contrast, VT32897 cells can

be detected for at least 6 weeks of adult life and are particularly prominent in the thorax at 4 weeks

(Figure 7c). Other differences in localisation are also apparent with cells particularly obvious in the

legs for the VT17559 line (Figure 7b, day 1–2

weeks), whereas VT57089 and VT62766-labelled

cells are more closely associated with the thorax

and dorsal abdomen (Figure 7d–e, day 1).

Labelled cells are also present in the proboscis

for several lines (Figure 7c–e).

To quantify the proportion of blood cells

labelled in adults, 1-day-old flies were dissected.

Despite the large numbers of cells labelled via

the split GAL4 system in adults (Figure 7b–e),

the proportion of blood cells released via this

technique that could be labelled using the split

GAL4 system was relatively low (Figure 7f). This

suggests that subpopulation cells may favour

association with tissues, leaving fewer available

to circulate within the hemolymph.

Overall, the distinct dynamics of subpopula-

tion cells in pupal and adult stages (Figure 6

and Figure 7) strongly suggests that these sub-

populations are at least partially distinct from

each other and highlights their plasticity during

development, with their presence, disappear-

ance (via changes in expression shifting them

into distinct cell states) and return correlating

with changes in the biology of blood cells over

the entire lifecourse. While no obvious staining

was detected in the lymph gland during larval

Figure 4 continued

labelled cells found within the anterior, medial or posterior 1/3 of L3 larvae using Hml(D)-GAL4 to drive EGFP or the split GAL4 system to express

Stinger in all larval hemocytes or subpopulations, respectively (n = 17, 12, 20, 13, 14 larvae). (h’) Scatterplot of the proportions of cells found within the

anterior region of L3 larvae for controls and split GAL4 lines. Kruskall-Wallis test with Dunn’s multiple comparisons test was used to compare

subpopulation values with Hml(D)-GAL4 control; (p=0.11 (VT17559), p=0.061 (VT32897), p=0.0018 (VT57089), p=0.0063 (VT62766)). Scale bars represent

500 mm (a–f); larval images contrast enhanced to 0.3% saturation (a–f); lines and error bars represent mean and standard deviation, respectively (g, h’);

bars represent mean (h); ns and ** denote not significant and p<0.01, respectively. See Supplementary file 1 for full list of genotypes; see Figure 4—

figure supplement 1 for quantification of numbers of subpopulation cells labelled using the original VT-GAL4 lines and lineage tracing of

subpopulation cells via G-TRACE.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numerical data used to plot panel (g) of Figure 4.

Source data 2. Numerical data used to plot panels (h) and (h’) of Figure 4.

Figure supplement 1. Lineage tracing shows reprogramming of subpopulation cells in L3 larvae.

Figure supplement 1—source data 1. Numerical data used to plot panel (a) of Figure 4—figure supplement 1.

Figure supplement 1—source data 2. Numerical data used to plot panel (c) of Figure 4—figure supplement 1.

Video 3. Dorsal vessel-associated cells can be labelled

via srp-based split GAL4 reporters in the L3 larva.

Movie showing rhythmic movements of cells labelled

using srpHemo-AD in combination with srpHemo-DBD

to drive expression from UAS-stinger in an L3 larva. The

area indicated shows cells on dorsal midline (likely to

be nephrocytes) that move in time with pumping of the

dorsal vessel (see also Video 4, Video 5 and Video 7).

These cells can also be seen using VT32897-based

enhancers. Scale bars represent 500 mm. See

Supplementary file 1 for genotype in full.

https://elifesciences.org/articles/58686#video3
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stages using the split GAL4 lines (Figure 4c–f),

additional lineage-tracing analyses would be

required to uncover whether cells derived from

the lymph gland contribute to subpopulation cell

numbers in pupae or adults.

Subpopulation cells behave in a
functionally distinct manner
compared to the overall
plasmatocyte population
Given that the VT lines identified above are spe-

cifically and dynamically expressed in subpopulations of hemocytes during Drosophila development,

we next set out to investigate whether the labelled subpopulations are also functionally distinct

using a range of immune-relevant assays. The ability of vertebrate macrophages to respond to pro-

inflammatory stimuli, such as injuries, can vary according to their activation status (Arnold et al.,

2007; Dal-Secco et al., 2015). To investigate this in our system, a well-established assay of inflam-

matory migration (Stramer et al., 2005) was employed (Figure 1a; Video 1). Strikingly, following

laser-induced wounding, cells labelled by three VT-GAL4 lines (VT17559-GAL4, VT32897-GAL4 and

VT62766-GAL4) showed a significantly more potent migratory response to injury. In each case, a

greater proportion of labelled subpopulation cells migrated to wounds, compared to the overall

hemocyte population as labelled by a pan-plasmatocyte driver (Figure 8a–c). Consistent with our

results above, plasmatocytes labelled by the VT lines represent a subset of the total number of

hemocytes present ventrally in stage 15 embryos (Figure 8d).

We next investigated in vivo migration speeds of the embryonic plasmatocyte subpopulations (as

per Figure 1c–d). Stage 15 embryos were imaged for 1 hr and individual plasmatocyte movements

were tracked (Figure 8e–f). Only the VT17559-GAL4-labelled plasmatocyte subpopulation displayed

statistically significantly faster rates of migration compared to the overall plasmatocyte population

(labelled using srpHemo-GAL4; Figure 8g). There were no differences in directionality (cell displace-

ment divided by total path length) for any of the subpopulations, suggesting that the mode of

migration was similar across these lines and with that of the overall population (Figure 8h).

Apoptotic cell clearance (efferocytosis) represents another evolutionarily-conserved function per-

formed by embryonic plasmatocytes (Figure 1e). Therefore, we investigated this function in subpo-

pulations, using numbers of phagosomal vesicles per cell as a proxy for this process (Evans et al.,

2013). Cells labelled via VT17559-GAL4, VT57089-GAL4 and VT62766-GAL4 (but not VT32897-

GAL4) contained fewer phagosomes than the overall plasmatocyte population (Figure 8i–k), sug-

gesting that these discrete populations of cells are less effective at removing apoptotic cells inside

Video 4. Localisation and dynamics of subpopulation

cells within L3 larvae. Movies showing localisation and

movement of cells labelled using split GAL4 lines

(srpHemo-AD in combination with VT17559-DBD,

VT32897-DBD, VT57089-DBD, or VT62766-DBD) to

drive expression from UAS-stinger in L3 larvae. Images

taken from timelapse series of single focal planes to

enable rapid imaging. Far fewer cells are visible

compared to L1 and L2 larvae and the majority of cells

detected appear attached to the body wall, since they

do not shift their relative positions during larval

movements. Movies repeat with second repetition

showing examples of rare cells in circulation (illustrated

by overlaid tracks). Scale bars represent 500 mm. See

Supplementary file 1 for full list of genotypes.

https://elifesciences.org/articles/58686#video4

Video 5. Flow of srp-positive cells in circulation within

a white pre-pupa. Movie showing movements of srp-

positive cells within the hemolymph of a white pre-

pupa. Cells labelled via UAS-stinger expression driven

by srpHemo-AD in combination with srpHemo-DBD.

Scale bar represents 500 mm. See Supplementary file

1 for genotype in full.

https://elifesciences.org/articles/58686#video5
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the developing embryo. To confirm this result dynamically, GFP-myc-2xFYVE, a phosphatidylinositol-

3-phosphate reporter (Wucherpfennig et al., 2003) was used to measure the rate of phagocytosis

in subpopulation cells. This reporter rapidly and transiently localises on the surface of engulfed

phagosomes in plasmatocytes (Roddie et al., 2019). All subpopulations exhibited lower rates of

phagocytosis compared to the overall plasmatocyte population using this reporter (Figure 8l), sug-

gesting the differences in numbers of phagosomes per cell result from distinct phagocytic abilities.

Finally, we examined cell size and the shape of labelled plasmatocyte subpopulations. Vertebrate

macrophages are highly heterogeneous, with distinct morphologies dependent upon their tissue of

residence or polarisation status (McWhorter et al., 2013; Ploeger et al., 2013; Rostam et al.,

2017). We found no obvious size or shape differences between VT-GAL4-labelled cells and the over-

all plasmatocyte population (Figure 8—figure supplement 1a–e). This was also the case when VT-

GAL4-positive cells were compared to internal controls (VT-GAL4-negative cells within the same

embryos) for a range of shape descriptors (Figure 8—figure supplement 1f–i). Similarly, we were

unable to detect differences in ROS levels (Figure 8—figure supplement 2) or the proportion of VT-

GAL4-labelled plasmatocytes that phagocytosed pHrodo-labelled E. coli compared to controls (Fig-

ure 8—figure supplement 3), two processes associated with pro-inflammatory activation of macro-

phages (Benoit et al., 2008).

Taken together these data show that the subpopulations of plasmatocytes identified via the VT-

GAL4 reporters exhibit functional differences compared to the overall plasmatocyte population

(Table 1). Therefore, as well as displaying molecular differences in the form of differential enhancer

Figure 5. Plasmatocyte subpopulations are sparse in white pre-pupae. (a–b) Dorsal and ventral views of negative control (a, UAS-stinger, but no driver)

and positive control (b, UAS-stinger driven by srpHemo-AD;srpHemo-DBD) white pre-pupae (WPP); boxes indicate regions shown in close-up views of

positive controls. (c–f) dorsal and ventral views of WPP containing cells labelled using srpHemo-AD and the indicated VT-DBD to drive expression from

UAS-stinger. Very few VT enhancer-labelled cells can be detected in WPP: boxes mark regions shown in close-up views with example hemocytes

indicated with an arrow; dorsal vessel-associated and proventricular region/Garland cells can also be observed in VT32897 WPP (arrowheads in d and

d’, respectively); scale bars represent 500 mm (WPP) or 50 mm (close-ups); WPP images contrast enhanced to 0.3% saturation; close-up images contrast

enhanced individually. See Supplementary file 1 for full list of genotypes.
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activity, and hence reporter expression, these discrete populations of cells behave differently. This

strongly suggests that these cells represent functionally distinct subpopulations and that the plasma-

tocyte lineage is not homogeneous. Furthermore, not all subpopulations displayed identical func-

tional characteristics, suggesting that there are multiple distinct subtypes present in vivo, although

some overlap between subpopulations seems likely. For example, VT17559-GAL4-labelled cells were

more effective at responding to wounds and migrated more rapidly but carried out less phagocyto-

sis of apoptotic cells. By contrast, VT32987-GAL4-labelled cells only displayed improved wound

responses (Figure 8).

VT enhancers identify functionally active genes within plasmatocytes
In the original study that analysed the VT-GAL4 collection, the majority of active enhancer fragments

tested were found to control transcription of neighbouring genes (Kvon et al., 2014). Thus, genes

proximal to enhancers that label plasmatocyte subpopulations represent candidate regulators of

immune cell function (Table 2; Figure 9a). VT62766-GAL4 labels a subpopulation of plasmatocytes

with enhanced migratory responses to injury (Figure 8a–c) and this enhancer region is found within

the genomic interval containing paralytic (para), which encodes a subunit of a voltage-gated sodium

channel (Lin et al., 2009), and upstream of the 3’ end of Calnexin14D (Cnx14D; Figure 9a). Cnx14D

encodes a calcium-binding chaperone protein resident in the endoplasmic reticulum

(Christodoulou et al., 1997). Alterations in calcium dynamics are associated with clearance of apo-

ptotic cells (Cuttell et al., 2008; Gronski et al., 2009) and modulating calcium signalling within plas-

matocytes alters their ability to respond to wounds (Weavers et al., 2016). Therefore, given the

association of Cnx14D with the VT62766 enhancer and the potential for plasmatocyte behaviours to

be modulated by altered calcium dynamics, we examined whether misexpressing Cnx14D in all plas-

matocytes was sufficient to cause these cells to behave more similarly to the VT62766 subpopula-

tion. Critically, pan-hemocyte expression of Cnx14D stimulated wound responses with elevated

numbers of plasmatocytes responding to injury compared to controls (Figure 9b–c), consistent with

the enhanced wound responses of the endogenous VT62766-GAL4-positive plasmatocyte subpopu-

lation (Figure 8c). This reveals that genes proximal to subpopulation-defining enhancers represent

candidate genes in dictating the biology of cells in those subpopulations. More importantly, misex-

pression of a subpopulation-linked gene promotes a similar behaviour to that subpopulation in the

wider plasmatocyte population.

Video 7. Movement of VT32897-labelled, dorsal vessel-

associated, non-hemocyte cells within a white pre-

pupa. Movie showing rhythmic movements of cells in a

white pre-pupa labelled using srpHemo-AD in

combination with VT32897-DBD to drive expression

from UAS-stinger. Cells on dorsal midline (likely to be

nephrocytes) move in time with pumping of the dorsal

vessel in a white pre-pupa. Scale bar represents 500

mm. See Supplementary file 1 for genotype in full.

https://elifesciences.org/articles/58686#video7

Video 6. Movement of VT57089 subpopulation cells

within a white pre-pupa. Movie showing movements of

VT57089 cells within the hemolymph of a white pre-

pupa (examples highlighted with green circles). Cells

labelled via UAS-stinger expression using srpHemo-AD

and VT57089-DBD. Movie plays twice with an overlay of

the tracks of cells in circulation shown in repeat. Scale

bar represents 500 mm. See Supplementary file 1 for

genotype in full.

https://elifesciences.org/articles/58686#video6
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Plasmatocyte subpopulations can be modulated via exposure to
enhanced levels of apoptosis
Having defined functional differences in embryonic plasmatocyte subpopulations and characterised

how these populations shift during development and ageing, we sought to identify the processes via

which these subpopulations were specified. In vertebrates, a range of stimuli drive macrophage het-

erogeneity and polarisation (Martinez and Gordon, 2014; Murray, 2017), with apoptotic cells able

to polarise macrophages towards anti-inflammatory phenotypes (A-Gonzalez et al., 2017;

de Oliveira Fulco et al., 2014). In the developing fly embryo, high apoptotic cell burdens impair

Figure 6. Plasmatocyte subpopulations return with distinct dynamics during pupal development. (a–b) Dorsal images of negative control (a, no GAL4)

and positive control pupae (b, labelled via srpHemo-AD;srpHemo-DBD) at 18 hr after puparium formation (APF). (c–f) dorsal images showing

localisation of cells labelled using srpHemo-AD and VT-DBD (VT enhancers used to drive DBD expression indicated above panels) to drive expression

of UAS-stinger during pupal development from 18 hr AFP to 72 hr APF. All image panels contrast enhanced to 0.3% saturation to reveal localisation of

labelled cells due to differing intensities of reporter line expression. Scale bars represent 500 mm. See Supplementary file 1 for full list of genotypes.
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Figure 7. Plasmatocyte subpopulations exhibit distinct localisations and dynamics as adults age. (a–e) Representative lateral images of adult flies

between 0 and 6 weeks of age showing localisation of cells labelled using srpHemo-3x-mCherry (a, positive control), or split GAL4 to drive expression

of stinger (b-e, srpHemo-AD;VT-DBD). The VT enhancers used to drive expression of the DNA-binding domain (DBD) of GAL4 correspond to VT17559

(b), VT32897 (c), VT57089 (d), and VT62766 (e); inset images show alternative view of proboscis region from same fly (a) or at a reduced level of

Figure 7 continued on next page
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wound responses (Armitage et al., 2020; Roddie et al., 2019), consistent with reprogramming of

plasmatocytes towards less wound-responsive states. In order to test whether apoptotic cells might

regulate plasmatocyte subpopulations, we exposed plasmatocytes to increased levels of apoptosis

in vivo. In the developing fly embryo, both glial cells and plasmatocytes contribute to the clearance

of apoptotic cells. We, and others, have previously shown that loss of repo, a transcription factor

required for glial specification (Campbell et al., 1994; Halter et al., 1995; Xiong et al., 1994), leads

to decreased apoptotic cell clearance by glia (Shklyar et al., 2014), and a subsequent challenge of

plasmatocytes with increased levels of developmental apoptosis (Figure 10a–b; Armitage et al.,

2020). Therefore, a repo mutant background represents an established model with which to stimu-

late plasmatocytes with enhanced levels of apoptosis.

Using srpHemo-H2A-mCherry to mark all plasmatocytes within the embryo (Figure 10c), we

quantified the proportion of plasmatocytes labelled via VT-GAL4 transgenes in repo mutants com-

pared to controls (Figure 10d–h). Increased exposure to apoptotic death shifted plasmatocytes out

of each subpopulation (Figure 10d–h). Subpopulations exhibited differing sensitivities to contact

with apoptotic cells, with numbers of VT62766-GAL4-labelled cells undergoing the largest decrease

in a repo mutant background (Figure 10h). These results therefore reveal a mechanism via which the

molecularly and functionally distinct subpopulations of plasmatocytes we have identified can be

manipulated using an evolutionarily conserved, physiological stimulus (apoptotic cells) relevant to

immune cell programming.

Discussion
We have identified molecularly and functionally distinct subpopulations of Drosophila macrophages

(plasmatocytes). These subpopulations showed functional differences compared to the overall plas-

matocyte population, exhibiting enhanced responses to injury, faster migration rates and reduced

rates of apoptotic cell clearance within the developing embryo. These subpopulations are highly

plastic with their numbers varying across development, in line with the changing behaviours of Dro-

sophila blood cells across the lifecourse. That these discrete populations of plasmatocytes represent

bona fide subpopulations is evidenced by the finding that numbers of cells within subpopulations

can be manipulated via exposure to enhanced levels of apoptotic cell death in vivo. Furthermore,

pan-hemocyte expression of a gene (Cnx14D) linked to one of the enhancers used to visualise these

subpopulations (VT62766-GAL4) shifts the behaviour of these cells towards a more wound-respon-

sive state, resembling the behaviour of VT62766-GAL4-labelled cells. Taken together this data

strongly suggests that Drosophila blood cell lineages are more complex than previously known.

Vertebrate macrophage lineages show considerable heterogeneity due to the presence of circu-

lating monocytes, a wide variety of tissue resident macrophages and a spectrum of activation states

that can be achieved (Gordon and Plüddemann, 2017; Wynn et al., 2013). Whether simpler organ-

isms such as Drosophila exhibit heterogeneity within their macrophage-like lineages has been a topic

of much discussion and hints in the literature suggest this as a possibility. Braun and colleagues iden-

tified variation in reporter expression within plasmatocytes in an enhancer trap screen, but without

associating these with functional differences (Braun et al., 1997), while heterogeneity has also been

suggested previously (Anderl et al., 2016; Kurucz et al., 2007a). For instance, non-uniform expres-

sion has been reported for plasmatocyte genes such as hemolectin (Goto et al., 2003), hemese,

nimrod (Kurucz et al., 2007b; Kurucz et al., 2007a), croquemort, TGF-b family members

Figure 7 continued

brightness to reveal cellular detail (d). Images contrast enhanced to 0.15% saturation (a–c, e) or 0.75% (d) to reveal localisation of labelled cells due to

differing intensities of reporter line expression. Arrows in top row indicate hemocytes in the legs; 2nd and 3rd rows show close-up of thorax and

abdomen of day one flies; at least five flies were imaged for each timepoint; scale bars represent 500 mm. (f) Scatterplot showing proportion of cells

dissected from day one adults that were labelled using srpHemo-AD and the VT-DBD transgenes indicated to drive expression from UAS-stinger. One-

way ANOVA used to compare to negative control flies (w1118;UAS-stinger/+) with split GAL4 VT lines: n = 5 dissections per genotype; p=0.60 (VT17559),

p=0.013 (VT32897), p<0.0001 (VT57089), and p=0.0063 (VT62766). Lines and error bars represent mean and standard deviation, respectively; ns, *, **

and **** denote not significant (p>0.05), p<0.05, p<0.01, and p<0.0001, respectively. See Supplementary file 1 for full list of genotypes.

The online version of this article includes the following source data for figure 7:

Source data 1. Numerical data used to plot panel (f) of Figure 7.
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Figure 8. Drosophila plasmatocyte subpopulations demonstrate functional differences compared to the overall plasmatocyte population. (a–b)

Example images showing plasmatocyte wound responses at 60 min post-wounding (maximum projections of 15 mm deep regions). Cells labelled via

UAS-stinger using srpHemo-GAL4 (a) and VT17559-GAL4 (b); dotted lines show wound edges. (c–d) Scatterplots showing percentage of srpHemo-GAL4

(control) or VT-GAL4-labelled plasmatocytes responding to wounds at 60 min (c) or total numbers of labelled plasmatocytes in wounded region (d);

Figure 8 continued on next page
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Figure 8 continued

p=0.018, 0.041, 0.99, 0.0075 compared to srpHemo-GAL4 (n = 77, 21, 22, 26, 25) (c); p<0.0001 compared to srpHemo-GAL4 for all lines (n = 139, 35, 37,

30, 44) (d). (e–f) Example tracks of plasmatocytes labelled with GFP via srpHemo-GAL4 (e) and VT17559-GAL4 (f) during random migration on the

ventral side of the embryo for 1 hr at stage 15. (g–h) Scatterplots showing speed per plasmatocyte, per embryo (g) and directionality (h) at stage 15 in

embryos containing cells labelled via srpHemo-GAL4 (control) or the VT-GAL4 lines indicated; p=0.0097, 0.999, 0.82, 0.226 compared to srpHemo-GAL4

(n = 21, 19, 17, 21, 20) (g); p=0.998, 0.216, 0.480, 0.999 compared to srpHemo-GAL4 (n = 21, 19, 17, 21, 20) (h). (i–j) Example images of cells on the

ventral midline at stage 15 with labelling via UAS-stinger expression using srpHemo-GAL4 (i) and VT17559-GAL4 (j); plasmatocytes shown in close-up

images (i’, j’) are indicated by white boxes in main panels; arrows show phagosomal vesicles, ‘n’ marks nucleus; n.b. panels contrast enhanced

independently to show plasmatocyte morphology. (k) Scatterplot showing phagosomal vesicles per plasmatocyte, per embryo at stage 15 (measure of

efferocytosis/apoptotic cell clearance); cells labelled via srpHemo-GAL4 (control) or the VT-GAL4 lines indicated; p=0.0020, 0.99, 0.0040, 0.0002

compared to srpHemo-GAL4 (n = 76, 10, 12, 29, 31). (l) Scatterplot showing number of times 2x-FYVE-EGFP sensor recruited to phagosomes (FYVE

events) per plasmatocyte, per embryo in plasmatocytes labelled via the split GAL4 system; p=0.019, 0.0034, 0.039 and 0.015 compared to srp control

(n = 4, 6, 8, 5 and 12 embryos). Lines and error bars represent mean and standard deviation, respectively (all scatterplots); one-way ANOVA with a

Dunnett’s multiple comparison test used to compare VT lines with srp controls in all datasets; ns, *, **, and **** denote not significant (p>0.05), p<0.05,

p<0.01, and p<0.0001, respectively. All scale bars represent 20 mm. See Supplementary file 1 for full list of genotypes. N.b. Figure 8—figure

supplements 1–3 show analysis of subpopulation cell morphology, ROS levels and phagocytosis in response to immune challenge, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Numerical data used to plot panel (c) of Figure 8.

Source data 2. Numerical data used to plot panel (d) of Figure 8.

Source data 3. Numerical data used to plot panel (g) of Figure 8.

Source data 4. Numerical data used to plot panel (h) of Figure 8.

Source data 5. Numerical data used to plot panel (k) of Figure 8.

Source data 6. Numerical data used to plot panel (l) of Figure 8.

Figure supplement 1. VT-GAL4-labelled subpopulations show no gross differences in morphology compared to non-labelled plasmatocytes.

Figure supplement 1—source data 1. Numerical data used to plot panel (f) of Figure 8—figure supplement 1.

Figure supplement 1—source data 2. Numerical data used to plot panel (g) of Figure 8—figure supplement 1.

Figure supplement 1—source data 3. Numerical data used to plot panel (h) of Figure 8—figure supplement 1.

Figure supplement 1—source data 4. Numerical data used to plot panel (i) of Figure 8—figure supplement 1.

Figure supplement 2. VT-GAL4-labelled plasmatocytes show no gross differences in their ROS levels compared to the overall population.

Figure supplement 2—source data 1. Numerical data used to plot panel (f) of Figure 8—figure supplement 2.

Figure supplement 3. VT-GAL4-labelled plasmatocytes show no gross differences in their phagocytosis of E. coli compared to the overall population.

Figure supplement 3—source data 1. Numerical data used to plot panel (c) of Figure 8—figure supplement 3.

Table 1. Summary of plasmatocyte subpopulation characteristics and their developmental regulation.

Subpopulation characteristics (compared to overall
population):

Subpopulations in:

Subpopulation
Wound

responses
Migration
speed

Efferocytosis
ROS
levels

Phagocytosis
of E. coli

Embryos Larvae Pupae
Newly
hatched
adults

Aged
adults

VT17559 # # #
no

difference
no difference

distinct
subpopulation

very few cells
labelled

large
numbers

labelled by
18 hr APF

large
numbers
present

largely
absent
by 2
weeks

VT32897 #
no

difference

only
decreased
in FYVE

no
difference

no difference
distinct

subpopulation
(fewest cells)

few cells labelled
+ nephrocytes and
garland cells (?)

large
numbers

labelled by
72 hr APF

large
numbers
present

labelled
cells
persist

VT57089
no

difference
no

difference
#

no
difference

no difference
distinct

subpopulation

almost no cells
labelled + Bolwig

Organ (?)

steady
increase in
numbers
labelled

large
numbers
present

largely
absent
by 1
week

VT62766 #
no

difference
#

no
difference

no difference
distinct

subpopulation
almost no cells

labelled

large
numbers

labelled by
48 hr APF

large
numbers
present

largely
absent
by 1
week

The online version of this article includes the following source data for Table 1:

Source data 1. Source data for Table 1.Summary of plasmatocyte subpopulation characteristics and their developmental regulation.
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(Clark et al., 2011), and the iron transporter malvolio (Folwell et al., 2006). The ease of extracting

larval hemocytes has meant these cells have received more attention than their embryonic counter-

parts; recent transcriptional profiling approaches via scRNAseq that emerged during preparation of

this manuscript have suggested the existence of distinct larval blood cell populations in Drosophila

(Cattenoz et al., 2020; Fu et al., 2020; Tattikota et al., 2019) and provided further confirmation of

the existence of self-renewing/proliferating plasmatocytes at this stage of development

(Makhijani et al., 2011). Similar approaches have been taken to study the cells of the lymph gland

(Cho et al., 2020), though further work is required to establish whether the blood cells generated in

this second haematopoietic wave contribute to subpopulation numbers in pupae and adults. While it

has been suggested that some of these molecular differences may, at least in part, reflect the pres-

ence of transient progenitor states (Tattikota et al., 2019), these studies identified a number of

potentially different functional groups, including more immune-activated cell populations displaying

expression signatures reflective of active Toll and JNK signalling (Cattenoz et al., 2020; Fu et al.,

2020; Tattikota et al., 2019). Therefore, our identification of developmentally regulated subpopula-

tions, coupled with this recent evidence from larvae, strongly points to functional heterogeneity

within the plasmatocyte lineage.

How do the functionally distinct subpopulations we have uncovered relate to the transcription-

ally-defined clusters revealed via scRNAseq? These approaches profiled L3 larval hemocytes

(Cattenoz et al., 2020; Fu et al., 2020; Tattikota et al., 2019), the stage at which fewest subpopu-

lation cells can be identified. Therefore, it is possible that VT-labelled cells do not correspond to any

of the scRNAseq clusters: subpopulation cells in L3 larvae may represent high expressors from earlier

in development that are only marked due to perdurance of fluorescent protein. Alternatively, in

terms of function, it could be concluded that the VT-labelled subpopulations display a degree of

immune activation given their decreased efficiency at removing apoptotic cells and increased

responses to wounds. These subpopulations could thus relate to clusters displaying signatures of

immune activation (PM3-PM7; Tattikota et al., 2019 PL-Rel, PL-vir1, PL-AMP; Cattenoz et al.,

2020). In contrast to clusters predicted to be proliferative (PM9-11/PL-prolif/PL-Inos), these acti-

vated clusters did not show a bias in their distribution between circulation and sessile patches

(Cattenoz et al., 2020; Tattikota et al., 2019), similar to the localisation of VT-labelled cells. While

we have not categorically identified which genes are regulated by the VT-enhancers that define sub-

populations (see Table 2 for candidates), transcripts of several of these candidates are enriched in

PM6, an immune-activated cluster, and PM12, which accounts for less than 1% of plasmatocytes and

has been difficult to classify since it is defined by uncharacterised genes (Tattikota et al., 2019).

Table 2. VT enhancer region location and neighbouring genes.

VT enhancer Genomic region* Nearest genes Distance of enhancer from gene

VT17559 chr2R: 12,069,698–12,070,780 Lis-1 overlapping

CG8441 2,929bp upstream

Ptp52F 3,887bp downstream

VT32897 chr3L: 18,631,149–18,633,281 MYPT-75D overlapping

bora 13,299bp downstream

not 15,921bp downstream

VT57089 chrX: 4,961,770–4,962,316 ovo overlapping

CG32767 3,290bp upstream

CR44833 3,870bp downstream

VT62766 chrX: 16,406,666–16,408,777 para overlapping

Cnx14D 10,404bp upstream

CG9903 26,520bp upstream

* D. melanogaster Apr. 2006 (BDGP R5/dm3) Assembly.

Data taken from http://enhancers.starklab.org/.

The online version of this article includes the following source data for Table 2:

Source data 1. Source data for Table 2.VT enhancer region location and neighbouring genes.
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While the field is still at an early stage, further characterisation and new tools based on marker genes

will enable these different clusters and subpopulations to be more carefully compared.

The subpopulations we have identified are significantly reduced in L3 larvae and consequently

may represent functional heterogeneity more relevant to other developmental stages. It is clear that

the biology of Drosophila blood cells varies significantly across the lifecourse: for instance plasmato-

cytes play strikingly different functional roles in embryos and larvae (Charroux and Royet, 2009;

Defaye et al., 2009), shifting from developmental roles to host defence. Additionally, plasmatocytes

undergo directed migration to sites of injury in embryos and pupae (Moreira et al., 2011;

Figure 9. Misexpression of Cnx14D improves plasmatocyte inflammatory responses to injury. (a) Chromosomal

location of the VT62766-GAL4 enhancer region; only one transcript is shown for para, which possesses multiple

splice variants. The VT62766 region is highlighted in yellow and by an asterisk; Cnx14D (indicated by magenta

arrow) lies within para. (b) Scatterplot showing numbers of plasmatocytes present at stage 15 on the ventral side

of the embryo ahead of wounding in controls and on misexpression of Cnx14D in all hemocytes using both

srpHemo-GAL4 and crq-GAL4 (hc>Cnx14D); n = 30 and 38 for control and hc>Cnx14D embryos, respectively,

p=0.670 via Student’s t-test. (c) Scatterplot of wound responses 60 min post-wounding (number of plasmatocytes

at wound, normalised for wound area and to control responses); n = 21 and 30 for control and hc>Cnx14D

embryos, respectively; p=0.0328 via Student’s t-test. Line and error bars represent mean and standard deviation,

respectively (b–c). See Supplementary file 1 for full list of genotypes.

The online version of this article includes the following source data for figure 9:

Source data 1. Numerical data used to plot panel (b) of Figure 9.

Source data 2. Numerical data used to plot panel (c) of Figure 9.
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Figure 10. Drosophila plasmatocyte subpopulation identity can be controlled through exposure to apoptotic cells. (a–b) Maximum projections showing

apoptotic cells (via anti-cDCP-1 staining, magenta in merge) and plasmatocytes (via anti-GFP staining, green in merge) at stage 15 on the ventral

midline in control (a) and repo mutant embryos (b). (c–g) maximum projections of the ventral midline showing a negative control embryo (c) and

embryos containing VT-GAL4-labelled plasmatocytes at stage 15 in control (d–g) and repo mutant embryos (d’–g’). VT-GAL4 used to drive UAS-stinger

Figure 10 continued on next page

Coates et al. eLife 2021;10:e58686. DOI: https://doi.org/10.7554/eLife.58686 22 of 39

Research article Developmental Biology Immunology and Inflammation



Stramer et al., 2005), stages of development when subpopulation cells are most obvious. In con-

trast, hemocytes are captured from circulation via adhesion in L3 larvae and their migratory abilities

are less obvious (Babcock et al., 2008). These functional differences are reflected in molecular dif-

ferences between embryonic and larval blood cells revealed via bulk RNAseq (Cattenoz et al.,

2020), with reprogramming to suit the different requirements of these cells within larvae

(Charroux and Royet, 2009; Defaye et al., 2009), potentially explaining why our VT enhancer-

labelled subpopulations are substantially decreased at that stage. Transcriptional changes are also

associated with steroid hormone-mediated signalling in pupae (Regan et al., 2013) and this hor-

mone (ecdysone) can also drive alterations in blood cell behaviours (Sampson et al., 2013). Thus,

steroid hormone signalling represents a potential candidate mechanism to drive re-emergence of

subpopulations in time for metamorphosis.

In higher vertebrates, erythro-myeloid precursor/progenitor cells seed the developing embryo to

give rise to tissue resident macrophage populations (Gomez Perdiguero et al., 2015; Hoeffel and

Ginhoux, 2018; Mass et al., 2016). Intriguingly, the localisation of subpopulations in larvae and

adult flies shows some biases between subpopulation lines and the overall population, hinting at the

potential for some degree of tissue residency in Drosophila or that individual tissues and their micro-

environments can imprint tissue-specific transcriptional programmes upon plasmatocytes in those

locations. Hemocytes are known to localise to and/or play specialised roles at a range of tissues

including the respiratory epithelia (Sanchez Bosch et al., 2019), dorsal vessel (Cevik et al., 2019),

ovaries (Van De Bor et al., 2015), wings (Kiger et al., 2001), gut (Ayyaz et al., 2015), and proven-

triculus (Zaidman-Rémy et al., 2012). It is therefore tempting to speculate that particular subpopula-

tions could be recruited to these locations or differentiate in situ in order to carry out specific

functions. As hemocytes are thought to be relatively immobile in larvae and adult flies

(Makhijani et al., 2011; Sanchez Bosch et al., 2019), recruitment may occur during embryonic

stages or in pupae when these cells are more motile (Moreira et al., 2011; Paladi and Tepass,

2004). Vertebrate studies typically show acquisition of tissue resident transcriptional profiles after

homing (Gosselin et al., 2014; Lavin et al., 2014) – therefore, it seems more likely that the ultimate

environment in which plasmatocytes find themselves shapes their transcriptional profile. Further fine-

tuning in response to local stimuli, such as via phagocytosis (A-Gonzalez et al., 2017), may also play

a role in this process, as seen with increased exposure to apoptotic cells reducing plasmatocyte sub-

populations in the developing embryo. Future work will establish the extent to which we can use flies

to model the mechanisms by which tissue microenvironments sculpt macrophage heterogeneity.

Macrophage diversity enables these important innate immune cells to operate in a variety of

niches and carry out a wide variety of functions in vertebrates. Our data demonstrate that not all

macrophages are equivalent within the developing Drosophila embryo, although the enhancers we

have used to identify plasmatocyte subpopulations do not correspond to markers used in defining

vertebrate macrophage polarisation or tissue resident populations in an obvious way. Therefore,

how the subpopulations we have uncovered map onto existing vertebrate paradigms remains an

open question. Nonetheless, these Drosophila subpopulations could be viewed as displaying a pro-

inflammatory skewing of immune cell behaviours, given their enhanced wound responses, faster

rates of migration and decreased efferocytic capacity. Pro-inflammatory macrophages (M1-like) in

vertebrates are associated with clearance of pathogens, release of pro-inflammatory cytokines and,

most pertinently, initial responses to injury (Benoit et al., 2008). In contrast, anti-inflammatory mac-

rophages (M2-like) are more allied with tissue development and repair (Krzyszczyk et al., 2018) and

Figure 10 continued

expression (green) and srpHemo-H2A-3x-mCherry used to label plasmatocytes (magenta). Arrows and asterisks indicate examples of VT-GAL4-positive

plasmatocytes and non-plasmatocyte cells, respectively; note loss of non-plasmatocyte VT-GAL4 expression in repo mutants versus controls for

VT62766-GAL4. (h) Scatterplot showing percentage of H2A-3x-mCherry-positive cells that are also positive for VT-GAL4 driven Stinger expression in

control and repo mutant embryos at stage 15. Student’s t-test used to show significant difference between controls and repo mutants (p=0.0009,

n = 22, 15 for VT17559-GAL4 lines; p=0.0017, n = 37, 28 for VT32897-GAL4 lines; p=0.0005, n = 25, 14 for VT57089-GAL4 lines; p<0.0001, n = 22, 20 for

VT62766-GAL4 lines). Scale bars represent 10 mm (a–g); lines and error bars represent mean and standard deviation (h); **, ***, and **** denote p<0.01,

p<0.001, and p<0.0001, respectively. See Supplementary file 1 for full list of genotypes.

The online version of this article includes the following source data for figure 10:

Source data 1. Numerical data used to plot panel (h) of Figure 10.
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can display enhanced rates of efferocytosis (Lingnau et al., 2007; Ogden et al., 2005; Zizzo et al.,

2012).

Apoptotic cell clearance can promote anti-inflammatory states in vertebrates (Fadok et al.,

1998). Consequently, it is both consistent and compelling that exposure of Drosophila plasmato-

cytes to excessive levels of apoptotic cells dampens their inflammatory responses to injury and rates

of migration in the developing embryo (Armitage et al., 2020; Evans et al., 2013; Roddie et al.,

2019) and also shifts cells out of the more wound-responsive and potentially pro-inflammatory sub-

populations we have discovered. Previous work suggests that macrophage polarisation may exist in

Drosophila with infection causing hemocytes to prioritise aerobic glycolysis (Krejčová et al., 2019),

similar to the situation on acquisition of pro-inflammatory states in vertebrates (Van den Bossche

et al., 2017). Parallels also exist in the eye following UV-induced damage, with upregulation of the

M2 marker arginase in hemocytes as part of repair responses (Neves et al., 2016). Furthermore,

TGF-b signalling is associated with promotion of anti-inflammatory characteristics in vertebrates dur-

ing resolution of inflammation (Fadok et al., 1998) and these molecules can be found in discrete

sets of hemocytes on injury and infection in adult flies (Clark et al., 2011). Thus, despite significant

evolutionary distance between flies and vertebrates, comparable processes and mechanisms may

control the behaviours of their innate immune cells.

We have concentrated on using the VT enhancers as reporters to follow subpopulation behaviour

in vivo. While a lack of associated gene expression does not preclude the use of these enhancers to

label subpopulations, these elements also potentially identify genes required for specific functions

associated with each subpopulation. For instance, the VT17559 enhancer overlaps Lisencephaly-1,

which has been shown to be expressed in hemocytes (Williams, 2009). Furthermore, misexpression

of Cnx14D, located proximally to the VT62766 enhancer, was sufficient to improve overall wound

responses, paralleling the behaviour of the VT62766-GAL4-labelled subpopulation. Cnx14D can bind

calcium and therefore potentially modulates calcium signalling within plasmatocytes. Calcium signal-

ling is known to influence wound responses in flies (Weavers et al., 2016) and plays a central role

during phagocytosis of apoptotic cells (Cuttell et al., 2008; Gronski et al., 2009). Therefore, a mol-

ecule such as Cnx14D, which also has a known role in phagocytosis in Dictyostelium (Müller-

Taubenberger et al., 2001), could help fine-tune the behaviour of specific macrophage subpopula-

tions. When considered in combination with the ability to manipulate the numbers of cells within

subpopulations with physiologically relevant stimuli, the functional linkage of candidate genes with

subpopulation behaviours strongly suggests that we have identified bona fide functionally and

molecularly distinct macrophage subpopulations in the fly.

In conclusion, we have demonstrated that Drosophila macrophages are a heterogeneous popula-

tion of cells with distinct functional capabilities. We have characterised novel tools with which to visu-

alise these subpopulations and have used these tools to reveal functional differences between these

subpopulations and the general complement of hemocytes. Furthermore, we have shown that these

subpopulations can be manipulated by exposure to apoptotic cells and can be linked to specific

functional players. Therefore, we have further established Drosophila as a model for studying macro-

phage heterogeneity and immune programming and demonstrate that macrophage heterogeneity is

a key feature of the innate immune system even in the absence of adaptive immunity and is con-

served more widely across evolution than previously anticipated.

Materials and methods
N.b. Key Resources Table can be found in Appendix 1 at the end of the manuscript.

Fly genetics and reagents
Standard cornmeal/agar/molasses media was used to culture Drosophila at 25˚C (see

Supplementary file 2 for ingredients). srpHemo-GAL4 (Brückner et al., 2004; Wood et al., 2006),

crq-GAL4 (Stramer et al., 2005), and the GAL4-independent lines srpHemo-GMA (received from J.

Bloor, University of Kent, UK), srpHemo-3x-mCherry and srpHemo-H2A-3x-mCherry (Gyoergy et al.,

2018) were used to label the entire hemocyte population during embryonic development or in

adults. N.b. SrpHemo-GAL4 is referred to as srp-GAL4 on graphs (for reasons of space) but this is

the shorter construct more specific to hemocytes (as per Brückner et al., 2004) rather than the

entire serpent promoter region. Hml(D)-GAL4 (Sinenko and Mathey-Prevot, 2004) was used to
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label larval hemocytes and da-GAL4 (Wodarz et al., 1995) was used as a ubiquitous driver line.

These GAL4 lines, Vienna Tiling array GAL4 lines (VT-GAL4 lines obtained from VDRC; Kvon et al.,

2014) and split GAL4 lines (see below) were used to drive expression from UAS-tdTomato, UAS-

GFP (Stramer et al., 2005; Wood et al., 2006), UAS-red stinger (Davis et al., 2012), UAS-stinger,

UAS-Cnx14D, UAS-GFP-myc-2xFYVE (Wucherpfennig et al., 2003), or UAS-GC3ai (Schott et al.,

2017). GAL4-independent VT-RFP lines were also generated as part of this study (see below) and

used to label subpopulation cells in combination with crq-GAL4,UAS-GFP (Stramer et al., 2005),

eater-GFP (Sorrentino et al., 2007), and simu-cytGFP (Kurant et al., 2008). Experiments were con-

ducted in a w1118 background and the repo03702 null allele was used to expose plasmatocytes to

enhanced levels of apoptotic cell death in the embryo (Armitage et al., 2020; Campbell et al.,

1994; Halter et al., 1995). Both UAS-tdTomato and UAS-GFP were used to analyse subpopulations

in the developing embryo in order to ensure labelling of discrete numbers of plasmatocytes was not

due to positional effects of insertion sites that led to mosaic expression (Figure 2). G-TRACE flies

(w;;UAS-red stinger,UAS-FLP,Ubi-p63E(FRT.STOP)Stinger; Evans et al., 2009) were crossed to split

GAL4 driver lines (see below) for lineage-tracing experiments. See Supplementary file 1 for a full

list of Drosophila genotypes, transgenes and the sources of the Drosophila lines used in this study.

Flies were added to laying cages attached to apple juice agar plates supplemented with yeast

paste and allowed to acclimatise for 2 days before embryo collection. Plates were then changed

every evening and cages incubated at 22˚C overnight before embryos were collected the following

morning. Embryos were collected by washing the plates with distilled water and gently disturbing

the embryos with a paintbrush, after which embryos were collected into a cell strainer. Embryos

were dechorionated in undiluted bleach for 1–2 min and then washed in distilled water until free

from bleach. The fluorescent balancers CTG, CyO dfd, TTG, and TM6b dfd (Halfon et al., 2002;

Le et al., 2006) were used to discriminate homozygous embryos after removal of the chorion.

Generation of split GAL4 and GAL4-independent transgenic lines
We used the split GAL4 system (Pfeiffer et al., 2010) to restrict VT enhancer expression to serpent-

positive cells. The activation domain (AD) of GAL4 was expressed using a well-characterised frag-

ment of the hemocyte-specific serpent promoter (Brückner et al., 2004; Gyoergy et al., 2018) and

the DNA-binding domain (DBD) was expressed under the control of VT enhancer regions corre-

sponding to VT17559-GAL4, VT32897-GAL4, VT57089-GAL4, or VT62766-GAL4. High-fidelity poly-

merase (KAPA HiFi Hotstart ReadyMix, Roche) was used to PCR amplify VT enhancer regions from

genomic DNA extracted from the original VT-GAL4 line flies, which were then TA cloned into the

pCR8/GW/TOPO vector. Primers were designed according to VT enhancer sequences available via

the Stark Lab Fly Enhancers website (http://enhancers.starklab.org/; Kvon et al., 2014). To make

VT-DBD transgenic constructs, VT enhancers were transferred from pCR8/GW/TOPO into

pBPZpGal4DBDUw (Addgene plasmid 26233) using LR clonase technology (Gateway LR Clonase II

Enzyme Mix, Invitrogen).

To express the DBD and AD of GAL4 under the control of the serpent promoter (srpHemo-AD

and srpHemo-DBD; also referred to as srp-AD and srp-DBD for reasons of space on graphs), these

were subcloned into a vector containing an attB site and this promoter (pBS_MCS_SRPW_attB;

DSPL337 – a gift from Daria Siekhaus, IST, Austria; Gyoergy et al., 2018). DBD and AD sequences

along with the Drosophila synthetic minimal core promoter (DSCP) region were amplified using PCR

from vectors pBPZpGal4DBDUw and pBPp65ADZpUw (Addgene clone 26234) using primers that

added NotI and AvrII restriction sites (CTGATCGCGGCCGCAAAGTGGTGATAAACGGCCGGC and

GATCAGCCTAGGGTGGATCTAAACGAGTTTTTAAGCAAACTCAC). These were subcloned into

DSPL337 cut with NotI/AvrII (New England Biolabs) using T4 DNA ligase (Promega). Transgenic flies

were generated by site-specific insertion of transgenic constructs into the VK1 attP site on chromo-

some 2 and/or attP2 on chromosome 3 (Genetivision).

To generate GAL4 independent VT-RFP transgenic lines, nuclear RFP was isolated by sequential

digestion of pRed H-Pelican (DGRC plasmid 1203) using Acc65I and then SpeI restriction enzymes

(NEB). In parallel, GAL4 was excised from pBPGUw (Addgene plasmid 17575) using the same restric-

tion enzymes and replaced with nuclear RFP using T4 ligase. LR clonase was again used to transfer

the VT enhancer regions from the PCR8/GW/TOPO gateway vectors (see above) into the nuclear

RFP-containing pBPGUw destination vector. Transgenic flies were generated by PhiC31 integrase-

mediated insertion of VT-RFP constructs into attP2 on chromosome 3 (Genetivision).
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Imaging of Drosophila embryos, larvae, pupae, and adults
Live embryos were mounted ventral-side up on double-sided sticky tape in a minimal volume of Vol-

talef oil (VWR), after dechorionation in bleach as previously (Evans et al., 2010). High-resolution live

imaging of plasmatocytes was carried out on an UltraView Spinning Disk system (Perkin Elmer) using

a 40x UplanSApo oil immersion objective lens (NA 1.3). A Nikon A1 confocal microscope was used

to image plasmatocyte morphology (40x CFI Super Plan Fluor ELWD oil immersion objective lens,

NA 0.6) and a Zeiss Airyscan microscope (40x Plan-Apochromat oil immersion objective lens, NA

1.4) was used for imaging of embryos stained with ROS dyes.

L1 and L2 larvae were allowed to develop at 22˚C from embryos laid on apple juice agar plates at

the same temperature. Larvae were selected and washed in distilled water in embryo baskets, then

partially anaesthetised using diethyl ether (2 min for L1 larvae, 3.5 min for L2 larvae). Larvae were

then transferred to double-sided tape and covered with halocarbon oil 500 (Sigma-Aldrich). Thick-

ness one coverslip bridges (VWR) were attached to the tape either side of larvae and another cover-

slip placed across these supports (over the larvae) and attached in place with nail varnish. Larvae

were immediately imaged on a MZ205 FA fluorescent dissection microscope with a 2x PLANAPO

objective lens (Leica) and LasX software (Leica). To quantify numbers of cells labelled via the split

GAL4 system in newly hatched larvae, L1 larvae were flattened under a coverslip in a small drop of

halocarbon oil 500. Overlapping images of the flattened larvae were taken using the same micro-

scope and mosaics assembled in Adobe Photoshop. Mosaics were blinded and the number of cells

expressing Stinger counted using the multipoint selection tool in Fiji. The same microscope was also

used to image L3 larvae, white pre-pupae (WPP), pupae, and adults (see below).

Wandering L3 Larvae and WPP were removed from straight-sided culture bottles containing the

food on which they were reared at 25˚C and cleaned in distilled water. L3 Larvae were imaged in

fresh ice-cold, distilled water to minimise their movements, while WPP were immobilised on double-

sided tape (Scotch). For analysis of plasmatocyte populations in pupae, white pre-pupae were also

collected, aged at 25˚C and the pupal cases removed at a range of times after puparium formation.

Dissected pupae were covered with halocarbon oil 500 to prevent desiccation during imaging. For

imaging of plasmatocyte populations in adults, females were aged in vials containing cornmeal/

agar/molasses media (Supplementary file 2) at 25˚C, with no more than seven flies kept per vial.

Flies were transferred to new food vials every 2–3 days; flies were chilled at �20˚C for 4 min and

imaged in a petri dish on top of ice to minimise their movements.

Analysis of hemocyte distribution in larvae
To analyse the distribution of subpopulation cells along the body axis in L3 larvae, the relative pro-

portions of cells within the anterior, medial (abdominal segments A3-A5), and posterior regions

were calculated. The number of cells in each region in images of L3 larvae were counted in Fiji and

expressed as a fraction of the total number of cells in each larva. As a comparison to reflect the dis-

tribution of the total larval hemocyte population, images of L3 larvae with hemocytes labelled using

Hml(D)-GAL4,UAS-GFP were analysed. Since hemocytes were too numerous to count accurately in

these images, the integrated density of GFP fluorescence (mean gray value multiplied by area) was

measured in each region in Fiji. The proportion of the total GFP signal in each region was then calcu-

lated per larva.

Dissection, stimulation, and staining of larval and adult hemocytes
To isolate larval hemocytes, single wandering third instar were picked from bottles with a paintbrush,

washed with distilled water then placed in a 75 mL drop of ice-cold S2 media, which consists of

Schneider’s media (Sigma-Aldrich) supplemented with 10% heat-inactivated FBS (Gibco/Sigma-

Aldrich) and 1x Pen/Strep (Gibco/Sigma-Aldrich). Larvae were then ripped open from the posterior

end using size five forceps to release hemocytes into the S2 cell media. Larval carcasses were gently

agitated for 5 s before being removed from the S2 media droplet. The cell suspension was then

transferred to a well of a 96-well plate (Greiner) and a further 75 mL of S2 media was added per well.

Hemocytes were allowed to settle for at least 90 min in a humidified box prior to fixation. Cells were

then fixed for 15 min using 4% EM-grade formaldehyde (Thermo Scientific) in PBS (Oxoid). Cells

were then permeabilised for 4 min using 0.1% Triton-X-100 in PBS. Following washing in PBS, nuclei

and actin filaments were stained using NucBlue (two drops per ml; Invitrogen) and Alexa Fluor 647
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phalloidin (1:200 in PBS; Invitrogen; Figure 7f) or Alexa Fluor 568 phalloidin (1:500 in PBS; Invitro-

gen; Figure 4g) for 30 min. Following a final wash step, cells were imaged using an ImageXpress

Micro hi-content microscope (Molecular Devices).

To discriminate sessile and circulating populations of hemocytes, we adapted a previously

described protocol (Petraki et al., 2015): wandering third instar larvae were selected, washed and

placed in S2 media as above. Larvae were then bled by puncturing at their posterior and anterior

ends with sterile 27G needles to release circulating hemocytes; larvae were not agitated and were

left in the media droplet for up to 10 s. The bled larva was then transferred to another 75 mL drop of

S2 media, while the media containing the initial bleed was transferred to a well in a 96-well plate.

Bled larval carcasses were held down using a 27G needle and then jabbed/scraped with a separate

needle to release sessile/adherent hemocytes. After jabbing/scraping, the carcass was removed, and

the media droplet transferred to a well of a 96-well plate (Greiner). Finally, 75 mL of S2 media was

added to each well and cells were allowed to settle prior to being fixed, stained and imaged as

above.

For stimulation with S. cerevisiae (Figure 1), several larvae were pooled and dissected within

larger droplets (75 ml per larvae used). Of this cell suspension, 75 ml was transferred into each well in

a 96-well plate (Porvair) and cells allowed to adhere in a humidified box in the dark for 2 hr. After 2

hr, cells were stimulated with heat-killed S. cerevisiae particles previously stained using calcofluor

staining solution (Sigma-Aldrich). S. cerevisiae (strain BY4741/accession number Y00000, Euroscarf

consortium) were grown to exponential phase in YPD broth (Fisher) at 28˚C. Yeast were heat killed

at 60˚C for 30 min, spun down and frozen at 20 � 109 cells/ml. 1 � 109 heat-killed yeast particles in

1 ml of PBS were stained for 30 min at room temperature (with rotation) using 15 ml of calcofluor

staining solution. Stained yeast particles were washed in PBS and 1 � 106 particles resuspended in

75 ml S2 cell medium, which was then added to each well of larval hemocytes for 2 hr. Cells were

fixed in wells using 4% EM-grade formaldehyde in PBS for 15 min and washed in PBS. Images were

taken on a Nikon Ti-E inverted fluorescence microscope using a 20x objective lens and GFP and

DAPI filter sets.

To isolate hemocytes from adults, two flies per genotype (1 day post-eclosion) were anaesthe-

tised using CO2 and cut in half longitudinally in a 75 ml droplet of S2 media on ice. A further 75 ml of

S2 media was then added and carcasses agitated by pipetting for 10 s to release hemocytes.

The 150 ml of cell suspension was then transferred to a single well in a 96-well plate (Greiner). Cells

were allowed to settle for 30 min before being fixed and stained as per larval hemocytes. Based on

phalloidin staining and cell morphology it was assumed all adhered cells were blood cells. The per-

centage of labelled cells was calculated using the number of Stinger-positive cells divided by the

total number of cells in images (NucBlue labelling).

Wounding assay
Live stage 15 embryos were prepared and mounted as described above. The ventral epithelium of

the embryos was ablated on the ventral midline using a Micropoint nitrogen-pulsed ablation laser

(Andor) fitted to an Ultraview spinning disk confocal system (PerkinElmer) as previously

(Evans et al., 2015). Pre-wound z-stacks of 30 mm were taken of superficial plasmatocytes with a 1

mm z-spacing between z-slices. Post-wound images were taken on the same settings either at 2 min

intervals for 60 min (Figure 1) or at the end timepoint of 60 min (Figure 8 and Figure 9).

The proportion of plasmatocytes labelled with UAS-stinger (expression via srpHemo-GAL4 or VT-

GAL4) was assessed by counting the number of labelled cells at or in contact with the wound site

within a 35 mm deep volume on the ventral midline at 60 min post-wounding; this was divided by

the total number of labelled cells present within the stack to calculate the percentage of plasmato-

cytes responding to injury. The brightfield channel was used to visualise the wound margin and only

those embryos with wounds between 1000 mm2 and 4000 mm2 were included in analyses. Quantifica-

tion was performed on blinded images in Fiji.

Quantification of migration speeds/random migration
Embryos were prepared and mounted as previously described (Evans et al., 2010). Random migra-

tion was imaged using an Ultraview spinning disk system (PerkinElmer), with an image taken every 2

min for 1 hr with a z-spacing of 1 mm and approximately 20 mm deep from the ventral nerve cord

Coates et al. eLife 2021;10:e58686. DOI: https://doi.org/10.7554/eLife.58686 27 of 39

Research article Developmental Biology Immunology and Inflammation



using a 20x UplanSApo air objective lens (NA 0.8). Maximum projections were made for each time-

point (25 mm depth) and the centre of individual plasmatocyte cell bodies tracked using the manual

tracking plugin in Fiji. Random migration speed (mm/min) and directionality (the ratio of the Carte-

sian distance to the actual distance migrated) were then calculated using the Ibidi chemotaxis

plugin.

Quantification of apoptotic cell clearance
The number of apoptotic cell-containing phagosomes per plasmatocyte (averaged per embryo) was

used as a read-out of apoptotic cell clearance as previously described (Evans et al., 2013). Phago-

cytic vesicles were counted using z-stacks of GFP-labelled plasmatocytes taken from live imaging

experiments. Phagosomes were scored in the z-slice in which each macrophage exhibited its maxi-

mal cross-sectional area. Only labelled plasmatocytes present on the ventral midline of stage 15

embryos were included. Analysis was performed on blinded image stacks. This analysis does not

report the absolute numbers of apoptotic corpses per cell but provides a relative read-out of the

phagocytic index.

To assay rates of phagocytosis of apoptotic cells, a phosphatidylinositol-3-phosphate reporter

(UAS-GFP-myc-2xFYVE; Roddie et al., 2019; Wucherpfennig et al., 2003) was expressed in all plas-

matocytes (via srpHemo-AD in combination with srpHemo-DBD) or in subpopulation cells (via

srpHemo-AD in combination with VT enhancers driving expression of the DBD domain). Plasmato-

cytes were imaged at stage 12/13 on the ventral midline and the number of ‘FYVE events’ (number

of times new recruitment events could be seen to form on the surface of nascent phagosomes) per

plasmatocyte per movie was scored. Only cells present in at least 15 min of 30 min movies were

included in this analysis and scoring was conducted on blinded movies constructed from maximum

projections of z-stacks.

Morphological analysis of plasmatocytes
For morphological analysis of plasmatocytes (Figure 8—figure supplement 1), the vitelline mem-

brane was manually removed from individual z-slices by drawing around the inside edge of the mem-

brane with the freehand selection tool and using the clear outside command. Maximum projections

were then created of the ventral midline region in Fiji. Following this, a region of interest was manu-

ally drawn around the area of individual plasmatocytes using the polygon tool and a range of cell

shape descriptors and measurements calculated using Fiji.

ROS staining of embryos
To stain plasmatocyte ROS levels (Figure 8—figure supplement 2), embryos containing tdTomato-

labelled plasmatocytes (with expression driven using srpHemo-GAL4 or VT-GAL4) were first dechor-

ionated and then left in water for 30 min. Stage 15 embryos were then selected and transferred to a

glass vial wrapped in foil containing 1 ml peroxide-free heptane (Sigma-Aldrich) and 1 ml of 50 mM

dihydrorhodamine 123 (DHR123, Sigma-Aldrich) in PBS. Embryos were shaken at 250 rpm for 30

min. Following this, embryos were removed from the interface and mixed with halocarbon oil.

Embryos were orientated individually in a droplet of this oil on a glass slide and then immediately

imaged using a Zeiss Airyscan microscope (40x Plan-Apochromat oil immersion objective, NA 1.4),

with z-spacing of 1 mm and stacks totalling 30 mm from the surface of the vitelline membrane down

through the ventral nerve cord. Embryos were exposed to 10 mM of H2O2 (Sigma-Aldrich) in PBS

and peroxide-free heptane for 30 min prior to staining with DHR123 as a positive control. Negative

control embryos were incubated in heptane/PBS alone.

To quantify ROS levels, the intensity of DHR123 staining was measured in the z-slice in which

each macrophage exhibited its maximal cross-sectional area. The body of the macrophage was

drawn around using the polygon tool in Fiji and then the area and mean gray value were measured

in the GFP (DHR123) channel. Average mean gray value per plasmatocyte, per embryo was then

plotted in Prism.

Phagocytosis of E. coli
To assay phagocytosis of an immune challenge (Figure 8—figure supplement 3), dechorionated

stage 15 embryos were mounted ventral-side up on a slide using double-sided Scotch tape, then
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dehydrated by incubating in a small container with silica beads for 7–8 min. Further dehydration was

then prevented by covering embryos in a small drop of Voltalef oil. 1 mg/ml pHrodo green E. coli

BioParticles (Invitrogen; resuspended in PBS) were microinjected into the anterior of stage 15

embryos to determine the phagocytic capability of labelled plasmatocytes. Needles were created by

pulling 15 cm long 1 mm glass capillaries (World Precision Instruments) using a Flaming/Brown

P-1000 micropipette puller (Sutter, program 51). Needle tips were snapped using forceps under

high magnification to create a bevelled end. Imaging was performed 1 hr after injection using an

UltraView Perkin Elmer Spinning Disk system (40x UplanSApo oil immersion objective lens, NA 1.3).

The proportion of VT-GAL4 or srpHemo-GAL4-positive cells containing E. coli BioParticles was

scored.

Fixation and immunostaining of embryos
Embryos were fixed and stained as previously described (Roddie et al., 2019). Embryos containing

plasmatocytes labelled via srpHemo-GMA and GAL4-driven tdTomato expression were fixed, then

mounted in Dabco mountant. Control and repo mutant embryos containing plasmatocytes labelled

via crq-GAL4,UAS-GFP were fixed and immunostained using mouse anti-GFP (ab1218 1:200; Abcam)

and rabbit anti-cleaved DCP-1 (9578S 1:1000; Cell Signaling Technologies) to label plasmatocytes

and apoptotic cells, respectively. Primary antibodies were detected using Alexa Fluor 488 goat anti-

mouse IgG and Alexa Fluor 568 goat anti-rabbit IgG (Invitrogen/Molecular Probes; both used at a

1:400 dilution). Embryos were imaged on the Nikon A1 system described above.

Image analysis and statistical analysis
All microscopy images were processed using Fiji (Schindelin et al., 2012). Images were blinded

ahead of analysis with quantification performed on maximum z-projections, with the exception of

analysis of numbers of cells labelled via VT-GAL4 lines (Figure 2h), wound responses (Figure 8c–d),

apoptotic cell clearance (Figure 8k) and quantification of ROS staining (Figure 8—figure supple-

ment 2f). Quantification was performed on blinded z-stacks for those analyses.

Statistical tests were performed using Prism 7 (GraphPad). p-Values less than 0.05 were deemed

significant. Experiments were carried out across at least three independent imaging sessions with N

numbers representing individual embryos, with N numbers cited for each condition in the appropri-

ate figure legend. No outliers were excluded. Embryos were taken from laying cages containing

greater than 50 adult flies of the parental genotypes, with mutant or control embryos of the correct

genotype and developmental stage selected at random following dechorionation. N numbers were

typically sufficiently large to enable use of parametric tests. Student’s t-test was used when compar-

ing two experimental data sets; where multiple comparisons were required, a one-way ANOVA with

Dunnett’s multiple comparisons test was performed (parametric data) or the Kruskall-Wallis with

Dunn’s multiple comparisons test was used (non-parametric data). N numbers, p-values and details

of statistical tests employed are reported in the appropriate figure legend. All raw numerical data

can be found within the supplementary material as source data files.
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Leitão AB, Sucena Élio. 2015. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate
larval blood cell differentiation. eLife 4:e06166. DOI: https://doi.org/10.7554/eLife.06166

Lin WH, Wright DE, Muraro NI, Baines RA. 2009. Alternative splicing in the voltage-gated sodium channel
DmNav regulates activation, inactivation, and persistent current. Journal of Neurophysiology 102:1994–2006.
DOI: https://doi.org/10.1152/jn.00613.2009, PMID: 19625535
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Gene
(Drosophila
melanogaster)

w NA FLYB:FBgn0003996 NA

Gene (D.
melanogaster)

srp NA FLYB:FBgn0003507 NA

Gene (D.
melanogaster)

crq NA FLYB:FBgn0015924 NA

Gene (D.
melanogaster)

simu NA FLYB:FBgn0260011 Also known as NimC4

Gene (D.
melanogaster)

eater NA FLYB:FBgn0243514 NA

Gene (D.
melanogaster)

Cnx14D NA FLYB:FBgn0264077 NA

Gene (D.
melanogaster)

repo NA FLYB:FBgn0011701 NA

Genetic
reagent (D.
melanogaster)

w1118 Evans lab stock FLYB:FBal0018186 FlyBase symbol:w1118

Genetic
reagent (D.
melanogaster)

srpHemo-GAL4 PMID:15239955 FLYB:FBtp0023390 FlyBase symbol:P{srp.Hemo-
GAL4}2; Obtained from W.
Wood, University of Edinburgh,
UK

Genetic
reagent (D.
melanogaster)

srpHemo-Gal4,
UAS-GFP

PMID:16651377 FLYB:FBtp0023390 (P{srp.
Hemo-GAL4}2)

Obtained from W. Wood,
University of Edinburgh, UK

Genetic
reagent (D.
melanogaster)

srpHemo-GAL4,
UAS-
red stinger

PMID:23172914 FLYB:FBtp0023390 (P{srp.
Hemo-GAL4}2)

Obtained from B. Stramer,
Kings College London, UK

Genetic
reagent (D.
melanogaster)

crq-GAL4,UAS-GFP PMID:15699212 FLYB:FBtp0022491 (P{crq-
GAL4.A})

Obtained from W. Wood,
University of Edinburgh, UK

Genetic
reagent (D.
melanogaster)

da-GAL4 PMID:
FBrf0082789

FLYB:FBtp0019571 FlyBase symbol:P{da-GAL4.w-};
Obtained from A. Whitworth,
University of Cambridge, UK

Genetic
reagent (D.
melanogaster)

UAS-GC3ai PMID:28870988 FLYB:FBtp0137390 FlyBase symbol:P{UAS-GC3Ai}
3; Obtained from M. Suzanne,
CBI-Toulouse, France

Genetic
reagent (D.
melanogaster)

srpHemo-3x-
mCherry

Bloomington
Drosophila
Stock Center;
PMID:29321168

BDSC: 78359; FLYB:
FBtp0127793; RRID:BDSC_
78359

FlyBase symbol:P{srpHemo-
3XmCherry}; Obtained from B,
Stramer, Kings College
London, UK

Genetic
reagent (D.
melanogaster)

Hml(D)-GAL4,UAS-
GFP

Bloomington
Drosophila
Stock Center;
PMID:15480416

BDSC:30140; RRID:BDSC_
30140; FLYB:FBtp0040877;
BDSC:30142; RRID:BDSC_
30142; FLYB:FBtp0040877

FlyBase symbol:‘w1118; P{Hml-
GAL4.D}2, P{UAS-2xEGFP}
AH2’;‘w1118; P{Hml-GAL4.D}3, P
{UAS-2xEGFP}AH3/MKRS’

Genetic
reagent (D.
melanogaster)

VT17559-GAL4 PMID:24896182 VDRC:205658 Previously available from
Vienna Drosophila Research
Center (stock discarded);
available on request from I.
Evans

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Genetic
reagent (D.
melanogaster)

VT32897-GAL4 PMID:24896182 VDRC:214064 Previously available from
Vienna Drosophila Research
Center (stock discarded);
available on request from I.
Evans

Genetic
reagent (D.
melanogaster)

VT57089-GAL4 PMID:24896182 VDRC:208119 Previously available from
Vienna Drosophila Research
Center (stock discarded);
available on request from I.
Evans

Genetic
reagent (D.
melanogaster)

VT62766-GAL4 PMID:24896182 VDRC:203897 Previously available from
Vienna Drosophila Research
Center (stock discarded);
available on request from I.
Evans

Genetic
reagent (D.
melanogaster)

UAS-tdTomato Bloomington
Drosophila
Stock Center

BDSC:36327; FLYB:
FBti0145103; RRID:BDSC_
36327

FlyBase symbol:P{UAS-tdTom.
S}2

Genetic
reagent (D.
melanogaster)

srpHemo-GMA Other NA Globular Moesin actin-binding
domain fused to GFP under the
control of srpHemo; P-element
insertions on chromosomes 2
and 3; Obtained from James
Bloor, University of Kent, UK

Genetic
reagent (D.
melanogaster)

UAS-GFP Bloomington
Drosophila
Stock Center

BDSC: 5431; FLYB:
FBti0013988;
RRID:BDSC_5431

FlyBase symbol:P{UAS-EGFP}
5a.2

Genetic
reagent (D.
melanogaster)

eater-GFP PMID:17936744 FLYB: FBtp0054463 FlyBase symbol:P{eater-
GFP.1.7}; Obtained from L.
Vesala, University of Tampere,
Finland

Genetic
reagent (D.
melanogaster)

simu-cytGFP PMID:18455990 NA FlyBase symbol:M{simu-
cytGFP}; Obtained from E.
Kurant, University of Haifa,
Israel

Genetic
reagent (D.
melanogaster)

VT17559-RFP This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT32897-RFP This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT57089-RFP This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT62766-RFP This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

srpHemo-AD This paper NA Inserted in VK1 attP site on; see
methods for details of cloning
and transgenesis chromosome
3

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Genetic
reagent (D.
melanogaster)

srpHemo-DBD This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT17559-DBD This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT32897-DBD This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT57089-DBD This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

VT62766-DBD This paper NA Inserted in attP2 on
chromosome 3; see methods
for details of cloning and
transgenesis

Genetic
reagent (D.
melanogaster)

srpHemo-H2A-3x-
mCHerry

Bloomington
Drosophila
Stock Center;
PMID:29321168

BDSC: 78361; FLYB:
FBtp0127794; RRID:BDSC_
78661

FlyBase symbol:P{srpHemo-
H2A.3XmCherry}; Obtained
from B. Stramer, Kings College
London, UK

Genetic
reagent (D.
melanogaster)

UAS-stinger Bloomington
Drosophila
Stock Center

BDSC:84277; FLYB:
FBti0074589; RRID:BDSC_
84277

FlyBase symbol:P{UAS-Stinger}
2

Genetic
reagent (D.
melanogaster)

‘w;;UAS-red
stinger,UAS-FLP,
Ubi-p63E(FRT.
STOP)
Stinger’

Bloomington
Drosophila
Stock Center;
PMID:19633663

BDSC:28281; RRID:BDSC_
28281

FlyBase symbol:‘w[*]; P{w[+mC]
=UAS-RedStinger}6, P{w[+mC]
=UAS-FLP.Exel}3, P{w[+mC]
=Ubi-p63E(FRT.STOP)Stinger}
15F2’; Obtained from Alisson
Gontijo, CEDOC, Lisbon,
Portugal

Genetic
reagent (D.
melanogaster)

UAS-tdTomato Bloomington
Drosophila
Stock Center

BDSC:36327; FLYB:
FBti0145103; RRID:BDSC_
36327

FlyBase symbol:P{UAS-tdTom.
S}2

Genetic
reagent (D.
melanogaster)

UAS-GFP-myc-
2xFYVE

Bloomington
Drosophila
Stock Center

BDSC:42712; FLYB:
FBti0147756; RRID:BDSC_
42712

FlyBase symbol:P{UAS-GFP-
myc-2xFYVE}2

Genetic
reagent (D.
melanogaster)

UAS-Cnx14D Harvard
Drosophila
Stock Center

FLYB:FBal0228355 FlyBase symbol:P{XP}
parad04188; Previously available
from Harvard Drosophila Stock
Centre (now discarded);
available on request from I.
Evans

Genetic
reagent (D.
melanogaster)

repo03702 Bloomington
Drosophila
Stock Center;
PMID:32796812

BDSC:11604; FLYB:
FBti0003552; RRID:BDSC_
11604

FlyBase symbol:ry506 P{PZ}
repo03702/TM3, ryRK Sb1 Ser1;
ry506 allele recombined off
original stock line

Biological
sample (D.
melanogaster)

Embryos, L1-L3
larvae, white pre-
pupae, pupae,
adults,
hemolymph
(larval and adult)

NA NA NA

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Biological
sample (S.
cerevisiae)

Isogenic
S. cerevisiae
wild-type
yeast
strain BY4741

Euroscarf
consortium

Euroscarf: Y00000 Heat-killed and stained with
calcofluor staining solution for
use in phagocytosis assay; 1 �

106 particles added per well in
96-well plate

Antibody Anti-cleaved DCP-
1 (Asp216)
(Rabbit polyclonal)

Cell Signaling
Technologies

Cat# 9578S; RRID:AB_
2721060

IF(1:1000); Primary
antibody used to
detect apoptotic cells

Antibody Anti-GFP
(Mouse
monoclonal)

Abcam Cat# ab1218; RRID:AB_
298911

IF(1:200); Primary
antibody used to
detect cells expressing GFP

Antibody Alexa Fluor
488 Goat
anti-Mouse IgG
(Goat polyclonal)

Invitrogen/
Molecular
Probes

Cat# A11029; RRID:AB_
138404

IF(1:400); secondary
antibody used to
detect anti-GFP primary
antibody

Antibody Alexa Fluor
568 Goat anti-
Rabbit
IgG
(Goat polyclonal)

Invitrogen/
Molecular
Probes

Cat# A11036; RRID:AB_
10563566

IF(1:400); secondary antibody
used to detect anti-cleaved
DCP-1 primary antibody

Software,
algorithm

Fiji PMID:22743772 RRID:SCR_002285

Software,
algorithm

GraphPad Prism 7 Graphpad RRID:SCR_002798

Other NucBlue Invitrogen/
Molecular
Probes

Cat# R37605 NucBlue Live ReadyProbes
Reagent (Hoechst 33342); two
drops per ml; nuclear stain

Other Calcofluor
staining solution

Sigma-Aldrich Cat# 18909–100 ML-F 40 ml used to stain 1 � 109 heat-
killed yeast particles in 1 mL
PBS

Other Dihydrorhodamine
123 ROS dye

Sigma-Aldrich Cat# D1054-10MG ROS dye; used at (50 mM) in
PBS to stain embryos

Other pHrodo green
E. coli BioParticles

Invitrogen/
Molecular
Probes

Cat# P35366 Microinjected into
embryos at (1 mg/ml)

Other Alexa Fluor
647 phalloidin

Invitrogen/
Molecular
Probes

Cat# A22287; RRID:AB_
2620155

1:200 Dilution

Other Alexa Fluor 568
phalloidin

Invitrogen/
Molecular
Probes

Cat# A12379 1:500 Dilution
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